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1. Introduction

International efforts are on going to make it possible to replace 
the definition of the unit of mass by a new one based on a con-
ventional value of the Planck constant, h [1, 2]. Since the ratio 
between the mass of the 28Si isotope and h is well known, a 
way to put into practice such a definition is by counting the 
number of atoms in a 1 kg silicon sphere highly enriched with 
28Si [3–6]. The count is carried out by dividing the molar 
volume, VM/m, where the symbols indicate the volume, molar 
mass, and mass of the sphere, by the volume occupied by one 
atom, /a 80

3 , where a0 is the lattice parameter. The uncertainty 
associated to the presently most accurate determination is 
about × − N2 10 8

A [7, 8]. In order to achieve this accuracy, the 
lattice parameter is measured by combined x-ray and optical 
interferometry to within a × − a2 10 9

0 uncertainty.
Relaxation, reconstruction, and oxidation cause sur-

face stresses without the application of any external force. 
Experimental evidences of surface stress effects on silicon 
nanostructures have been already reported [9, 10]. This has 
a twofold effect on the NA measurement. Firstly, it makes the 
measured volume different from the volume of an unstressed 
sphere. Density-functional theory calculations showed that 
this effect is an order of magnitude smaller than the present 

uncertainty of the volume measurements. Therefore, it can be 
neglected [11]. Secondly, it makes the lattice parameter of an 
x-ray interferometer different from that of a sphere.

The lattice parameter measurement assumes that the silicon 
crystal is strain free (undeformed configuration). Although the 
surface stress can be ignored on the macroscopic scale, it might 
be important for this extremely accurate measurement. To esti-
mate the lattice-parameter change caused by the surface stress, 
a finite element analysis was carried out, where an elastic film 
was used to provide a surface load [12, 13]. A 1 N m−1 stress 
of the elastic film was postulated, but this nominal value was 
not supported by evidences. This paper aims to fill this gap by 
focusing on density functional theory calculations in order to 
better quantify the surface stress. Calculations were carried out 
by using the Quantum Espresso computer package [14].

In section 2 we describe the operation of an x-ray inter-
ferometer. Section 3 outlines the way the surface stress was 
calculated. Next, in section  4, we give the results of the 
numerical computations for the oxidised (1 1 0) surfaces of 
the interferometer crystals. En passant, this study delivered 
information about the structure of the SiO2–Si interface, that 
was not considered in our previous investigation [11]. The cal-
culated stress is greater than expected and its effect on the lat-
tice parameter measurement should have been noticed, but it 
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seems it is not so. Possible explanations and the implications 
of this result are discussed in section 5.

2. The lattice parameter measurement

As shown in figure 1, an x-ray interferometer consists of three 
crystals—1.2 mm thick, 50 mm long, and 20 mm high—so cut 
that the { }2 2 0  planes are orthogonal to the crystal (1 1 0) sur-
faces. 17 keV x-rays from a Mo Kα line source are split by the 
first crystal and recombined, via a transmission crystal, by the 
third, called analyser.

When the analyser is moved along a direction orthogonal 
to the { }2 2 0  diffracting planes, a periodic variation of the 
transmitted and diffracted x-ray intensities is observed, the 
period being the diffracting-plane spacing. The analyser dis-
placement and rotations are measured by optical interferom-
etry; picometer and nanoradian resolutions are achieved by 
phase modulation, polarization encoding, and quadrant detec-
tion of the fringe phase. To eliminate the adverse influence of 
the refractive index of air and to ensure millikelvin temper-
ature uniformity and stability, the interferometer is hosted in a 
thermo-vacuum chamber.

The measurement equation is /( )λ=d m n22 2 0 , where d2 2 0 
is the spacing of the { }2 2 0  planes and n is the number of 
x-ray fringes in a displacement of m optical fringes having 
period /λ 2. The crystal temperature is simultaneously meas-
ured with sub-millikelvin sensitivity and accuracy so that 
the measured value is extrapolated to 20 °C. The most accu-
rate determinations, ( )=d 192 014 712.67 672 2 0  am and 

( )=d 192 014 711.98 342 2 0  am have relative uncertainty of 
× −3.6 10 9 and × −1.8 10 9, respectively [7, 8].
X-rays diffraction in crystals is governed by the electron 

density via the electric susceptibility. For what concerns the 
operation model of an x-ray interferometer, the crystal suscep-
tibility is expressed by the sum of the polarization of its (iso-
lated) atoms. The result is a triply periodic (or quasi-periodic) 
function of the space coordinates. Therefore, what is relevant 
is to look at the atom coordinates.

The stress of the analyzer (1 1 0) surfaces might strain the 
crystal, thus making the measured d2 2 0 value different from 
what it was set out to measure. This problem was investigated 

by Quagliotti et al [13] by using an elastic-film model to pro-
vide a surface load in a finite-element analysis. This study 
showed that, if the film tensile-stress is 1 N m−1, the measured 
lattice spacing is × − d6 10 9

2 2 0 smaller than the value in an 
unstrained crystal. Since the literature values of the surface 
stress are available only for reconstructed (1 0 0) surfaces, do 
not consider oxidation, and show value and sign scatters [13], 
a null stress was assumed and no correction was applied to the 
measurement result.

3. Calculation of the surface stress

All the calculations were carried out by means of first prin-
ciples density-functional theory (DFT) which allows the 
Schrödinger’s equation  for large and complex condensed 
matter systems to be solved by reducing the many-body 
problem of interacting electrons to an equivalent one for non-
interacting particles. This is achieved by using the electron 
density, instead of the electron many-body wave function, as 
the fundamental quantity. A short outline for non specialists 
and the relevant references are given in [11].

Our calculations were carried out using Quantum Espresso 
[14], an integrated suite of open-source computer codes for 
electronic-structure calculations and material modelling 
based on density-functional theory, plane waves, and pseudo-
potentials. In [11], we reported the calculation parameters 
giving the highest accuracy as far as concerns the Si lattice 
parameter, the benchmark being its best experimentally deter-
mined value. The same parameter-set was used in this work: 
the PBESOL exchange-correlation functional [15], which is 
specifically designed to calculate the bulk properties of solids, 
ultrasoft plane augmented wave pseudopotentials (PAW) [16], 
( )× × k4 4 1 -points mesh of the Brillouin zone of the unit 
cells, and 35 Ry cutoff of the kinetic energy of the single elec-
tron wave functions.

As a test case to assess the reliability of our DFT calcul-
ations, we considered the silicon ( ) ×1 0 0 2 1 surface, for 
which several theoretical and experimental estimates of the 
surface stress are given in [13]. In detail, we simulated an infi-
nite slab by using supercells having 8, 12, 16, 20, or 24 layers 
of 8 silicon atoms, free boundary conditions for the z direction 
perpendicular to the ( )1 0 0  surfaces, and periodic boundary 
conditions for the transverse x and y directions. The super-
cell dimensions were ( )× ×10.860 82 10.860 82 21.167 08  
Å

3, ( )× ×10.860 82 10.860 82 26.458 85  Å
3, ×(10.860 82   

10.860 82 31.750 62× ) Å3, × ×(10.860 82 10.860 82  )37.042 39  

Å
3
, and 10.860 82 10.860 82 42.334 16× ×( ) Å3

, respectively. 
Relaxation has been taken into account by force minimiza-
tion, until the forces on the atoms vanish within 0.005 eV 
−

Å
1
. Figure 2 shows a representation of the ( ) ×1 0 0 2 1 recon-

structed surface with 24 layers of 8 silicon atoms.
Figure 3 shows the spacing of the {4 0 0} lattice planes as a 

function of the distance from the center of the 24-layer super-
cell. As already observed in [11], we can distinguish two main 
regions: (i) a bulk-like region where the lattice spacing is not 
significantly different from its unstrained value and (ii) two 

Figure 1. Combined x-ray and optical interferometer. The 
crystallographic orientation of the interferometer crystals are also 
given.

Metrologia 53 (2016) 1339
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surface regions, about 0.5 nm deep, where the reconstruction 
strongly affects the lattice spacing.

Since no external force acts on the surfaces, the z-comp onents  
of the stress are null and a plane-stress condition is established 
[17]. Therefore, the supercell surfaces are characterized by an 

intrinsic 2D surface-stress tensor σ ij0,
surf (expressed in units of 

N m−1), which is defined as

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟σ

η η η
=

∂
∂

=
∂
∂

−
∂
∂A

E

A

E
N

E1

2

1

2
,ij

ij ij ij
0,
surf

0

surf

0

sc bulk
 (1)

where the surface energy Esurf is defined as = −E E NEsurf sc bulk, 
Esc is the total energy of the supercell containing the surfaces, 
and Ebulk is the energy per atom of a bulk Si system, N is 
the number of atoms in the supercell, ηij is the surface-strain 
tensor (where i and j indicate directions in the surface), A0 is 
the equilibrium area of the surfaces, and the factor 2 takes the 
two surfaces into account.

Since we used the equilibrium lattice parameter of the 
unstrained lattice, we have / η∂ ∂ =E 0ijbulk , and therefore the 
intrinsic surface stress provided by equation (1) corresponds 
to [18, 19]

σ
η

σ=
∂
∂

=
A

E h1

2 2ij
ij

ij0,
surf

0

sc sc
 (2)

where ( / ) /σ η= Ω ∂ ∂E1ij ij
sc

sc  is the supercell stress (expressed 
in units of N m−2), Ω is the supercell volume, and h the super-
cell thickness. The supercell stresses σij

sc are obtained directly 
from the DFT calculation using the Hellmann–Feynman 
theorem [20]. In order to use equations  (2), the calculation 
was carried out with the x-y lattice constants fixed at the equi-
librium values predicted by a previous bulk calculation done 
with the same energy cutoff. As regards the σ0

surf sign, if the 
surface shrinks (expands) with respect to the bulk, the surface 
stress is negative (positive) and it is said to be compressive 
(tensile).

We remark that the above procedure also provides the 
mean stress

⎛

⎝
⎜

⎞

⎠
⎟σ

σ σ
=

+h

2 2
,

xx yy
0
surf

sc sc

 (3)

where σxx
sc  and σxx

sc  are the principal stresses. The calculated 
mean stress σ0

surf is a crucial quantity entering the con-
stitutive equation  of the surface through the expression 

σ σ δ µ η λ δ η= + +2ij ij s ij s ij kk
surf,tot

0
surf , which provides the total 

stress over the surface in terms of its local deformation. When 
the surface is not deformed, i.e. when η = 0ij , we obtain 
σ σ δ=ij ij

surf,tot
0
surf , corresponding to an isotropic intrinsic stress. 

Therefore, equations (2) and (3) are necessary to calculate the 
total surface stress when the system is not macroscopically 
deformed. Indeed, the elastic constants µs and λs play a role 
only observed when η ≠ 0ij .

Figure 4 (left) shows the surface stress of the silicon 
( ) ×1 0 0 2 1 surface as a function of the number of the super-
cell layers. When the cell thickness exceeds 16 atomic layers, 
the interaction between the opposite surfaces turns off and σ0

surf 
converges to a compressive stress of about  −0.5 N m−1. The red 
shaded area shows the interval of the stress values given in the 
literature [13], which range from  −0.68 N m−1 to 0.76 N m−1.  
Our values are well within this interval and, as shown in 
figure 4 (right), converge to the most recent (and, arguably, 
more accurate) literature data. This stands for the reliability 
of the present computational setup, which is therefore next 
applied to predict surface stress in configurations more closely 
related to the actual experimental setup described in the 
introduction.

We investigated the effect of the lateral size of the supercell 
by estimating σ0

surf of the smallest system, having 8 Si layers, 
where we doubled the lateral x dimension from 10.860 82 
Å up to 21.721 64 Å. Therefore, the new supercell size was 
( )× ×21.721 64 10.860 82 21.6708  Å

3
 and hosted 192 atoms. 

We obtained the same σ = −0.6480
surf  N m−1 value for both 

systems; this confirms that the lateral dimension of the super-
cell does not affect the surface stress calculation.

All the first principles DFT calculations are intrinsically 
performed at 0 K. Therefore, we did not take the crystal 
temperature into account. However, it was theoretically 

Figure 2. Stick-and-balls representation of the 24-layer supercell 
used to calculate the 1 0 0 2 1( ) ×  surface stress.

Figure 3. Spacing of the {4 0 0} lattice planes as a function of 
the distance from the center of the 24-layer cell shown in figure 2. 
Each plane is located by sorting the Si atoms by their distance and 
by taking the average depth of each subsequent set of 8 atoms. 
The error bars indicate the minimum and maximum depth of the 
atoms in each set. The red line is the spacing value of an unstrained 
crystal.

Metrologia 53 (2016) 1339
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demonstrated for Cu( )1 1 0  that a temperature increase from 
about 0 K up to 300 K corresponds to a surface stress decrease 
of less than 5% [21]. We point out that the linear thermal 
expansion coefficient of copper is more than 5 times larger 
than that of silicon and more than 20 times larger than that of 
quartz. For this reason we expect that temperature has a negli-
gible effect on the surface stress of silicon.

4. Results

The x-ray interferometer crystals are slabs whose surfaces are 
parallel to the { ¯ }1 1 0  lattice planes. The damage produced by 
machining was removed by a cupric-ion etching. Because of 
the etching anisotropy, the surfaces, though flat and parallel 
to the { ¯ }1 1 0  planes on the average, are quite rough: they dis-
play a texture with a typical 0.1 mm length scale and a few 
micrometer peak-to-valley amplitude. In addition, a native 
oxide layer grows on the slab surfaces—which is expected 
from 1 nm to 2 nm thick, but nothing is known about its stoi-
chiometry [22–24].

In order to investigate the intrinsic surface stress of the oxi-
dized ( )1 1 0  surface, we started by considering the pristine ( )1 1 0  
surface. In detail, we considered a supercell with 20 silicon 
layers having dimensions of ( )× ×7.6797 10.7516 49.9184  
Å

3
 and a total of 160 atoms. We took the relaxation into 

account by force minimization, up to the forces on atoms van-
ished to within 0.005 eV A−1; figure 5 shows a stick-and-balls 
representation of fully relaxed supercell. We did not observe 
any surface reconstruction during the minimization. Figure 6 
shows the spacing of the { }2 2 0  lattice planes as a function of 

Figure 4. Left: surface stress of the silicon 1 0 0 2 1( ) ×  surface as a function of the total number of layers in the supercell. Right: literature 
values of the 1 0 0 2 1( ) ×  surface stress as a function of the publication year [13]. The red shaded area shows the interval of the stress values 
given in the literature [13], which ranges from  −0.68 N m−1 to 0.76 N m−1.

Figure 5. Stick-and-balls representation of the 20-layer supercell 
used to calculate the stress of the relaxed but not reconstructed 
1 1 0( ) surface.

Figure 6. Spacing of the 2 2 0{ } lattice planes as a function of the 
distance from the center of the supercell shown in figure 5. Each 
plane is located by sorting the Si atoms by their distance and by 
taking the average depth of each subsequent set of 8 atoms. The 
dots indicate minimum and maximum depth of the atoms in each 
set. The red line is the spacing value of an unstrained crystal.

Metrologia 53 (2016) 1339
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distance from the supercell center. As already reported in [11], 
we observe a symmetric variation larger than 10% of the dis-
tance between the two outermost planes; we identify the out-
ermost three atom-layers as the surface region. We calculated 
a tensile stress of about 1.6 N m−1. The difference between the 
( )1 0 0  and ( )1 1 0  stresses is due to the fact that, while in the 
( )1 0 0  case we took the surface reconstruction into account, 
no reconstruction was considered for the ( )1 1 0  surface.

Eventually, we considered a supercell where the two ( )1 1 0  
surfaces are covered by a stoichiometric SiO2 layer. The gen-
eration of such a chemically and structurally complex system 
is computationally very demanding and required a combina-
tion of classical molecular dynamics and first principles DFT 
calculations. The Si/SiO2 interface is a challenging system, 
because of covalent bonds at the interface as well as electro-
static interactions between locally charged silicon and oxygen 
atoms. First principles DFT, having single electron resolution, 
is one of the most accurate computational techniques to prop-
erly describe covalent as well as electrostatic interactions at 
the interface between two solids [25].

In detail, we started with a slab of 40 Si-layers and placed, 
at the top and bottom boundaries, two SiO2 layers (α-quartz 
phase, about 1 nm thick) at a distance of 0.3 nm. In total, the 
system contained 456 atoms. Next, we considered a SiO2 
pseudomorphic growth, where the substrate, the Si ( )1 1 0  sur-
face, controls the SiO2 in-plane lattice parameter. Initially, we 
minimized the total energy of the system by means of a combi-
nation of low temperature molecular dynamics and conjugate 
gradients using the LAMMPS code and the Tersoff potential 
[26, 27]4. After the minimization, the SiO2 layers approached 
the ( )1 1 0  surfaces at a distance less than 0.15 nm and created 
several Si–O covalent bonds. Eventually, the total energy was 
further minimized by means of first principles DFT calcul-
ations using the same parameters as previously described. 
Figure 7 shows the fully relaxed surfaces.

The generally accepted Deal–Grove model [28], which 
describes the thermal oxidation of silicon in the fabrication of 
semiconductor devices, assumes that the oxide grows at the Si/
SiO2 interface as a result of the oxygen diffusion through the 
SiO2 layer. However, as pointed out in the Deal–Grove seminal 
paper, the model validity is limited to the very high temper-
atures (greater than 700 °C) typical of semiconductor device 
fabrication and to fairly thick oxide layers, greater than 25 nm.

In this paper, we consider a thin native oxide layer (about 
1 nm thick) naturally growth on Si( )1 1 0  at room temperature 
and ambient pressure. In this case, the growth mechanism is 

different [22]. As far as it concerns the structure, despite of a 
contradictory literature on the actual atomic arrangement at 
the Si/SiO2 interface, most of the papers agree that the native 
oxide layer is amorphous [23, 29]. Our simplified model, even 
if it does not take some features of the actual Si/SiO2 interface 
into account (such as the presence of hydrogen atoms), cor-
rectly predicts the native oxide amorphization, which is the 
main feature of the native oxide structure. Figure 8 shows the 
radial distribution function calculated on the SiO2; it clearly 
demonstrates the occurrence of the oxide amorphization after 
geometry optimization. Figure 9 shows the spacing d2 2 0 of the 
{2 2 0} lattice planes as a function of distance from the super-
cell center. The red dots indicate the spacing of oxygen atoms, 
grouped eight by eight. We observe a large d2 2 0 variation near 
the Si–SiO2 interface. The spacing of the oxygen atoms does 
not show any significant trend; this is due to the amorphiza-
tion of the oxide.

We are interested in the in-plane strain at the equilibrium, 
that is, when the σij

sc stress in equation (2) is fully relaxed. To 
go through the calculation of the mean surface stress σ0

surf is a 
convenient way to facilitate the calculation of the equilibrium 
strain by using a continuous mechanics model. Therefore, the 
mean surface stress was calculated from equation (3), where 
σij

sc and h are the stress and the thickness of the whole super-
cell, including both the Si and SiO2 layers.

We obtained a very large compressive stress of 
about  −10.3 N m−1. With respect to pristine ( )1 1 0  surface, we 

Figure 7. Stick-and-balls representation of the 40-layer supercell used to calculate the surface stress of the oxidized 1 1 0( ) surface. The red 
balls indicate the oxygen atoms. The amorphous oxide layer is about 1 nm thick.

4 Plimpton [26]. See also: http://lammps.sandia.gov

Figure 8. Radial distribution function calculated on the SiO2 layer 
upon geometry optimization.
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observed a stress variation by about one order of magnitude, 
both in sign—from tensile to compressive—and modulus. 
This dramatic change is due to a twofold effect: (i) a large 
distortion of the ( )1 1 0  surface due to the interaction with the 
SiO2 layer and (ii) the intrinsic stress of the SiO2 layer due 
to the large mismatch between the SiO2 and Si ( )1 1 0  lattice 
parameters. The occurrence of such a large stress is consistent 
with the experimental observation that the deposition of only 
a single oxygen monolayer on top of a Si ( )1 1 1  surface gives 
rise to a surface stress of  −7.2 N m−1 [30].

A possible inaccuracy might arise from the small lateral 
dimensions of our supercell, which could imply a spurious 
SiO2 super-periodicity affecting the geometry optimization. In 
order to investigate this effect, we fully relaxed two SiO2 amor-
phous layers having x dimension one double of the other. The 
super-cell dimensions were ( )× ×7.6797 10.7516 30.7190  
Å

3
 and ( )× ×15.3595 10.7516 30.7190  Å

3
, respectively. Free 

boundary conditions were imposed in the z direction and peri-
odic boundary conditions in the x and y directions. The two 
geometry-optimized structures shows basically no difference; 
the energy per atom variation is small as 0.0006% and the two 
pair correlation functions nearly superimposes.

5. Conclusions

Under isotropy and plane-stress assumptions, the slab strain is

( ) ( )
η

σ
λ µ λ µ

= −
+ + + h2

,
s s

0
surf

 (4)

where λs, µs, λ, and μ are the surface and bulk elastic con-
stants (the Lamé’s first and second parameters), respectively. 
Equation  (4) can be easily proved by minimizing the total 
energy of the slab composed of the energy of the two surfaces 

and the energy of the Si layer. In the limit when the slab is 
‘thick’, this equation simplifies to

η
σ

≈− ≈ −

Kh
10 ,0

surf
7 (5)

where λ µ≈ + ≈K 1002

3
 GPa is the bulk modulus and 

≈ −h 10 3 m is the thickness of our interest. As matter of fact, λs 
and µs are negligible with respect to λh and µh when ⩾h 50 nm 
(it depends on the fact that the SiO2 thickness is about 1 nm).

Although the effect of a stress value of is  −10.3 N m−1 is 
expected to be within the detection capability of combined 
x-ray and optical interferometry, the relevant large strain 
was never observed. Preliminary measurements carried out 
by using a purposely designed two-thickness interferometer 
might have evidenced some clue, but, in the case, the observed 
strain is more than an order of magnitude smaller than pre-
dicted by equation  (5) [13, 31]. For this reason the density 
functional computation was carefully assessed; we are confi-
dent that the result obtained is representative of the idealized 
model used.

An explanation may be the roughness of the interferometer 
surfaces. In fact, the surface stress is sensitive to the mismatch 
between the oxide and silicon lattices and, therefore, might 
critically depend of the oxide structure and stoichiometry, as 
well as on the orientation of the underlying Si surface. About 
this, we observe that, owing to roughness, the local orienta-
tions of the x-ray interferometer facets are quite different from 
the average ( )1 1 0 . In addition, roughness might help to relax 
the stress by smoothing or enhancing ridges and grooves. In 
other terms, the absence of planarity of the oxidised surfaces 
may strongly reduce the effect of the intrisic stress on the 
overall induced strain in the sample.

Further numerical investigations will be performed in order 
to address the effect of different oxide structures and stoichi-
ometry as well as of different orientations of the Si surface. 
We are also planning to study the effect surface roughness at 
the meso-scale, e.g. ridges and grooves. However, due to the 
relatively large dimension of these systems, the calculations 
will be performed within a molecular dynamics framework, to 
allow considering up to ∼ 107 atoms.

In any case, the result obtained indicates that the surface 
stress is a potential problem of the lattice parameter measure-
ment; it deserves further numerical and experimental invest-
igations to exclude that it is causing a systematic error or to 
quantify it.
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Figure 9. Spacing of the {2 2 0} lattice planes. Each plane (blue 
dots) is located by sorting the Si atoms by their distance from the 
center of the cell shown in figure 7 and by taking the average depth 
of each subsequent set of 8 atoms. The red dots indicate the mean 
spacing of the oxygen atoms, grouped and located eight by eight. 
The error bars indicate the minimum and maximum depth of the 
atoms in each set. The horizontal (red) line is the perfect-crystal 
spacing value.
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