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a b s t r a c t

A general model for thermoacoustic sound generation, based on the classical conserva-

tion laws of mass, momentum and energy, is presented and adopted to analyze different

thermophone structures. This model is able to describe an arbitrary multilayered (or lam-

inated) system composed of both solid and fluid layers. In each layer, we consider the

propagation of thermal and acoustic plane waves with a full thermo-visco-elastic coupling

and with both thermal and viscous dissipations. In order to obtain a flexible model, use-

ful for most of thermophone systems, the balance equations are written in a general and

adaptable matrix form. By adding the continuity of temperature, particle velocity, normal

stress and heat flux between the layers, we obtain a closed system of equations, which

allows for the calculation of all the acoustic variables at any position and for any input fre-

quency and power. The proposed technique is then applied to several thermophone archi-

tectures working in air or in water, and the results are discussed and compared to those

of some recent theoretical and experimental investigations. Finally, the approach elabo-

rated here is useful for unifying various theories proposed for distinct thermophone sys-

tems and to generalize these approaches in terms of different geometrical and physical fea-

tures.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Electroacoustic transducers are the most common and widely used devices to generate sound. They make use of a

coil/magnet core to induce the vibration of a membrane system, eventually generating sound waves. On the other hand, piezo-

electric devices are typically used for specific applications like, e.g., underwater sound generation in sonars. The efficiency of

these transducers have been largely proven but, unfortunately, they generate sound with a mechanical vibration, which is a

resonant mechanism. If the use of multiple drivers and filters allows to achieve an almost wideband generation, no simple

non-resonant alternative devices are currently available. A possible solution could be obtained by means of the thermoacoustic

effect. This is based on the application of an oscillating electric current to an electrical conducting material with a high ther-

mal conductivity and a low thermal capacity. The result is that the temperature evolution of the sample accurately follows the

applied current profile. Consequently, the compression/dilatation of the air in contact to the surface of the material generates
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an acoustic wave whose frequency is proportional to the input frequency of the electric current. Since no resonating part are

involved in the process, the generation is wideband.

In the first decades of the twentieth century, the thermoacoustic effect has been firstly exploited in the works of de Lange

[1] and of Arnold and Crandall [2] to design precise sources of sound. Successively, their theoretical and experimental activities

have been further improved by Wente [3,4]. However, at that time, the limitations in terms of relevant thermophone materials

have prevented the perpetuation of this research line. More recently, a work by Shinoda et al. discussed a thermoacoustic device

based on a 30 nm thick aluminum film deposited on a porous silicon layer [5]. The analysis of this system greatly promoted the

interest for the thermoacoustic effect and its applications. Indeed, the advent of nanomaterials and nanotechnologies allows

the development of new nanostructured materials to be used as thermophones. For instance, recent investigations are based

on carbon nanotubes [6,7], aluminum wires [8], gold wires [9], silver wires [10] and also carbon based structures such as 2D

graphene paper [11] and 3D graphene foam [12,13].

From the theoretical point of view, most analyses of the thermophone principle used the so-called piston based model. These

approaches are based on a heat flow balance equation taking into account the convection, the conduction, the radiation losses

and the heat stored in the material. The first attempt to use this method to model a thermophone in free field was done by

Arnold and Crandall in their pioneering investigation, where however they neglected the heat stored within the thermophone

[2]. This term was recently added in the investigation performed by Xiao et al. [14]. Then, Daschewski et al. used the heat flow

balance equation by adding the influence of a substrate (or backing) on the thermophone response, and the effect of the viscous

dissipation in the propagation medium [15,16]. In the following, this approach was successfully used by Kim et al. to describe

the behavior of a graphene thermophone deposited on a polymer-mesh substrate [17]. Successively, La Torraca et al. added

conduction and convection contributions to the model and also took the thickness of the substrate into account [18]. The piston

based models are accurate in many cases but have limitations depending on the input parameters and the geometry of the system

(especially at high frequencies).

Another approach used for modeling the thermoacoustic effect is based on the classical conservation laws of continuum

mechanics applied to a propagation medium (typically without viscosity). These equations were elaborated by MacDonald et al.

for studying the photoacoustic effect [19]. More recently, the same set of equations has been adopted also for the thermoacous-

tics analysis. This coupled set of equations was firstly solved by Hu et al. for a thermophone placed on a substrate, generating

sound in a perfect gas [20]. This model was validated against Shinoda’s experimental data [5], and was later adapted to evaluate

the far field pressure and to consider the influence of the so-called heat capacity per unit area (HCPUA) [11]. Moreover, this

approach was modified to investigate a spherical geometry of the thermophone (acoustic monopole) [21], and also generalized

to arbitrary sources [22]. The same set of equations has been considered for a cylindrical geometry of the thermophone as well

[23]. A refined analysis of this methodology has been performed to study the influence of the main thermophone parameters on

its wideband frequency response [24].

An investigation proposed to merge the equations of the continuum mechanics with the thermal balance of the piston based

model [25]. This idea was applied to a free field configuration, eventually leading to a good agreement with experimental results

(obtained in Ref. [14]). Based on this work, Tong et al. added the influence of an air gap between the thermophone and a sub-

strate, which represents a promising technique to improve the thermophone efficiency [26]. A generalized theory was developed

to describe point source, line source and line array thin film thermophones in free field and in half space with an air gap over

the substrate [27]. Also, the properties of nanoscale thermophones have been studied by Vesterinen et al., eventually obtaining

generic ultimate limits for the thermophone efficiency [28]. The theory was confirmed against experiments and finite difference

method simulations. This model was later improved by Brown et al. [29] by considering line thermophones of finite length.

The thermoacoustic sound generation has been also extended to underwater applications. In particular, Aliev et al. investi-

gated the response of a carbon nanotube projector placed in water [30]. They provided evidence that the hydrophobicity of the

nanotubes in water generates an air layer around the nanotubes that increases the pressure generation efficiency of the ther-

mophone. Other studies concerned the use of encapsulated thermophone systems, developed in order to obtain a protection

from the liquid medium [31,32]. These results may be compared with the response of carbon nanotube thin films in a variety of

gaseous media [31,33].

Each of the above summarized models has been developed to describe the behavior of a specific thermophone configuration

with well defined identifying characteristics. Moreover, in each model some physical features have been neglected to simplify

the analysis, and to obtain explicit results. For instance, the viscosity of the propagation medium is not considered in these

models except for the work by Daschewski et al., as mentioned above [15,16]. In addition, these models do not consider the

acoustic wave propagation within the active solid layers. Therefore, the influence of potential resonances within the solid layers

is not investigated in the literature. If sometimes mentioned [29], resonances are assumed to be in a frequency range higher

than the one of interest. Nonetheless, knowing that the efficiency of thermophones can be improved using high frequency pulse

modulation [34], it is important to understand the possible limitations of this technique.

Grounded on previous arguments, the model elaborated in this work describes an arbitrary multilayered structure where

each layer can be either a solid (e.g. representing the thermophone material or other components of the device), or a fluid (e.g.,

representing the propagation medium or a gap in the system). Doing so, we developed a flexible and adaptable methodology,

which can be easily applied to the analysis of any thermophone structure without the need to elaborate the pertinent equa-

tions in each particular case. In the present model a set of coupled differential equations (full thermo-visco-elastic coupling)

will be solved for plane waves (planar thermophone geometry) in any fluid and solid layer. It means that each layer is mod-

eled by taking into account both the thermal and the viscous dissipation. It can be noted that we rewrote the basic equations
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of continuum mechanics in the same mathematical form for the one-dimensional behavior of both solid and fluid materials,

thus strongly simplifying the implementation of the procedure. The general solution, giving the relevant physical fields in any

layer, will be presented in matrix form, allowing for the easy calculation of sound pressure in any thermophone configuration.

The plane waves propagation is fully considered in both fluid and solid layers and, therefore, one can thoroughly analyze the

possible resonances of any thermophone structure. This model will be compared with the theoretical results of some of the

above mentioned models to illustrate the relevance and flexibility of this new approach. Moreover, in order to validate our

approach, other comparisons will be drawn with experimental results of the recent literature. Finally, novel configurations for

the thermoacoustic sound generation in air and water are explored and discussed.

2. Theoretical formalism: balance equations

The proposed model for the thermoacoustic sound generation is based on a multilayered structure, where each layer is either

composed by a solid material (representing an active region, a substrate or other components of the generation system) or made

of a fluid medium (typically air or water, representing a region subject to acoustic propagation). In this system of layers we fully

describe the heat transfer and the mechanical waves propagation by also taking into account dissipative phenomena described

by the viscosity of involved materials. To this aim, we define here the main balance equations considered for both solid and fluid

layers. Concerning the fluid layers, the set of equations on which our model is based takes account of the conservation of mass,

momentum and energy written as [35].

1

B

𝜕p

𝜕t
= 𝛼T

𝜕T

𝜕t
− ⃖⃗∇ · v⃗,

𝜌
𝜕v⃗

𝜕t
= − ⃖⃗∇p + 𝜇∇2v⃗ + (𝜆 + 𝜇) ⃖⃗∇( ⃖⃗∇ · v⃗), (1)

𝜌Cp
𝜕T

𝜕t
= 𝜅∇2T + 𝛼T T0

𝜕p

𝜕t
,

where the pressure p (Pa), the temperature variation T (K) and the particle velocity vector v⃗ (m/s) are the main variables depend-

ing on time t (s) and space r⃗ (m). Moreover, 𝜌 is the density (kg/m3), B the Bulk Modulus (Pa), 𝛼T the coefficient of volumetric

expansion (1/K), 𝜆 and 𝜇 the first and second viscosity coefficients (Pa·s), Cp the specific heat at constant pressure (J/(kg·K)), T0

the ambient temperature (K) and, finally, 𝜅 the thermal conductivity (W/(m·K)). All these parameters will be considered as con-

stants in each layer, and they can only vary from one layer to another. It is important to remark that the balance equations given

in Eq. (1) represent the combination of the linearized classical conservation laws with the linearized constitutive equations of

the material. This linearization can be easily justified in our context since thermo-acoustic waves are usually represented by

small variations of the relevant quantities around given equilibrium values. As an example, T is the variation of temperature

with respect to its equilibrium value T0 (the actual temperature being equal to T + T0).

A similar set of equations can be written in a solid layer by taking into consideration the particle displacement vector ⃖⃗u (m),

the Lamé elastic coefficients 𝜆0 and 𝜇0 (Pa), the specific heat at constant volume Cv (J/kg·K), the externally applied body forces

b⃗ (N) and the supplied thermal power density S0 (W/m3). The classical continuum mechanics delivers [36].

𝜌
𝜕2 ⃖⃗u
𝜕t2

= (𝜆0 + 𝜇0) ⃖⃗∇( ⃖⃗∇ · ⃖⃗u) + 𝜇0∇2 ⃖⃗u + b⃗ + (𝜆 + 𝜇) ⃖⃗∇( ⃖⃗∇ · v⃗) + 𝜇∇2v⃗ − 𝛼TB ⃖⃗∇T, (2)

𝜌Cv
𝜕T

𝜕t
= 𝜅∇2T − 𝛼T B

𝜕
𝜕t

⃖⃗∇ · ⃖⃗u T0 + S0,

which is the system of equations governing the thermo-elasticity under the hypotheses of small deformation 𝜀 = 1∕2( ⃖⃗∇⃖⃗u + ⃖⃗∇⃖⃗uT)
and small temperature variations T around T0. While the first equation represents the momentum conservation, the second one

describes the energy balance. We remark that in the solid layers we always have v⃗ = 𝜕⃖⃗u∕𝜕t and B = 𝜆0 + (2∕3)𝜇0. Further-

more, we underline that the power density S0, entering the active solid layer, will represent the energy supplied to the system

and converted into acoustical wave through the thermoacoustic coupling. Typically, S0 will be generated by Joule effect, induced

by an electric current applied to the active layer.

In the following sections, we will apply these equations for the specific case of plane waves propagation. It means that we

will study the one-dimensional geometry for an arbitrary system composed of parallel layers of solid or fluid materials. This

program will allow us to compare and unify the results obtained in the literature by means of different methods. Indeed, it

is important to generalize these approaches in order to consider an arbitrary number of layers, and to take account of the

dissipative processes in the acoustic generation and propagation. We underline that the propagation of waves in the solid layers

is a point systematically neglected in the literature. We also remark that the cases of cylindrical and spherical waves could be

thoroughly studied by means of our approach but, for the sake of brevity, we do not discuss this issue here.
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2.1. Plane wave propagation in a fluid layer

Assuming plane wave propagation in the x direction, within a fluid layer, Eq. (1) becomes

1

B

𝜕p

𝜕t
= 𝛼T

𝜕T

𝜕t
− 𝜕v

𝜕x
,

𝜌
𝜕v

𝜕t
= −𝜕p

𝜕x
+ (𝜆 + 2𝜇)𝜕

2v

𝜕x2
, (3)

𝜌Cp
𝜕T

𝜕t
= 𝜅

𝜕2T

𝜕x2
+ 𝛼TT0

𝜕p

𝜕t
.

We also assume the harmonic time dependence for the variables p, v, T. Hence, we can apply the formal substitution ∂∕∂t → i𝜔,

∂∕∂x → d∕dx, and the system takes the form

i𝜔
1

B
p = i𝜔𝛼T T − dv

dx
,

i𝜔𝜌v = −dp

dx
+ (𝜆 + 2𝜇)d2v

dx2
, (4)

i𝜔𝜌CpT = 𝜅
d2T

dx2
+ i𝜔𝛼T T0p.

The first equality in Eq. (4) gives the pressure as

p = 𝛼TBT − B

i𝜔
dv

dx
. (5)

Now, by substituting Eq. (5) into the other two equalities of Eq. (4), and by using the relationship between the specific heats

𝜌(Cp − Cv) = T0𝛼
2
T

B, (6)

the velocity v as a function of the temperature T is eventually obtain as

v = − 1

i𝜔𝜌

[
𝛼T B + i𝜔𝜌Cv

𝛼TT0B
(𝜆 + 2𝜇 + B

i𝜔
)
]

dT

dx
+ (𝜆 + 2𝜇 + B

i𝜔
) 𝜅

i𝜔𝜌𝛼T T0B

d3T

dx3
. (7)

This allows to find a fourth order biquadratic differential equation for the temperature T

(𝜆 + 2𝜇 + B

i𝜔
)𝜅 d4T

dx4
−
[
(𝜆 + 2𝜇 + B

i𝜔
)i𝜔𝜌Cv + (i𝜔𝜌𝜅 + 𝛼2

T
T0B2)

]
d2T

dx2
− 𝜔2𝜌2CvT = 0. (8)

The general solution of Eq. (8) can be written in the explicit form

T = Ae−ikx + Beikx + Ce−𝜎x + De𝜎x, (9)

where the parameters k and 𝜎 can be found as described below and A, B, C and D are integration coefficients to be determined

through the boundary conditions (see Section 3).

The classical Helmholtz equation in a fluid for an isentropic or adiabatic process (without viscosity and thermal conduction)

is
d2T

dx2 + 𝜔2

C2
0

T = 0, which represent progressive and regressive waves with velocity C0. As a matter of fact, it can be obtained from

Eq. (8) with 𝜆 = 𝜇 = 0 and 𝜅 = 0. For our general case, we aim at rewriting Eq. (8) in terms of C0. To do this, we introduce

here the notations

𝛾 =
Cp

Cv

, (10)

C0 =
√

B

𝜌
𝛾, (11)

l𝜅 = C0𝜅

BCp

= 𝛼𝛾
C0

, (12)

lV = 𝜆 + 2𝜇
𝜌C0

, (13)

where lk and lV are characteristic lengths representing the conduction and the viscous processes, respectively (also,𝛼 = 𝜅∕(𝜌Cp)
is the so-called thermal diffusivity). Therefore, the differential equation for the temperature given in Eq. (8) can be usefully

rewritten as

lk(lV − i
C0

𝜔𝛾
)d4T

dx4
− [1 + i

𝜔
C0

(lk + lV )]
d2T

dx2
− 𝜔2

C2
0

T = 0, (14)
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where the isentropic case can be easily found when lk = lV = 0.

In order to find simplified explicit expressions for k and 𝜎, defining the solution in Eq. (9), we make the assumption of weak

conduction and weak viscosity. Hence, the asymptotic solutions of ax4 + bx2 + c = 0 for small values of a are investigated. If

a = 0, the first couple of solutions is given by x2 = − c

b
, which means x = ±

√
− c

b
. So, we search 𝜀 such that x = ±

√
− c

b
+ 𝜀a, in

order to obtain the solutions to the first order in the parameter a. These solutions correspond to a regular perturbation.

However, the second couple of solutions diverges to infinity when a → 0, thus corresponding to a singular perturbation. So,

we define y =
√

ax and ax4 + bx2 + c = 0 is transformed into y4 + by2 + ac = 0. If a = 0, we get y = ±
√
−b and the

perturbed solutions are written as y = ±
√
−b + 𝜀a.

Now, by substituting the first couple of solutions x = ±
√

− c

b
+ 𝜀a in ax4 + bx2 + c = 0, and the second couple y =

±
√
−b + 𝜀a in y4 + by2 + ac = 0, we can obtain the pertinent values of the first order coefficients 𝜀, and we eventually

get the four solutions for small values of a, as follows

x1,2 = ±

[√
− c

b
− 1

2

ac2

b3

√
−b

c

]
, (15)

x3,4 = ±

[√
−b

a
+ 1

2

c

b

√
−a

b

]
. (16)

If we consider that Re(a) > 0, Re(b) < 0 and c < 0 (as in our case, see Eq. (14)), we can easily obtain the simplified forms

x1,2 = ±
√

− c

b

[
1 + 1

2

ac

b2

]
, (17)

x3,4 = ±
√

−b

a

[
1 − 1

2

ac

b2

]
. (18)

Through these general solutions, the acoustic wavenumber k and the thermal attenuation 𝜎 (defined in Eq. (9)) can be approxi-

mated to the first order in lV and lk by

k = ± 𝜔
C0

[
1 − 1

2

i𝜔
C0

lV − 1

2

i𝜔
C0

lk(1 − 1

𝛾
)
]
, (19)

𝜎 = ±

√
i𝜔𝛾
C0lk

[
1 + 1

2

i𝜔
C0

lk(1 − 1

𝛾
) + 1

2

i𝜔
C0

lV (1 − 𝛾)
]
. (20)

It can be noted that
𝛾

C0lk
= Cp𝜌

𝜅
= 1

𝛼
where 𝛼 is the thermal diffusivity of the medium. This change of parameters allows for a

better comparison with the first order wavenumbers found in Hu’s paper [20] and shows consistency with the approximated

wavenumbers k = 𝜔∕C0 and 𝜎 =
√

i𝜔𝛼, used in most piston models (see Section 4 for details). When k and 𝜎 are known, the

temperature evolution can be found through Eq. (9) and all the pertinent variables can be deduced from Eqs. (5) and (7).

From Eq. (19), we deduce that the classical progressive acoustic mode exp[i𝜔(t − x∕vac) − x∕ac] is characterized by a pene-

tration length

ac =
2C2

0

𝜔2

1

lV +
(

1 − 1

𝛾

)
lk

, (21)

and by a phase velocity

vac = C0. (22)

It means that the penetration length becomes infinity for isentropic processes (lk = lV = 0), while the wave velocity is inde-

pendent of the dissipative phenomena, assuming the value C0 in any case. On the other hand, from Eq. (20), we understand that

the progressive thermal mode exp[i𝜔(t − x∕vth) − x∕th] is designated by a penetration length

th = 2√
2

√
C0lk
𝜔𝛾

{
1 + 𝜔

2C0

[
lk

(
1 − 1

𝛾

)
+ lV (1 − 𝛾)

]}
, (23)

and by a phase velocity

vth = 2𝜔√
2

√
C0lk
𝜔𝛾

{
1 − 𝜔

2C0

[
lk

(
1 − 1

𝛾

)
+ lV (1 − 𝛾)

]}
. (24)

To conclude, with weak dissipative processes, we get the classical expression th = vth

𝜔
= 2

√
C0lk
2𝜔𝛾

=
√

2𝛼
𝜔

, often accepted as a

good approximation for low values of lk and lV [20].
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2.2. Plane wave propagation in a solid layer

We consider here Eq. (2) with b⃗ = 0 since we suppose that the solid layer is not subject to external body forces. Therefore, in

the one-dimensional case this system of equations can be rewritten as

𝜌
𝜕v

𝜕t
= (𝜆0 + 2𝜇0)

𝜕2u

𝜕x2
+ (𝜆 + 2𝜇)𝜕

2v

𝜕x2
− 𝛼T B

𝜕T

𝜕x
, (25)

𝜌Cv
𝜕T

𝜕t
= 𝜅

𝜕2T

𝜕x2
− 𝛼TBT0

𝜕2u

𝜕t𝜕x
+ S0, (26)

where v = 𝜕u

𝜕t
. We aim at rewriting this system of equation in the same form obtained for the fluid in Eq. (3). To do this, we

define the pressure as the normal component of the thermoelastic stress tensor (with opposite sign). It means that

p = −(2𝜇0 + 𝜆0)
𝜕u

𝜕x
+ 𝛼TBT. (27)

It is important to remark that this definition takes into consideration only the thermoelastic part of the total stress and not its

viscous component. Hence, in order to impose the continuity of the normal stress at a given interface, the viscous term must be

added to this pressure value. We will make use of this point in Section 3.1 when the continuity of quantities at the boundaries

will be of interest to analyze the multilayered structure. Eventually, Eqs. (25) and (26) can be rewritten as

𝜕p

𝜕t
= −(𝜆0 + 2𝜇0)

𝜕v

𝜕x
+ 𝛼T B

𝜕T

𝜕t
,

𝜌
𝜕v

𝜕t
= −𝜕p

𝜕x
+ (𝜆 + 2𝜇)𝜕

2v

𝜕x2
, (28)

𝜌Cv
𝜕T

𝜕t
= 𝜅

𝜕2T

𝜕x2
− 𝛼TBT0

𝜕v

𝜕x
+ S0.

If Eqs. (3) and (28) look similar, they are not in the exact same form yet. To further elaborate Eq. (28), we can calculate ∂v∕∂x

from the first equation and substitute this result in the third equation, representing the heat transfer law in solid deformable

media. Moreover, these equations can be usefully written in terms of the longitudinal and transverse wave velocities vL and vT

defined as [36].

vL =

√
𝜆0 + 2𝜇0

𝜌
, vT =

√
𝜇0

𝜌
. (29)

By observing that the bulk modulus can be written as B = 𝜆0 +
2

3
𝜇0 = 𝜌(v2

L
− 4

3
v2

T
), and by using Eq. (6), which is valid for both

fluid and solid layers, the system of equations for the plane wave propagation in a solid can be finally written as



B

𝜕p

𝜕t
= 𝛼T

𝜕T

𝜕t
− 𝜕v

𝜕x
,

𝜌
𝜕v

𝜕t
= −𝜕p

𝜕x
+ (𝜆 + 2𝜇)𝜕

2v

𝜕x2
, (30)

𝜌Cp
𝜕T

𝜕t
= 𝛼TT0

𝜕p

𝜕t
+ 𝜅

𝜕2T

𝜕x2
+ S0,

where the coefficients  and  have been introduced as follows

 = 1 − 4

3

v2
T

v2
L

, (31)

 = 1 −
Cp − Cv

Cp

4

3

v2
T

v2
L

. (32)

Comparing now this result with the analogous system for the fluid (see Eq. (3)), its is seen that the set of equations assume the

same mathematical form provided that we apply the following change of parameters

B(f ) = B(s)


, (33)

𝛼(f )
T

= 𝛼(s)
T
, (34)
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C
(f )
p = C

(s)
p , (35)

C
(f )
v = C

(s)
v , (36)

where (f) and (s) stand for fluid and solid, respectively, and where  and  are always calculated with the solid properties.

Interestingly enough, all parameters remain unchanged if vT = 0, a condition effectively characterizing a fluid where only longi-

tudinal waves can propagate (in this case vT = 0, or equivalently,  =  = 1). We remark that this change of parameters gives

a fully self-consistent procedure since the following property can be easily proved: we have that 𝜌(C(f )
p − C

(f )
v ) = T0

(
𝛼(f )

T

)2

B(f ) if

and only if 𝜌(C(s)
p − C

(s)
v ) = T0

(
𝛼(s)

T

)2

B(s) . It means that the parameters transformation introduced preserves the thermodynamic

relation, given in Eq. (6), between the specific heats.

The important point is that fluid and solid layers can be now represented by the same set of equations for p, v and T given

in Eq. (3), paying attention to apply the change of parameters given in Eqs.(33)-(36) when we consider a solid layer. Of course,

this result strongly simplifies the implementation of the procedure for dealing with a multilayered structures. In the case of a

solid layer with S0 ≠ 0, we have also to add a particular solution in the temperature profile, function of the supplied heat density

S0. More specifically, if S0 is uniform within the layer, this particular solution of T can be calculated by substituting a constant

function in the complete equation for the temperature including the source term. A straightforward calculation delivers

T1 = S0

i𝜔𝜌Cv

, (37)

which must be added to the homogeneous solution given in Eq. (9), in order to have the complete expression for the temperature

variation. Therefore, we can finally write

T = Ae−ikx + Beikx + Ce−𝜎x + De𝜎x + S0

i𝜔𝜌Cv

, (38)

in each active solid layer of the system.

3. Matrix approach for the multilayered structure

The general solution obtained in the previous Section for a given fluid or solid layer will be exploited here to elaborate a

complete procedure able to consider a multilayered system, whose geometry is shown in Fig. 1. The number N of layers can

be changed and each layer can be made of a different material, either solid or liquid (air, water, silicon, carbon …). Also the

size lj − lj−1
(∀j = 2,… ,N − 1) of the layers can be changed except for the first and the last ones which are supposed to

be semi-infinite and without any input volumetric source. This scheme will be adopted to describe the behavior of different

configurations of thermophone devices in the following sections.

3.1. Matrix form of the solution in a given layer

In order to create a flexible representation of the solution for a given layer, we consider the physical quantities that are

continuous at any interface, namely the temperature, the normal stress tensor, the particle velocity and the heat flux. It means

that we assume ideal interfaces without imperfections and defects. In the case of imperfect interfaces, the continuity equations

should be substituted with specific jump condition [37,38]. An example will be given in a next section. Anyway, the number of

the continuous quantities is coherent with the number of the undetermined coefficients A, B, C and D, defining Eq. (9). In the

one-dimensional case the heat flux q is simply defined as

q = −𝜅 dT

dx
. (39)

Moreover, the normal stress tensor p̃ must be considered as the sum of pressure and the viscous normal stress. It follows that

p̃ = p − i𝜔(𝜆 + 2𝜇)du

dx
= p − (𝜆 + 2𝜇)dv

dx
. (40)

Fig. 1. Schematic of a multilayered structures composed of an arbitrary sequence of fluid and solid layers, able to represent different thermoacoustic sound generation

systems. While the first and the last regions are semi-infinite, the others correspond to limited layers between lj−1
and lj,∀j = 2,… ,N − 1.
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This is the one-dimensional stress quantity that is continuous at any interface, for both fluid and solid layers. By using Eqs.

(9), (7), (5), (39) and (40) the set of solutions in a fluid layer is obtained as

p̃ = A (−ik)e−ikx + B (ik)eikx + C (−𝜎)e−𝜎x + D (𝜎)e𝜎x (41)

v = A(−ik)e−ikx + B(ik)eikx + C(−𝜎)e−𝜎x + D(𝜎)e𝜎x (42)

q = A𝜅ike−ikx − B𝜅ikeikx + C𝜅𝜎e−𝜎x − D𝜅𝜎e𝜎x (43)

T = Ae−ikx + Beikx + Ce−𝜎x + De𝜎x, (44)

where we used the functions

 (𝜂) = 𝛼T B −
(

B

i𝜔
+ 𝜆 + 2𝜇

)
(L1𝜂

2 + L2𝜂
4), (45)

(𝜂) = L1𝜂 + L2𝜂
3, (46)

with L1 and L2 being the coefficients of Eq. (7), namely

L1 = − 1

i𝜔𝜌

[
𝛼TB + i𝜔𝜌Cv

𝛼TT0B
(𝜆 + 2𝜇 − i

B

𝜔
)
]
, (47)

L2 = (𝜆 + 2𝜇 − i
B

𝜔
) 𝜅

i𝜔𝜌𝛼TT0B
, (48)

so that v = L1
dT

dx
+ L2

d3T

dx3 . The parameters k and 𝜎 are either defined by solving by numerical techniques the fourth degree

biquadratic equation associated to Eq. (8) or by using the first order approximations obtained in Eqs. (19) and (20). If we

consider the physical parameters of typical materials used in thermoacoustic systems, the difference between the exact and

approximated solutions is less than 0.5% in a large frequency range in air. Nevertheless, this assumption do not hold for fluids

with higher viscosity (see Section 6.2 for the underwater case). If we define the matrices

H(a) =

⎡⎢⎢⎢⎢⎢⎢⎣

 (−ik)  (ik)  (−𝜎)  (𝜎)
(−ik) (ik) (−𝜎) (𝜎)
𝜅ik −𝜅ik 𝜅𝜎 −𝜅𝜎
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
(49)

and

H(b)(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

e−ikx 0 0 0

0 eikx 0 0

0 0 e−𝜎x 0

0 0 0 e𝜎x

⎤⎥⎥⎥⎥⎥⎥⎦
(50)

the general solution in a given fluid layer is given by⎡⎢⎢⎢⎢⎢⎣

p̃

v

q

T

⎤⎥⎥⎥⎥⎥⎦j

= Hj(x)

⎡⎢⎢⎢⎢⎢⎣

Aj

Bj

Cj

Dj

⎤⎥⎥⎥⎥⎥⎦
, (51)

where Hj(x) = H(a)H(b)(x) and the index j means that we considered all the parameters of the j-th layer.

A similar set of equations is defined in a solid with the change of parameters defined in Eqs.(33)-(36) and with the additional

term describing the possible supplied thermal power density, as given in Eq. (37). Eventually, the solutions are rewritten in

matrix form as⎡⎢⎢⎢⎢⎢⎣

p̃

v

q

T

⎤⎥⎥⎥⎥⎥⎦j

= Hj(x)

⎡⎢⎢⎢⎢⎢⎣

Aj

Bj

Cj

Dj

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

S′′
j

0

0

S′
j

⎤⎥⎥⎥⎥⎥⎦
, (52)
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where, as before, Hj(x) = H(a)H(b)(x) and the index j means that we considered all the parameters of the j-th layer. Moreover,

S′
j
= Sj

i𝜔𝜌jCVj
and S′′

j
= 𝛼TjBjS

′
j
= 𝛼TjBjSj

i𝜔𝜌jCVj
. Here, Sj represents the thermal power density supplied to the j-th layer.

When all physical parameters of the layers are known, only the coefficients Aj, Bj, Cj, and Dj ∀j are needed to fully determine

the fields p̃, v, q, and T everywhere in the system. In order to obtain a general procedure, we assume for each layer the solutions

given by Eq. (52), which can be used for solid materials and also for fluid ones by simply letting Sj = 0.

3.2. Continuity conditions and general solution for the multilayered structure

The fields continuity between two layers can be written in matrix form as

Hj(lj)

⎡⎢⎢⎢⎢⎢⎣

Aj

Bj

Cj

Dj

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

S′′
j

0

0

S′
j

⎤⎥⎥⎥⎥⎥⎦
= Hj+1(lj)

⎡⎢⎢⎢⎢⎢⎣

Aj+1

Bj+1

Cj+1

Dj+1

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

S′′
j+1

0

0

S′
j+1

⎤⎥⎥⎥⎥⎥⎦
, (53)

for j = 1,… ,N − 1. The fact that the first and the last layers are semi-infinite means that no progressive waves are considered

for j = 1 and no regressive waves are considered for j = N. From the mathematical point of view, this can be written as

A1 = C1 = 0 and BN = DN = 0. Moreover, we assume that no power density is supplied to the first and to the last layers

of the structure, these regions being only subject to propagation. Using the fields continuity at each boundary between two

layers, a relationship between B1, D1, AN, and CN is eventually found as⎡⎢⎢⎢⎢⎢⎣

0

B1

0

D1

⎤⎥⎥⎥⎥⎥⎦
= M0

⎡⎢⎢⎢⎢⎢⎣

AN

0

CN

0

⎤⎥⎥⎥⎥⎥⎦
+

N−1∑
n=2

MSn

⎡⎢⎢⎢⎢⎢⎣

S′′
n

0

0

S′
n

⎤⎥⎥⎥⎥⎥⎦
, (54)

where n can span only over the layers with a non zero volumetric source and

M0 = H−1
1
(l1)

[
N−1∏
j=2

Hj(lj−1) H−1
j
(lj)

]
HN(lN−1), (55)

MSn
= H−1

1
(l1)

[
n−1∏
j=2

Hj(lj−1)H−1
j
(lj)

][
1 − Hn(ln−1)H−1

n
(ln)

]
. (56)

By means of Eq. (54) we can easily find AN, CN, B1, and D1. This allows the calculation of any coefficient (Aj, Bj, Cj, or Dj) using

the expression (∀j = 1,… ,N − 1)⎡⎢⎢⎢⎢⎢⎣

Aj

Bj

Cj

Dj

⎤⎥⎥⎥⎥⎥⎦
= H−1

j
(lj)

⎧⎪⎪⎨⎪⎪⎩
Hj+1(lj)

⎡⎢⎢⎢⎢⎢⎣

Aj+1

Bj+1

Cj+1

Dj+1

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

S′′
j+1

0

0

S′
j+1

⎤⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎣

S′′
j

0

0

S′
j

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
, (57)

if we start from the last layer and we calculate recursively the coefficients of the layers moving from the right to the left of the

structure. Alternatively, we can use the relation (∀j = 2,… ,N)⎡⎢⎢⎢⎢⎢⎣

Aj

Bj

Cj

Dj

⎤⎥⎥⎥⎥⎥⎦
= H−1

j
(lj−1)

⎧⎪⎪⎨⎪⎪⎩
Hj−1(lj−1)

⎡⎢⎢⎢⎢⎢⎣

Aj−1

Bj−1

Cj−1

Dj−1

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

S′′
j−1

0

0

S′
j−1

⎤⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎣

S′′
j

0

0

S′
j

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
, (58)

if we start from the first layer and we calculate recursively the coefficients of the layers going from the left to the right of the

structure. Finally, the main fields p̃, v, q, T can be found for any x, within each layer, through Eq. (52).

4. Analysis and comparison with other models

In this Section, we take into consideration different configurations of thermophone devices and we analyze their frequency

response by means of the previously introduced procedure. In addition, we compare our results with those of several models

discussed in recent literature. The values of the physical parameters defining the materials (air, water, thermophone, solid
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Table 1

Parameters describing the physical behavior of the materials constituting the thermophone systems investigated.

𝜌[kg · m−3] Cp[J · kg−1 · K−1] Cv[J · kg−1 · K−1] B[Pa] 𝛼T[K−1]

Gas, air (g) 1.20 9.96 × 102 7.17 × 102 1.01 × 105 3.33 × 10−3

Thermophone (s) 0.03 × 103 2.38 × 102 2.38 × 102 2.78 × 105 0.6 × 10−6

Substrate (b) 4.5 × 103 5.23 × 102 5.23 × 102 1.14 × 107 9.00 × 10−6

Fluid, water (w) 9.99 × 102 4.43 × 103 4.17 × 103 2.15 × 109 3.03 × 10−4

Table 2

Other parameters describing the physical behavior of the materials constituting the thermophone systems investigated.

𝜆[Pa · s] 𝜇[Pa · s] 𝜆0[Pa] 𝜇0[Pa] 𝜅[W · K−1 · m−1]

Gas, air (g) 5.61 × 10−6 1.68 × 10−5 0 0 2.62 × 10−2

Thermophone (s) 0 0 1.39 × 105 2.08 × 105 1.25

Substrate (b) 0 0 8.46 × 106 4.36 × 106 21.9
Fluid, water (w) 2.62 × 10−3 1.14 × 10−3 0 0 6.07 × 10−1

substrate) used in this analysis are listed in Tables 1 and 2. The other parameters depend on the system investigated and can

be found in Table 3. The most important quantity considered is the sound pressure level, which is defined by the following

expression

SPL = 20log10

(
prms

pref

)
, (59)

where prms is the root mean square pressure (i.e. |p|∕√2, where p is the complex pressure introduced in previous sections) and

pref is the reference sound pressure being, by definition, 20 𝜇Pa in air and 1 𝜇Pa in water.

It should also be noted that all plots show sound pressure level in the near field (NF) only. If some models from the literature

have their equation in the far field (FF), they can be converted back in near field by using Rayleigh distance

R0 = Af

C0

, (60)

where A is the thermophone surface and f = 𝜔
2𝜋

is the frequency. The approximation used is then

pFF = pNF

R0

d
, (61)

where d is the distance between the position of observation and the active surface of the thermophone.

4.1. Thermophone in free field

One of the most widely used model is the so-called piston based model introduced by Arnold and Crandall [2] and successively

improved by Daschewski et al. [15] and Xiao et al. [14] by introducing effect of a substrate, the heat stored in the thermophone

and the rate of heat loss per unit area of the device (due to conduction, convection, and radiation). This model considers the

Table 3

Specific geometrical parameters adopted in the analysis of different structures investigated. For each figure with SPL results, we

clearly indicated the details defining the corresponding configuration. In all plots we assumed a thermophone surface

A = 4 × 10−4 m2 and an input power Pin = 1 W. The rate of heat loss per unit area of thermophone 𝛽s is considered only in

Fig. 4 with the value 𝛽s = 28.9 W/(m2K). The viscosities 𝜆 and 𝜇 have been considered only in the results of Figs. 5 and 20.

x[m] Lb[m] Lg[m] Ls[m]

Fig. 3 [5,10] × 10−2 0 0 1 × 10−6

Fig. 4 5 × 10−2 0 0 1 × 10−6

Fig. 5 5 × 10−2 0 0 1 × 10−6

Fig. 7 5 × 10−2 ∞ 0 1 × 10−6

Fig. 9 5 × 10−2 1 × 10−5 0 1 × 10−6

Fig. 10 5 × 10−2 ∞ 0 1 × 10−4

Fig. 11 5 × 10−2 ∞ 0 [1, 9, 81] × 10−6

Fig. 13 5 × 10−2 (1∕27) × 10−4 (1∕3) × 10−4 1 × 10−6

Fig. 14 5 × 10−2 ∞ 8 × 10−4 1 × 10−7

Fig. 18 5 × 10−2 0 [0, 1∕36, 1∕12, 1∕4,∞] × 10−4 1 × 10−6

Fig. 20 5 × 10−2 0 [0, 1∕10] × 10−4 1 × 10−6

Fig. 21 5 × 10−2 0 [1∕16, 1∕12, 1] × 10−4 1 × 10−6
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Fig. 2. Schematic of a thermophone radiating in free field. The plane waves are symmetrically generated within the back and the front media.

Fig. 3. Frequency response of the thermophone in free field determined by means of the Lim et al. model [25] and our multilayer model. We plotted here the results for

𝛽s = 0 and for two different observation distances.

thermophone radiating in free field from both sides, as shown in Fig. 2. The sound generation is assumed to occur at the surfaces

of the thermophone, in the so-called thermal layer, which is usually quite thin as specified in Eq. (23). In these models, the influ-

ence of the thermophone thickness Ls is considered through the HCPUA given by Cs = 𝜌sCp ,s
Ls. Lim et al. [25] also developed

an improved model based on the previous assumptions but they described the thermoacoustic propagation with a real coupling

between mechanical and thermal waves. In any case, since the order of magnitude of the acoustic wavenumber is much lower

than the one of the thermal wavenumber, the results of Refs. [14,25] show good consistency. For comparison, the result of Lim

et al. [25] is rewritten here as

prms,NF = Pin

2
√

2A

𝛾g − 1|||||𝛽s + 𝜅g

√
i𝜔
𝛼g

+ 1

2
i𝜔Cs

|||||
√

𝜔
𝛼g

𝜅g

C0

, (62)

where 𝛽s is the rate of heat loss per unit area of thermophone (W/(m2K)), which includes the influence of conduction, convec-

tion, and radiation. Moreover, Cs is the thermophone HCPUA, 𝜅g is the thermal conductivity, 𝛼g is the thermal diffusivity
𝜅
𝜌Cp

and

𝛾g is the ratio Cp∕Cv of the propagation region (gas). In addition, A is the thermophone area, Pin is the input power and, finally,

C0 is the isentropic sound velocity (NF stands for near field).

In Fig. 3 the result from Eq. (62) is compared to our model. Here, we adopted 𝛽s = 0 and it can be seen that both models

are consistent with each other from 1 Hz to about 100 kHz. The difference observed in high frequencies is explained by fact that

Eq. (62) (and most literature models) uses a 0-th order approximation for the acoustic and thermal wavenumber, as explained

in Section 2.1. If this approximation holds for a standard hearing frequency range (20–20 kHz), when considered at very high

frequencies it gives inaccurate results since the first order (and higher) terms become not negligible and should be taken into

consideration (see Eqs. (19) and (20) for details).

In our model, where we consider the exact thermal and acoustic wavenumbers, it is interesting to remark that the high

frequency drop depends on the distance between thermophone and observation point. As a matter of fact, the drop will occur

at lower frequencies as this distance is increasing, limiting the high frequency efficiency of the thermophone for large distances.

This behavior can be only observed with an accurate determination of the wavenumbers, as observed in Fig. 3, where we plotted

the frequency response at two different observation positions.

We further discuss the origin of the drop at high frequency, independently of the approximations adopted. As it is known, the

sound generated by a thermophone occurs due to the fluctuation of heat in the air layer near the thermophone. The thickness
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Fig. 4. Frequency response of the thermophone in free field determined by means of the Lim et al. model [25] and our multilayer model. We plotted here the results for

𝛽s = 28.9 and we also shown the response obtained through the multilayer model with 𝛽s = 0 for comparison.

of this active layer is related to the thermal wavenumber and is given by Eq. (23). It is then proportional to 1∕
√
𝜔 whereas

the acoustic wavelength is proportional to 1∕𝜔. Since for low frequencies the thermal layer is much smaller than the acoustic

wavelength, in this condition the sound is generated first in the thermal layer (a small fraction of the acoustic wavelength) and

then propagated in the adjacent medium. This however stops to be true for high frequencies due to the different decreasing rate

of each wavelength. We explain the behavior when the thermal layer is larger than the acoustic wavelength as follows. In this

case, many acoustic wavelengths compose the thermal layer. Since the thermal wavelength is of the same order of the thermal

layer, the spatial temperature variations (slower) are not able to follow the spatial pressure variation (faster) and the sound

generation becomes less efficient, thus generating the observed drop in Fig. 3 (both models).

Fig. 4 shows the results for the same configuration of Fig. 3 but now with a non zero coefficient 𝛽s, taking into account the

rate of heat loss per unit area of thermophone. It is seen that the mid and high frequency range doesn’t change but at low

frequencies there is a drop in the SPL. The heat loss has been implemented rigorously also in our model, by suitably modifying

the continuity equation for the heat flux. In particular, this continuity equation have been readdressed for the two interfaces of

the system, which can be seen in Fig. 2. The updated flux balance at the interfaces can be written as

−𝛽sT(l1) − 𝜅1
dT

dx
(l1) = −𝜅2

dT

dx
(l2), (63)

−𝜅2
dT

dx
(l2) = −𝜅3

dT

dx
(l2) + 𝛽sT(l2), (64)

where 𝛽s quantifies the heat loss, which is considered proportional to the temperature. While this is a good approximation for

losses due to conduction and convection, it is however a poor representation of the radiated heat, which is typically proportional

to the fourth power of the temperature. Here, we also have l1 = 0 and l2 = Ls to be coherent with Fig. 2. Papers which take 𝛽s

into account determined its value through experimental results [14,18,25]. The good agreement between our modified model

and results from Lim et al. [25] is clearly shown in Fig. 4.

Lastly, Fig. 5 displays the results of our model with and without the air viscosity. It is seen that adding viscosity increases the

high frequency drop rate. Since its influence is negligible for frequencies lower than 100 kHz, the literature models often neglect

it (except for Refs. [15,16]).

4.2. Thermophone on substrate

Another important structure investigated in the literature consists in a thermophone layer directly placed on a substrate

(without gap) and radiating in air, as shown in Fig. 6. One model describing this system has been developed by Hu et al. [20]. This

model is based on the balance equations earlier developed for describing the photoacoustic effect [19], and aims at reproducing

the experimental results presented by Shinoda et al. [5]. This model takes the thickness of the thermophone into account and

consider the conservation of energy in the solids but neglect the propagation of the acoustic wave inside it. By using a surface

input power Pin∕A, the obtained pressure is [20]
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Fig. 5. Frequency response of the thermophone in free field determined by means of the Lim et al. model [25] and our multilayer model. We plotted here the results for

𝛽s = 0 at a distance of 5 cm, and we introduced the air viscosity in our model to show its effect at high frequency.

Fig. 6. Schematic of a thermophone placed on a solid substrate on the left and radiating in free field on the right. The plane waves are non-symmetrically generated within

the back and the front media.

prms,NF =
||||| idtdakg

idakg(M𝜅s𝜎s + 𝜅g𝜎g) − dt𝜎g(M𝜅s𝜎s + i𝜅gkg)

(
e−𝜎gx −

𝜎g

ikg

e−ikgx

)
Pin

A
√

2

||||| . (65)

The use of a surface density power (instead of a volume density power as in other theories and in our model) is justified by the

fact that this model is dedicated to the Shinoda et al. experiment, in which there is a 30 nm aluminum film acting as the heat

source. Most models are however considering that the whole thermophone is heating and so it is interesting to see how Hu’s

model holds with a volumetric source. By replacing the surface input power Pin∕A with a volumetric source
Pin

ALs

1

i𝜔𝜌gCp,g
and using

the same assumptions of Hu’s model, we obtained the volumetric counterpart of Eq. (65), as follows

prms,NF =
||||| 1

i𝜔Ls𝜌gCp,g

𝜅s𝜎s

𝜅s𝜎s − 𝜅b𝜎b

(
e𝜎sLs𝜅b𝜎b(M − 1) + M(𝜅s𝜎s − 𝜅b𝜎b)

)
×

idtdakg

idakg(M𝜅s𝜎s + 𝜅g𝜎g) − dt𝜎g(M𝜅s𝜎s + i𝜅gkg)

(
e−𝜎gx −

𝜎g

ikg

e−ikgx

)
Pin

A
√

2

||||| . (66)

In Eqs. (65) and (66) the following definitions have been introduced following Ref. [20].

M = (𝜅b𝜎b + 𝜅s𝜎s)e𝜎sLs + (𝜅b𝜎b − 𝜅s𝜎s)e−𝜎sLs

(𝜅b𝜎b + 𝜅s𝜎s)e𝜎sLs − (𝜅b𝜎b − 𝜅s𝜎s)e−𝜎sLs
, (67)

dt =
i𝜔𝜅g − 𝜎2

g
𝛼g𝜅g

i𝜔𝛼g

, (68)

da =
i𝜔𝜅g + k2

g
𝛼g𝜅g

i𝜔𝛼g

. (69)

Here, the coefficients k and 𝜎 are the acoustic wavenumber and the thermal attenuation of each layer.



P. Guiraud et al. / Journal of Sound and Vibration 455 (2019) 275–298288

Fig. 7. Frequency response of a thermophone in contact with a semi-infinite substrate on the left and propagating in air on the right (see the scheme in Fig. 6). We compare

the result of our multilayer model with Eq. (65) [20] and Eq. (66).

Fig. 8. Schematic of a thermophone placed on a solid substrate of finite thickness on the left, and radiating in free field on the right. The plane waves are non-symmetrically

generated within the back and the front media.

The comparison of Eqs. (65) and (66) with our model, where we used a semi-infinite substrate as shown in Fig. 6, can be

found in Fig. 7. It can be seen that there is a perfect match between Eq. (66) and our model for low and mid frequencies. For

frequencies above 200 kHz there is a discrepancy between the volumetric source version of Hu’s model and our model. This is

due to a difference in the acoustic wavenumber first order approximation. As a matter of fact, Eqs. (19) and (20) differ slightly

with Hu’s solutions and this is only significant at very high frequencies. Indeed, if the wavenumbers used by Hu et al. are

introduced in our model, there is a perfect agreement also at high frequencies. On the other hand, the case with a surface input

power, described by Eq. (65), shows a higher SPL in the whole frequency range, as expected since there is no heat stored in the

thermophone.

We consider now the case with a finite thickness of the substrate, as shown in Fig. 8. This more elaborated structure can

be studied through our multilayer model, and in Fig. 9 a rise of SPL in the low frequency domain can be seen. In general, the

presence of the substrate is useful for technological reasons, but it absorbs a large amount of heat and reduces therefore the

thermophone output SPL, as seen in Fig. 7. However, a small thickness of the substrate may help to ameliorate the performance.

The observed SPL rise is due to the fact that since for lower frequencies the thermal penetration depth is larger, when the

substrate is of a comparable order of magnitude, it will absorb less heat and so the thermophone is more efficient. The lower the

frequency, the less impact the substrate has on the radiation and so the sound pressure may attain a free field radiation level. A

more detailed analysis of the heat flux lost in the substrate can be found in Ref. [39].

To further investigate this configuration, we come back to the structure with infinite substrate shown in Fig. 6, and we

investigate the influence of the size of the thermophone. In Fig. 10, we plotted our results with Eq. (62) (free field model),

and with Eqs. (65) and (66). In this analysis, the thermophone is a hundred time thicker than before. First, it can be seen that

the Hu et al. [20] model with a surface input power displays a significant rise in SPL. This rise is proportional to the thickness

of the thermophone and is explained by the parameter M in Eq. (65). It approaches the value 1 for a surface input power,

generating a flat frequency response in a given interval, as discussed in Ref. [20]. Indeed, concentrating the input power at the

thermophone surface is more efficient than distributing the same power over the whole thermophone body, as already seen in

Figs. 7 and 9.

We consider now the case with a volumetric input power. Fig. 10 displays that the model with a substrate is consistent with

the decreasing response of the free field model for frequencies higher than 10 kHz. This decreasing behavior is due to the rise

of HCPUA and, therefore, to the heat stored in the sample. The fit between free field and substrate model is due to the size of
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Fig. 9. Frequency response of a thermophone placed on a substrate with finite thickness and radiating in air (see scheme in Fig. 8). We compare the result of our multilayer

model with Eq. (65) [20] and Eq. (66).

Fig. 10. Frequency response of a thermophone in contact with a semi-infinite substrate on the left and propagating in air on the right (see the scheme in Fig. 6). The

thermophone is here a hundred time thicker than in previous plots. We compare the result of our multilayer model with Eq. (62) by Lim et al. [25], Eq. (65) by Hu et al. [20]

and Eq. (66) (modification with volumetric source).

the thermophone that is larger than the thermal penetration depth, thus leading to negligible influence of the substrate. It is

interesting to show how the SPL of the system with increasing thermophone thickness changes moving from the case of Fig. 7

to the one of Fig. 10. This response evolution can be found in Fig. 11, where three increasing values of Ls are considered and

the results of our model are compared with Eq. (62), holding for the free field model. It is interesting to note that for increasing

Ls the response of the multilayer model approaches asymptotically the response of the free field model, confirming the above

discussion.

Lastly, anti-resonances around 1 MHz can be seen in our model (Figs. 10 and 11). These are mechanical anti-resonances

occurring in the thermophone structure that can be analyzed through our model since we solve the complete set of wave

equations in the solid layer. If these resonances/anti-resonance were mentioned in Brown et al. [29], they were never esti-

mated before since they were supposed to occur at a frequency higher than the range of interest. These resonances can

be attenuated by increasing the viscosity of the solid, and are influenced by the Young modulus of the thermophone as

well.
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Fig. 11. Frequency response of a thermophone with increasing thickness Ls in contact with a semi-infinite substrate on the left and propagating in air on the right (see the

scheme in Fig. 6). We compare the results of our multilayer model with Eq. (62), describing the free field thermophone [25].

4.3. Thermophone over a substrate with air gap

The most complicated structure investigated in the literature is obtained by adding a small air gap between the thermophone

and the substrate, as shown in Fig. 12. This kind of design was investigated by Vesterinen et al. [28] and by Tong et al. [26], in

continuity with the free field modeling by Lim et al. [25]. Both articles consider the classical balance equations and the Tong’s

model also takes the heat loss into account. These models however do not consider explicitly the thermophone solid layer, which

is implicitly described by the HCPUA factor. As a result of their calculations, assuming that there is a perfect sound reflection

from the backing, Vesterinen et al. [28] determined an absolute maximum value for the sound pressure level of a thermophone

as

prms,NF,max = PinC0√
2ACp,gT0

. (70)

Eq. (70) shows that the maximum sound pressure achievable for a given thermophone will only depend on the properties of the

propagating medium. The input power or the ambient temperature can also be independently optimized. In order to see if this

maximum pressure is achievable, an air gap between the thermophone and the substrate is added to our model and the results

are compared with Tong’s equation [26].

prms,NF =
||||| C0

T0Cp,g

Pin

2
√

2A

[
(R − 1)e−𝜎gLg + e−ikgLg + 1

]
e−ikgx

||||| , (71)

where

Pin =
−𝜎g𝜅gPin

(2𝛽s + i𝜔Cs)(1 + Re−2𝜎gLg ) + 2𝜎g𝜅g

, (72)

and

R =
√
𝛼g −

√
𝛼b√

𝛼g +
√
𝛼b

(73)

is the reflection coefficient of the thermal wave.

Fig. 13 displays the comparison among our model, the Tong model, the Lim free field model and the Vesterinen maximal

value. Here, the substrate is of finite size and the air gap is 0.033 mm wide. It is seen that at low frequencies there is a large

difference between Tong’s model and ours. In the mid range frequency there is good consistency between the models, and these

results are close to the Vesterinen upper bound. Then, at high frequency, we observe a drop, which starts sooner in our model

for the same reasons already explained in Section 4.1. The low frequency differences are due to the fact that the substrate has a

finite size in our model and therefore is not as reflective as it is in Tong’s model. It is important to remark that in the frequency

range between 10 KHz and 1 MHz, the thermophone response is much larger than the free field level represented by the Lim

et al. [25] result and exhibits a peak which is close to the Vesterinen upper bound. This behavior is due to the size of the air
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Fig. 12. Schematic of a thermophone placed on a solid substrate of finite thickness on the left, and radiating in free field on the right. The plane waves are non-symmetrically

generated within the back and the front media.

Fig. 13. Frequency response of a thermophone placed over a substrate with an air gap, as shown in Fig. 12. The result of the multilayer model can be compared with Eq.

(71) (Tong et al. [26]). Moreover, we reported the result of the free field model given in Eq. (62) (Lim et al. [25]) and the Vesterinen et al. [28] upper bound reported in Eq.

(70).

gap between thermophone and substrate. Indeed, we know that the thermal layer (in which the sound is generated) is larger

for low frequencies than for high frequencies. Hence, if the air gap is not large enough, there will be heat loss in the substrate

eventually leading to poorer SPL than in free field, as seen for frequencies below 1.5 KHz. On the other hand, for frequencies

generating a thermal layer similar to or smaller than the air gap, we have no heat loss in the substrate and it simply acts as a

reflector, doubling the sound pressure, or equivalently, adding 20log10(2) = 6 dB to the SPL. This intensification can be seen

above 10 KHz. Furthermore, above 1 MHz our model and the Tong’s model display air gap anti-resonances leading to poorer SPL

around these frequencies. These resonances occur before any mechanical resonance or anti-resonance within the thermophone

layer and therefore they are more critical for the thermophone system design.

In Fig. 14 the substrate is now infinitely large in our model and the air gap size is more than ten times larger (Lg = 0.8 mm).

It is seen that from 200 Hz to 10 kHz there is less than 1 dB difference between Vesterinen maximum SPL and Tong’s model or

ours. In this region, compared to the free field model, there is a 6 dB improvement, which is consistent with a regular sound

source with double sound pressure due to the backing reflection. Indeed, in this configuration the air gap is much larger than

the thermal layer in the whole range from 200 Hz to 10 KHz and we have no heat loss in the substrate. It can be noticed that

around 50 Hz the results are above Vesterinen upper limit. This can be explained by the specific parameters acting as a second

order filter with a typical underdamped response. The low frequency differences between Tong result and ours in Fig. 14 are

still due to a non perfect reflection from the substrate even though the infinite size improved it. To conclude, depending on the

frequency range in which the thermophone is supposed to work, it is important to determine whether the air gap is useful to

improve the sound pressure level compared to free field emission.

5. Comparison with experiments

In this Section, in order to validate the model against real measurements, we compare the results of our approach with some

recent experimental investigations [40,41].

The first measurements concern the comparison between carbon multi-walled nanotubes (MWNT), providing the most

attractive performance as thermoacoustic generator, and an alternative solution given by poly-acrylonitrile nanofibers (PAN)

coated by indium-tin oxide (ITO) [40]. Indeed, the limited accessibility to large-size carbon MWNT sheets has promoted the

research for alternative materials with interesting performances. In Fig. 15 one can find the experimental results and the theo-
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Fig. 14. The same plots of Fig. 13 for a structure shown in Fig. 12, where the substrate is now infinitely large and the air gap size is more than ten times larger. In this case,

our result and the Tong’s model [26] achieve the SPL upper bound predicted by Vesterinen [28], corresponding to a 6 dB improvement with respect to the Lim’s free field

model [25].

Fig. 15. Comparison between the thermoacoustic performances of carbon MWNT sheets and ITO-PAN sheets (experimental and theoretical results). Panel (a): frequency

response of the two materials showing the behaviors SPL ∼ f1.0 for MWNT and SPL ∼ f0.53 for ITO-PAN (the plots correspond to a normalized power of 1 W). Panel (b): SPL

versus input power for the two materials.

retical ones. The curves for the single-layer MWNT sheet correspond to a sample with surface 1.5 × 1.5 cm2 and with an applied

power of Pin = 0.24 W. On the other hand, the curves for the both-sides ITO-coated PAN sheet correspond to a sample with

surface 1.2 × 1.5 cm2 and with an applied power of Pin = 0.29 W. Both experimental results have been obtained at a distance

of 3 cm from the thermophone surface [40]. We remark that the frequency responses shown in Fig. 15 have been normalized for

an input power of 1 W, in order to facilitate the comparison between the material performances.

The theoretical results shown in Fig. 15 have been obtained with the free field model described in Section 4.1, where

we introduced all the physical parameters given in Ref. [40]. For both the frequency response and the behavior of the SPL

versus the input power, we observe a very good agreement between theory and experiments. Concerning the frequency

response, the capacity of the model to represent the two different slopes SPL ∼ f1.0 for MWNT and SPL ∼ f0.53 for ITO-PAN

proves that our approach is able to work with a HCPUA varying over several order of magnitude. Indeed, we have that

HCPUA = 13 × 10−3 Jm−2K for single-layer MWNT sheets and HCPUA = 0.67 Jm−2K for ITO-coated PAN sheets. These val-

ues can be determined by observing that 𝜌s = 1 kg/m3, Cp ,s
= 716 JKg−1K−1, Ls = 18 × 10−6 m for the MWNT sheet and
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Fig. 16. Experimental and theoretical frequency responses of FDGF thermophones. Both the free field case and the geometry with substrate have been considered. The free

field case is well described by the relation SPL ∼ f0.75 , which can be compared with MWNT and ITO-PAN thermophones shown in Fig. 15.

𝜌s = 220 kg/m3, Cp ,s
= 606 JKg−1K−1, Ls = 5 × 10−6 m for the ITO-PAN sheets [40]. In addition, the linearity of the SPL-versus-

power curves shows the linear behavior of the acoustic response in terms of the applied electric power, as implemented in the

model.

We remark that the measurements presented in Fig. 15 concern the acoustic far field response of the thermophone (distance

of 3 cm from a thermophone with area 1.5 × 1.5 cm2 or 1.2 × 1.5 cm2). Therefore, in order to compare these far field measure-

ments with our near field theoretical results, we have numerically implemented an acoustic diffraction calculation. For a planar

surface at x = x0 vibrating with the velocity v(y, z), each point can be considered as an acoustic source. Therefore, the actual

pressure field can be found by superposition, using Rayleigh’s second integral

pFF(x, y, z) =
i𝜔𝜌g

4𝜋 ∫
Ly

−Ly
∫

Lz

−Lz

v(y′, z′) e−ikg

√
(x−x0)2+(y−y′ )2+(z−z′ )2√

(x − x0)2 + (y − y′)2 + (z − z′)2
dz′dy′, (74)

where x, y and z are the coordinates of the observation point and x0, y′ and z′ those of the generation point. The rectan-

gle (−Ly, Ly) × (−Lz, Lz) of the plane represents the vibrating region. Here, we introduced the factor 4𝜋 in the denominator

of the expression since we considered any point source radiating in free field and not attached on a substrate. In order to

use Eq. (74), we considered the velocity field in air, calculated through our near field model, for a distance from the ther-

mophone slightly larger than the thickness of the thermal layer (active region). Indeed, at this distance, the velocity has

attained its maximum value, which can be considered for the acoustic propagation in Eq. (74). The thickness of the thermal

layer has been evaluated through the approximated expression th = 2

√
C0lk
2𝜔𝛾

=
√

2𝛼
𝜔

(see Section 2.1). Hence, the theoretical

curves in Fig. 15 represents the results of the Rayleigh’s second integral applied to the velocity field of our near field model.

In other words, our multilayer model is used to describe the thermoacoustic generation of waves (which is mostly wide-

band, as discussed in Section 4.1), whereas the diffraction theory is used to properly take into account the resulting acoustic

propagation.

A second comparison with experimental measurements can be found in Fig. 16. In this case we considered the results for

the freeze drying graphene foam (FDGF) thermophone discussed in Ref. [41]. The FDGFs are particular graphene foams obtained

with a specific procedure implemented to get uncollapsed structures, which are more efficient from the thermoacoustic point

of view [41]. This material has been used as thermophone in free field and as thermophone located on a glass substrate (with

a small gap). The acoustic measurements have been performed at a distance of 3 cm for an applied power of 0.1 W. In Fig. 16,

one can find the experimental and theoretical results for both the free field thermophone and the system with a glass substrate.

Again, we can observe a quite good agreement between theory and experiments. For the case of the thermophone located on

the substrate we supposed a gap of 1 𝜇m between FDGF and glass and we used the theory introduced in Section 4.3. For the

implementation of the model we used the parameters declared in Ref. [41]. It is interesting to observe that the slope of the

frequency response is accurately described by the expression SPL ∼ f 0.75, representing an acoustic performance in-between

single-layer MWNT sheets and ITO-coated PAN sheets, previously introduced. As a matter of fact, this slope corresponds to a

HCPUA of 0.2 Jm−2K, which is a value between 0.013 Jm−2K and 0.67 Jm−2K, corresponding to MWNT and ITO-PAN, respectively.

To conclude, also the theoretical curves in Fig. 16 have been obtained by combining the Rayleigh diffraction calculation with our

near field model, as previously discussed.
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Fig. 17. Schematic of a sound generation system composed of two thermophone layers placed in air, separated by an air gap, and radiating symmetrically in both directions.

Fig. 18. Frequency response of a thermophone system composed of two generating layers separated by a given air gap (see Fig. 17 for details). We considered the case

without gap Lg = 0, the case with medium gaps Lg = 1∕36, 1∕12, 1∕4 × 10−4 m, and the case with a large gap Lg = 1 × 10−4 m (independent non-interacting layers).

We can observe the effect of the air gap width and compare the result with the single layer thermophone system.

Fig. 19. Schematic of a thermophone placed in water by means of two symmetric air gaps, and radiating symmetrically in both directions.

6. Analysis of novel thermophone systems

Two new configurations will now be studied using the multilayer model. The first case consists in a thermophone with (two

or more) parallels generating layers, separated with air gaps. A simple case with only two generating layers, as seen in Fig. 17,

will be investigated by considering a fixed input power densities and the same thickness of both layers. The influence of the

width of the air gap between the layers will then be examined, discussed and compared to the results of Aliev et al. [6] and

those of Barnard et al. [7].

The second case will concern the sound generation in an underwater environment. The response of a one layer thermophone

in an underwater free field geometry will be compared to the free field response in air. Afterward, based on an interpretation

made by Aliev et al. [30], an hydrophobic behavior of the thermophone layer will be considered, where an air gap is assumed

between the thermophone and the water, as shown in Fig. 19. The results will be compared also with the Tong et al. theoretical

model for encapsulated thermophones [31].

6.1. Multi generating layer thermophone

We analyze here the behavior of the system with two generating layers radiating symmetrically in air, as shown in Fig. 17.

Fig. 18 displays the sound pressure level for two generating layers (each with thickness LS and input power Pin), separated by

an air gap of length Lg. For the sake of comparison, the free field response for a single generating layer is also plotted (with
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Fig. 20. Frequency response of a thermophone working underwater. Panel (a): we can compare the response of the underwater thermophone in free field without viscosity,

the underwater thermophone with air gap (e.g. due to hydrophobicity as observed for carbon nanotubes), and finally, the thermophone working in air and in free field.

Panel (b): response of the free field thermophone with the normal viscosity of water and two larger values of viscosity.

LS and Pin). It is seen that for low frequencies there is a 6 dB rise in sound pressure level regardless of the distance between

the thermophone layers. This rise is justified by the fact that the pressure generated by two similar layers leads to double the

pressure if the signals are in phase and if they can propagate without obstacles. It means that the samples are still close enough to

prevent any effect of the phase difference between the sound generated by each layer and that they are acoustically transparent

to one another. Furthermore, it could have been expected to see a drop in the low frequency region when the air gap is of the

same order of magnitude as the thermal layer. Since the gap length does not influence this low frequency region, we deduce

that there is no heat interference due to the thermal layers between each generator.

In the mid to high frequency region it is seen that the sound pressure region drops faster with a smaller gap length. The small

and large gap curves are limiting cases which can be reproduced by adapting the free field model. For instance, if Lg → 0, then

the double layer system gets similar to a single layer with 2Ls and 2Pin. This does not change the input power density S0 but,

since the thermophone is larger, the HCPUA gets larger and the high frequency drop is more significant. On the other hand, if

the gap is large enough to cancel the thermal capacity interaction between the layers but still small enough to not create any

significant phase difference, then the acoustic response is similar to that of a single layer thermophone with twice the input

power (i.e., with Ls and 2Pin).

The observed rise in the SPL with a multi layer thermophone concurs with the findings of Barnard et al. [7] and Aliev et

al. [6]; however, to complete this picture, we added here the analysis of the influence of the air gap size. Although the same

SPL level of this structure can be easily reproduced with a single layer thermophone by changing the input power, there is an

important reason to adopt this double configuration. As explained by Aliev et al. [6], the maximum power density supplied to

the thermophone must be limited to avoid the material failure. Of course, the simplest solution to improve the SPL without

lowering the HCPUA is to increase the input power. However, the increase of the power density may generate material failure.

Furthermore, the improvement of HCPUA is typically limited by the technological procedures adopted. Then, for a fixed ther-

mophone geometry with a limited power density before failure, an interesting solution to improve the SPL is to use a multilayer

geometry.

6.2. Underwater thermophone systems

The first investigations concerning underwater thermophone systems considered the encapsulation of the thermophone in

a gas cavity [30–32]. This solution is useful to preserve the integrity of the thermophone material. However, the encapsulation

can create resonances and therefore can limit the wide band frequency response. Consequently, this configuration will not

be investigated here since we prefer to analyze systems with a possibly wide band frequency response. Firstly, we study the

emission of a simple thermophone in a free field underwater configuration. Then, we examine the underwater thermophone

with two air layers generated by the hydrophobic behavior of the thermophone material.

Fig. 20 displays the free field response of the thermophone with and without viscosity in water, with viscosity in air,

and the results of an hydrophobic model. We remember that in water the SPL is calculated with a pressure reference of

1 μPa.
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Fig. 21. Frequency response for the underwater thermophone with symmetric air gaps. We can find the responses for three different air gap widths and we compare our

results with those of Eq. (75), proposed by Tong et al. [31]. We underline the good agreement for the high-frequency behavior.

The low frequency behavior corresponds to a flat response for both air and water. On the other hand, the high frequency

decrease starts at a lower frequency in the water and has a different slope rate (20 dB/dec, see Fig. 20(a)). Those differences

are mainly due to the change of parameters and reference pressure of the propagation medium. The individual parameters

influence has not been further investigated here since other works have already done it considering various gases as propagation

medium [31,33]. The free field response in air is reported here mostly for reference. We now look at the differences in free

field in water with different viscosity in Fig. 20(b). As expected, the frequency response shows a drop at a lower frequency if

the viscosity is increased. The same behavior has been observed in air and shown in Fig. 5. Importantly, we underline that in

the numerical implementation of the model for the underwater case we cannot calculate the acoustic wavenumber k and the

thermal attenuation 𝜎 through the approximated expressions in Eqs. (19) and (20), which are valid only for weak viscosity and

weak thermal conductivity. Instead, we have to directly solve the fourth degree characteristic equation by numerical methods.

Aliev et al. [30], explained the high underwater efficiency of the carbon nanotubes thermophone through the hydrophobic

behavior of the nanotubes. Therefore, we consider here a thin air layer between the thermophone and the water, as seen in

Fig. 19. The first result is shown in Fig. 20, where an increase of 55 dB can been observed with respect to the free field response

in water. Moreover, a resonance around 15 MHz is also observed and is due to the air gap width between thermophone and

water. Now, to better understand the band pass response for mid to low frequency, we can consider Fig. 21, where the response

of the system is shown as function of the air gap Lg (three different values of Lg have been adopted). Here, the equation elaborated

by Tong et al. [31].

prms,NF =

|||||||||
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Pin
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, (75)

where T is the transmission coefficient

T =
2𝜌wC0,w

𝜌gC0,g + 𝜌wC0,w
, (76)

is also plotted for comparison. This equation was elaborated to describe an encapsulated thermophone with a perfectly rigid

backing and with transmission through a window. Then, it has been adapted here to our hydrophobic behavior. Equation (75)

assumes that the air gap is large enough so that there is no influence at the air/water interface due to the thermal layer. Fig. 21

shows that, with different gaps, for a high enough frequency the multilayer model agrees with the Tong et al. model. The

transition frequency, at which the two models start to concur, is the frequency for which the thermal layer becomes small

enough to confine the entire sound generation in the air gap. The slope observed in the high frequency regime is then due to the

transmission coefficient between two regions with a high impedance contrast. Below this high frequency regime there is a flat

frequency response until a drop for low frequencies. This drop is due to the water on the other side of the thermophone, which

acts as an imperfect reflecting substrate. To easily improve the sound generation in a direction, one can use a rigid backing on

the other side, which creates a flatter frequency response at low frequencies. The SPL plateau observed for different values of Lg

in Fig. 21 is coming from a similar sound generation as the free field plateau response (see Fig. 20). In this case, the air thermal

layer oversteps the air-water interface, thus generating a sort of second active layer in the water region. Clearly, this couple of
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thermal layers is more efficient than the single thermal layer observed in the case without air gap. Lastly, it is seen that the

overall SPL is increased at low frequency for smaller gap size, while diminishing the high frequency response. It means that

the increasing of the gap induces a larger SPL in a frequency range which becomes narrower and more shifted towards the low

frequencies. This leads us to believe that in order to improve the underwater sound generation we need either to generate the

whole sound in the air gap (and so have a large air gap) for low frequencies, or, to have a small air gap so that the thermal layer

generates sound also at the air/water interface for higher frequencies. Since the width of the air gap strongly modifies the band

pass frequency response of this system, a compromise between frequency range and produced SPL must be accepted, and Lg can

be selected depending on the applications of interest. Finally, it has to be kept in mind that a low pass filter response could be

achieved for a solid/air/thermophone/air/water design (rigid backing on one hand of the system).

7. Conclusions

In this work the general theory of the thermoacoustic effect has been elaborated for an arbitrary multilayered structure

composed of fluid and solid layers. In this system we studied the propagation of the coupled thermal and acoustic waves, by

considering the viscous and thermal dissipation. An important point introduced in this approach is that the full thermo-acoustic

wave propagation has been considered also in the solid layers, contrarily to classical models where only a form of heat balance

is used in the generating thermophone layers or in substrates. Moreover, we provided evidence that the equations for the solid

layers and for the fluid layers can be written in the same mathematical form, reducing the complexity of the implemented

procedure. The complete system of equations were then solved and rewritten in a matrix form in order to create a flexible and

adaptable model allowing for the analysis of different thermophone configurations.

It is important to underline the limitations of our approach. At the interface between the thermophone layer and the adja-

cent medium we can have an energy loss due to conduction, convection and radiation. These terms are not included in the

standard version of our model. However, we can add a term describing the energy loss in the interface conditions. We have

described this point in Section 4.1, and more specifically through Eqs. (63) and (64). We remark that this term is represented

by an energetic contribution proportional to the local temperature and therefore is well adapted to describe the conduction

and convection losses. On the other hand, radiation losses can be considered only with certain approximations since they are

typically proportional to the fourth power of the temperature. Another important hypothesis considered in our model is that

we work with plane waves in a one-dimensional geometry. This is reasonable only for planar thermophone and for near field

conditions. Interestingly enough, the procedure here adopted can be generalized to two-dimensional (cylindrical) and three-

dimensional (spherical) geometries. In these cases, the solutions are given by Bessel functions and the results will be discussed

in a future work. Concerning the near field assumption, when we need to calculate the acoustic field in an arbitrary position of

the space, we can always apply the acoustic diffraction theory based on the near field velocity calculated with our model. This

approach has been implemented in Section 5 to draw comparison with experiments.

Three classical thermophone configurations were analyzed and compared with other theoretical models from the literature.

In particular, we studied a thermophone in free field, a thermophone deposited on a substrate and a thermophone over a sub-

strate with an air gap in-between. The analysis has displayed good agreement between the presented model and other ones. It

has been shown that in order to obtain the highest SPL in air, the thermophone over a substrate with an air gap design should

be used. However, due to the size of the thermal length, it is important to leave a large enough air gap between thermophone

and substrate to avoid any heat loss, specially at low frequencies.

In order to validate the present approach, we also compared our results with experiments discussed in the recent literature.

We compared the theory with the measurements carried out on three different thermophone materials, namely single-layer

MWNT sheets, ITO-coated PAN sheets and FDGF sheets. The good agreement showed that the model is able to represent the

behavior of systems with values of the heat capacity per unit area varying over several order of magnitude. Moreover, these

materials have been used in different configurations, showing the capability of the model to represent the behavior of an arbi-

trary configuration.

In addition, we also discussed the behavior of two novel thermophone configurations, which can be adopted in air and

underwater, respectively. In the first case, we investigated the possibility to create a generation device through two thermo-

phone layers separated by a given air gap. This technique can be profitably used to reduce the density power, thus limiting

possible thermophone damages, by increasing at the same time the sound pressure level. In the second case, we discussed the

possible underwater use of the thermophone. We analyzed the response of the underwater thermophone in free field and the

response of the underwater thermophone with air gaps between generating layer and water. We showed that this last con-

figuration, easily created thank to the hydrophobicity of some nanomaterials, exhibits a very good efficiency and a pass band

response which can be controlled by the air gap width.

To conclude, the proposed approach will be useful to explore the thermal behavior and the frequency response of new

thermophone configurations, in order to improve the acoustic efficiency and to test the possible exploitation of new materials

and/or nanomaterials.
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