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The effective transport properties of heterogeneous nanoscale materials and structures are affected

by several geometrical and physical factors. Among them, the presence of imperfect interfaces

plays a central role being often at the origin of the scale effects. To describe real contacts between

different phases, some classical schemes have been introduced in literature, namely the low and the

high conducting interface models. Here, we introduce a generalized formalism, which is able to

take into account the properties of both previous schemes and, at the same time, it implements

more complex behaviors, already observed in recent investigations. We apply our models to the

calculation of the effective conductivity in a paradigmatic structure composed of a dispersion of

particles. In particular, we describe the conductivity dependence upon the size of the inclusions

finding an unusual non-monotone scale effect with a pronounced peak at a given particle size. We

introduce some intrinsic length scales governing the universal scaling laws. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4759017]

I. INTRODUCTION

One of the central problems in material science is to

evaluate the effective electric, magnetic, elastic, and thermal

properties governing the physical behavior of heterogeneous

materials.1,2 In recent years, with the progressive miniaturi-

zation of structures and devices, possible size effects have

attracted an ever increasing interest. One crucial property

that usually drives the scale effects in structured materials is

the complexity of interfaces between different phases. Typi-

cally, in the macroscopic modeling, the interfaces are

assumed to be perfect. In the context of the electrical con-

duction, it means that the potential V and the normal compo-

nent of the current density ~J are continuous across any

interface:3,4 ½½V�� ¼ 0 and ½½~J �~n�� ¼ 0, where the symbol ½½ f ��
represents the jump of the function f across the interface.

This approximation turns out to be valid in the case of small

surface/volume ratio. However, in many real cases of tech-

nological interest, e.g., nanocomposites, it is important to

take into consideration the specific properties of the contacts

among the constituents. To this aim, two effective interface

models have been so far introduced for describing two

extreme situations in a zero thickness formulation. More-

over, other models are based of an explicit interphase of

finite thickness and, therefore, they typically consider a

three-phase heterogeneous material composed of the inclu-

sions, the interphase medium, and the matrix.5–7

The first zero thickness model is called low conducting
interface and it is based on the Kapitza resistance, introduced in

the context of the thermal conduction.8 According to this

approach ½½~J �~n�� ¼ 0, while the potential suffers a jump propor-

tional to the local flux, ½½V�� ¼ �r~J �~n, where r is the Kapitza-

like resistance. The second model, called high conducting inter-
face, concerns the case of an interphase of very high conductiv-

ity with vanishing thickness. In this situation ½½V�� ¼ 0, while the

normal component of the current density is proportional to the

surface Laplacian of the potential, ½½~J �~n�� ¼ gr2
SV, where g

represents the interphase conductance. Several investigations on

heterogeneous materials with low9–19 or high12,18,20–24 conduct-

ing interfaces can be found in literature.

In many cases, the behavior of complex interfaces can-

not be simply described through the low or high conducting

model. In fact, these schemes account for a single interlayer

with an extreme (high or low) value of the conductivity,

while real interface typically exhibit a complex or multilay-

ered structure. To overcome this difficulty, we introduce a

generalized anisotropic interface formalism, which consider

both the normal resistance (similarly to the Kapitza case)

and the tangential conductance (as in the high conducting

interface model). The term anisotropic refers to the fact that

the normal resistance and the tangential conductance are

completely independent, describing a different behavior in

the two directions. As discussed below, in order to integrate

both the normal and tangential features, two dual schemes

are possible, as shown in Fig. 1. They exploit the classical T

and P electric lattice structures. By means of this approach,

we take into account all situations comprised between the

low and high conducting interface models, which can be

seen as limiting cases of the present theory. In our schemes,

both the potential and the normal component of the current

density are discontinuous at the interface. The richness of the

proposed models allows us to effectively describe the behav-

ior of real imperfect/multilayered/structured interfaces,

which can be found in several heterogeneous materials of

technological interest and, in particular, for those displaying

a complex nanoscale structure.a)Electronic mail: Stefano.Giordano@iemn.univ-lille1.fr.
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At first, we have applied the generalized interfaces to

model a single particle embedded in a different matrix (inho-

mogeneity). One of the most important technique used to

study this system is based on the Eshelby formalism. It has

been introduced in the context of the isotropic elasticity

theory,25,26 generalized to the anisotropic elasticity27 and

applied to the electric, magnetic, or thermal case.28–30 A rel-

evant universal property states that the field induced in cylin-

drical or spherical particles with zero-thickness low or high

conducting interfaces is uniform if the externally applied

field is so. It is true for both isotropic constituents and aniso-

tropic ones, as recently proved.19,24 In the present work, we

show that the uniformity property of the internal field for

spheres and cylinders is preserved also for our generalized

interface models. Moreover, to extend the validity of the

Eshelby approach, we propose a method, which is able to

determine the field within and around a single particle even

if the externally applied field is not uniform.

The previous results have been applied to determine the

overall conductivity (through an effective medium

theory31,32) of a dispersion of particles with imperfect inter-

faces. We have verified that, in contrast to perfectly bonded

inclusions, the effective properties depend upon the size of

the inhomogeneities. Interestingly enough, while in the case

of low or high conducting interfaces the scale effects are

described by monotone scaling laws, the present generalized

models show non-monotone scale effects with a sizeable

peak of the transport properties. This point can be consid-

ered as a specific signature of the complex resistive/conduc-

tive behavior of the interface. A description of this

intriguing behavior has been made through different intrin-

sic length scales governing the universal scaling laws. Typi-

cal material science problems where these interface models

can be profitably applied are the following: tailoring of

composites with semiconductor whiskers;33 thermal optimi-

zation of metal/dielectric interfaces34 and change materials

through nanoclusters of stable oxides;35 analysis of thermal

and electric conductivity of carbon-based nanostruc-

tures;36,37 and size effects understanding in SiC/epoxy (or

similar) nanocomposites.38,39

Throughout all the paper, we develop the formalism

with the terminology of the electrical transport, but all results

can be applied to the analogous situations of thermal conduc-

tion, antiplane elasticity, magnetic permeability, and electric

permittivity as well.

II. THE DUAL INTERFACE MODELS

To begin, we introduce a simple lattice network taking

into account the normal resistors Rþ and R� and the tangen-

tial conductance G (see Fig. 1, T-model). This structure is

able to consider both the anisotropy (along the normal and

tangential directions) and the different behavior of the nor-

mal conductivity on the two sides of the interface. For the

moment, we consider a curvilinear interface between two

different materials of a planar structure (2D geometry). The

generalization to the arbitrary three-dimensional case will be

made straightforwardly. By a direct application of the

Kirchhoff circuit laws, we obtain two equalities describing

the voltage jump and current jump across the interface (the

definition of the relevant quantities is shown in Fig. 1)

Vþj � V�j ¼ �RþIþj � R�I�j ; (1)

Iþj � I�j ¼ GRþðIþj�1 � 2Iþj þ Iþjþ1Þ
þGðVþj�1 � 2Vþj þ Vþjþ1Þ:

(2)

In the limit of a continuous zero-thickness interface, we

easily obtain from Eqs. (1) and (2), the relations for the inter-

face in the form

½½V�� ¼ �rþð~J �~nÞþ � r�ð~J �~nÞ�; (3)

½½~J �~n�� ¼ grþ
@2

@s2
ð~J �~nÞþ þ g

@2

@s2
Vþ: (4)

The parameters r�; rþ, and g are the suitably rescaled

counterparts of R�;Rþ, and G (r� and rþ are measured in

Xm2 and g in X�1).12 In previous expressions, the partial

derivatives are performed with respect to the variable s,

which represents the curvilinear abscissa along the arbitrarily

curved interface on the plane. As usual, in the three-

dimensional case, the operator @2=@s2 must be substituted

with the surface Laplacian r2
S, which is introduced and dis-

cussed in Appendix A. We can observe that the present

approach reproduces the low conducting interface model if

FIG. 1. Schemes of the dual anisotropic

imperfect interfaces (T-model and P-

model) between two homogeneous media

with conductivities r1 and r2.
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g¼ 0 (with a Kapitza resistance r ¼ r� þ rþ) and the high
conducting interface model if r� ¼ rþ ¼ 0.

The low conducting model is characterized by a sequence

of normal resistances R ¼ Rþ þ R� (T-model with G¼ 0). If

we consider Ds as the step along the curvilinear abscissa s and

Dz as the step along the direction perpendicular to the plane

represented in Fig. 1, we have R ¼ 1
r?

Dh
DsDz, where r? is the

normal conductivity of the interphase of thickness Dh. The

Kapitza resistance is, therefore, given by r ¼ RDS where

DS ¼ DsDz is the area element associated to ~J �~n; we finally

obtain r ¼ limDh!0;r?!0
Dh
r?

.12 Similarly, the high conducting

model is characterized by a series of tangential conductances

G (T-model with R� ¼ Rþ ¼ 0). It is simple to observe that

G ¼ rk DhDz
Ds , where rk is the tangential conductivity of the

interphase. The specific conductivity is, therefore, given by

g ¼ G Ds2

DS (where DS ¼ DsDz) and we obtain the result

g ¼ limDh!0;rk!1 rkDh.12 So, we have a direct link between

the interphase properties (Dh; r?; rk) and the models param-

eters (r, g) for the high and low conducting interfaces. Inter-

estingly enough, we observe that when we consider an

anisotropic single layer interphase (which is uniaxial or trans-

versely isotropic with normal conductivity r? and tangential

conductivity rk), the only component r? is relevant for the

low conducting model and the only component rk is relevant

for the high conducting interface.

Of course, if both relations g¼ 0 and r� ¼ rþ ¼ 0 are

satisfied in the T-model, then the ideal interface is simply

obtained. It is not difficult to prove that this model is com-

pletely equivalent to a series of three different ideal sheets

(multi-layered interface) A, B, and C: an external low con-

ducting phase with Kapitza resistance rþ ¼ lim
DhðAÞ!0;rðAÞ? !0

DhðAÞ

rðAÞ?
, a halfway high conducting phase with specific conduct-

ance g ¼ lim
DhðBÞ!0;rðBÞk !1

rðBÞk DhðBÞ and, finally, an internal

low conducting phase with Kapitza resistance r�

¼ lim
DhðCÞ!0;rðCÞ? !0

DhðCÞ

rðCÞ?
. The three layers are characterized by

thickness DhðAÞ; DhðBÞ; DhðCÞ (with Dh ¼ DhðAÞ þ DhðBÞ

þDhðCÞ) and conductivities rðAÞ? ; rðBÞk ; rðCÞ? . So, we have built

an example of interpretation of the model parameters with a

concrete physical multilayered structure.

A dual model can be introduced by considering the sec-

ond structure depicted in Fig. 1 (P-model). A procedure sim-

ilar to the previous one leads to the following interface

equations:

½½V�� ¼ �rð~J �~nÞþ þ rgþ
@2

@s2
Vþ; (5)

½½~J �~n�� ¼ gþ
@2

@s2
Vþ þ g�

@2

@s2
V�; (6)

where the parameters r, gþ, and g� are the suitably rescaled

counterparts of R, Gþ, and G�, appearing in Fig. 1, right. As

before, the operator @2=@s2 must be substituted with the sur-

face Laplacian r2
S for the 3D case. We can prove that also

the P-model is exactly equivalent to a series of three differ-

ent ideal sheets: an external high conducting phase with con-

ductance gþ ¼ lim
DhðAÞ!0;rðAÞk !1

rðAÞk DhðAÞ, a halfway low

conducting phase with Kapitza resistance r ¼
lim

DhðBÞ!0;rðBÞ? !0
DhðBÞ

rðBÞ?
and, finally, an internal high conducting

phase with conductivity g� ¼ lim
DhðCÞ!0;rðCÞk !1

rðCÞk DhðCÞ. As

before, the layers are characterized by thickness

DhðAÞ; DhðBÞ; DhðCÞ and conductivities rðAÞk ; rðBÞ? ; rðCÞk . It is

important to remark that the interpretation of the model

through three adjacent layers (for both the T and P struc-

tures), is not restrictive; in fact, the proposed schemes can be

also used to effectively represent different imperfect interfaces

with all parameters fitted in order to mimic their correct

behavior. We also underline that some more complete models

have been proposed in literature (see, e.g., the recent Gu and

He interface,7 which also degenerates to the high or low con-

ducting models and it is able to take into account all the cou-

pling among the electric, magnetic, and elastic fields); here,

we have proposed our schemes with the idea to find a compro-

mise between the complexity and the possibility to analyti-

cally solve the problem for paradigmatic composite structures.

The proposed models are dual from both the geometrical

point of view, as shown by the T and P lattice structures,

and the physical point of view, as discussed below through

the results for the composite materials.

III. SINGLE PARTICLE BEHAVIOR

We consider now a single circular (in 2D) or spherical

(in 3D) particle with conductivity r2 embedded into a ma-

trix with conductivity r1 (see Fig. 2): we suppose that the

interface between the constituents is described by Eqs. (3)

and (4) (T-model) and we determine the effect of an arbi-

trary externally applied field. Since we are dealing with two

isotropic phases, in order to solve the problem, we can

directly apply the original idea of Maxwell,40 which is

based on the following steps. First, we observe that the

electrical potential must be an harmonic function both

inside and outside the particle: therefore, it can be straight-

forwardly expanded in trigonometric series (in 2D) and in

series of spherical harmonics (in 3D).41 Second, we can

substitute such expansions in the interface conditions, by

obtaining a set of equations for the unknown coefficients,

completely describing the potential both inside and outside

the inhomogeneity.

To accomplish this last step, we must determine the sur-

face Laplacian of the series expansions: to do this, we

remember that the trigonometric functions and the spherical

harmonics are eigenfunctions of the r2
S operator with certain

eigenvalues described in Appendix A. The complete proce-

dure, which is valid for any externally applied field, is

described in Appendix B for the 2D case and in Appendix C

for the 3D case. Here, we are interested in the particular case

with an uniform applied electric field E0, corresponding to a

potential V0 ¼ �qcos#E0 (see Fig. 2). The perturbation

induced by the inhomogeneity with imperfect contact has

been eventually found as

for q < R) V ¼ �qcos#E0

dr1

C

� �
; (7)
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for q > R) V ¼ �qcos#E0 1þ Rd

qd

B
C

� �
; (8)

where d¼ 2 for the circle, d¼ 3 for the sphere, and the pa-

rameters B and C are defined as follows:

B ¼ r1 � r2 þ
rþ þ r�

R
r1r2

�ðd � 1Þ g

R
1� rþ

r1

R

h i
1þ r�

r2

R

h i
; (9)

C ¼ ðd � 1Þr1 þ r2 þ ðd � 1Þ r
þ þ r�

R
r1r2

þðd � 1Þ g

R
1þ ðd � 1Þrþ r1

R

h i
1þ r�

r2

R

h i
:

(10)

We can observe that the electric quantities both inside

and outside the particle, in contrast to the case with perfect

interfaces, depend on R. So, the previous result can be used

for analysing the scale effects induced by the imperfect con-

tact. From Eq. (7), it is easy to identify the induced internal

field as Eint=E0 ¼ dr1=C. A first scaling law for R!1 can

be obtained by introducing the classical Lorentz field for a

particle with a perfect interface Elor ¼ Eint

��
rþ¼r�¼0;g¼0

; we

can easily prove that

Eint

Elor
� 1 ¼ � ðd � 1Þr1

ðd � 1Þr1 þ r2

‘� þ ‘þ þ L
R

þ O
1

R2

� �
; (11)

where we have introduced the following intrinsic length

scales:

‘� ¼ r2r�; ‘þ ¼ r2rþ; L ¼ g

r1

; (12)

which automatically emerge from the analysis and com-

pletely control all the scaling laws. Equation (11) means that

the internal field approaches the Lorentz field for large radius

of the particle (R� ‘� þ ‘þ þ L), i.e., the effects of the

contact imperfection are vanishingly small for R!1.

We discuss now the scaling laws obtained for R! 0. A

long but straightforward analysis leads to

Eint

E0

¼ dr2

ðd � 1Þ2r1

R3

‘�‘þL
þ OðR4Þ; (13)

Eint

E0

����
g¼0

¼ d

ðd � 1Þ
R

‘� þ ‘þ
þ OðR2Þ; (14)

Eint

E0

����
rþ¼r�¼0

¼ d

ðd � 1Þ
R

L þ OðR2Þ: (15)

In any case, the internal field converges to zero for very

small particles. It is interesting to observe that the internal

field for the T-model follows a scaling law with a power of

three, while the low and high conductivity models follow a

law with a scaling exponent equal to one. It can be seen in

Fig. 3 where log10ðEint=E0Þ is represented versus log10R. The

blue curves (with squares) and the black ones (without sym-

bols) describe the generic interface (g 6¼ 0; rþ 6¼ 0; r� 6¼ 0)

and show a slope þ3 for small R, which is in agreement with

Eq. (13). On the other hand, green curves (with triangles)

FIG. 2. Scheme of a single circular (a) or

spherical (b) particle with conductivity r2

embedded into a matrix with conductivity

r1. The interface between the two phases

is described by either Eqs. (3) and (4) or

Eqs. (5) and (6).

FIG. 3. Plot of log10ðEint=E0Þ versus log10R for the T-model. Green curves

with triangles: high conductivity model with a varying g in

X ¼ f0:001; 0:016; 0:25; 4; 64; 1000g. Red curves with circles: low conduc-

tivity model with a varying rþ ¼ r� in X. Blue curves with squares: general

model with rþ ¼ r� ¼ 1 and g varying in X. Black curves without symbols:

general model with g¼ 1 and rþ ¼ r� varying in X. Everywhere, the dashed

lines correspond to the values <1 of the varying quantity. Parameters

adopted in a.u.: r1 ¼ 1, r2 ¼ 5, d¼ 3, and c¼ 0.3.
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and red ones (with circles) correspond to the high and the

low conductivity interface, respectively: they all exhibit a

slope þ1 for small R as predicted by Eqs. (14) and (15). We

also note that all curves in Fig. 3 converge to the Lorentz

field for R!1, as described by Eq. (11).

Now, we take into consideration the P-model described

by Eqs. (5) and (6). The perturbation to the electric potential

generated by the inhomogeneity is described again by Eqs.

(7) and (8) but with new coefficients B and C given below

B ¼ r1 � r2 þ
r

R
r1r2 � ðd � 1Þ2 g�gþr

R3

�ðd � 1Þ
R

g� 1� r
r1

R

h i
þ gþ 1þ r

r2

R

h in o
; (16)

C ¼ ðd � 1Þr1 þ r2 þ ðd � 1Þ r

R
r1r2 þ ðd � 1Þ2 g�gþr

R3

þðd � 1Þ
R

g� 1þ ðd � 1Þr r1

R

h i
þ gþ 1þ r

r2

R

h in o
:

(17)

With regards to the scaling law for R!1, it is possible

to prove that Eq. (11) must be substituted with

Eint

Elor
� 1 ¼ � ðd � 1Þr1

ðd � 1Þr1 þ r2

‘þ Lþ þ L�
R

þ O
1

R2

� �
; (18)

where we have introduced the dual intrinsic length scales

‘ ¼ r2r; Lþ ¼ gþ

r1

; L� ¼ g�

r1

: (19)

As expected, also in this case, the internal field

approaches the Lorentz field for large radius of the particle

(R� ‘þ Lþ þ L�). On the other hand, for R! 0, Eqs.

(13)–(15) become as follows:

Eint

E0

¼ dr2

ðd � 1Þ2r1

R3

‘LþL�
þ OðR4Þ; (20)

Eint

E0

����
gþ¼g�¼0

¼ d

ðd � 1Þ
R

‘
þ OðR2Þ; (21)

Eint

E0

����
r¼0

¼ d

ðd � 1Þ
R

Lþ þ L�
þ OðR2Þ: (22)

As before, the internal field converges to zero for very

small particles (with different scaling exponents, as above

described).

IV. EFFECTIVE CONDUCTIVITY OF DISPERSIONS

To analyse the effects of imperfect interfaces on a com-

posite material, we consider a dispersion of cylindrical or

spherical particles of conductivity r2 in a matrix with con-

ductivity r1. When the interfaces are described by Eqs. (3)

and (4) (T-model), we can generalize the Maxwell

approach40 or, equivalently, the Mori-Tanaka scheme42 by

obtaining the following effective conductivity for a compos-

ite with a volume fraction c of the dispersed particles

ref f

r1

¼ 1

1þ cdB
ð1�cÞC þ c½C�ðd�1ÞB�

; (23)

where B and C are given in Eqs. (9) and (10). Detailed

descriptions of the homogenization procedures can be found

elsewhere.19,24,31,32 For interfaces described by the low con-

ductivity model, we obtain rlow ¼ ref f g¼0

�� , which is in per-

fect agreement with recent investigations;18,19 on the other

hand, when the high conductivity model is accounted for we

have rhigh ¼ ref f jrþ¼r�¼0, which corresponds to some known

results.18,24 Moreover, when we consider a perfect contact

between the constituents, we obtain the celebrated Maxwell

formula40

rmax

r1

¼ 1

1þ dcðr1�r2Þ
ð1�cÞ½ðd�1Þr1þr2�þ cdr2

: (24)

The first important scaling law concerns the situation

with a large radius of the particles: in this case, as above

said, the size effects disappear and the effective conductivity

converges to the Maxwell one as follows:

ref f

rmax

� 1 ¼ cd2r2
1

G
H
R
þ O

1

R2

� �
; (25)

where we have defined

H ¼ ðd � 1ÞL � r2

r1

ð‘þ þ ‘�Þ; (26)

G ¼ ½ðd þ c� 1Þr1 þ ð1� cÞr2�
� ½ðd � 1Þð1� cÞr1 þ ðcd � cþ 1Þr2�:

(27)

The parameter H represents the overall length scale of

this process and it is a linear combination of the terms

defined in Eq. (12). This result can be simply compared with

recent achievements18 concerning the cases with low and

high conductivity interfaces. Indeed, we find a perfect agree-

ment if ‘þ ¼ ‘� ¼ 0 or L ¼ 0.

Other interesting scaling laws can be found for R! 0. To

analyse this case, we define the conductivity r0, which repre-

sents a Maxwell dispersion with r2 ! 0 (dispersion of voids),

and the conductivity r1, which characterizes a Maxwell disper-

sion with r2 !1 (dispersion of superconducting particles)

r0

r1

¼ ð1� cÞðd � 1Þ
d þ c� 1

;
r1
r1

¼ 1� cþ cd

1� c
: (28)

First of all, we observe that if rþ 6¼ 0, we have ref f !
r0 with the scaling law

ref f

r0

� 1 ¼ cd2r2

ðd � 1Þð1� cÞðd � 1þ cÞr1

R

‘þ
þ OðR2Þ: (29)

Similarly, if r� 6¼ 0 with rþ ¼ 0 and g¼ 0, we obtain

ref f ! r0 with the scaling law

ref f

r0

� 1 ¼ cd2r2

ðd � 1Þð1� cÞðd � 1þ cÞr1

R

‘�
þ OðR2Þ: (30)
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So, for the general T-model and for the low conducting

interface, we have ref f ! r0 (when R! 0) with a scaling

exponent equals to one. On the other hand, for g 6¼ 0 and

rþ ¼ 0, we prove the convergence ref f ! r1 with a scaling

law

ref f

r1
� 1 ¼ � cd2

ðd � 1Þð1� cÞðcd � cþ 1Þ
R

L þ OðR2Þ: (31)

It means that the high conductivity model leads to

ref f ! r1 for R! 0.

This complex scenario is summarized in Fig. 4 where

ref f is shown versus log10R. Even at constant volume frac-

tion c, significant size effects on the effective conductivity

are evident for a variable radius R. In Fig. 4 (top), we have

reported the results for r2=r1 ¼ 2 and in Fig. 4 (bottom) for

r2=r1 ¼ 0:5. In both cases, we have shown the neutrality

axis at which the effective conductivity ref f equals the ma-

trix conductivity r1, making the inclusions effectively hid-

den.12,43 We can observe that ref f is a monotonically

decreasing function of R (from r1 to rmax) for the high con-

ductivity model (green curves with triangles), while it is a

monotonically increasing function of R (from r0 to rmax) for

the low conductivity model (red lines with circles). So, the

neutrality condition (B ¼ 0) can be satisfied by the low con-

ductivity model for r2 > r1 (r2 � r1 ¼ rr1r2=R, see Fig. 4,

top) and by the high conductivity model for r2 < r1

(r1 � r2 ¼ gðd � 1Þ=R, see Fig. 4, bottom). On the other

hand, the blue and black lines concern the case of the general

T-model and they exhibit a non monotone behavior starting

from r0 and arriving at rmax. It is interesting to note that,

with the general T-model, it is possible to satisfy the neutral-

ity condition for both the cases r2 > r1 and r2 < r1. The

condition leading to neutrality in this case (T-model) is

g ¼
r1 � r2 þ rþ þ r�

R r1r2

ðd � 1Þ 1
R 1� rþ r1

R

� �
1þ r� r2

R

� � ; (32)

which is represented in Fig. 4 by the intersections of blue

and black curves with the neutrality axis.

As for the dual P-model, we can affirm that the general-

ized Maxwell theory given in Eq. (23) is still valid but the

coefficients B and C must be taken from Eqs. (16) and (17),

respectively. For a large radius of the particle, we have the

scaling law identical to Eq. (25) where G is given by Eq. (27)

andH by the following expression:

H ¼ ðd � 1ÞðLþ þ L�Þ � r2

r1

‘: (33)

It represents the overall length scale of the P-model,

and it is indeed a linear combination of the terms defined in

Eq. (19). We also report the scaling laws for R! 0. If

gþ 6¼ 0, we have that ref f ! r1 with the scaling law

ref f

r1
�1¼� cd2

ðd�1Þð1�cÞðcd�cþ1Þ
R

Lþ
þOðR2Þ: (34)

Similarly, if g� 6¼ 0 with r ¼ 0 and gþ ¼ 0, we obtain

ref f ! r1 with the scaling law

ref f

r1
�1¼� cd2

ðd�1Þð1�cÞðcd�cþ1Þ
R

L�þOðR2Þ: (35)

So, for the general P-model and for the high conducting

interface, we have ref f ! r1 (when R! 0) with a scaling

exponent equals to one. On the other hand, for r 6¼ 0 and

gþ ¼ 0, we prove the convergence ref f ! r0 with a scaling

law

ref f

r0

� 1 ¼ cd2r2

ðd � 1Þð1� cÞðd � 1þ cÞr1

R

‘
þ OðR2Þ: (36)

It means that, as expected, the low conductivity model

leads to ref f ! r0 for R! 0.

In Fig. 5, the results for the P-model are shown: the

effective conductivity is represented versus the radius R of

FIG. 4. Plot of ref f versus log10R for the T-model. We adopted the following

parameters (in a.u.): r1 ¼ 1; r2 ¼ 2 (top) and r1 ¼ 1; r2 ¼ 1=2 (bottom).

Everywhere, we used d¼ 2, c¼ 0.3. Green curves with triangles: high con-

ductivity model (rþ ¼ r� ¼ 0) with a varying g in X ¼ f10�3þ2ðj�1Þ=3;
j ¼ 1; 2;…; 10g. Red curves with circles: low conductivity model (g¼ 0)

with a varying rþ ¼ r� in X. Blue curves with squares: T-model with rþ ¼
r� ¼ 1 and g varying in X. Black curves without symbols: T-model with

g¼ 1 and rþ ¼ r� varying in X. Everywhere, the dashed lines correspond to

values <1 of the varying quantity.
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the particles. In Fig. 5 (top), we have the case with r2=r1 ¼
2 and in Fig. 5 (bottom), we show the results for

r2=r1 ¼ 0:5. All previous scaling laws are confirmed and

clearly indicated. By drawing a comparison between Figs. 4

and 5, we can point out the dual character of the proposed

models: the T-model behaves similarly to the low conducting

interface with regards to the limiting cases R! 0 and

R!1, but it shows a specific additional upwards peak

describing the competition of the scale effects with the pres-

ence of the tangential conductances g. Conversely, the P-

model behaves similarly to the high conducting interface

with regards to the limiting cases R! 0 and R!1 but it

shows a specific additional downwards peak describing the

competition of the scale effects with the presence of the nor-

mal resistances r. As before, also in the case of the P-model,

we can satisfy the neutrality condition for both the contrast

situations r2=r1 > 1 and r2=r1 < 1. The condition leading

to neutrality in this case (P-model) is

r ¼
r1 � r2 � gþ þ g�

R ðd � 1Þ
ðd � 1Þ2 gþ þ g�

R3 � d�1
R2 ðg�r1 � gþr2Þ � r1r2

R

; (37)

and it is satisfied in Fig. 5 at the intersection points between

the blue or blacks curves and the neutrality axis.

By means of this analysis we can assert that the T and P
models exhibit an interesting complex behavior which is able

to reproduce many properties of real interfaces appearing in

different nano-systems. As an example we can compare our

results with those recently obtained for a dispersion of SiC

particles (with radius between 5 and 15 Å) in a polymeric (ep-

oxy) matrix.39 By means of a multiscale combination of the

non-equilibrium molecular dynamics and a micromechanics

bridging model, the thermal conductivity has been studied in

terms of the particles radius. The result is in perfect qualitative

agreement with our T-model, and a maximum value of the

conductivity was obtained for a given radius. To obtain such a

result the Kapitza resistance and a specific interphase describ-

ing the bonding of the polymers to the monocrystalline SiC

particles have been considered.39 Our T-model is able to

describe the overall response of the structured/multilayered

interface through the simple conditions given in Eqs. (3) and

(4) imposing the jumps of the physical fields over the zero-

thickness interface. Therefore, the proposed models perfectly

implement the multiscale paradigm by introducing the effec-

tive properties of a given interface behavior.

We remark that in this section, we have used the gener-

alization of the Maxwell approach40 or the Mori-Tanaka

scheme42 in order to obtain simple results and to directly

analyse the scale effects induced by the imperfect interfaces.

Nevertheless, the closed form results discussed in Sec. III for

the single particle response can be easily exploited to imple-

ment other homogenization techniques such as the differen-

tial method,31,44,45 the self consistent scheme,46–48 the

generalized-self-consistent model,49 and the strong-property-

fluctuation theory.50 We also remark that the analysis of the

imperfect interfaces is an important topic also in the field of

micromechanics (elasticity of composites) where several the-

oretical models have been proposed51–53 and intriguing scale

effects have been observed.53–55

V. SUMMARY AND CONCLUSIONS

In this paper, we have taken into consideration the possi-

ble scale effects induced by imperfect interfaces between the

constituents of a heterogeneous system. To this aim, we intro-

duced two generalised schemes, namely the T and P struc-

tures, which can be seen as natural combinations of the

so-called low and high conducting interface models. One im-

portant property discussed concerns the uniformity of the

physical fields in circular or spherical particles with T or P
imperfect interfaces. This point extends well known theorems

proving the uniformity in different conditions and opens the

possibility to study the behavior of new interfaces in aniso-

tropic, elliptic, and ellipsoidal particles, which are standard

FIG. 5. Plot of ref f versus log10R for the P-model. We adopted the follow-

ing parameters (in a.u.): r1 ¼ 1; r2 ¼ 2 (top) and r1 ¼ 1; r2 ¼ 1=2

(bottom). Everywhere, we used d¼ 2, c¼ 0.3. Green curves with triangles:

high conductivity model (r¼ 0) with a varying g� ¼ gþ in

X ¼ f10�3þ2ðj�1Þ=3; j ¼ 1; 2;…; 10g. Red curves with circles: low conduc-

tivity model (gþ ¼ g� ¼ 0) with a varying r in X. Blue curves with squares:

P-model with r¼ 1 and gþ ¼ g� varying in X. Black curves without sym-

bols: P-model with gþ ¼ g� ¼ 1 and r varying in X. Everywhere, the

dashed lines correspond to values <1 of the varying quantity.
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problems in the theory of inhomogeneities. The results for a

single inclusion were applied to the analysis of the effective

properties of dispersions. In particular, we studied the scale

effects and we found interesting behaviors, which generalize

those observed with low and high conductivity interfaces. We

indeed observed a specific peak of the effective conductivity in

correspondence to a critical radius of the dispersed particles: it

corresponds to the competition between the tendency to attain

the Maxwell conductivity limit for a large radius and the con-

duction properties of the interface, which tend to increase or

decrease the overall conductivity, depending on the specific

parameters. This is exactly the trend observed in recent analysis

of imperfect interfaces in nanocomposites (hard particles in

polymeric matrix or similar mixtures). To conclude, we have

analysed the neutrality properties of the T and P models: con-

trarily to the low and high conducting interface, we have

proved that it is possible to satisfy the neutrality condition for

any contrast r2=r1 between the conductivities of the involved

phases. So, Eqs. (32) and (37) are the updated versions of the

neutrality criteria, representing the generalizations of some find-

ings, published in recent literature. We remark that all the

achievements of the present paper can be also used in dynamic

regime if we consider a wavelength k of the propagating waves

that is much larger than the radius R of the particles. In this

case we are working in the so-called quasi-static regime and

any inhomogeneity feels a nearly static applied field.
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APPENDIX A: THE SURFACE LAPLACIAN

The surface Laplacian operator is defined as

r2
S f ¼ 1ffiffiffi

g
p

@

@ai

ffiffiffi
g
p

gij @f

@aj

� 	
; (A1)

where gij are the components of the metric tensor (the first

fundamental form) of the Riemannian manifold (the surface)

~r ¼~rða1; a2Þ.56 It means that gij ¼ @~r
@ai
� @~r@aj

and the dual com-

ponents gij are obtained by inverting the matrix gij. The

quantity g is the determinant of gij. Typically, in differential

geometry of two-dimensional surfaces we adopt the symbols

g11 ¼ E; g12 ¼ g21 ¼ F and g22 ¼ G; so, for an orthogonal

system of coordinate lines, F ¼ 0, and Eq. (A1) reduces to

r2
S f ¼ 1ffiffiffiffiffiffiffi

EG
p @

@a1

ffiffiffiffi
G

E

r
@f

@a1

" #
þ @

@a2

ffiffiffiffi
E

G

r
@f

@a2

" #( )
: (A2)

For a planar circle~r ¼ ðRcos#; Rsin#Þ, we simply have

r2
S f ¼ @

2f

@s2
¼ 1

R2

@2f

@#2
; (A3)

and the following property is evident:

r2
Sein# ¼ � 1

R2
n2ein#: (A4)

It means that the trigonometric functions cosn# and

sinn# are eigenfunctions of the Laplacian operator with

eigenvalues � 1
R2 n2.

For a spherical surface ~r ¼ ðRcos u sin#; R sin u sin#;
R cos#Þ it is possible to obtain

r2
S f ¼ 1

R2

1

sin#

@

@#
sin#

@f

@#


 �
þ 1

sin2#

@2f

@u2

� 	
; (A5)

and we can prove that

r2
SYnmð#;uÞ ¼ �

1

R2
nðnþ 1ÞYnmð#;uÞ: (A6)

It means that the spherical harmonics Ynmð#;uÞ are

eigenfunctions of the surface Laplacian operator with eigen-

values � 1
R2 nðnþ 1Þ.41 They are defined (for n � 0;

�n � m � n) as57,58

Ynmð#;uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p
ðn� mÞ!
ðnþ mÞ!

s
Pm

n ðcos#Þeimu; (A7)

where Pm
n ðnÞ are the associated Legendre polynomials57,58

Pm
n ðnÞ ¼ ð�1Þmð1� n2Þ

m
2

1

2nn!

dnþm

dnnþm ðn
2 � 1Þn: (A8)

APPENDIX B: TWO-DIMENSIONAL GEOMETRY: THE
CIRCLE

We suppose to consider a circular inhomogeneity of ra-

dius R (conductivity r2) in the plane (x,y) with conductivity

r1. We consider an arbitrary applied (or pre-existing) poten-

tial V0ðx; yÞ and we search for the perturbation induced by

the inhomogeneity. Since the electric potential must be har-

monic both inside and outside the interface, we have

V ¼ V0 þ
Xþ1
n¼0

qnðAncosn#þ Bnsinn#Þ; q < R;

V ¼ V0 þ
Xþ1
n¼0

q�nð ~Ancosn#þ ~Bnsinn#Þ; q > R;

(B1)

where ðq; #Þ are the standard polar coordinates. The poten-

tial V0 and its derivatives @V0

@q can be expanded in Fourier se-

ries for q ¼ R

V0ðR; #Þ ¼
Xþ1
n¼0

ðCncosn#þ Dnsinn#Þ;

@V0

@q
ðR; #Þ ¼

Xþ1
n¼0

ðFncosn#þ Gnsinn#Þ:
(B2)

By substituting Eq. (B1) in the anisotropic interface

model (Eqs. (3) and (4)) and by using Eqs. (A4) and (B2),

we obtain a set of equations for An and ~An
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R�n ~An � RnAn ¼ rþr1ðFn � nR�n�1 ~AnÞ
þ r�r2ðFn þ nRn�1AnÞ;

(B3)

r2ðFn þ nRn�1AnÞ � r1ðFn � nR�n�1 ~AnÞ
¼ grþr1R�2n2ðFn � nR�n�1 ~AnÞ
� gR�2n2ðCn þ R�n ~AnÞ; (B4)

and a similar one for the unknowns Bn and ~Bn, not reported

here for brevity. These systems can be easily solved obtain-

ing the electrical potential in the whole plane. In the particu-

lar case of an uniform applied field V0 ¼ �xE0 ¼ �qcos#E0

only the coefficients A1 and ~A1 are different from zero

and we obtain Eqs. (7) and (8) for d¼ 2. A similar

procedure (not reported here for brevity) can be followed

to analyse the properties of the P-model described by

Eqs. (5) and (6).

APPENDIX C: THREE-DIMENSIONAL GEOMETRY: THE
SPHERE

We consider now a spherical inhomogeneity of radius R
(conductivity r2) in a matrix with conductivity r1. As before,

we assume an arbitrary applied potential V0ðx; y; zÞ and we

study the effects of the embedded particle. The final electric

potential can be expanded as follows

V ¼ V0 þ
Xþ1
n¼0

Xþn

m¼�n

BnmqnYnmð#;uÞ; q < R;

V ¼ V0 þ
Xþ1
n¼0

Xþn

m¼�n

Cnmq�n�1Ynmð#;uÞ; q > R;

(C1)

where we have introduced the spherical coordinates

ðq; #;uÞ. The potential V0 and its derivatives @V0

@q can be

expanded in a series of spherical harmonics for q ¼ R

V0ðR; #;uÞ ¼
Xþ1
n¼0

Xþn

m¼�n

bnmYnmð#;uÞ;

@V0

@q
ðR; #;uÞ ¼

Xþ1
n¼0

Xþn

m¼�n

anmYnmð#;uÞ:
(C2)

By substituting Eq. (C1) in the anisotropic interface

model (Eqs. (3) and (4)) and by using Eqs. (A6) and (C2),

we obtain a set of equations for Bnm and Cnm

R�n�1Cnm � RnBnm ¼ rþr1½anm � ðnþ 1ÞR�n�2Cnm�
þ r�r2½anm þ nRn�1Bnm�;

(C3)

r2½anm þ nRn�1Bnm� � r1½anm � ðnþ 1ÞR�n�2Cnm�
¼ grþr1R�2nðnþ 1Þ½anm � ðnþ 1ÞR�n�2Cnm�
� gR�2nðnþ 1Þ½bnm þ R�n�1Cnm�: (C4)

It is now possible to find Bnm and Cnm obtaining the elec-

trical potential in the whole space. In the particular case of

an uniform applied field V0 ¼ �zE0 ¼ �qcos#E0, only the

coefficients B10 and C10 are different from zero and we

obtain Eqs. (7) and (8) for d¼ 3. We remark that a similar

procedure can be followed for studying the dual interface

described by Eqs. (5) and (6).
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