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This work deals with the determination of the effective response of a multilayered or lam-
inated heterostructure composed of materials with an arbitrary coupled anisotropic behav-
ior. In particular, we elaborate a fully algebraic technique for obtaining the homogenized
parameters of a magneto-electro-elastic system (artificial multiferroic). To do this, we load
the system with an arbitrary electromagnetic/mechanical generalized action and we calcu-
late the coupled physical fields within each layer. Then, we determine the average values of
these fields, eventually obtaining the effective tensor response of the whole structure. The
theory has been developed for an arbitrary lamination direction, taken into account by
means of an ad hoc lamination tensor P~n whose components are obtained in closed form.
Its implementation is based on simple matrix algebra and does not require any extensive
computation. Moreover, the formalism has been generalised to graded structures and to
multiple-rank laminated materials.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Magneto-electro-elastic composites and multiferroic phases represent a new class of materials with several potential
applications in modern nanoscience and nanotechnology (Eerenstein, Mathur, & Scott, 2006; Fiebig, 2005; Nan, Bichurin,
Dong, Viehland, & Srinivasan, 2008; Ramesh & Spaldin, 2007). Their peculiar characteristic is the cross-coupling between
electric polarization and magnetization. This interaction offers new possibilities for functional electronic devices, such as
sensors, actuators, transducers and memories (Wang, Hu, Lin, & Nan, 2010). Such materials can be realized through single
phases or composite structures. However, because of the weak magneto-electric coupling (at very low temperature) of most
single-phase systems (Lawes & Srinivasan, 2011), the introduction of composites offers a promising route for obtaining
strong interactions at room temperature. In these materials, the magneto-electric coupling is strain or stress-mediated be-
cause of the magnetostrictive and piezoelectric properties of the components. From the historical point of view, one of the
first sintered magnetoelectric composites was based on the combination BaTiO3–NiFe2O4 with small additions of cobalt and
manganese (van den Boomgaard & Born, 1978). More recently, laminated structures with a significant magnetoelectric cou-
pling have been proposed and fabricated by Fetisov, Perov, Fetisov, Srinivasan, and Petrov (2011) and others based on film
technology by Tiercelin et al. (2008a, 2008b). Several geometries have been thoroughly analysed from the theoretical point
of view by Ramirez, Heyliger, and Pan (2006) and Kuo and Pan (2011). Such heterostructures are strongly indicated for
tral, Cité

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijengsci.2014.02.011&domain=pdf
http://dx.doi.org/10.1016/j.ijengsci.2014.02.011
mailto:Stefano.Giordano@iemn.univ-lille1.fr
mailto:Stefano.Giordano@univ-lille1.fr
http://www.giordanostefano.it
http://dx.doi.org/10.1016/j.ijengsci.2014.02.011
http://www.sciencedirect.com/science/journal/00207225
http://www.elsevier.com/locate/ijengsci


S. Giordano et al. / International Journal of Engineering Science 78 (2014) 134–153 135
achieving low-power devices. In fact, the electrical/mechanical reorientation of the magnetization dissipates a very small
amount of energy and it is therefore appropriate for memories, spintronics and new paradigms of information processing
(Dusch et al., 2013; Giordano, Dusch, Tiercelin, Pernod, & Preobrazhensky, 2012; Roy, Bandyopadhyay, & Atulasimha,
2011; Tiercelin et al., 2011).

In order to analyse and design materials and devices with magnetoelectric coupling, it is important to determine the
distribution of the physical fields within these heterogeneous structures. In particular, nanomechanical techniques (Colombo
& Giordano, 2011; Eshelby, 1957; Giordano & Palla, 2008; Kachanov & Sevostianov, 2005; Palla, Giordano, & Colombo, 2010)
and homogenization schemes (Corcolle, Daniel, & Bouillault, 2008; Giordano, 2005, 2007; Huang & Kuo, 1997; Huang, Chiu, &
Liu, 1998) play a central role for evaluating the effective magnetic, electric and elastic properties of composite systems. An
exhaustive analysis of the theoretical modelling of magnetostrictive-piezoelectric nanostructures has been developed by
Bichurin, Petrov, Averkin, and Liverts (2010a, 2010b). Although very efficient multi-scale computational techniques have
been elaborated to homogenize the behavior of composite structures (Brenner, 2009), there is a great interest in working
out analytical procedures providing their effective physical properties (Milton, 2004; Torquato, 2002). In fact, these theoret-
ical approaches are not only stimulating for the encountered mathematical challenges, but also extremely competitive with
numerical methods from the computational point of view. Another advantage of these approaches is the possibility to
directly optimize some effective properties in terms of microstructural features, e.g. crystallographic orientations and
volume fractions of constituents.

In this paper, we elaborate a theoretical methodology for determining the effective properties of multilayered magneto-
electro-elastic heterostructures with an arbitrary lamination direction. This geometry is largely used in modern nanotech-
nology since, compared to a particulate composite, it exhibits much higher magneto-electric couplings, as discussed by Zhai,
Xing, Dong, Li, and Viehland (2008).

As for the history of the analysis of laminates, the first pioneering results were obtained by Postma (1955) and Backus
(1962) for the purely elastic case and by Tartar (1979) for the purely dielectric one. They developed a general method for
determining the effective tensors in the absence of physical couplings and for a fixed lamination direction. Later, these
results were generalized by Milton (1990) in order to consider an arbitrary direction of lamination. Furthermore, other tech-
niques for dealing with piezoelectric and/or magnetoelastic laminated materials were introduced as well (Avellaneda &
Harshé, 1994; Avellaneda & Olson, 1993; Gibiansky & Torquato, 1999). The so-called multiple-rank laminates (i.e. laminates
of laminates) were introduced by Maxwell (1881), who provided explicit expressions for the conductivities of some third-
rank laminates composed of isotropic constituents. A comprehensive analysis of this complex microstructure was performed
by Tartar (1985, 2009), who proved a famous equation giving the permittivity tensor of a two-component rank-m laminate
in terms of m arbitrary lamination directions. Similarly, the multiple-rank laminates were also studied from the purely
elastic point of view by Francfort and Murat (1986).

More recently, some approaches have been proposed to deal with fully coupled magneto-electro-elastic laminates. Several
explicit expressions have been found by Kim (2011) to calculate the magnetic, electric, elastic, piezoelectric, magnetoelastic
and magnetoelectric effective properties. On the other hand, similar results have been obtained by Challagulla and Georgiades
(2011), Bravo-Castillero, Rodríguez-Ramos, Mechkour, Otero, and Sabina (2008) and Sixto-Camacho et al. (2013) through the
asymptotic homogenization and periodic unfolding methods. Since these formalisms have been elaborated for a fixed lami-
nation direction, here we study the general case concerning an arbitrary lamination direction, which is an important point to
thoroughly exploit the anisotropic character of the involved components. We develop a self-consistent fully algebraic tech-
nique based on the definition of an ad hoc operator P~n, which allows us to explore the effects of the orientation (indicated
by~n) of the interfaces on the overall response of the system. The main result is given by a single exact tensor expression fur-
nishing all effective properties of the laminated material. Typically, for developing a homogenization scheme, one needs to
consider the differential equation describing the distribution of physical fields. In contrast, we solved the problem by means
of the continuity conditions at the interfaces. This alternative approach is justified by the uniformity of the fields induced in
each layer. Finally, the definition of tensor P~n allows us to further extend our theory in order to consider (i) graded structures
with an arbitrary lamination direction and (ii) rank-m laminates with m arbitrary lamination directions. This is a generaliza-
tion of the Tartar formula to the magneto-electro-elastic coupling. We stress that all the results of the present paper can be
also used in the dynamic regime (wave propagation) if we consider a wavelength much larger than the microstructure length
scale. In this case, we are working in the so-called quasi-static regime and all components feel a nearly static applied field.

The structure of the paper is the following. In Section 2, we introduce the definitions used to describe linear materials
with a coupled behavior. In Section 3, we obtain the response of a single layer and we use this result in Section 4 to develop
the theory for the laminated geometry with a fixed lamination direction. In Section 5 we discuss a series of particular cases of
the general theory and we present several applications to (artificial or intrinsic) multiferroic materials. Next, we perform the
generalization to an arbitrary orientation of interfaces in Section 6. To conclude we introduce graded structures and multi-
ple-rank laminated materials in Sections 7 and 8, respectively.

2. Definitions

In order to take into account all possible couplings among electric, magnetic and elastic quantities, we consider the fol-
lowing generalized relation giving the time variation of the total energy density
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du
dt
¼ Tij

deij

dt
þ Ei

dDi

dt
þ Hi

dBi

dt
; ð1Þ
where we have supposed an arbitrarily nonlinear energy function u ¼ uðê; ~D;~BÞ (Landau, Pitaevskii, & Lifshitz, 1984, 1986).
Here Tij represents the Cauchy stress tensor, eij the infinitesimal strain tensor, Ei and Hi the electric and magnetic fields and,
finally, Di and Bi the electric and magnetic inductions. From Eq. (1), we immediately obtain the constitutive equations in
terms of the energy function
Tij ¼
@uðê; ~D;~BÞ

@eij
; Ei ¼

@uðê; ~D;~BÞ
@Di

and Hi ¼
@uðê; ~D;~BÞ

@Bi
: ð2Þ
In the case of a linear material, we can introduce a tensor relationship
K0 ¼ L0Z0; ð3Þ
where we adopted the generalized Voigt notation
KT
0 ¼ T11; T22; T33; T23; T13; T12; E1; E2; E3;H1;H2;H3ð Þ; ð4Þ
ZT

0 ¼ e11; e22; e33;2e23;2e13;2e12;D1;D2;D3;B1; B2; B3ð Þ ð5Þ
and we may prove the symmetry L0 ¼ LT
0 (T means matrix transposition).

In addition, we can adopt an alternative version of the generalized Voigt notation leading to the following linear consti-
tutive equation
K ¼ LZ; ð6Þ
where
KT ¼ T11; T22; T33; T23; T13; T12;D1;D2;D3;B1; B2; B3ð Þ; ð7Þ
ZT ¼ e11; e22; e33;2e23;2e13;2e12;�E1;�E2;�E3;�H1;�H2;�H3ð Þ ð8Þ
and the symmetry L ¼ LT is still preserved. In this work, we use this latter representation where the quantity L contains the
elastic stiffness tensor, the magnetic permeability tensor, the electric permittivity tensor, the piezoelectric tensor, the mag-
netostrictive tensor and the magnetoelectric tensor. Of course, Lmay represent any form of anisotropy, i.e. any kind of crys-
tal symmetry (Nye, 1985; Sirotine & Chaskolskaia, 1984).

3. Single layer formalism

We consider a single layer composed of a linear material L1 embedded in a homogeneous space L0. We consider the sys-
tem remotely loaded by Z0 and K0, which are uniform fields generated by remote sources. These fields are those existing in
the entire space L0 before introducing the layer L1. We suppose that the interfaces are perpendicular to the axis x3 (see
Fig. 1(a) for details). Moreover, we assume that there is no free electric charge and no electric current distributed on the
interfaces and we study the continuity of the physical fields across them. As well known, the continuous components of
K across the interface are T13; T23; T33;D3 and B3. Similarly, the continuous components of Z are e11; e12; e22; E1; E2;H1 and
H2. We observe that these two sets of continuous components are complementary in the structure of vectors Z and K. It
means that the ith component of Z is continuous if and only if the ith component of K suffers a discontinuity. This property
allows us to build up the following formalism. Since K and Z 2 R12 we define a first simple set C containing the integer num-
bers from 1 to 12: C ¼ 1;2;3; . . . ;12f g. Then, we can define CK ¼ 3;4;5;9;12f g � C as the subset containing the positions of
continuous components of K. Of course, we have card ðCKÞ ¼ n having defined n ¼ 5. Similarly, we can define CZ ¼ C n CK � C
Schematic representation of a single layer embedded in a homogeneous space (a) and a multilayered structure composed of N different components
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as the subset containing the positions of continuous components of Z. As before, we have card ðCZÞ ¼ m having defined
m ¼ 7. We introduce now the following matrices
P ¼
Xn

i¼1

X
j2CK

F n;nþm
i;j 2Mn;nþmðRÞ and Q ¼

Xm

i¼1

X
j2CZ

Fm;nþm
i;j 2Mm;nþmðRÞ; ð9Þ
where F a;b
i;j 2Ma;bðRÞ is an elementary matrix with a rows and b columns with the element (i; j) equal to one and all the oth-

ers equal to zero. The set Ma;bðRÞ represents the linear space of real matrices with a rows and b columns. Moreover, the sym-
bol I r 2Mr;rðRÞ represents the identity matrix of order r and Oab 2Ma;bðRÞ is the null matrix. The following properties hold
on
PPT ¼ In and QQT ¼ Im; ð10Þ
PQT ¼ Onm and QPT ¼ Omn; ð11Þ
PTP þQTQ ¼ Inþm; ð12Þ
as one can easily verify. The physical meaning of the matrices P and Q becomes evident by considering the following state-
ments. The vector PK 2 Rn contains the continuous components of K 2 Rnþm across the interface. Similarly, the vector
QZ 2 Rm contains the continuous components ofZ 2 Rnþm. Furthermore, other properties will be used in the following devel-
opments: the vector PTPK 2 Rnþm has the same structure as K, but all the discontinuous components are imposed to zero. In
other words, we have ðPTPKÞi ¼ Ki if i 2 CK and ðPTPKÞi ¼ 0 if i 2 CZ . Similarly,QTQZ 2 Rnþm has the same structure asZ, but
all the discontinuous components are imposed to zero. It means that ðQTQZÞi ¼ Zi if i 2 CZ and ðQTQKÞi ¼ 0 if i 2 CK.

We remark that this formalism can be adopted to analyse any linear physical coupling described by two dual sets of vari-
ables (here K and Z 2 Rnþm) exhibiting the continuity of the complementary components (n components of K and m com-
plementary components of Z) across a given interface. We present here the theory for the magneto-electro-elastic case, but
it can be easily generalized to more complex situations, e.g. with thermal and/or other transport properties.

We can now consider a single layer perpendicular to the axis x3 (Fig. 1(a)). The internal generalized stressK1 is constituted
by the n continuous components of K0 and by a set of arbitrary components X 2 Rm. Similarly, the internal generalized strain
Z1 is constituted by the m continuous components of Z0 and by a set of arbitrary components Y 2 Rn. Explicitly, we have
K1 ¼ PTPK0 þQTX ; ð13Þ
Z1 ¼ QTQZ0 þ PTY; ð14Þ
with the conditions K1 ¼ L1Z1 and K0 ¼ L0Z0. We must solve previous equations to find X 2 Rm and Y 2 Rn. By substituting
Eqs. (13) and (14) in the constitutive relation of the layer we obtain
PTPK0 þQTX ¼ L1QTQZ0 þ L1PTY: ð15Þ
Now, we apply the operator P and, by using the properties PQT ¼ 0 and PPT ¼ In, we easily obtain the vector Y
Y ¼ PL1PT� ��1 PK0 � PL1QTQZ0
� �

: ð16Þ
The resulting expression for Z1 follows
Z1 ¼ QTQþPT PL1PT
� ��1P L0 � L1QTQ

� �h i
Z0: ð17Þ
Finally, by using the property PTP þQTQ ¼ Inþm, Eq. (17) can be elaborated, eventually obtaining
Z1 ¼ Inþm þ PT PL1PT� ��1P L0 � L1ð Þ
h i

Z0: ð18Þ
Of course, the generalized stress can be directly calculated through the relation K1 ¼ L1Z1. We have therefore obtained the
solutions giving the internal physical fields when the externally applied ones are known. Interestingly enough, these results
are independent of the layer thickness. We also note that only a single auxiliary matrix P is sufficient to write the internal
fields in closed form (i.e. Q is not necessary in final equations). As expected, the physical fields are uniform in the whole
space (i.e. K1 ¼ K0 and Z1 ¼ Z0) if L0 ¼ L1. The usefulness of the lamination operator P will be even more evident when
we consider an arbitrary lamination direction.

4. Homogenization for a fixed lamination direction

We consider now a laminated structure composed of N different layers, each described by a tensor Li and having a thick-
ness di; i ¼ 1; . . . ;N (Fig. 1(b)). We can define the volume fraction of each component as /i ¼ di=D where D ¼

PN
i¼1di is the

total length of the heterostructure. As before, the external material is described by L0 and the system is loaded by remotely
applied uniform fields Z0 and K0 ¼ L0Z0. All interfaces are perpendicular to axis x3. Because of the geometry of the system,
the determination of the internal fields performed in the previous Section is valid for each layer of the present composite
structure. Therefore, the local generalized stress Ki and the local generalized strains Zi are given by
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Ki ¼ LiAiZ0 and Z i ¼ AiZ0 ð19Þ
for any i ¼ 1; . . . ;N, where Ai represents the layer concentration tensor (see Eq. (18)) given by
Ai ¼ Inþm þ PT PLiPT� ��1P L0 � Lið Þ: ð20Þ
In order to obtain the effective response of the multilayered structure we evaluate the average value of the physical fields
over the whole system
hKi ¼
XN

i¼1

/iKi ¼
XN

i¼1

/iLiAi

 !
Z0; ð21Þ

hZi ¼
XN

i¼1

/iZi ¼
XN

i¼1

/iAi

 !
Z0: ð22Þ
By determining Z0 from Eq. (22) and substituting the result in Eq. (21) we obtain the effective tensor of the structure defined
through the relation hKi ¼ Leff hZi; we simply have
Leff ¼
XN

i¼1

/iLiAi

 ! XN

i¼1

/iAi

 !�1

; ð23Þ
or, more explicitly using Eq. (21)
Leff ¼
XN

i¼1

/iLi þ
XN

i¼1

/iLiPT PLiPT� ��1P L0 � Lið Þ
" #

� Inþm þ
XN

i¼1

/iPT PLiPT� ��1P L0 � Lið Þ
" #�1

: ð24Þ
The last expression represents the effective tensor of the laminated material. However, in order to prove the coherence of
this result, we must show that Leff does not depend on tensor L0 describing the behavior of the external medium. As a matter
of fact, we demonstrate that the effective tensor Leff depends only on the components tensors Li and on the stoichiometric
coefficients /i with i ¼ 1; . . . ;N. The proposed proof consists in obtaining a new form of Eq. (24) where L0 is not present. To
this aim, we introduce a theorem valid for any matrix S 2Mnþm;nðRÞ and R 2Mn;nþmðRÞ such that Inþm þ SRð Þ and
Inþm þRSð Þ are not singular
Inþm þ SRð Þ�1 ¼ Inþm � S Inþm þRSð Þ�1R: ð25Þ
It can be easily proved by considering Inþm � S Inþm þRSð Þ�1R
h i

Inþm þ SRð Þ, by using the relation RInþm ¼ InR and by

obtaining the result Inþm, as requested. We can now use this property for elaborating the inverse matrix appearing in the

second line of Eq. (24) by letting S ¼ PT andR ¼
PN

i¼1/i PLiPT
� ��1P L0 � Lið Þ. So doing, the term Inþm þRS in the right hand

side of Eq. (25) reads Inþm þRS ¼
PN

i¼1/i PLiPT
� ��1PL0PT , where we used the condition

PN
i¼1/i ¼ 1. Hence, the effective

tensor assumes the following form
Leff ¼
XN

i¼1

/iLi þ
XN

i¼1

/iLiPT PLiPT
� ��1P L0 � Lið Þ

�
XN

k¼1

/kLkPT PL0PT� ��1 XN

i¼1

/i PLiPT� ��1

" #�1XN

j¼1

/j PLjPT� ��1P L0 � Lj
� �

�
XN

k¼1

/kLkPT PLkPT� ��1P L0 � Lkð ÞPT PL0PT� ��1 XN

i¼1

/i PLiPT� ��1

" #�1XN

j¼1

/j PLjPT� ��1P L0 � Lj
� �

: ð26Þ
Now, we can expand the terms L0 � Li;L0 � Lj and L0 � Lk and, after a very long but straightforward calculation, we can
prove that all terms containing L0 disappear. We eventually find the final result
Leff ¼
XN

i¼1

/iLi �
XN

i¼1

/iLiPT PLiPT� ��1PLi þ
XN

k¼1

/kLkPT PLkPT� ��1 XN

i¼1

/i PLiPT� ��1

" #�1XN

j¼1

/j PLjPT� ��1PLj; ð27Þ
where the matrix P defined in Eq. (9) can be given explicitly as
P ¼

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

0BBBBBB@

1CCCCCCA: ð28Þ
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Eq. (27) is the main result of the present Section: it represents a closed-form expression of the effective tensor of the struc-
ture. We briefly summarize here the practical application of Eq. (27): each layer is characterized by tensor Li (describing all
the physical properties and their couplings, as defined in Section 2) and by volume fraction /i, which is simply proportional

to the thickness of the layer (with
PN

i¼1/i ¼ 1). The tensor P given in Eq. (28) indicates that the lamination direction corre-
sponds to x3. Below, we will prove that Eq. (27) remains valid when we consider an arbitrary lamination direction~n, provided
that we use the operator P~n defined in Eq. (65) in place of P (see Section 6 for details). The result obtained through Eq. (27)
represents the overall average response of the multilayer system. Therefore, we can write Leff ¼ Leff ðL1; . . . ;LN; /1; . . . ;/NÞ,
for a given lamination tensor P (or P~n). Interestingly enough, a single matrix expression provides all the effective coupling
properties of the whole structure. This points is very convenient from the computational point of view. We underline in fact
that Eq. (27) can be simply implemented in a software code through the basic operations of matrix algebra. In particular, we
need to calculate N þ 1 inverse matrices, where N is the number of layers. The result in Eq. (27) fulfils a series of rules with a
simple physical meaning:

� homogeneity: it means that we can rescale the units of measurement without loosing the structure of the formula
Leff ðkL1; . . . ; kLN; /1; . . . ;/NÞ ¼ kLeff ðL1; . . . ;LN ; /1; . . . ;/NÞ 8k 2 R; ð29Þ
� boundary conditions: when only one component is present we must have the effective tensor properties coinciding with
its specific tensor
Leff ðL1; . . . ;LN; /j ¼ 08j – i;/i ¼ 1Þ ¼ Li 8i ¼ 1; . . . ;N; ð30Þ
� undistinguishability: for a two-phase laminated material the components are undistinguishable (it is also true for the N-
phase structure if we apply an arbitrary permutation of constituents)
Leff ðL1;L2; /1;/2Þ ¼ Leff ðL2;L1; /2;/1Þ; ð31Þ
� two-step calculability: if we deal with a three-phase system we can determine the effective response either directly with
the expression for three components or by using iteratively (twice) the expression for two components
Leff L1;L2;L3; /1;/2;/3ð Þ ¼ Leff Leff L1;L2;
/1

/1 þ /2
;

/2

/1 þ /2

� �
;L3; /1 þ /2;/3

� �
: ð32Þ
Of course, the final tensor Leff exhibits the standard symmetry Leff ¼ LT
eff .

5. Analysis of uncoupled cases and some examples of application

In order to show the applicability of the general theory to realistic problems, we present in this Section the analysis of
simple specific cases (uncoupled systems) and we use the general formalism for some more advanced multiferroic struc-
tures. The following situations will be considered:

1. linear analysis of purely electric (or magnetic) isotropic systems: we prove that the classical results reported in the lit-
erature (Milton, 2004; Tartar, 1979) can be obtained as a particular case of our general formalism;

2. linear analysis of purely elastic isotropic systems: again, we obtain the classical results for the linear response (Backus,
1962; Postma, 1955; Milton, 2004) as specific cases of our theory;

3. analysis of artificial multiferroics: we apply the general solution to numerically determine the magnetoelectric response
of piezoelectric/magnetoelastic laminates. We will stress the good agreement with some results published in recent
papers;

4. analysis of more realistic artificial multiferroics with a pure elastic interphase between the piezoelectric and magneto-
elastic layers. We will study the degradation of the magnetoelectric response in terms of interphase properties;

5. linear properties of coupled magnetoelectric isotropic systems: we perform a theoretical analysis providing the complete
effective constitutive equation of a laminated system composed of different magnetoelectric layers (intrinsic
multiferroics).

5.1. Analysis of purely dielectric multilayers

We consider the particular case corresponding to the homogenization of purely dielectric structures. To begin, we sup-
pose to deal with a sequence of anisotropic layers having permittivity tensors �̂i, volume fractions /i and an effective per-
mittivity tensor �̂eff (the lamination direction is x3 as before). It is simple to prove that Eq. (27) reduces to the following
simpler version
�̂eff ¼
XN

i¼1

/i�̂i �
XN

i¼1

/i
�̂i~e3
� �

� �̂i~e3
� �

~e3 � �̂i~e3
þ
XN

k¼1

XN

j¼1

/k/j
�̂k~e3
� �

� �̂j~e3
� �

~e3 � �̂k~e3
� �

~e3 � �̂j~e3
� � 1PN

i¼1
/i

~e3 ��̂i~e3

ð33Þ
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where~ei is the unit vector in direction xi; �̂i~v represents the standard matrix–vector product (here~v is an arbitrary vector) and,
finally, bA ¼~b�~c represents the tensor product, i.e. Aij ¼ bicj. In order to explicitly prove Eq. (33), one can entirely repeat, step by
step, the whole proof given in Section 4, considering only the terms related to the electric permittivity. Alternatively, it is simple
to observe that Eq. (33) is formally identical to Eq. (27) provided that we substitute operatorPwith the scalar product with the
unit vector~e3, representing the actual lamination direction. Moreover, according to the analysis performed in Section 6, we also
remark that Eq. (33) remains valid for an arbitrary lamination direction if we substitute~e3 with a given unit vector~n. Interest-
ingly enough, we underline that the result given in Eq. (33) (or the version with an arbitrary~n in place of~e3) can be equally ap-
plied to homogenize other physical properties such as the magnetic permeability tensor, the electric or thermal conductivity
tensor and the diffusion tensor in a given transport process. Although Eq. (33) is an explicit result of direct applicability for
homogenizing arbitrarily anisotropic structures, it is interesting to study the case with isotropic layers described by �̂i ¼ �i

bI
(where �i is the scalar permittivity and bI is the 3�3 identity matrix). In this case we can simplify Eq. (33), as follows
�̂eff ¼
XN

i¼1

/i�i
bI �XN

i¼1

/i
�2

i
~e3 �~e3

�i
þ
XN

k¼1

XN

j¼1

/k/j
�k�j~e3 �~e3

�k�j

1PN
i¼1

/i
�i

: ð34Þ
Since
PN

k¼1/k ¼ 1 we further obtain
�̂eff ¼
XN

i¼1

/i�i
bI �XN

i¼1

/i�i~e3 �~e3 þ
1PN
i¼1

/i
�i

~e3 �~e3; ð35Þ
or, recalling that bI ¼~e1 �~e1 þ~e2 �~e2 þ~e3 �~e3, we have
�̂eff ¼
XN

i¼1

/i�i ~e1 �~e1 þ~e2 �~e2ð Þ þ 1PN
i¼1

/i
�i

~e3 �~e3: ð36Þ
Now, it is easy to identify the longitudinal (k) and the transverse (?) components of the effective permittivity tensor, defined
through �̂eff ¼ �eff ;? ~e1 �~e1 þ~e2 �~e2ð Þ þ �eff ;k~e3 �~e3; we have
�eff ;? ¼
XN

i¼1

/i�i ¼ h�i and �eff ;k ¼
1PN
i¼1

/i
�i

¼ 1
1
�

� � ; ð37Þ
which are the classical results for the dielectric constant of layers connected in parallel and in series, respectively. Here
hzi ¼

PN
i¼1/izi is the weighted arithmetic mean over the sequence of layers. Of course, the same analysis can be simply con-

ducted with an arbitrary unit vector ~n in place of~e3. In the light of this result, we can say that our general solution given in
Eq. (33) (or Eq. (27)) is a tensor generalization of the standard rules for determining the equivalent behavior of components
connected in series (longitudinal direction) and in parallel (transverse direction).

5.2. Analysis of purely elastic multilayers

In this section we analyse the mechanical behavior of multilayered structures. Since we are dealing with a pure elastic
system, we can adopt the following simplified quantities
T ¼ T11; T22; T33; T23; T13; T12ð ÞT ; E ¼ e11; e22; e33;2e23;2e13;2e12ð ÞT ; ð38Þ
leading to the constitutive equations T ¼ CiE in each layer (the 6�6 matrix Ci contains all the elastic constants of the mate-
rials). The general analysis conducted in the previous Section remains valid with minor modifications: the effective elastic
tensor is in fact given by the following expression
Ceff ¼
XN

i¼1

/iCi �
XN

i¼1

/iCiPT
e PeCiPT

e

� ��1PeCi þ
XN

k¼1

/kCkPT
e PeCkPT

e

� ��1 XN

i¼1

/i PeCiPT
e

� ��1

" #�1XN

j¼1

/j PeCjPT
e

� ��1PeCj; ð39Þ
where the elastic version Pe of the lamination tensor (along the axis x3) assumes the simpler form
Pe ¼
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

0B@
1CA: ð40Þ
This result can be easily implemented in order to study laminated materials with an arbitrary elastic anisotropy. Neverthe-
less, it is interesting to analyse specific results concerning isotropic structures. We introduce the constitutive equation for an
isotropic linear elastic material, which is valid in each layer (i ¼ 1 . . . N)
Tkh ¼ 2liekh þ kieqqdkh; ð41Þ
where ki and li are the standard Lamé coefficients of the ith layer, Tkh the components of the stress, ekh the components of the
strain and eqq ¼ Tr êð Þ. It means that now T ¼ Ci ki;li

� �
E, where the structure of Ci ki;li

� �
is standard within the context of the
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Voigt notation. After a long but straightforward application of Eq. (39), we can obtain the effective elastic properties of the
multilayered structure in the form
T ¼ Ceff E ¼

kþm k�m l 0 0 0
k�m kþm l 0 0 0

l l n 0 0 0
0 0 0 m 0 0
0 0 0 0 p 0
0 0 0 0 0 p

0BBBBBBBB@

1CCCCCCCCA
E: ð42Þ
The resulting transversely isotropic material is described by the so called Hill parameters defined as follows
k ¼
XN

i¼1

/ilið2li þ 3kiÞ
2li þ ki

þ
XN

i¼1

/iki

2li þ ki

 !2 XN

i¼1

/i

2li þ ki

 !�1

¼ lð2lþ 3kÞ
2lþ k

� 	
þ k

2lþ k

� 	2 1
2lþ k

� 	�1

; ð43Þ

m ¼
XN

i¼1

/ili ¼ hli; ð44Þ

l ¼
XN

i¼1

/iki

2li þ ki

 ! XN

i¼1

/i

2li þ ki

 !�1

¼ k
2lþ k

� 	
1

2lþ k

� 	�1

; ð45Þ

n ¼
XN

i¼1

/i

2li þ ki

 !�1

¼ 1
2lþ k

� 	�1

; ð46Þ

p ¼
XN

i¼1

/i

li

 !�1

¼ 1
l

� 	�1

: ð47Þ
These results are in perfect agreement with classical findings of Postma (1955) and Backus (1962); see also Milton (2004) for
further details. They can be used to determine the velocities of elastic waves propagating in stratified media under the long
wavelength assumption; this point plays a central role in several geophysics investigations.

5.3. Analysis of piezoelectric/magnetoelastic systems

We consider here the simplest configurations of multilayers composed of piezoelectric (PE) and magnetoelastic (ME)
phases. In particular, we utilize the PE ceramic BaTiO3 and the ME ferrite CoFe2O4, whose physical properties are reported
in Appendix A. Both materials exhibit a transversely isotropic symmetry (corresponding to an uniaxial behavior) and there-
fore their crystal orientation can be defined through a given poling direction, as indicated in Fig. 2. We consider the four
geometries obtained with parallel and orthogonal alignment of the poling directions of the two components. We present
here the results concerning the magneto-electric properties. It is indeed interesting to observe the emergence of the mag-
neto-electric response generated by the combination of piezoelectric and magnetoelastic properties of two materials that
have no intrinsic magneto-electric coupling. The result is given by tensor G ¼ gij


 �
, in general non symmetric, describing

the relation ~D ¼ G~H (with ê ¼ 0 and~E ¼ 0) or, equivalently, ~B ¼ GT~E (with ê ¼ 0 and ~H ¼ 0). The form of these two relations
is simply obtained through the general symmetry of matrix L, introduced in Section 2. In Fig. 2, the components gij are rep-
resented in terms of volume fraction c of the PE phase. Of course, we always have gij ¼ 0 if c ¼ 0 (pure ME response) or c ¼ 1
(pure PE response). The first case (Fig. 2(a)) is the only one described by an effective behavior corresponding to a transversely
isotropic symmetry, similarly to the single phases composing the system. From a quantitative point of view, we observe that
the largest magneto-electric response is obtained in the first system where g11 ¼ g22 ffi �3:5� 10�8s/m for c ¼ 1=2, while g33

is quite negligible. In the second structure (Fig. 2(b)), we find a component g11 ten times lower than the previous value. We
also note that, in the third case (Fig. 2(c)), we have j g13 j>j g31 j, while in the fourth one (Fig. 2(d)), we obtained j g13 j<j g31 j.
We underline that the results corresponding to Fig. 2(a) are in perfect agreement with those reported by Kim (2011). In Figs. 3
and 4, we studied more complex structures realized by rotating the poling axis of some layers. Drawing a comparison with
the case of Fig. 2(a), we observe that the main contribution to the magneto-electric response is always generated by the lay-
ers with the poling directions aligned with the x3-axis (lamination direction) and is always measured by the G components
g11 and g22. More refined effects related to the lamination orientation are discussed in Section 6.

5.4. Analysis of artificial multiferroics with elastic interphases

We consider a configuration involving piezoelectric (PE) and magnetoelastic (ME) phases with a purely elastic interphase.
This corresponds to realistic situation where PE and ME materials are assembled with a glue layer. We utilize, as before, the
PE ceramic BaTiO3 and the ME compound CoFe2O4. For simplicity, we consider here the case with both the poling directions
aligned to the lamination axis x3. We suppose to have a purely elastic isotropic layer (EL) between the PE and the ME ones. It
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Fig. 2. Magneto-electric response of simple combinations of piezoelectric (PE) and magnetoelastic (ME) layers. We considered four cases representing the
parallel and orthogonal configurations of the poling directions. For each case we represented only the magnetoelectric components different from zero as
function of the volume fraction c of the PE material.
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has a shear modulus lin ¼ 40� 109 Pa and a Poisson ratio min ¼ 0:37. The volume fractions are defined as follows:
/PE ¼ cx;/ME ¼ xð1� cÞ and /EL ¼ 1� x, where the stoichiometric coefficients c and x vary in the range (0,1).

In Fig. 5, the components gij are represented in terms of x and c. We can observe the absence of magneto-electric effect for
x ¼ 0 (pure elastic system EL) and the strongest magneto-electric effect for x ¼ 1 (absence of elastic interphase between ME
and PE subsystems). Moreover, we always have gij ¼ 0 if c ¼ 0 (pure ME response) or c ¼ 1 (pure PE response). Note that we
have represented g33 in logarithmic scale because of its very small values. The results for x ¼ 1 are in perfect agreement with
the first case discussed in the previous example (see Fig. 2(a)). We observe in fact that the largest magneto-electric response
g11 ¼ g22 ffi �3:5� 10�8 s/m is obtained for x ¼ 1 and c ¼ 1=2 (however, g33 is quite negligible).

In Fig. 6, we investigated the effects of the elastic properties of the interphase on the overall magneto-electric behavior of
the system. We considered an elastic layer with a fixed Poisson ratio min ¼ 0:37, but with a variable shear modulus lin in the
range 106 � 1012 Pa. In Fig. 6(a), we show g11 ¼ g22 versus x and log10lin for c ¼ 1=2; similarly, in Fig. 6(b), the same quantity
is shown versus c and log10lin for x ¼ 1=2. We observe that for small values of lin, we obtain a very weak magneto-electric
interaction since the elastic layer is too soft to transmit the needed mechanical stress. On the other hand, for higher values of
lin, we find a stronger magneto-electric coupling caused by a more intense elastic interaction. In the limiting case of a com-
pletely rigid interphase, we do not observe any degradation of the effective magneto-electric response.

5.5. Analysis of magnetoelectric multilayers

We introduce a simple isotropic magneto-electric laminated system (along x3) where each layer is described by the fol-
lowing constitutive equations
~D ¼ �i
~Eþ gi

~H ð48Þ
~B ¼ gi

~Eþ li
~H: ð49Þ
It means that each layer (i ¼ 1 . . . N) is made of an intrinsic multiferroic where there is a direct coupling between the mag-
netic and the electric response. In such a case, the coupling is intrinsic to the material and not mediated by any mechanical
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Fig. 3. Magnetoelectric response of a PE–ME four-layer structure.
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interaction. This kind of material is a so-called Tellegen medium where �i;li and gi are real parameters; see Sihvola (1994)
for further details.

In order to apply the homogenization procedure, we can adopt the general solution given in Eq. (27) by neglecting the
elastic components. For the sake of brevity, we omit here the technical development, which is very similar to that described
in Sections 5.1 and 5.2. We obtain, after very long but straightforward calculations, the homogenized relation in the final form
D1h i ¼ �h i E1h i þ gh i H1h i; ð50Þ
D2h i ¼ �h i E2h i þ gh i H2h i; ð51Þ
D3h i ¼ �eff E3h i þ geff H3h i; ð52Þ
B1h i ¼ lh i H1h i þ gh i E1h i; ð53Þ
B2h i ¼ lh i H2h i þ gh i E2h i; ð54Þ
B3h i ¼ leff H3h i þ geff E3h i; ð55Þ
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where the linear effective parameters eeff ;leff and geff are given by
�eff ¼
�

�l�g2

D E
�

�l�g2

D E
l

�l�g2

D E
� g

�l�g2

D E2 ; ð56Þ

leff ¼
l

�l�g2

D E
�

�l�g2

D E
l

�l�g2

D E
� g

�l�g2

D E2 ; ð57Þ

geff ¼
g

�l�g2

D E
�

�l�g2

D E
l

�l�g2

D E
� g

�l�g2

D E2 : ð58Þ
As before, hzi ¼
PN

i¼1/izi is the average value calculated over the sequence of layers. We observe that Eqs. (50)–(55) corre-
spond to a transversely isotropic material where the transverse properties are given by the simple averages �h i; lh i and gh i,
while the longitudinal ones are given by �eff ;leff and geff , as reported in Eqs. (56)–(58). It is interesting to note that if gi ¼ 0 in
each layer, then we have leff ¼ 1= 1=lh i, �eff ¼ 1= 1=�h i and geff ¼ 0, in perfect agreement with results of Section 5.1. It is also

important to remember that the energy density stored in a Tellegen medium (i.e. 1/2li
~H � ~H + 1/2�i

~E �~E + gi
~E � ~H within the

i-th layer) is positive definite if li > 0; �i > 0 and gi 6
ffiffiffiffiffiffiffiffiffili�i
p

, as proved by Altan (2008). These three conditions must be ver-
ified in any real layer. It is not difficult to prove that if the conditions li > 0; �i > 0 and gi 6

ffiffiffiffiffiffiffiffiffili�i
p

are verified for any
i ¼ 1 . . . N, then the same conditions are verified for the effective longitudinal quantities �eff ;leff and geff given in Eqs.
(56)–(58), and for the effective transverse quantities �h i; lh iand gh i. To conclude, we also underline that Eqs. (56)–(58)
exhibit a curious unusual behavior: if we consider a two-layer system, we can obtain, for some combinations of parameters
�i;li and gi (i ¼ 1;2), results for �eff ;leff and geff out of the intervals (�1; �1), (l1;l2) and (g1; g2), contrarily to most of standard
homogenization rules. An example is given in Fig. 7.

6. Generalization to an arbitrary lamination direction

We prove that the previous formalism can be generalized in order to consider an arbitrary direction ~n of lamination. We
suppose to have N different materials described by tensor Li in a given coordinate system e (x1; x2; x3). We consider another
system f (x01; x

0
2; x

0
3), rotated with respect to e in order to get the axis x03 oriented along the unit vector

~n ¼ ðcos u sin#; sin u sin#; cos#Þ on the base e (see Fig. 8(a)). It means that we must rotate the system e of an angle # along
the unit vector ~v ¼ ð� sin u; cos u;0Þ (with the right-hand grip rule) (see Fig. 8(b)). To do this, we can use a rotation matrix
given by the following expression (Holm, 2008)
R̂ð#;uÞ ¼ expðV̂#Þ ¼ I3 þ V̂ sin#þ V̂2ð1� cos#Þ ð59Þ
where V̂ is the antisymmetric matrix generated by the unit vector ~v (it means that Vij ¼ �eijkvk where eijk is the Levi–Civita
permutation symbol). For an arbitrary vector ~w we have ~we ¼ R̂ð#;uÞ~wf where ~we are the coordinates of ~w on the base e and
~wf are those on the base f. This is the law of transformation of all the electric and magnetic vector fields. Explicitly, we find
R̂ð#;uÞ in the following form
R̂ð#;uÞ ¼
sin2 uþ cos# cos2 u sinu cos u cos#� 1ð Þ cos u sin#

sinu cos u cos#� 1ð Þ cos2 uþ cos# sin2 u sin u sin#
� cos u sin# � sinu sin# cos#

0B@
1CA: ð60Þ
Concerning the strain and stress tensors we have to introduce a more complicated procedure. The following relations hold
on between different frames: êe ¼ R̂ð#;uÞêfR̂ð#;uÞT for the strain and, similarly, bT e ¼ R̂ð#;uÞbT fR̂ð#;uÞT for the stress. Such
expressions can be converted in Voigt notation defining two matrices xT and xE , sometimes called Bond (1943) matrices,
which acts as a rotation matrix on vectors T T ¼ T11; T22; T33; T23; T13; T12ð Þ and ET ¼ e11; e22; e33;2e23;2e13;2e12ð Þ. In other
words, we can write T e ¼ xT T f and Ee ¼ xE Ef . The entries of the matrices xT and xE can be easily identified by comparingbT e ¼ R̂ðh;/ÞbT fR̂ðh;/ÞT and T e ¼ xT T f for the stress (and similar relations for the strain). Summing up, we can write the laws
of transformation of the generalized stress
Ke ¼
T e

~De

~Be

0B@
1CA ¼ xT 0 0

0 R̂ 0
0 0 R̂

0B@
1CA T f

~Df

~Bf

0B@
1CA , XKKf ð61Þ
and strain
Ze ¼
Ee

�~Ee

�~He

0B@
1CA ¼ xE 0 0

0 R̂ 0
0 0 R̂

0B@
1CA Ef

�~Ef

�~Hf

0B@
1CA , XZZf ; ð62Þ



Fig. 7. Electromagnetic response of a two-layer system composed of intrinsic magneto-electric layers as function of the volume fraction c of the second
layer: (a) transverse properties given by the simple averages �h i; lh i and gh i, (b) longitudinal properties given by �eff ;leff and geff . All parameters are in
arbitrary units.

Fig. 8. Couple of coordinate systems e (x1; x2; x3) and f (x01; x
0
2; x

0
3) rotated through an orthogonal matrix R̂ðh;/Þ (a); the new axis x03 is directed along the unit

vector~n ¼ ðcos u sin#; sinu sin#; cos#Þ. The transformation can be obtained by a rotation of an angle # around the unit vector ~v ¼ ð� sinu; cos u;0Þ (with
the right-hand grip rule) lying on the plane ðx1; x2Þ (b).
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where we have introduced two generalized rotation matrices XK and XZ . Finally, we obtain the transformation rule
Lf

i ¼ X�1
K L

e
i XZ for the matrix Li describing the coupled response of each material.

Now, we consider the laminated structure represented in Fig. 9. While we observe in Fig. 9(a) the cross section of each
body with planes perpendicular to ~n, we find in Fig. 9(b) the multilayer assemblage with an arbitrary lamination direction.
On base f, the direction of lamination is x03 (see Fig. 9(b) for details) and, therefore, we can use Eq. (27) where Li is substituted

with X�1
K L

e
i XZ (for any i) and Leff with X�1

K L
e
eff XZ . We therefore obtain the following expression
X�1
K L

e
eff XZ ¼

XN
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/iX
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e
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XN

i¼1

/iX
�1
K L

e
i XZPT PX�1
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 ��1 XN
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PX�1

K L
e
j XZ :

ð63Þ
Now, we introduce the operator P~n defined through the relations P~n ¼ PX�1
K and PT

~n ¼ XZPT . We therefore obtain the final
result on the original base e
Le
eff ¼

XN

i¼1

/iLe
i �

XN

i¼1

/iLe
i PT

~n P~nL
e
i PT

~n

� ��1P~nLe
i

þ
XN

k¼1

/kLe
kPT

~n P~nL
e
kPT

~n

� ��1 XN

i¼1

/i P~nLe
i PT

~n

� ��1

" #�1XN

j¼1

/j P~nLe
j PT

~n


 ��1
P~nLe

j ; ð64Þ
which is formally identical to Eq. (27).
We therefore proved that, with an arbitrary lamination direction, Eq. (27) remains unchanged provided that we use P~n

(lamination operator along~n) in place of P (lamination operator along x3). We eventually obtain the following explicit form



Fig. 9. Series of monocrystalline materials with properties Li (measured in the base e) sliced (or cut) by planes perpendicular to the unit vector~n (a). They
are later assembled to compose a multilayered structure (with effective properties Leff ) with an arbitrary lamination direction (b). The base f with x03 aligned
with ~n is also represented.

146 S. Giordano et al. / International Journal of Engineering Science 78 (2014) 134–153
PT
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0 0

0 0 0 cus# 0
0 0 0 sus# 0
0 0 0 c# 0
0 0 0 0 cus#
0 0 0 0 sus#
0 0 0 0 c#

0BBBBBBBBBBBBBBBBBBBBBBBBBBB@
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ð65Þ
where c# ¼ cos#; cu ¼ cos u; s# ¼ sin# and su ¼ sin u. We remark that the generalized homogenization rule in Eq. (64) sat-
isfies the same properties as those described in Section 4 by Eqs. (29)–(32).

In Figs. 10 and 11, we show some results obtained with the application of Eqs. (64) and (65). In Fig. 10(a) and (b), we
consider configurations with two layers having orthogonal poling axes of PE and ME components in the plane (x1; x3). In this
case, the lamination direction is orthogonal to one of the poling axes and makes a variable angle u with the other one located
in plane (x1; x2). In Fig. 10(c) and (d), we consider configurations with two parallel or orthogonal poling axes and a lamination
direction lying in the same plane (x1; x3) (it makes an angle # with the x3-axis). It is interesting to note that each gij compo-
nent exhibits maximum or minimum values at different specific angles u or #. This can be useful to optimize some effective
properties of the overall material by changing the lamination direction. Finally, in Fig. 11 we show two modelling examples
of three-layer materials. Here, as expected, we lose the symmetry (or antisymmetry) of the effective properties with respect
to # ¼ p=2; this point is clearly related to the fact that a transversely isotropic ME or PE material with a poling axis ~v is not
coinciding with the same material with a poling axis �~v .
7. Graded structures

The effective response of a multilayered structure obtained above (Eqs. (27) and (64)) can be written in a more general
form by introducing the averaging operator �h i
Leff ¼ Lh i � LPT PLPT� ��1PL
D E

þ LPT PLPT� ��1
D E

PLPT� ��1
D Eh i�1

PLPT� ��1PL
D E

: ð66Þ
Here, P can assume either the form given in Eq. (9) or in Eq. (65). Moreover, this expression can be simply interpreted for
both discrete multilayered structures (as above) and continuous or planarly graded solids, which represent the subject of the
present Section. Functionally graded materials are characterized by a smooth and continuous change of physical properties
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along a given direction. They are typically used for mechanical applications (Miyamoto, Kaysser, Rabin, Kawasaki, & Ford,
1999), but recently their use has been extended to sensors/actuators with magneto-electro-elastic layers (Sladek, Sladek,
Krahulec, & Pan, 2013). If we are dealing with a continuously stratified structure, we consider the dependence L ¼ LðxsÞ
along the lamination direction xs corresponding to x3, if we use P, or to x03 along~n, if we use P~n. It is not difficult to recognize
that the effective tensor of a graded solid included between xs ¼ 0 and xs ¼ x can be written in the following explicit form,
where the average values of Eq. (66) are substituted by integrals
Fig. 10.
(b) we
~n ¼ ðsin
Leff ðxÞ ¼
1
x

Z x

0
Ldxs �

1
x

Z x

0
LPT PLPT� ��1PLdxs þ

1
x

Z x

0
LPT PLPT� ��1

dxs

Z x

0
PLPT� ��1

dxs

� ��1

�
Z x

0
PLPT� ��1PLdxs: ð67Þ
In some numerical applications and theoretical developments, it can be useful to work with a differential equation describ-
ing the behavior of Leff in terms of thickness x of the graded layer. To obtain this differential equation, we need three prop-
erties of Eq. (67):

(1) if we multiply Eq. (67) by P on the left and by PT on the right we obtain
G0ðxÞ ,
Z x

0
PLðxsÞPT� ��1

dxs

� ��1

) xG0ðxÞ ¼ PLeff ðxÞPT ; ð68Þ
(2) if we multiply Eq. (67) by PT on the right we obtain
G1ðxÞ ,
Z x

0
LðxsÞPT PLðxsÞPT

� ��1
dxs )

G1ðxÞ
x
¼ Leff ðxÞPT PLeff ðxÞPT

� ��1
; ð69Þ
(3) if we multiply Eq. (67) by P on the left we obtain
G2ðxÞ ,
Z x

0
PLðxsÞPT� ��1PLðxsÞdxs )

G2ðxÞ
x
¼ PLeff ðxÞPT� ��1PLeff ðxÞ: ð70Þ
Now, considering x as an independent variable, we determine d
dxLeff ðxÞ from Eq. (67)
dLeff

dx
¼ �Leff

x
þ L

x
� 1

x
LPT PLPT� ��1PL þ 1

x
dG1G0G2

dx
; ð71Þ
Magneto-electric response of PE/ME bilayer structures as function of the lamination direction (volume fractions /1 ¼ /2 ¼ 1=2). In panels (a) and
used ~n ¼ ðcos u; sinu;0Þ;0 < u < p (rad), and orthogonal poling directions aligned to x1 and x3. In panels (c) and (d) we adopted
#;0; cos#Þ;0 < # < p (rad), and parallel or orthogonal poling directions in the plane ðx1; x3Þ.



Fig. 11. Magneto-electric response of PE/ME three-layer structures as function of the lamination direction with volume fractions /1 ¼ /2 ¼ /3 ¼ 1=3. We
adopted ~n ¼ ðsin#;0; cos#Þ where 0 < # < p (rad).
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where we have used the definitions in Eqs. (68)–(70). Now, by differentiating the relation G0ðxÞG0ðxÞ�1 ¼ In we obtain
d
dxG0ðxÞ ¼ �G0ðxÞ d

dx G0ðxÞ�1
h i

G0ðxÞ and, after some straightforward calculations based on the properties in Eqs. (68)–(70),

we get the differential equation
x
dLeff

dx
¼ L� Leff � L� Leff

� �
PT PLPT� ��1P L � Leff

� �
; ð72Þ
which describes the effective properties of a continuously stratified layer of thickness x. Of course, we need to set the initial
condition Leff ð0Þ ¼ Lð0Þ. We remark that a substitution z ¼ log x transforms Eq. (72) into a Riccati equation. It is interesting
to note that such kind of equation was obtained to describe the behavior of other heterogeneous structures (Giordano, Palla,
& Colombo, 2008; Milton, 2004).

8. Multiple-rank magneto-electro-elastic laminated materials

Multiple-rank laminated materials can be obtained by the following sequential process of lamination: dealing with two-
phase materials characterized by matrices LA and LB, we start by creating a first layered structure (along a given direction~n1)
composed of these materials, resulting in an effective tensor LAB. Next, we can use this composite material LAB together with
the original material LA in order to obtain a rank-two laminated structure along another arbitrary direction~n2. An example is
shown in Fig. 12. This process can be continued until we obtain a rank-m lamination. Of course, at any stage, the existing
microstructure is sliced on a length scale much larger than the previous one, in order to have well defined physical proper-
ties, which can be calculated with the preceding homogenization theory. While the idea of considering such a microstructure
dates back to Maxwell (1881), more recently Tartar (1985, 2009) developed an interesting scheme for determining the per-
mittivity tensor of such complex structures. Here, we generalize this technique in order to consider magneto-electro-elastic
materials and m arbitrary sequential lamination directions. We start the analysis by observing that our initial result stated in
Eq. (24) is also valid for an arbitrary lamination direction ~n if we adopt P~n in place of P. We can use Eq. (24) with
L1 ¼ LA;L2 ¼ LB;/1 ¼ g and /2 ¼ 1� g. Since Eq. (24) does not effectively depend on L0, we can adopt L0 ¼ LB in order
to simplify the result. We simply obtain
LAB ¼ gLA þ gLAPT
~n P~nLAPT

~n

� ��1P~n LB � LAð Þ þ ð1� gÞLB

h i
� Inþm þ gPT

~n P~nLAPT� ��1P~n LB � LAð Þ
h i�1

: ð73Þ
This expression can be elaborated as follows: defining the quantity CA ¼ PT
~n P~nLAPT

~n

� ��1P~n, we obtain
LAB � LAð Þ Inþm þ gCA LB � LAð Þ½ 	 ¼ ð1� gÞ LB � LAð Þ: ð74Þ
By inverting we have
LAB � LAð Þ�1 ¼ 1
1� g

LB � LAð Þ�1 þ g
1� g

PT
~n P~nLAPT

~n

� ��1P~n: ð75Þ
This expression is perfectly suited for the generalization toward the sequential multiple-rank lamination. We consider a first
lamination along ~n1 between materials LA (concentration g1) and LB (concentration 1� g1), resulting in LAB. Then, we per-
form a second lamination along ~n2 between materials LA (g2) and LAB (1� g2), resulting in LAðABÞ. Next, we consider a third
lamination along~n3 between LA (g3) and LAðABÞ (1� g3), resulting in LAðAðABÞÞ, and so on until the m-th step. We can write one
homogenization rule for each lamination stage
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volume
Higher-

S. Giordano et al. / International Journal of Engineering Science 78 (2014) 134–153 149
LAB � LAð Þ�1 ¼ 1
1� g1

LB � LAð Þ�1 þ g1

1� g1
PT
~n1
P~n1
LAPT

~n1


 ��1
P~n1

; ð76Þ

LAðABÞ � LA
� ��1 ¼ 1

1� g2
LAB � LAð Þ�1 þ g2

1� g2
PT
~n2
P~n2
LAPT

~n2


 ��1
P~n2

; ð77Þ

LAðAðABÞÞ � LA
� ��1 ¼ 1

1� g3
LAðABÞ � LA
� ��1 þ g3

1� g3
PT
~n3
P~n3
LAPT

~n3


 ��1
P~n3

; . . . ð78Þ

LAðAð. . . ðABÞÞÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
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LAðAð. . . ðABÞÞÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
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0B@
1CA
�1
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1� gm
PT
~nm
P~nmLAPT

~nm

� ��1P~nm : ð79Þ
A simple iterative composition of these equations leads to the final result
LAðAð. . . ðABÞÞÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
m times

� LA

0BB@
1CCA
�1

¼ n0 LB � LAð Þ�1 þ
Xm

k¼1

nkPT
~nk
P~nk
LAPT

~nk


 ��1
P~nk

; ð80Þ
where
n0 ¼
Ym
k¼1

1
1� gk

and nk ¼ gk

Ym
j¼k

1
1� gj

: ð81Þ
It is interesting to observe that the final volume fraction of LB is given by gB ¼ 1=n0; similarly, the final volume fraction of LA

is gA ¼ 1� 1=n0. To conclude, we have generalized the Tartar (1985, 2009) formula to magneto-electro-elastic multi-
laminated systems with an arbitrary set of lamination directions ~n1,. . .,~nm. As before, the final result is ground on our
definition of the arbitrary lamination tensor P~n, reported in Eq. (65).

We describe now a series of relevant applications of the theory. We consider some two-dimensional structures with a
rank-two lamination geometry. They can be found in Fig. 13 where their diagram and the corresponding magneto-electric
response are reported. For a rank-two configuration having volume fractions g1 and g2, the final volume fraction of the com-
ponent A is given by gA ¼ 1� ð1� g1Þð1� g2Þ ¼ g1 þ g2 � g1g2. If we impose gA ¼ 1=2 we have g1 ¼ ð1=2� g2Þ=ð1� g2Þ or,
equivalently, g2 ¼ ð1=2� g1Þ=ð1� g1Þ. Therefore, in Fig. 13 we assumed g1 ¼ c and g2 ¼ ð1=2� cÞ=ð1� cÞwhere 0 < c < 1=2.
Moreover, we used orthogonal lamination directions ~n1 along x1 and ~n2 along x2. The first configuration is characterized by
poling directions along x1 and the second one by poling directions along x2. We note that the first structure for c ¼ 0 and the
second one for c ¼ 1=2 correspond to the system in Fig. 2(b); similarly, the first structure for c ¼ 1=2 and the second one for
c ¼ 0 correspond to the system in Fig. 2(a). Indeed, the values of the magneto-electric coefficients for c ¼ 0 and c ¼ 1=2 are in
perfect agreement with Fig. 2(a) and (b). It is interesting to remark that such configurations exhibit a linear dependence of
g33 as function of c. This property can be exploited to design a material with highly precise values of the magneto-electric
parameter g33. Now, we consider some examples with varying lamination directions. In Fig. 14, four configurations have
been shown: (a) ~n1 ¼ ðcos u1; sin u1;0Þ;~n2 ¼ ð0;1;0Þ, PE==x1 and ME ==x1; (b) ~n1 ¼ ðcos u1; sin u1;0Þ;~n2 ¼ ð0;1;0Þ, PE==x2

and ME ==x2; (c) ~n1 ¼ ð1;0;0Þ;~n2 ¼ ðcosu2; sin u2;0Þ, PE==x1 and ME ==x1; (d) ~n1 ¼ ð1;0; 0Þ;~n2 ¼ ðcos u2; sin u2;0Þ, PE==x2

and ME ==x2. In all cases we imposed gA ¼ 1=2 and g1 ¼ g2. Since gA ¼ g1 þ g2 � g1g2 we obtained the volume fractions

g1 ¼ g2 ¼ ð2�
ffiffiffi
2
p
Þ=2. Case (a) and (b) with u1 ¼ 0 and case (c) and (d) with u2 ¼ p=2 correspond to Fig. 13 with

c ¼ ð2�
ffiffiffi
2
p
Þ=2. Case (a) with u1 ¼ p=2 and case (d) with /2 ¼ 0 correspond to Fig. 2(b) with c ¼ 1=2. Finally, case (b) with

u1 ¼ p=2 and case (c) with /2 ¼ 0 correspond to Fig. 2(a) with c ¼ 1=2.
Scheme of a rank-two laminated material composed of components LA and LB . The first stage is described by the lamination direction ~n1 and the
fraction g1; the second one by ~n2 and g2. The overall effective tensor LAðABÞ depends on LA;LB;~n1;g1;~n2 and g2, as explicitly shown in Eq. (80).

rank laminations can be simply obtained by further iterations.



Fig. 13. Rank-two multilayer materials with orthogonal lamination directions ~n1==x1and ~n2==x2. Two configurations correspond to different alignment of
the poling axes: PE (LA) and ME (LB) ==x1(top); PE (LA) and ME (LB) ==x2(bottom).

Fig. 14. Effective magnetoelectric response of four configurations of rank-two multilayer materials with varying lamination directions: (a)
~n1 ¼ ðcos u1; sinu1;0Þ;~n2 ¼ ð0;1;0Þ, PE==x1 and ME ==x1; (b) ~n1 ¼ ðcos u1; sin u1;0Þ;~n2 ¼ ð0;1;0Þ, PE==x2 and ME ==x2; (c)
~n1 ¼ ð1;0;0Þ;~n2 ¼ ðcos u2; sinu2;0Þ, PE==x1 and ME ==x1; (d) ~n1 ¼ ð1;0;0Þ;~n2 ¼ ðcos u2; sinu2;0Þ, PE==x2 and ME ==x2. Everywhere we adopted
g1 ¼ g2 ¼ ð2�

ffiffiffi
2
p
Þ=2 and the angles are in radians.
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To conclude, we add some comments on the practical use of the effective tensor in real structures. The final overall prop-
erties of the laminated system can be written as
Kh i ¼

Th i
~D
D E
~B
D E

0BBB@
1CCCA ¼

C E F
ET �P �G
FT �GT �M

0B@
1CA

Eh i
� ~E
D E
� ~H
D E

0BBB@
1CCCA ¼ Leff Zh i ð82Þ
where Leff , or all submatrices of Leff , can be found with one of the procedures described in the present paper. If we are inter-
ested in the electromagnetic response of the system, we can adopt two different types of boundary conditions from the elas-

tic point of view: (i) a mechanically clamped structure (i.e. Eh i ¼ 0) leads to the relationships ~D
D E

¼ P ~E
D E
þ G ~H

D E
and

~B
D E

¼ GT ~E
D E
þM ~H

D E
; (ii) a mechanically free structure (i.e. Th i ¼ 0) is described by the relations

~D
D E

¼ ðPþ ET C�1EÞ ~E
D E
þ ðGþ ET C�1FÞ ~H

D E
and ~B

D E
¼ ðGT þ FT C�1EÞ ~E

D E
þ ðMþ FT C�1FÞ ~H

D E
. So, once the elastic boundary

conditions are defined, we can obtain a pure electromagnetic effective constitutive relation. Usually, this procedure is used
to characterize the behavior of magnetoelectric devices, as largely described by Bichurin et al. (2010a, 2010b).

9. Conclusions

In the present work, we described a comprehensive homogenization technique for determining the tensor properties of a
laminated material. In particular, we analysed the magneto-electro-elastic coupled behavior of laminated artificial multifer-
roics. The most relevant aspect of the theory is its capability to homogenize the structure for an arbitrary lamination direc-
tion. To this aim, we introduced an ad hoc lamination tensor P~n, which is presented in closed form and therefore is easily
implementable in any software code used to determine the response of a heterogeneous system. Moreover, the possibility
to consider an arbitrary lamination direction allowed for generalizing our formalism to functionally graded and multiple-
rank laminated structures. Interestingly, the final effective tensor automatically exhibits the correct symmetries generated
by the combination of all the anisotropic characters of involved layers. Finally, we proved that the cut of interfaces with a
given orientation allows us to obtain composite systems with complex responses. This last point can be thoroughly exploited
to design a material with specific desired properties.

Appendix A. Properties of transversely isotropic materials

A transversely isotropic magneto-electro-elastic material is described by the following tensor
L ¼

c11 c12 c13 0 0 0 0 0 e31 0 0 f31

c12 c11 c13 0 0 0 0 0 e31 0 0 f31

c13 c13 c33 0 0 0 0 0 e33 0 0 f33

0 0 0 c44 0 0 0 e15 0 0 f15 0
0 0 0 0 c44 0 e15 0 0 f15 0 0
0 0 0 0 0 c11�c12

2 0 0 0 0 0 0
0 0 0 0 e15 0 �p11 0 0 �g11 0 0
0 0 0 e15 0 0 0 �p11 0 0 �g11 0

e31 e31 e33 0 0 0 0 0 �p33 0 0 �g33

0 0 0 0 f15 0 �g11 0 0 �m11 0 0
0 0 0 f15 0 0 0 �g11 0 0 �m11 0

f31 f31 f33 0 0 0 0 0 �g33 0 0 �m33

26666666666666666666666664

37777777777777777777777775

ðA:1Þ
where we adopted these notations for the physical parameters: cij are the elastic stiffness constants, pij the electric permit-
tivities, mij the magnetic permeabilities, eij the piezoelectric coefficients, fij the magnetoelastic coefficients, and gij the mag-
netoelectric coefficients. In this paper; we used two materials belonging to this crystal class: the barium titanate
piezoelectric ceramic BaTiO3 described by the following parameters
ca11 ¼ 166� 109 Pa; ca12 ¼ 77� 109 Pa; ca13 ¼ 78� 109 Pa;

ca33 ¼ 162� 109 Pa; ca44 ¼ 43� 109 Pa; pa11 ¼ 11:1� 10�9 C2=ðNm2Þ;
pa33 ¼ 12:6� 10�9 C2=ðNm2Þ; ma11 ¼ 5� 10�6 N=A2

; ma33 ¼ 10� 10�6 N=A2
;

ea31 ¼ �4:4 C=m2; ea15 ¼ 11:6 C=m2; ea33 ¼ 18:6 C=m2;

fa31 ¼ fa15 ¼ fa33 ¼ 0 N=ðAmÞ; ga11 ¼ ga33 ¼ 0 s=m
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and the cobalt ferrite magnetoelastic material CoFe2O4 with parameters
cb11 ¼ 286� 109 Pa; cb12 ¼ 173� 109 Pa; cb13 ¼ 170� 109 Pa;

cb33 ¼ 269:5� 109 Pa; cb44 ¼ 45:3� 109 Pa; pb11 ¼ 0:08� 10�9 C2=ðNm2Þ;
pb33 ¼ 0:093� 10�9 C2=ðNm2Þ; mb11 ¼ 590� 10�6 N=A2

; mb33 ¼ 157� 10�6 N=A2
;

eb31 ¼ eb15 ¼ eb33 ¼ 0 C=m2; gb11 ¼ gb33 ¼ 0 s=m;

fb31 ¼ 580:3 N=ðAmÞ; f b15 ¼ 550 N=ðAmÞ; fb33 ¼ �699:7 N=ðAmÞ:
As was noted by Sun and Kim (2010) (and later by Kim (2011)), signs for mb11 and fb33 of the cobalt ferrite are incorrect in
most of the existing literature. In the present paper, the correct values were used in numerical calculations. We remark that
the piezomagnetic coefficients (third order tensor) of the cobalt ferrite represent the linearization of the magnetostrictive
behavior (fourth order tensor) around a specific value of an applied bias magnetic field (along the poling direction). Nor-
mally, the bias magnetic field corresponds to the inflection point of the curve representing the elastic deformation versus
the applied magnetic field: it coincides with the higher slope or, equivalently, with the stronger magneto-elastic coupling.
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