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France, ECLille, Avenue Poincaré, BP 60069, 59652 Villeneuve d’Ascq, France
2 IEMN, UMR CNRS 8520, ComUE Lille Nord de France, Avenue Poincaré, BP 60069, 59652
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Abstract
The possibility of tuning the nonlinear effective response of composite materials and structures
is of great importance for developing new concepts such as soft metamaterials, acoustic
diodes, nonlinear waveguides and phononic crystals. In this paper we develop a
homogenization technique for dispersions of nonlinear particles in a soft matrix able to take
account of second and third order elastic nonlinearities. Based on this method, we prove the
possibility to strongly amplify a given particles nonlinearity (either the second or the third one)
under specific conditions concerning the linear response of the two constituents (particles and
matrix). We finally give a realistic example based on a population of porous polymer particles
embedded in a PDMS matrix.

Keywords: nonlinear elastic materials, homogenization techniques, acoustic metamaterials,
landau coefficients

1. Introduction

In recent years, non linear properties of composite materials
have received a great deal of attention due to their potential
applications in various fields. For example, the design of
non-linear electromagnetic components based on photonic
crystals allowed to realize the optical counterpart of the
basic electronic devices such as diodes, transistors and so
on [1, 2]. The idea of rectifying energy transport has
been explored in terms of ratchet solitons as well [3].
Moreover, the enhancement of second order non-linear effects
in photonic crystals paves the way of devising much more faster
circuits for information treatment (all optical technologies)
keeping reduced dimensions compatible with integration
requirements [1, 2]. Also, the development of nonlinear
electromagnetic metamaterials and plasmonic devices allowed
to target electromagnetic properties with the possibility of
boosting the magnitude of specific nonlinearities [4–7].

Similar effects were studied in acoustics and efficient
acoustic diodes constituted of highly nonlinear elastic
materials combined with a one-dimensional phononic crystal
were designed [8, 9]. Acoustic diodes present many

potential applications especially for thermal management at
a microscopic scale [10]. Realization of such devices requires
acoustic materials with precisely tuned strong nonlinearities.
In [9] strong nonlinear acoustic materials were obtained
through bubbly liquids (i.e. ultrasound contrast agents used
in medical imaging) with optimized concentration of gas.
Unfortunately, from the technological point of view, bubbly
liquids are not easily handled materials and research efforts
were focused on the replacement of the liquid matrix by
a soft solid material such as PDMS [11], leading to the
development of soft acoustic metamaterials [12]. Indeed,
such composite materials with a low concentration of bubbles
inserted in a soft polymer background are well known to
exhibit strong acoustic nonlinearities [13, 14]. To summarize,
designing heterogeneous solid materials exhibiting strong
elastic nonlinearities is a point of crucial importance to realize
acoustic diodes and other advanced devices. This goal requires
the elaboration of a theoretical model able to predict the
nonlinear behavior in solid composites in terms of components
properties and micro(nano)scopic morphology. In particular,
it is necessary to precisely define the optimal criteria defining
the concentration of inclusions, the choice of the constituents
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response and the geometry of the microstructure in order to
obtain strong and controlled nonlinearities of the second or
third order. Therefore, in the present paper, we propose
a homogenization technique for nonlinear elastic composite
materials constituted of solid inclusions in a solid matrix,
which is able to consider the nonlinear response up to the
third order. This technique allows us to derive the whole
set of effective moduli (linear and nonlinear) for both two-
dimensional and three-dimensional heterogeneous structures.
Conversely, such a method enables us to tailor the composition,
i.e. the concentration and properties of constituents, in order
to control the nonlinearities of the composite. It appears that
for soft material inclusions in a nearly incompressible matrix,
a structure corresponding to soft acoustic metamaterials [12],
giant amplifications of the effective nonlinearities with respect
to those of the constitutive materials can be obtained. In
particular, we show the possibility to separately intensify,
correctly choosing the inclusions concentration, either the
quadratic or the cubic elastic nonlinear response. Thus,
we can expect to design soft materials with controlled
nonlinearities well adapted for applications in acoustic diodes
or metamaterials.

Homogenization procedures have been successfully
developed for the linear properties of heterogeneous materials
[15–18]. General results concern the existence of upper
and lower bounds for the effective response [19, 20] and
exact expressions based on the spatial correlation among
constituents [21, 22]. In particular, dispersions of inclusions
in a homogeneous matrix have been widely studied both
from the electrical [23–26] and the elastic point of view [27–
32]. One of the most important result useful to elaborate
homogenization procedures and effective medium theories for
particulate elastic composites is given by the Eshelby property,
describing the internal elastic fields in a linear ellipsoidal
particle embedded in a different matrix. Eshelby proved
that the internal strain is uniform provided that the externally
applied one is so [33–35]. Recently, this result has been
generalized by showing that the elastic fields within a generic
nonlinear and anisotropic inhomogeneity embedded in a (linear
and anisotropic) matrix are uniform as well. This general
property has been applied to the case of a dispersion of isotropic
nonlinear inclusions and some universal mixing schemes for
the Landau coefficients (second order nonlinear moduli) have
been obtained [36–39]. Here we exploit these results to
improve previous theories with respect to (i) the possibility
to consider both second and third order terms in the nonlinear
constitutive equations (a point not investigated before that is
useful, e.g. for the acoustic diode development) and (ii) the
optimization of the effective nonlinear response in terms of
the mixture features (this is done independently for the second
and third order response and for two- and three-dimensional
structures).

The paper is organized as follows. In sections 2 and 3 we
introduce the nonlinear elastic constitutive equations for two-
and three-dimensional systems, respectively. Accordingly, in
sections 4 and 5 we elaborate the homogenization scheme
for two- and three-dimensional heterogeneous structures. We
study dilute dispersions of nonlinear particles, with elastic

response described in sections 2 and 3, embedded in a linear
matrix. In section 6 we show the exact analytical criteria that
can be adopted to obtain a desired strong amplification of the
nonlinear response. Finally in section 7 we present an example
of application of previous results concerning a population of
porous polymer particles embedded in a PDMS matrix.

2. Three-dimensional nonlinear constitutive
equation

We write the elastic energy density U stored inside a deformed
material as a given function of the strain tensor ε̂ [40, 41]

U = U(ε̂), (1)

and the stress tensor can be therefore derived as follows
[40, 41]

Tij = ∂U

∂εij

. (2)

If the material is isotropic, then the energy depends only on
the three strain invariants, i.e.

U = U(Tr(ε̂), Tr(ε̂2), Tr(ε̂3)), (3)

and its expression expanded up to the fourth order is

U = µTr(ε̂2) +
λ

2
Tr2(ε̂) +

A

3
Tr(ε̂3) + BTr(ε̂)Tr(ε̂2)

+
C

3
Tr3(ε̂) + ETr(ε̂)Tr(ε̂3) + FTr2(ε̂)Tr(ε̂2) (4)

+ GTr2(ε̂2) + HTr4(ε̂).

Here, λ and µ are the standard Lamé coefficients of the
linear elasticity theory, A, B and C are the second order
nonlinear moduli (the so-called Landau coefficients [42])
and E, F , G and H are the third order nonlinear moduli,
here introduced to extend previous theories (Tr represents the
trace of a linear operator). Nonlinearity can be introduced
in the theory of elasticity by means of the exact relation for
the Lagrangian strain (geometrical nonlinearity) or through its
simplified version for small deformations [43]. Here, we adopt
the physical nonlinearity standpoint, whereas the geometrical
nonlinearity is everywhere neglected: therefore, the balance
equations are based on the small-strain tensor and on the
symmetric Cauchy stress [43]. Accordingly, we differentiate
equation (4) by using equation (2) and we eventually obtain
the stress tensor in the form

T̂ = 2µε̂ + λTr(ε̂)Î

+ Aε̂2 + BTr(ε̂2)Î + 2Bε̂Tr(ε̂) + CTr2(ε̂)Î

+ ETr(ε̂3)Î + 3Eε̂2Tr(ε̂) + 2FTr(ε̂)Tr(ε̂2)Î

+ 2F ε̂Tr2(ε̂) + 4Gε̂Tr(ε̂2) + 4HTr3(ε̂)Î . (5)

This is the final expression of the three-dimensional
constitutive equation for a nonlinear isotropic elastic material,
as adopted in the present work. It will be used to derive its two-
dimensional counterpart and to describe the nonlinear behavior
of heterogeneous structures as those represented in figure 1.

2



J. Phys.: Condens. Matter 27 (2015) 145304 P-Y Guerder et al

Figure 1. Geometry of a three-dimensional heterogeneous structure
composed of a dispersion of nonlinear spheres embedded in a linear
matrix.

3. Two-dimensional nonlinear constitutive equation

We suppose now to deal with a nonlinear material described
by the constitutive relation given in equation (5) and subjected
to plane strain conditions. We consider a Cartesian coordinate
system identified by the axes (x, y, z). If, to fix the ideas, the
plane strain conditions are applied to the plane (x, y), then
we have u1 = u1(x, y), u2 = u2(x, y) and u3 = 0, where
ui represents the i-th component of the displacement vector.
Correspondingly, the non-zero components of the strain tensor
are ε11, ε12 and ε22 [40, 41]. They can be used to define a two-
by-two matrix representation of the strain on the plane. In this
two-dimensional case, the tensor ε̂ has only two invariants
given by Tr(ε̂) and Tr(ε̂2). We use the Cayley–Hamilton
theorem and the following procedure to express ε̂2 and Tr(ε̂3)

as a function of Tr(ε̂) and Tr(ε̂2). We define, as usual, the
characteristic polynomial of ε̂ as

Pε̂(λ) = det(ε̂ − λÎ ) (6)

and we obtain the explicit two-dimensional form given by

Pε̂(λ) = det(ε̂) − λTr(ε̂) + λ2. (7)

Since the Cayley–Hamilton theorem affirms that Pε̂(ε̂) = 0,
we have

det(ε̂)Î − ε̂Tr(ε̂) + ε̂2 = 0̂. (8)

The trace of the left hand side of equation (8) gives

2 det(ε̂) − Tr2(ε̂) + Tr(ε̂2) = 0, (9)

and, by replacing det(ε̂) obtained from equation (9) into
equation (8) itself, we eventually get

ε̂2 = ε̂Tr(ε̂) − 1
2

[
Tr2(ε̂) − Tr(ε̂2)

]
Î . (10)

Moreover, from equation (10) we easily prove that

Tr(ε̂3) = 3
2 Tr(ε̂)Tr(ε̂2) − 1

2 Tr3(ε̂). (11)

To do this, we multiply equation (10) by ε̂ and we apply
the trace operator. Now, since we are dealing with a two-
dimensional system, also the stress tensor can be represented

Figure 2. Top view of a two-dimensional heterogeneous structure
composed of a dispersion of nonlinear cylinders embedded in a
linear matrix.

by a two-by-two matrix (composed of T11, T12 and T22) and
equation (5) remains still valid with both two-dimensional
stress and strain tensors. We then replace ε̂2 and Tr(ε̂3) in
equation (5) and we regroup the terms by introducing the
following parameters

e = B +
A

2
, (12)

3f = C − A

2
, (13)

g = G, (14)

h = 4H − 2E, (15)

� = 2F + 3E. (16)

The final two-dimensional constitutive equation is therefore
given by

T̂ = 2µε̂ + λTr(ε̂)Î + eTr(ε̂2)Î + 2eε̂Tr(ε̂)

+ 3f Tr2(ε̂)Î + 4gε̂Tr(ε̂2) + hTr3(ε̂)Î

+ �ε̂Tr2(ε̂) + �Tr(ε̂)Tr(ε̂2)Î . (17)

Please note that the coefficient 3 in the expression for f (see
equation (13)) has been introduced in order to be coherent
with existing literature about two-dimensional second order
nonlinear parameters [44]. This constitutive equation will be
used to study the effective properties of composite structures
as in figure 2.

4. Two-dimensional nonlinear homogenization

The homogenization procedure for determining the effective
properties of a dispersion of nonlinear particles in a linear
matrix is composed of two steps: in the first one we analyse
the distribution of the elastic fields generated by the presence
of a single particle; then, in the second one we study the
collective behavior of a population of particles through an ad
hoc averaging process of the pertinent elastic fields.

To begin we consider a cylindrical nonlinear particle
described by equation (17), embedded in a linear matrix and
subjected to a remote load identified by the strain tensor ε̂∞.
To be consistent with previous section we suppose to work
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under plane strain conditions on the planes perpendicular to
the circular cylinder. As discussed in the Introduction, the
analysis of a linear particle embedded in a linear matrix is
a classical subject in the mechanics of solids [27, 33, 34].
Moreover, the perturbations of the elastic fields generated by
the presence of a nonlinear particle can be studied by means
of the recent generalization of the Eshelby theory [36–39]. If
Ŝ is the Eshelby tensor, T̂d and ε̂d the stress and strain tensors
inside the nonlinear inclusions (which are always uniform),
then we can write the following relation between the applied
strain and the internal one [36–39]

ε̂∞ = ε̂d + Ŝ
(
Ĉ−1

1 T̂d − ε̂d

)
, (18)

where T̂d = Ĉ2(ε̂d)ε̂d is the nonlinear constitutive equation
of the particle, Ĉ2(ε̂d) is the strain dependent stiffness of the
particle and Ĉ1 is the constant stiffness tensor of the linear
matrix [36–39]. The Eshelby tensor acts as an operator on the
strain tensors and its effects can be summed up through the
following expression (two-dimensional case) [35]

Ŝε̂d = K1 + 2µ1

2 (K1 + µ1)
ε̂d +

K1 − 2µ1

4 (K1 + µ1)
Tr(ε̂d)Î , (19)

where the bulk modulus K1 corresponds to the two-
dimensional version K1 = λ1 + µ1, being λ1 and µ1 the
Lamé coefficients of the matrix (we will use the standard
three-dimensional version K1 = λ1 + 2µ1/3 within the three-
dimensional homogenization procedure). On the other hand,
λ2 and µ2 represent the Lamé coefficients of the particle.
The stress-strain relation inside the linear matrix is therefore
written as

T̂1 = Ĉ1ε̂1 = 2µ1ε̂1 + (K1 − µ1) Tr(ε̂1)Î . (20)

We easily invert this relation eventually obtaining

ε̂1 = Ĉ−1
1 T̂1 = T̂1

2µ1
− K1 − µ1

4K1µ1
Tr(T̂1)Î . (21)

By using equation (19), we can replace the Eshelby operator
in equation (18) and we get

ε̂∞ = ε̂d +
K1 + 2µ1

2 (K1 + µ1)

(
Ĉ−1

1 T̂d − ε̂d

)

+
K1 − 2µ1

4 (K1 + µ1)
Tr

(
Ĉ−1

1 T̂d − ε̂d

)
Î . (22)

We may now expand Ĉ−1
1 T̂d and Tr(Ĉ−1

1 T̂d ) by exploiting
equation (21); the result is

ε̂∞ =
(

1 − K1 + 2µ1

2 (K1 + µ1)

)
ε̂d − K1 − 2µ1

4 (K1 + µ1)
Tr(ε̂d)Î

+
K1 + 2µ1

4 (K1 + µ1) µ1
T̂d − K1

8 (K1 + µ1) µ1
Tr(T̂d)Î . (23)

Then, we can determine the internal stress T̂d through
equation (17) (where λ and µ are replaced by λ2 and µ2 to
represent the particle response) and we calculate its trace

Tr(T̂d) = 2K2Tr(ε̂d) + 2eTr(ε̂2
d ) + (2e + 6f )Tr2(ε̂d)

+ (2� + 4g)Tr(ε̂d)Tr(ε̂2
d )

+ (2h + �)Tr3(ε̂d), (24)

where K2 = λ2 + µ2. After a long but straightforward
calculation, we therefore obtain from equation (23)

ε̂∞ = Lε̂d + MTr(ε̂d)Î + Nε̂dTr(ε̂d) + OTr(ε̂2
d )Î

+ P Tr2(ε̂d)Î + Qε̂dTr(ε̂2
d ) + RTr(ε̂d)Tr(ε̂2

d )

+ Sε̂dTr2(ε̂d) + T Tr3(ε̂d)Î , (25)

with

L = 1 +
1

2

K1 + 2µ1

K1 + µ1

(
µ2

µ1
− 1

)
, (26)

M =
2K2 − K1

(
1 + µ2

µ1

)
− 2(µ2 − µ1)

4(K1 + µ1)
, (27)

N = e(K1 + 2µ1)

2µ1(K1 + µ1)
, (28)

O = e

2(K1 + µ1)
, (29)

P = 3f

2(K1 + µ1)
− eK1

4µ1(K1 + µ1)
, (30)

Q = g(K1 + 2µ1)

µ1(K1 + µ1)
, (31)

R = �µ1 − gK1

2 (K1 + µ1) µ1
, (32)

S = �(K1 + 2µ1)

4µ1(K1 + µ1)
, (33)

T = 4hµ1 − �K1

8 (K1 + µ1) µ1
. (34)

Finally, equation (25) represents the nonlinear relation between
the applied strain and the internal one for a single nonlinear
particle embedded in a linear matrix. This result, expanded
up to the third order in the strain, can be used to develop
a nonlinear homogenization technique for a dispersion of
nonlinear particles. We consider the heterogeneous system
in the plane region �t , which is separated into two domains:
the matrix sub-region �m and the particles sub-region �p.
We therefore define the volume fraction of the dispersed
particles as

c = Vp

Vt

with 0 � c � 1, (35)

where Vp = mes(�p) and Vt = mes(�t). We write the exact
expression of the average stress in the inhomogeneous medium

〈T̂ 〉 = 1

Vt

∫
�t

T̂ d�r

= 1

Vt

[∫
�p

T̂dd�r +
∫

�m

Ĉ1ε̂d�r
]

= Vp

Vt

1

Vp

∫
�p

T̂ d�r +
1

Vt

∫
�m

Ĉ1ε̂d�r

= c〈T̂d〉 +
Ĉ1

Vt

[∫
�m

ε̂d�r +
∫

�p

ε̂d�r −
∫

�p

ε̂d�r
]

= c〈T̂d〉 + Ĉ1

[
1

Vt

∫
�t

ε̂d�r − Vp

Vt

1

Vp

∫
�p

ε̂d�r
]

= c〈T̂d〉 + Ĉ1
[〈ε̂〉 − c〈ε̂d〉

]
(36)

This is an exact expression, which can be used as follows.
Since we assume a strongly dilute mixture, c � 1, we make
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the approximation that 〈T̂d〉 ≈ T̂d and 〈ε̂d〉 ≈ ε̂d . It means that
the elastic fields inside the particles can be considered uniform
and given by the Eshelby theory. This is coherent with the
assumption of weak interaction (small volume fraction) among
the inhomogeneities. Hence, we simply obtain

〈T̂ 〉 = cT̂d + Ĉ1
[〈ε̂〉 − cε̂d

]
. (37)

From the point of view of the strain averaging we adopt the
following approximation

〈ε̂〉 = cε̂d + (1 − c)ε̂∞, (38)

which is largely used within the homogenization procedures
for elastic, electric and thermal properties [23–25, 45–48]. By
using equations (25) and (38), we obtain

〈ε̂〉 = L′ε̂d + M ′Tr(ε̂d)Î + N ′ε̂dTr(ε̂d) + O ′Tr(ε̂2
d )Î

+ P ′Tr2(ε̂d)Î + Q′ε̂dTr(ε̂2
d ) + R′Tr(ε̂d)Tr(ε̂2

d )

+ S ′ε̂dTr2(ε̂d) + T ′Tr3(ε̂d)Î , (39)

where
L′ = c + (1 − c)L, (40)

M ′ = (1 − c)M, (41)

N ′ = (1 − c)N, (42)

O ′ = (1 − c)O, (43)

P ′ = (1 − c)P, (44)

Q′ = (1 − c)Q, (45)

R′ = (1 − c)R, (46)

S ′ = (1 − c)S, (47)

T ′ = (1 − c)T . (48)

The problem consists now in inverting equation (39) in order
to find the internal strain in terms of the average one. To do
this, by means of equation (39), we elaborate the following
expressions

Tr〈ε̂〉 = (L′ + 2M ′)Tr(ε̂d) + (2P ′ + N ′)Tr2(ε̂d)

+2O ′Tr(ε̂2
d ) + (Q′ + 2R′)Tr(ε̂d)Tr(ε̂2

d )

+(S ′ + 2T ′)Tr3(ε̂d), (49)

〈ε̂〉Tr〈ε̂〉 = L′(L′ + 2M ′)ε̂dTr(ε̂d)

+2(N ′L′ + L′P ′ + N ′M ′)ε̂dTr2(ε̂d)

+2O ′L′ε̂dTr(ε̂2
d ) + M ′(L′ + 2M ′)Tr2(ε̂d)Î

+(4P ′M ′ + P ′L′ + M ′N ′)Tr3(ε̂d)Î

+(4O ′M ′ + O ′L′)Tr(ε̂d)Tr(ε̂2
d )Î , (50)

〈ε̂〉2 = L′2ε̂2
d + 2L′M ′ε̂dTr(ε̂d) + 2L′N ′ε̂2

dTr(ε̂d)

+2L′O ′ε̂dTr(ε̂2
d ) + 2(L′P ′ + M ′N ′)ε̂dTr2(ε̂d)

+M ′2Tr2(ε̂d)Î + 2M ′O ′Tr(ε̂d)Tr(ε̂2
d )Î

+2M ′P ′Tr3(ε̂d)Î , (51)

Tr〈ε̂〉2 = L′2Tr(ε̂2
d ) + 2M ′(L′ + M ′)Tr2(ε̂d)

+2(L′N ′ + L′O ′ + 2M ′O ′)Tr(ε̂d)Tr(ε̂2
d )

+2(L′P ′ + M ′N ′ + 2M ′P ′)Tr3(ε̂d), (52)

Tr2〈ε̂〉 = (L′ + 2M ′)2Tr2(ε̂d)

+2(L′ + 2M ′)(2P ′ + N ′)Tr3(ε̂d)

+4O ′(L′ + 2M ′)Tr(ε̂d)Tr(ε̂2
d ), (53)

〈ε̂〉Tr〈ε̂〉2 = L′3ε̂dTr(ε̂2
d ) + 2L′(L′M ′ + M ′2)ε̂dTr2(ε̂d)

+M ′L′2Tr(ε̂d)Tr(ε̂2
d )Î

+2M ′2(L′ + M ′)Tr3(ε̂d)Î , (54)

〈ε̂〉Tr2〈ε̂〉 = L′(L′ + 2M ′)2ε̂dTr2(ε̂d)

+M ′(L′ + 2M ′)Tr3(ε̂d)Î , (55)

Tr〈ε̂〉Tr〈ε̂〉2 = L′2(L′ + 2M ′)Tr(ε̂d)Tr(ε̂2
d )

+2M ′(L′ + M ′)(L′ + 2M ′)Tr3(ε̂d), (56)

Tr3〈ε̂〉 = (L′ + 2M ′)3Tr3(ε̂d). (57)

These results have been written by taking into consideration
only the terms up to the third degree of the average strain. We
can further write previous expressions in the following matrix
form

Û




ε̂d

Tr(ε̂d)Î

ε̂dTr(ε̂d)

Tr(ε̂2
d )Î

Tr2(ε̂d)Î

ε̂dTr(ε̂2
d )

Tr(ε̂d)Tr(ε̂2
d )Î

ε̂dTr2(ε̂d)

Tr3(ε̂d)Î




=




〈ε̂〉
Tr〈ε̂〉Î

〈ε̂〉Tr〈ε̂〉
Tr〈ε̂〉2Î

Tr2〈ε̂〉Î
〈ε̂〉Tr〈ε̂〉2

Tr〈ε̂〉Tr〈ε̂〉2Î

〈ε̂〉Tr2〈ε̂〉
Tr3〈ε̂〉Î




, (58)

where the matrix Û is defined as follows and depends on the
parameters listed in equations (40)–(48)

Û =




L′ M ′ N ′ O ′ P ′

0 L′ + 2M ′ 0 2O ′ 2P ′ + N ′

0 0 L′(L′ + 2M ′) 0 M ′(L′ + 2M ′)
0 0 0 L′2 2M ′(L′ + M ′)
0 0 0 0 (L′ + 2M ′)2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Q′ R′ S ′ T ′

0 Q′ + 2R′ 0 S ′ + 2T ′

2O ′L′ 4O ′M ′ + O ′L′ 2(N ′L′ + L′P ′

+N ′M ′)
4P ′M ′ + P ′L′

+M ′N ′

0
2(L′N ′ + L′O ′

+2M ′O ′) 0
2(L′P ′ + M ′N ′

+2M ′P ′)

0 4O ′(L′ + 2M ′) 0
2(L′ + 2M ′)
×(2P ′ + N ′)

L′3 M ′L′2 2L′(L′M ′ + M ′2) 2M ′2(L′ + M ′)

0 L′2(L′ + 2M ′) 0
2M ′(L′ + M ′)
×(L′ + 2M ′)

0 0 L′(L′ + 2M ′)2 M ′(L′ + 2M ′)2

0 0 0 (L′ + 2M ′)3




.

(59)
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By inverting the above matrix Û (it is immediate since Û
is upper triangular) we can simply find ε̂d in terms of 〈ε̂〉.
Then, we can also obtain T̂d through the constitutive equation
of nonlinear particles. By substituting the obtained results
ε̂d = ε̂d (〈ε̂〉) and T̂d = T̂d (〈ε̂〉) in equation (37), we finally
obtain the effective nonlinear constitutive equation of the
composite structure in the form 〈T̂ 〉 = 〈T̂ 〉(〈ε̂〉), as follows

〈T̂ 〉 = c
(
T̂d − Ĉ1ε̂d

)
+ Ĉ1〈ε̂〉

= c




2µ2 − 2µ1

K2 − µ2 − K1 + µ1

2e

e

3f

4g

�

�

h




T



ε̂d

Tr(ε̂d)Î

ε̂dTr(ε̂d)

Tr(ε̂2
d )Î

Tr2(ε̂d)Î

ε̂dTr(ε̂2
d )

Tr(ε̂d)Tr(ε̂2
d )Î

ε̂dTr2(ε̂d)

Tr3(ε̂d)Î




+




2µ1

K1 − µ1

0
0
0
0
0
0
0




T



〈ε̂〉
Tr〈ε̂〉Î

〈ε̂〉Tr〈ε̂〉
Tr〈ε̂〉2Î

Tr2〈ε̂〉Î
〈ε̂〉Tr〈ε̂〉2

Tr〈ε̂〉Tr〈ε̂〉2Î

〈ε̂〉Tr2〈ε̂〉
Tr3〈ε̂〉Î




. (60)

We can finally use equation (58) in equation (60) and, therefore,
we identify all the effective linear and nonlinear parameters


2µeff

Keff − µeff

2eeff

eeff

3feff

4geff

�eff

�eff

heff




T

=




2µ1

K1 − µ1

0
0
0
0
0
0
0




T

(61)

+c




2µ2 − 2µ1

K2 − µ2 − K1 + µ1

2e

e

3f

4g

�

�

h




T

Û−1.

This completes the characterization of the composite
material: as result, we have determined the linear properties
Keff and µeff , the second order nonlinearities eeff and feff and
the third order nonlinearities geff , �eff and heff . These effective
parameters have been written in terms of the properties of
the matrix, the properties of the particles and the volume
fraction c. The importance of this procedure for practical
exploitation resides in the fact that we can consider third

order nonlinearities, an aspect always neglected in previous
literature.

This general homogenization theory can be specialized to
analyse a particular case of broad interest for the applications.
We consider a population of particles with only the two
nonlinear coefficients f and h different from zero. Therefore,
in this case we have e = 0, � = 0 and g = 0. From the
physical point of view, it means that the nonlinear behavior of
the particles is limited to the compressive mechanical response.
Indeed, from equation (24) we obtain

Tr(T̂d) = 2K2Tr(ε̂d) + 6f Tr2(ε̂d) + 2hTr3(ε̂d), (62)

which represents a nonlinear relation between the pressure
and the specific volume change. In this specific case the
homogenization procedure reduces to the following expression


2µeff

Keff − µeff

3feff

heff




T

=




2µ1

K1 − µ1

0
0




T

(63)

+ c




2µ2 − 2µ1

K2 − µ2 − K1 + µ1

3f

h




T

M̂−1
2D

where we have defined the matrix

M̂2D =




L′ M ′ P ′ T ′

0 L′ + 2M ′ 2P ′ 2T ′

0 0 (L′ + 2M ′)2 4P ′(L′ + 2M ′)
0 0 0 (L′ + 2M ′)3


 ,

(64)

which represent the reduced counterpart of Û .

5. Three-dimensional nonlinear homogenization

A similar procedure can be also elaborated for a dispersion
of nonlinear spherical particles (three-dimensional case).
Here, for the sake of brevity, we only describe the simple
homogenization scheme for particle having the nonlinear
behavior limited to the compressive mechanical response. We
use, therefore, the following expression for the stress-strain
relation of the particles

T̂d = 2µ2ε̂d + λ2Tr(ε̂d)Î

+ CTr2(ε̂d)Î + 4HTr3(ε̂d)Î , (65)

which can be simply obtained from equation (5) by setting
A = 0, B = 0, E = 0, F = 0 and G = 0. By calculating the
trace of equation (65) we get

Tr(T̂d) = 3K2Tr(ε̂d) + 3CTr2(ε̂d) + 12HTr3(ε̂d), (66)

where the three-dimensional bulk modulus is defined as K2 =
λ2 + 2

3µ2. Equation (66), similarly to equation (62), represents
a direct relation between pressure and specific volume change.
On the other hand, the matrix is linear and isotropic and
therefore is described by the standard constitutive equation

T̂1 = Ĉ1ε̂1 = 2µ1ε̂1 +

(
K1 − 2

3
µ1

)
Tr(ε̂1)Î , (67)
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where K1 = λ1 + 2
3µ1 is the matrix bulk modulus. This

expression can be straightforwardly inverted getting

ε̂1 = Ĉ−1
1 T̂1 = 1

2µ1
T̂1 − 3K1 − 2µ1

18µ1K1
Tr(T̂1)Î . (68)

For spherical particles the Eshelby tensor effect on a given
deformation is [35]

Ŝε̂d = 6

5

K1 + 2µ1

3K1 + 4µ1
ε̂d +

1

5

3K1 − 4µ1

3K1 + 4µ1
Tr

(
ε̂d

)
Î . (69)

These results can be used in equation (18), which remains valid
independently of the dimensionality of the system. As result
we obtain, as in the previous section, the relation between the
applied strain and the internal one for a single nonlinear sphere

Lε̂d + MTrε̂dI + QTr2ε̂dI + WTr3ε̂dI = ε̂∞, (70)

with

L = 1 +
6

5

K1 + 2µ1

3K1 + 4µ1

(
µ2

µ1
− 1

)
, (71)

M =
5K2 − K1

(
3 + 2 µ2

µ1

)
− 4(µ2 − µ1)

5(3K1 + 4µ1)
, (72)

Q = C

3K1 + 4µ1
, (73)

W = 4H

3K1 + 4µ1
. (74)

This completes the first step of the homogenization procedure
concerning a single spherical particle. To elaborate the second
one, we observe that averaging results given in equations (37)
and (38) of previous section are still valid and we eventually
obtain the following relation between the internal and the
average strain

M̂3D




ε̂d

Tr(ε̂d)Î

Tr2(ε̂d)Î

Tr3(ε̂d)Î


 =




〈ε̂〉
Tr〈ε̂〉Î
Tr2〈ε̂〉Î
Tr3〈ε̂〉Î


 , (75)

where we introduced the matrix

M̂3D =




L′ M ′ Q′ W ′

0 (L′ + 3M ′) 3Q′ 3W ′

0 0 (L′ + 3M ′)2 6Q′(L′ + 3M ′)
0 0 0 (L′ + 3M ′)3


 ,

(76)

which is the three-dimensional counterpart of equation (64).
Here we defined L′ = c + (1 − c)L, M ′ = (1 − c)M ,
Q′ = (1 − c)Q and W ′ = (1 − c)W . To conclude, we can
identify all the linear and nonlinear effective parameters as
follows


2µeff

Keff − 2
3µeff

Ceff

4Heff




T

=




2µ1

K1 − 2
3µ1

0
0




T

(77)

+c




2µ2 − 2µ1

K2 − 2
3µ2 − K1 + 2

3µ1

C

4H




T

M̂−1
3D.

This is the final result concerning the homogenization of a
dispersion of elastic spheres with a nonlinear behavior limited
to the compressive response. We underline that, if necessary,
a complete procedure taking into account all the nonlinear
parameters appearing in equation (5) can be elaborated as in
the 2D case, previously discussed.

6. Intensification of nonlinear properties

We use now the results concerning the two- and three-
dimensional homogenization procedures (see equations (63)
and (77)) to study the possibility to strongly amplify the
nonlinear properties of a composite material with respect to
the nonlinear response of its components.

To begin we analyse the paradigmatic cases where the
cylinders (2D structures) or the spheres (3D structures) have
only one nonlinear coefficients different from zero. More
specifically, in the 2D case we suppose either f �= 0, h = 0 or
f = 0, h �= 0; on the other hand, in the 3D case we suppose
either C �= 0, H = 0 or C = 0, H �= 0. In a following section
we will describe the combined effects of both second and third
order nonlinearities.

The measure of nonlinearity for a single arbitrary material
can be defined as the ratio between the pertinent nonlinear
coefficient divided by a linear elastic modulus. For example, in
the first 2D case with f �= 0 we measure the nonlinearity of the
cylinders with the ratio f/K2 and the nonlinearity of the overall
composite with feff/Keff . It is important to remark that we
chose here the bulk linear modulus K2 or Keff since it describes
the compressive behavior, coherently with the meaning of
the nonlinear parameter f or feff (see equation (62) for
details). Based on the previous discussion, we can define the
amplification of the nonlinearity introduced by the composite
structure as the ratio A = (feff/Keff)/(f/K2). This definition
is valid for the case f �= 0, h = 0 (amplification of the
second order nonlinearity in 2D geometry). Similarly, for the
third order nonlinerity in 2D geometry (f = 0, h �= 0) we
have A = (heff/Keff)/(h/K2). The same definitions can be
adopted for the 3D geometry: A = (Ceff/Keff)/(C/K2) for
the case with C �= 0, H = 0 (second order nonlinearity);
A = (Heff/Keff)/(H/K2) for the case with C = 0, H �= 0
(third order nonlinearity).

We start by summing up the results for the linear properties
of the composite structures. For the dispersion of parallel
cylinders the above procedure leads to the results

µeff = µ1 +
c(µ2 − µ1)

c + (1 − c)
[
1 + 1

2

(
µ2

µ1
− 1

)
K1+2µ1

K1+µ1

] , (78)

Keff = K1 +
c(K2 − K1)

c + (1 − c)
µ1+K2

µ1+K1

, (79)

and for the dispersion of spheres we obtain

µeff = µ1 + c
µ2 − µ1

c + (1 − c)
[
1 + 6

5

(
µ2

µ1
− 1

)
K1+2µ1

3K1+4µ1

] , (80)

Keff = K1 +
c (K2 − K1)

c + (1 − c)
3K2+4µ1

3K1+4µ1

. (81)
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Table 1. Optimal volume fractions and correponding nonlinearity amplifications for the four cases defined by g = 2, 3 and d = 2, 3
(x = µ1/K1 and y = K1/K2).

d = 2 d = 3

g = 2

copt = 1 + xy

4x(y − 1)

(
1 − √

1 − 8x
)

, x <
1

8

Aopt = 64(1 + x)3xy2

(1 + xy)2(y − 1)
(
1 − √

1 − 8x
) (

3 +
√

1 − 8x
)3

copt = 1 + 4
3 xy

16
3 x(y − 1)

(
1 −

√
1 − 32

3
x

)
, x <

3

32

Aopt = 256
(
1 + 4

3 x
)3

xy2

3(1 + 4
3 xy)2(y − 1)

(
1 −

√
1 − 32

3 x
) (

3 +
√

1 − 32
3 x

)3

g = 3

copt = 1 + xy

3x(y − 1)

(
1 − √

1 − 3x
)

, x <
1

3

Aopt = 27(1 + x)4x2y3

(1 + xy)3(y − 1)
(
1 − √

1 − 3x
)2 (

2 +
√

1 − 3x
)4

copt = 1 + 4
3 xy

4x(y − 1)

(
1 − √

1 − 4x
)

, x <
1

4

Aopt = 48(1 + 4
3 x)4x2y3

(1 + 4
3 xy)3(y − 1)

(
1 − √

1 − 4x
)2 (

2 +
√

1 − 4x
)4

These results are in perfect agreement with previous linear
theories [30] and they represent a first check of our
developments. Of course, the effective linear moduli are
not affected by the presence of nonlinear behaviors of the
constituents.

Concerning the nonlinear properties we obtained the
following results for the four cases under investigations (we
define g as the degree on nonlinearity involved and d as the
dimensionality of the system): if f �= 0, h = 0 (g = 2, d = 2)
we get

feff = cf (K1 + µ1)
3

[c(K1 − K2) + K2 + µ1]3 , (82)

if f = 0, h �= 0 (g = 3, d = 2) we get

heff = ch(K1 + µ1)
4

[c (K1 − K2) + K2 + µ1]4 , (83)

if C �= 0, H = 0 (g = 2, d = 3) we get

Ceff = cC(3K1 + 4µ1)
3

[3c(K1 − K2) + 3K2 + 4µ1]3 , (84)

and, finally, if C = 0, H �= 0 (g = 3, d = 3) we get

Heff = cH(3K1 + 4µ1)
4

[3c (K1 − K2) + 3K2 + 4µ1]4 . (85)

By means of previous linear and nonlinear results we can
evaluate the amplification A above defined for all the four cases
analysed. For practical applications it is interesting to observe
that the quantity A shows a maximum point for a given value
of the volume fraction c of the nonlinear constituent. It is
therefore important to calculate this optimal value copt of c and
the corresponding value of the amplification Aopt. The results
are reported in table 1 for all the cases with g = 2, 3 and
d = 2, 3. We observe that these expressions can be written
in terms of x = µ1/K1, characterizing the response of the
matrix and y = K1/K2, defining the compressibility contrast
between particles and matrix. Some limitations on the values
of x are reported in order to assure the existence of the optimal
solution. In general, we must have 0 < x < 3 for d = 2 and
x > 0 for d = 3 to fulfil standard energetic constraints and

therefore the limitations indicated belong to the admissibility
domains of the linear elastic constants.

A first application of the results shown in table 1 can be
envisaged by considering the case with x → 0, which means
gels, biological materials or organic liquids. In this case the
matrix shear modulus µ1 is very small with respect to the
matrix bulk modulus K1. The simplified results for this case
are reported in table 2, which contains the first order expansions
for x → 0 of all results presented in table 1. It is interesting to
draw a comparison between these results and those published
in literature concerning the mixing laws of the nonlinear
parameters of biological fluids. Typically, these results are
important in the field of ultrasound acoustic imaging where
the measurement of nonlinear parameters is useful to infer
the tissue composition and to reconstruct the heterogeneous
geometry of complex bio-structures [49, 50]. Since the
involved phases are usually liquids, the shear modulus is zero in
all previously published calculations. Therefore, the nonlinear
constitutive equation relating the applied pressure to the local
density variation is written in the following form [51–55]

p − p0 = A

(
ρ − ρ0

ρ0

)
+

B

2

(
ρ − ρ0

ρ0

)2

+
C

6

(
ρ − ρ0

ρ0

)3

,

(86)

where ρ0 and p0 are the equilibrium density and pressure,
ρ and p their perturbed values and A, B, C the constitutive
parameters. The form of this equation can be conveniently
compared with our results given in equations (62) and (66).
The detailed relation between equation (86) and the complete
elastic response given in equation (5) can be found in literature
[56, 57]. The effects of the second order nonlinearity can be

taken into account through the definition

β = B

2A
+ 1, (87)

and those of the third order nonlinearity through

γ = C

6A
− 1. (88)

We remark that both the ratios B

A
and C

A
can be measured

with standard ultrasound techniques [51, 52]. The already

8
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Table 2. Results of the optimization for small values of x (gels or biological materials with negligible shear response) and for high values of
y (large matrix to particles compressibility contrast).

x → 0 d = 2 d = 3

g = 2

copt ∼
x→0

1

y − 1
+

y + 2

y − 1
x ∼

y→∞
1

y
(1 + xy)

Aopt ∼
x→0

y2

4(y − 1)
− y2(y − 2)

2(y − 1)
x ∼

y→∞
y

4
(1 − 2xy)

copt ∼
x→0

1

y − 1
+

4(y + 2)

3(y − 1)
x ∼

y→∞
1

y

(
1 +

4

3
xy

)

Aopt ∼
x→0

y2

4(y − 1)
− 2y2(y − 2)

3(y − 1)
x ∼

y→∞
y

4

(
1 − 8

3
xy

)

g = 3

copt ∼
x→0

1

2(y − 1)
+

3 + 4y

8(y − 1)
x ∼

y→∞
1

2y
(1 + xy)

Aopt ∼
x→0

4y3

27(y − 1)
− 2y3(2y − 3)

9(y − 1)
x ∼

y→∞
4

27
y2(1 − 3xy)

copt ∼
x→0

1

2(y − 1)
+

3 + 4y

6(y − 1)
x ∼

y→∞
1

2y

(
1 +

4

3
xy

)

Aopt ∼
x→0

4y3

27(y − 1)
− 8y3(2y − 3)

27(y − 1)
x ∼

y→∞
4

27
y2(1 − 4xy)

Note: We performed the first order expansions of expressions in table 1 for x → 0 and y → ∞ (x = µ1/K1 and y = K1/K2).

published mixing laws can be summed up as follows for a
mixture of N phases having parameters Ki , βi and γi and
volume fractions ci (i = 1...N ) [53–55]

1

Keff
=

N∑
i=1

ci

Ki

, (89)

βeff =
N∑

i=1

ci

K2
eff

K2
i

βi, (90)

γeff − 2βeff (βeff − 1) =
N∑

i=1

ci

K3
eff

K3
i

[
γi − 2βi (βi − 1)

]
. (91)

Here, Keff , βeff and γeff are the requested effective parameters
of the heterogeneous system. Firstly, we observe that
equation (89), when written for two constituents, is perfectly
coherent with equations (79) and (81) with µ1 = 0. Moreover,
we prove that also the nonlinear results stated in equations (90)
and (91) are coherent with our achievements when x → 0. To
do this we consider in equations (90) and (91) two phases
(N = 2) with the assumptions c1 = 1 − c (matrix), c2 = c

(inclusions), B1 = 0 and C1 = 0 (linear matrix). To directly
check the expressions in table 2, we consider two separate
cases: in the first one we have B2 �= 0 and C2 = 0 and in
second one we have B2 = 0 and C2 �= 0. In the first case
we may evaluate the second order amplification A = βeff/β2

and we may search for the critical volume fraction defined by
dA/dc = 0. The explicit calculation allows us to obtain

copt = 1

y − 1
⇒ Aopt = y2

4(y − 1)
, (92)

where y = K1/K2. Similarly, in the second case we determine
the third order amplification A = γeff/γ2 and we evaluate for
the critical volume fraction defined by dA/dc = 0. As before,
the explicit calculation allows us to obtain

copt = 1

2(y − 1)
⇒ Aopt = 4y3

27(y − 1)
, (93)

where, again, y = K1/K2. It is evident that equations (92)
and (93) are in perfect agreement with results in table 2:
equation (92) exactly corresponds to the case g = 2 with
x = 0; equation (93) to the case g = 3 with x = 0. Under

this respect, our achievements represent a generalization of
earlier investigation, allowing for the possibility to take into
account small values of x (see table 2) and also arbitrary
values of x (see table 1). It is important to observe that the
structures with x = 0, exhibiting a pure compressive behavior
(without shear response) have the same effective parameters
independently of the dimensionality d. Indeed, equations (92)
and (93) are valid both for the dispersion of cylinders (d = 2)
and for the dispersion of spheres (d = 3), as one can find in
table 2. Another interesting comparison can be made between
our results and others obtained to explain the anomalous elastic
nonlinearity of microinhomogeneous media with a composite
nonlinear spring [58]. This paradigmatic unidimensional
model is indeed able to exactly and quantitatively reproduce
the observed amplification phenomena for both the second and
the third order of nonlinearity [58].

In table 2 we also reported the limiting results obtained
for a large contrast y. This situation is important for the
applications because it leads to the largest amplifications of the
nonlinear properties. If we consider the pure compressive case
(x = 0) with large y we can state the following general rules of
broad interest for designing nonlinear materials with desired
properties: given a large y, if we set the volume fraction copt =
1/y we optimize the second order nonlinearity, obtaining an
amplification Aopt = y/4. Conversely, given a large y, if
we set the volume fraction copt = 1/(2y) we optimize the
third order nonlinearity, obtaining an amplification Aopt =
4y2/27. In both cases, the optimal volume fraction is
inversely proportional to y, being therefore very small and
perfectly coherent with our initial assumption of dilute
systems. Moreover, the nonlinear second order and third
order amplifications are proportional to y and y2, respectively,
yielding strong intensifications of the nonlinearity when K1 

K2. In figure 3 one can find the summary of the main results
reported in table 2: the typical amplification curves are shown
for x = 0. The critical volume fractions and the largest
nonlinearity intensifications are reported for both the second
order and third order nonlinear response. Finally, the results
for a small x (x �= 0) and a large y are reported in table 2 in
order to consider organic materials where the shear behavior
is weak but not completely negligible.

Another application of the results in table 1 deals with
actual elastic materials where both the shear and the bulk
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Figure 3. Typical curves showing the behavior of the amplification
versus the volume fraction for the case with x = 0, as described in
table 2 (continuous line for g = 3 and dashed line for g = 2). The
critical concentrations and the corresponding amplification peaks
are shown for large values of the contrast y. Since x = 0, the results
are valid for both the two-dimensional and the three-dimensional
structures.

behavior can be controlled. In this case we may try to
further optimize the expressions of Aopt(x, y) by identifying a
relation between x and y leading to the largest nonlinearity
intensification. It means that we can study the equation
∂Aopt(x, y)/∂y = 0, where the amplification Aopt(x, y) is
taken from table 1. The results of this additional optimization
are reported in table 3. It is interesting to note that the
optimal value x∗ of x, characterizing the linear response
of the matrix, can be directly linked to the compressibility
contrast y. Moreover these relations are very simple for
large contrast y, allowing for easy practical applications.
Once the value of x∗ is determined, we can also evaluate
the corresponding value of volume fraction and nonlinearity
amplification, as shown in table 3. As in the case with
x = 0 previously studied, the optimal volume fraction is
inversely proportional to y, being again coherent with the
assumption of dilute mixtures. In addition, the nonlinear
second order and third order amplifications are proportional,
as before, to y and y2, respectively. This procedure is useful
when the matrix elastic response or the linear elasticity of
the particles can be arbitrarily modulated (we can think to
a composite material for the matrix or the particles, leading
to a hierarchical heterogeneous structure analysed through
a multiscale homogenization scheme). In figure 4 one can
find the summary of the main results reported in table 3: the
amplification curves are shown for the case of the optimized
value x∗ of x. The critical volume fractions and the largest
nonlinearity intensifications are reported for both the second
order and third order nonlinear response.

7. An example of application

We consider in this section an example of application of the
optimization procedures previously described. We propose a
composite structure based on a PDMS (polydimethylsiloxane

or dimethicone) matrix with a population of porous polymer
particles. The PDMS matrix is characterized by a density
ρ = 970 Kg m−3, an acoustic longitudinal velocity vl =
1100 m s−1 and a transversal velocity vt = 110 m s−1. We can
therefore obtain the linear elastic constants K1 = 1.15 GPa
and µ1 = 11.7 MPa [59, 60]. We underline that the acoustic
transverse velocity in PDMS varies in literature in a quite large
spectrum of values. Nevertheless, the important point is that
the relation vt � vl is always satisfied [11, 61]. Importantly,
we observe that previous moduli correspond to x � 1/100, a
sufficiently small value, precisely as requested by the above
optimization procedures. On the other hand, we need for
the particles a material which allows the possibility of tuning
their linear properties, in order to fulfil the optimal criteria
summed up in table 3. In particular, we need to control the
bulk modulus K2 in order to have K2 � K1/100 (or y � 100).
More specifically, we should obtain y = 1/x for d = 2 and
g = 2, y = 2/x for d = 2 and g = 3, y = 3/(4x) for
d = 3 and g = 2 and, finally y = 3/(2x) for d = 3
and g = 3, as reported in table 3. For these reasons, we
could exploit the properties offered by silica aerogels [62],
exhibiting a very low sound speed <100 m s−1, or porous
polymer materials [63–65], which can be synthesized with a
varying volume fraction of pores. These materials have been
recently proposed for realizing soft acoustic metamaterials
with negative-valued effective parameters [12]. Here, we
choose to work with highly porous polymers since, with
these microstructures, it is possible to fabricate micrometer-
sized particles of both spherical and rod-like shape, matching
perfectly our theoretical analysis (see figure 5 for details).
In table 4 one can find the properties of the PDMS matrix
compared with the acoustic response of some bulk polymers
[67]. We suppose to fabricate highly porous polymeric

particles by means of an ideal bulk polymer characterized
by ρm = 1000 Kg m−3, vl,m = 2000 m s−1 and vt,m =
1000 m s−1, a set of parameters paradigmatically representing
the real polymers shown in table 4. The corresponding
elastic properties are Km = 2.6 GPa and µm = 1 GPa (or
Em = 2.6 GPa and νm = 0.33 in terms of Young modulus and
Poisson ratio). Since we deal with highly porous polymers
fabricated through the high internal phase emulsion (HIPE)
technique [63–65], for analysing their elastic properties we
need an homogenization scheme able to consider not diluted
mixtures with high volume fractions of the dispersed phase. To
this aim, one of the most used methodology is the differential
effective medium theory [31], which provides the following
results for the case of a porous structure with spherical voids

1 − φ =
(

1 − 5ν2

1 − 5νm

) 5
6
(

1 − 5νm

1 − 5ν2

) 1
6
(

1 + νm

1 − ν2

) 2
3

, (94)

E2 = Em

(
1 − 5ν2

1 − 5νm

) 5
3
(

1 + νm

1 − ν2

) 2
3

. (95)

Here Em and νm are the Young modulus and Poisson ratio of the
bulk polymer, E2 and ν2 are the Young modulus and Poisson
ratio of the final porous polymer and φ is the porosity (volume
fraction of pores) varying in the entire range 0 < φ < 1. The
application of this scheme to our case yields the results reported

10



J. Phys.: Condens. Matter 27 (2015) 145304 P-Y Guerder et al

Table 3. Optimization of results shown in table 1 with respect to the linear matrix response x.

x > 0 d = 2 d = 3

g = 2

∂Aopt

∂y
= 0 ⇒ x∗ = y − 2

y2
∼

y→∞
1

y

copt(x
∗) ∼

y→∞
2

y

Aopt(x
∗) ∼

y→∞
1

16
y

∂Aopt

∂y
= 0 ⇒ x∗ = 3(y − 2)

4y2
∼

y→∞
3

4y

copt(x
∗) ∼

y→∞
2

y

Aopt(x
∗) ∼

y→∞
1

16
y

g = 3

∂Aopt

∂y
= 0 ⇒ x∗ = 2y − 3

y2
∼

y→∞
2

y

copt(x
∗) ∼

y→∞
3

2y

Aopt(x
∗) ∼

y→∞
4

729
y2

∂Aopt

∂y
= 0 ⇒ x∗ = 3(2y − 3)

4y2
∼

y→∞
3

2y

copt(x
∗) ∼

y→∞
3

2y

Aopt(x
∗) ∼

y→∞
4

729
y2

Note: Once determined the critical value x∗, we calculated the corresponding volume fraction
and nonlinear amplification for all the cases with g = 2, 3 and d = 2, 3 (x = µ1/K1 and
y = K1/K2).

Figure 4. Typical curves showing the behavior of the amplification
versus the volume fraction for the case with the optimized value of
x, as described in table 3 (continuous line for g = 3 and dashed line
for g = 2). The critical concentrations and the corresponding
amplification peaks are shown for large values of the contrast y. For
two-dimensional structures we considered x∗ = 1/y for the second
order nonlinearity and x∗ = 2/y for the third order nonlinearity. On
the other hand, for three-dimensional structures we considered
x∗ = 3/(4y) for the second order nonlinearity and x∗ = 3/(2y) for
the third order nonlinearity.

in figure 6, where log10 K2 and log10 µ2 (corresponding to E2

and ν2 calculated through equations (94) and (95)) are shown
versus the porosity φ. Importantly, we observe that we get
K2 � 11.5 MPa or, equivalently, y � 100 when φ is in
the range 0.85 < φ < 0.95, a value of porosity in perfect
agreement with the HIPE technique [63–65].

We now consider the whole system composed of
inclusions of a porous polymer in the PDMS matrix. To
begin, we suppose to work with the 3D geometry. We use the
general result stated in equation (77) to prove that we can obtain
the nonlinear amplifications described in table 3. In order to

Figure 5. Composite structures analysed with the proposed
homogenization schemes. The porous polymer image is adapted
from http://matwww.technion.ac.il/Silverstein/HIPE.html and [66].

Table 4. Acoustic properties of the PDMS (which is a largely used
silicon-based organic polymer, here adopted as matrix in our
composite structure) and of several bulk polymers [67] (which can
be used to fabricate highly porous polymeric particles).

Bulk polymer ρ (Kg m−3) vl (m s−1) vt (m s−1)

PDMS 970 1100 110
Polystyrene 1052 2400 1150
Polypropylene 913 2650 1300
Polymethylmethacrylate 1191 2690 1344
Polyethylene 957 2430 946
Polyoxymethylene 1425 2440 1000

optimize the second order nonlinearity (described by C) we
have to impose y = 3/(4x) � 74; the above analysis yields
therefore a porosity φ � 0.89 for the porous polymer. The
final result is represented by the dashed (red) curve in figure 7.
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Figure 6. Linear elastic constants µ2 and K2 of the porous polymer
versus the polymer porosity φ obtained through equations (94) and
(95).

Figure 7. Amplification of the nonlinear elastic constants versus the
volume fraction c for the three-dimensional structure.

On the other hand, to optimize the third order nonlinearity
(H ) we need y = 3/(2x) � 148, leading to φ � 0.92. In
this situation, the intensification is represented in figure 7 by
the continuous (blue) curve. In both cases, it is not difficult
to identify the maximum points, exactly corresponding to the
results reported in table 3.

We consider now the two-dimensional geometry described
by the general result stated in equation (63). For optimizing
the second order nonlinearity (described by f ) we impose
y = 1/x � 97 corresponding to a porosity φ � 0.92 for
the porous polymer. The result is represented by the dashed
(red) curve in figure 8. Conversely, to optimize the third
order nonlinearity (h) we need y = 2/x � 196, leading to
φ � 0.94. Accordingly, the intensification is shown in figure 8
by the continuous (blue) curve. As before, in both cases, it is
not difficult to identify the maximum points which exactly
correspond to the results in table 3.

We underline that the amplification results for the second
order nonlinearities C and f (red dashed lines in figures 7

Figure 8. Amplification of the nonlinear elastic constants versus the
volume fraction c for the two-dimensional structure.

and 8) are not influenced by the presence of a third order
nonlinearity (H or h, respectively) within the particles.
Therefore, the corresponding results are always correct,
independently on the values of H and h adopted for the
porous polymer. Differently, the amplification of the third
order nonlinearities H or h may be influenced by the values
of C and f within the particles. The results for the third
order amplifications (blue continuous lines) in figures 7 and
8 have been obtained when C = 0 and f = 0, coherently
with the conclusions in table 3. Nevertheless, it is important
to further analyse the possible effects of C or f on the third
order amplifications. Based on the complete homogenization
scheme summed up in equation (63) (2D geometry) or in
equation (77) (3D geometry), we can study the combined
effects of the two nonlinearities. In figure 9 (3D geometry) and
figure 10 (2D geometry) we show the third order amplification
for an increasing value of the second order nonlinearity. More
specifically, for the 3D geometry we fixed H = 100K2 and
we considered C = 5jK2, where j varies from 1 to 10. Since
typical values of C and H are given by C � 10K2 and H �
100K2, it follows from figure 9 that the nonlinear third order
amplification is only slightly modified by the standard (rather
small) values of the second order nonlinearity. However, we
remark that larger values of C completely modify the nonlinear
scenario, leading to a significant negative amplification of H ,
which can be exploited when C � 40K2. With regard to
the 2D geometry, in figure 10 we fixed h = 100K2 and we
considered f = jK2, where j varies from 1 to 10. In this case,
the results given by the continuous blue curves in figures 8
and 10 (response with f = 0) may be sensibly modified
also for small values of f and, as before, we can obtain a
negative amplification for increasing values of f . To conclude,
we can affirm that the third order amplification in two-
dimensional structures is much more sensible to the second
order nonlinearities than the three-dimensional geometry. This
point should be thoroughly taken into consideration to properly
design composite structures with a tuned nonlinear response.
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Figure 9. Effects of the second order nonlinear modulus C on the
third order nonlinear amplification A of H . We obtain the result of
figure 7 for small values of C (blue line) and a progressive deviation
for larger values of C (brown lines).

Figure 10. Effects of the second order nonlinear modulus f on the
third order nonlinear amplification A of h. We obtain the result of
figure 8 for small values of f (blue line) and a progressive deviation
for larger values of f (brown lines).

8. Conclusions

Motivated by the necessity of nonlinear acoustic materials
for developing acoustic diodes and other functionalities that
can be implemented in specific nonlinear metamaterials, we
elaborated a homogenization theory for linear and nonlinear
elastic properties of heterogeneous particulate materials. In
particular, we analysed dilute dispersions of nonlinear particles
with constitutive equations expanded up to the third order in
the elastic strain. Firstly, we obtained a general procedure
for determining both the second and the third order nonlinear
response of the overall composite structure. Secondly, we used
these results to optimize a desired nonlinear response in terms
of the mixture features, i.e. the volume fraction of the dispersed
particles and the elastic/acoustic moduli of the constituents.

We proved that, for a matrix composed of gels or biological
materials with negligible shear response and for a large matrix
to particles compressibility contrast, we can optimize the
volume fraction in order to obtain a large amplification of the
nonlinear response (see table 2 for details). Moreover, we also
proved that a further optimization can be performed when the
shear response of the matrix is finite (solid matrix) and we
obtained simple relations allowing for the precise tailoring of
the effective nonlinear properties of the mixture (see table 3 for
details). The optimal criterion involves the linear properties of
the matrix and the particles and, therefore, it can be fulfilled,
e.g. by introducing a composite structure for the matrix or the
particles themselves. An example of application is proposed
concerning a dilute dispersion of porous polymer particles
embedded in a PDMS matrix. In order to fulfil the optimal
criterion above, we can modulate the linear response of the
porous polymer particles through the porosity, a parameter that
can be accurately controlled during the synthesis.
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