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a b s t r a c t 

The analysis and the synthesis of the nonlinear effective response of particulate composite materials are 

of great importance for developing new systems such as nonlinear elastic and electromagnetic metama- 

terials, nonlinear waveguides, nonlinear magnetoelectric devices and photonic or phononic crystals. Typ- 

ically, classical homogenization schemes take into account the shape of the inhomogenieties but neglect 

the spatial correlation among them, a crucial feature for the above applications. In this paper we develop 

a nonlinear homogenization technique for dispersions of nonlinear particles in a linear matrix, which is 

able to take account of spatial correlation by means of the so-called ellipsoidal microstructure. While the 

linear result corresponds to the well known Ponte Castañeda–Willis estimate, we propose new formulae 

for the second and third order nonlinear behavior. We finally show applications to the nonlinear elastic 

Landau coefficients and to the nonlinear hypersusceptibility of transport processes. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In recent times, a great number of investigations have been de-

voted to the elastic and electromagnetic nonlinear properties of

particulate composite materials in view of their applications to

modern nanotechnology. In fact, the physical nonlinearity of some

elements composing a structured system allows for generating a

tunable complex behavior, which may exploited to implement spe-

cific functions not existing in simple materials. For instance, effi-

cient acoustic diodes have been designed by means of highly non-

linear elastic materials combined with one-dimensional phononic

crystals ( Liang et al., 2009, 2010 ) and they can be profitably ex-

polited for thermal management at a microscopic scale ( Li et al.,

2012 ). The practical realization of these devices needs elastic ma-

terials with precisely tuned strong nonlinearities that can be ob-

tained either through bubbly liquids with optimized concentra-

tion of gas ( Liang et al., 2010 ) or soft materials (polymers) with

pores ( Brunet et al., 2013 ). Another emerging field is represented

by the nonlinear acoustic metamaterials, which are able to con-

trol several features of propagating elastic waves ( Herbold and

Nesterenko, 2013; Manktelow et al., 2011; Kim et al., 2015 ). The

elastic behavior can be coupled with the magnetic one, thus gen-
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rating magnetoelastic metamaterials, where a new type of nonlin-

ar response arises from this interaction ( Lapine et al., 2012 ). One

ore example of nonlinear media is given by the granular crys-

als, which are capable of generating shock-absorbing materials,

ound-focusing devices, acoustic switches, and other exotic devices

 Porter et al., 2015; Lydon et al., 2015 ). Similar effects were stud-

ed in electrodynamics and optical diodes, transistors and other de-

ices have been realized through non-linear electromagnetic com-

onents based on photonic crystals ( Mingaleev and Kivshar, 2002;

oljacic and Joannopoulos, 2010 ). Also, the development of nonlin-

ar electromagnetic metamaterials and plasmonic devices allowed

o tune electromagnetic properties with the possibility of control-

ing the effect of specific nonlinearities ( Mary et al., 2008; Kozyrev

nd van der, 2008; Xu et al., 2009; Lapine et al., 2014 ). Other

argely investigated structures include nonlinear photonic crystals

 Berger, 1998 ), nonlinear optical waveguides ( Tsang and Liu, 2008 )

nd nonlinear magnetoelectric devices Rose et al. (2012) . 

All these applications prove the need of designing hetero-

eneous materials with controlled elastic and electromagnetic

onlinearities. To do this, we require efficient models to pre-

ict the nonlinear behavior of composites as a function of their

orphology. This task is usually performed by linear and non-

inear homogenization methods, which determine the effective

hysical properties of a given microstructure ( Nemat-Nasser and

ori, 1993; Milton, 2002; Torquato, 2002; Kanaun and Levin,

008 ). Most of the homogenization techniques consider parallel

r random orientation of the inhomogeneities, without taking into

http://dx.doi.org/10.1016/j.mechmat.2016.11.003
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Fig. 1. Distribution of particles embedded in the matrix L (1) showing the so-called 

ellipsoidal microstructure. Each nonlinear inhomogeneity (region �) has a volume 

v i = mes (�) , an Eshelby tensor S and a stiffness tensor ˜ L (2) (ε tot ) . Moreover, all 

particles are surrounded by a security ellipsoidal surface �d , having volume v d and 

Eshelby tensor S d . 
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ccount their real spatial distribution. They have been developed

or dealing with, e.g., ellipsoidal particles ( Kachanov and Sevos-

ianov, 20 05; Giordano, 20 03, 20 05 ), cracks ( Kachanov, 1994;

iordano and Colombo, 20 07b, 20 07a ), and poroelastic materials

 Berryman, 1997; Dormieux et al., 2002 ). The classical linear

heory used for considering the spatial distribution of particles

i.e. their spatial correlation) is based on the Ponte Castañeda–

illis estimate, which takes into account the so-called ellipsoidal

icrostructure ( Ponte Castañeda and Willis, 1995 ). This result has

een derived by considering the Hashin-Shtrikman variational

pproach in the form developed by Willis (1977 , 1978) . While

n its original form the inclusion shape and spatial distribution

re considered jointly ( Willis, 1977 ), in the second version these

wo features are introduced separately ( Willis, 1978 ). This point

s crucial to derive the Ponte Castañeda–Willis estimate, which

onsiders arbitrary ellipsoidal particles and, independently, as-

umes the hypothesis of ellipsoidal symmetry for the spatial

istribution of the particles. The result represents a generalization

f the classical Mori and Tanaka ’s (1973) scheme, always giving

ensors of effective moduli satisfying the necessary symmetry

equirements ( Ponte Castañeda and Willis, 1995 ). The relation

etween the Ponte Castañeda–Willis and Mori–Tanaka schemes

as been thoroughly examined in the literature ( Hu and Weng,

0 0 0b, 20 0 0a; Weng, 2010 ). From the point of view of the ap-

lications, the Ponte Castañeda–Willis estimate has been used to

nvestigate the mechanical properties of multifractured materials

 Dormieux and Kondo, 2016 ), nanocomposites ( Cauvin et al.,

010 ), rocks ( Wendt et al., 2003; Gruescu et al., 2007 ), and the

esponse of magnetostrictive ( Galipeau and Ponte Castañeda,

012 ) or magneto-electro-elastic composites ( Franciosi, 2013 ). It is

mportant to remark that the variational principles have been also

sed for nonlinear composites with both nonlinear comparison

olid ( Talbot and Willis, 1985, 1987 ) and linear comparison solid

 Ponte Castañeda, 1991, 1992; Suquet, 1993; Ponte Castañeda and

uquet, 1998 ). 

In this paper, we approach the problem of determining the

onlinear effective properties of a composite materials described

y the so-called ellipsoidal microstructure or, equivalently, by the

llipsoidal symmetry for the spatial distribution of particles. It

eans that the microstructure can be described by a population

f arbitrary ellipsoidal particles exhibiting a specific nonlinearity,

mbedded in a linear matrix with a spatial distribution given by

n arbitrary ellipsoidal correlation. By introducing a two-step mul-

iscale procedure we can obtain the linear and nonlinear (second

rder and third order) physical properties of the heterogeneous

aterial. We take into account ellipsoidal inhomogeneities of ar-

itrary shape and an arbitrary ellipsoidal correlation among par-

icles. This allows to write the final linear and nonlinear effec-

ive properties in terms of two independent Eshelby tensors de-

cribing shape and distribution, respectively. The linear result coin-

ides with the Ponte Castañeda–Willis estimate whereas the closed

orm expression for the nonlinear effective tensor represents a new

chievement, which is explicit and well suited for the applications.

e remark that all results can be also used in dynamic regime if

e consider the wavelength of the propagating wave much larger

han the particles size. In this case we are working in the so-

alled quasi-static regime and any inhomogeneity feels a nearly

tatic applied field. Interestingly enough, although we show ex-

licit examples analysing elastic and transport properties, the pro-

osed scheme can be easily adopted to homogenize the fully cou-

led thermo-magneto-electro-elastic case as well. 

The proposed methodology can be adopted for modeling novel

omposites behaviors but also for validating advanced numerical

odels and multiscale techniques largely used for the description

f materials with random microstructure. Usually, these method-

logies are based on boundary value problems defined on finite-
ize mesoscales ( Ghosh, 2011; Salmi et al., 2012 ), sometimes gen-

ralized to consider non-classical materials such as, e.g., microp-

lar continua ( Trovalusci et al., 2014, 2015 ). The central issue of

hese approaches, applied to random microstructures, concerns the

roper definition of Representative Volume Element (RVE) ( Ostoja-

tarzewski, 2006 ). Since the proposed model, being entirely theo-

etical, does not require the RVE estimation, the comparison with

umerical approaches can be useful to further validate the RVE se-

ection process. 

The structure of the paper follows. In Section 2 , we introduce

he problem statement, by defining the ellipsoidal microstructure

nd the related nonlinear homogenization issues. In Section 3 , we

eview the Eshelby formalism for both linear and nonlinear inho-

ogeneities. In Section 4 , we approach the first step of the multi-

cale procedure: we solve the homogenization problem for a non-

inear composite ellipsoid. In Section 5 , we elaborate the second

tep of the homogenization: we determine the effective behavior of

he dispersion of nonlinear inhomogeneities. In Section 6 , we com-

ine the two procedure in order to get the final results. Finally, in

ections 7 and 8 we show some applications to the second order

onlinear elastic Landau coefficients and to the third order nonlin-

ar hypersusceptibility of transport processes. 

. Problem statement 

We define here the microstructure and the methodology

dopted in this work. The geometry of the system is represented

n Fig. 1 , where a population of inhomogeneities are dispersed in

 linear matrix of stiffness L 

(1) . Each nonlinear inhomogeneity is

haracterized by an ellipsoidal region �, a volume v i = mes (�) ,

nd an Eshelby tensor S . Its nonlinear elastic response is charac-

erized by a strain-dependent stiffness tensor ˜ L 

(2) (ε tot ) . Moreover,

very particle is surrounded by another ellipsoidal surface �d , hav-

ng internal volume v d and Eshelby tensor S d . This is the so-called

ecurity surface and allows us to define the ellipsoidal symmetry

or the spatial distribution of particles: the security regions of any

ouple of inhomogeneities cannot be overlapped. This principle im-

oses the spatial correlation among particles and may generate a

orm of anisotropy induced by the distribution of particles position.

ndeed, even if we consider spherical inhomogenities, the overall

ehavior of the heterogeneous material will be anisotropic if the

ecurity surface are ellipsoidal. 

It is important to remark that the (centres of the) inhomo-

eneities are uniformly randomly distributed within the material

olume, provided that they are not overlapping (the composite is

tatistically homogeneous). It means that the probability density

or finding an inclusion at a given position is a constant. However,
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Fig. 2. Scheme of an inclusion characterized by an eigenstrain ε∗ and elastic fields 

within and outside �. 

Fig. 3. Scheme of the equivalence principle used to solve the inhomogeneity prob- 

lem. The inhomogeneity is equivalent to the superposition of the configurations A) 

(homogeneous medium loaded by ε∞ ) and B) (uniform inclusion with eigenstrain 

ε∗). 
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the joint probability density for finding a first inhomogeneity cen-

tered at a point � x and second inhomogeneity centered at another

point � x ′ is a scalar function of � x − �
 x ′ . This function is defined by

the security surfaces, which impose the hypothesis of ellipsoidal

symmetry for the distribution of inhomogeneities ( Ponte Castañeda

and Willis, 1995 ). This corresponds to the statistical anisotropy of

the microstructure. The statistical isotropy can be simply obtained

by considering the particular case of spherical security surfaces.

We also underline that the security surfaces must be considered

parallel in order to effectively induce the ellipsoidal symmetry, i.e.,

the statistical anisotropy. However, the inhomogeneities within the

security surfaces may be considered either aligned or randomly

oriented. While in the present paper we consider aligned inhomo-

geneities, we postpone the analysis of the random orientations to

a future investigation. 

The original point of this work is that we take account of the

particles nonlinearity, whereas the classical Ponte Castañeda–Willis

estimate considers linear inhomogeneities. To approach the prob-

lem, we firstly exactly solve the homogenization issue within the

surface �d (nonlinear composite ellipsoid) and then we determine

the effective properties of the dispersion of homogenized ellipsoids

through a generalized (nonlinear) Mori–Tanaka scheme. We em-

phasize the effectiveness of the double step multiscale approach

taking account the constitutive nonlinearity at the underling level

and the statistical distribution at the intermediate level, as many

computational methods propose. 

We also remark that we considered nonlinear particles embed-

ded in a linear matrix since the possible matrix nonlinearity makes

the Eshelby theory not applicable to determine the internal elas-

tic fields. Indeed, strain and stress fields within a nonlinear par-

ticle embedded in a nonlinear matrix are in general not uniform

and must be determined with ad hoc methodologies ( Palla et al.,

2010 ) leading to specific homogenization theories ( Giordano, 2013 ).

However, we underline that the nonlinearity is typically confined

within the embedded particles in most of technological applica-

tions. 

To conclude the problem definition, we finally observe that

in our homogenization scheme we did not consider the non-

local character of the macroscopic constitutive equation, typically

emerging in higher order homogenization. Indeed, if we consider a

heterogeneous RVE with boundary conditions fixing the displace-

ment field through linear and quadratic terms, we obtain an ef-

fective energy density which is quadratic in the strain tensor and

quadratic in the derivatives of the strain tensor. Hence, this en-

ergy form defines second-gradient elastic materials ( Bacca et al.,

2013a ; Bacca et al., 2013b ). Here, we neglect this aspect, i.e., we

implicitly study only the first energy term, quadratic in the strain

tensor. 

3. Eshelby formalism: linear and nonlinear inhomogeneity 

To begin, we take into consideration a linear and homogeneous

elastic matrix described by the constitutive equation T = L 

(1) ε ( T

is the stress tensor, ε the strain tensor, and L 

(1) the stiffness ten-

sor), where an inclusion is embedded within the region � (see

Fig. 2 ). The latter is described by the constitutive equation T =
L 

(1) ( ε − ε ∗) , where ε∗ represents an eigenstrain uniformly dis-

tributed in � ( Li and Wang, 2008; Mura, 1987; Qu and Cherkaoui,

2006 ). As widely described in literature, the solution of the inclu-

sion problem is given by 

ε nm 

= S nmhk ε 
∗
hk , (1)

at any point of the space ( Mura, 1987; Qu and Cherkaoui, 2006; Li

and Wang, 2008 ). Here, we introduced the Eshelby tensor, whose
eneral expression follows ( Eshelby, 1957, 1959 ) 

S nmhk ( � x ) = −L 

(1) 
i jhk 

∫ 
�⊂� 3 

�nmi j ( � x − �
 x ′ ) d � x ′ , (2)

here � is the modified Green tensor ( Kröner, 1990 ) 

nmi j ( � z ) = 

1 

2 

[
∂ 2 G n j ( � z ) 

∂ z i ∂ z m 

+ 

∂ 2 G m j ( � z ) 

∂ z i ∂ z n 

]
, (3)

nd G is the standard Green tensor satisfying the differential equa-

ion of the elasticity theory ( Li and Wang, 2008 ) 

 

(1) 
i jhk 

∂ 2 G hr ( � z ) 

∂ z i ∂ z k 
+ δr j δ( � z ) = 0 . (4)

ere, δrj is the Kronecker delta and δ( � z ) is the Dirac delta function.

t is well known that, when � is ellipsoidal, the Eshelby tensor

s constant within the inclusion and space-dependent outside it.

herefore, we adopt the notation (see Fig. 2 for details) 

 nmhk ( � x ) = 

⎧ ⎨ 

⎩ 

S nmhk if � x ∈ �, 

S ∞ 

nmhk 
( � x ) if � x / ∈ �. (5)

The most important application of the inclusion concept con-

erns the solution of the inhomogeneity problem through the so-

alled equivalence principle ( Eshelby, 1957, 1959 ). The inhomo-

eneity problem consists in finding the perturbation to a uniform

lastic field (strain ε∞ and stress T ∞ in a matrix of stiffness L 

(1) )

enerated by the presence of an ellipsoidal particle of stiffness

 

(2) (see Fig. 3 ). The approach based on the equivalence princi-

le takes into account the superposition of two configurations (see

ig. 3 for details): a first one A) represented by a homogeneous

edium loaded by a remote strain ε∞ and a second one B) based

n an uniform inclusion with eigenstrain ε∗. Both configurations

re based on the same linear elastic matrix L 

(1) . The solution for
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he inhomogeneity problem eventually yields 

 tot = 

⎧ ⎨ 

⎩ 

Sε ∗ + ε ∞ if � x ∈ �, 

S ∞ ( � x ) ε ∗ + ε ∞ if � x / ∈ �, (6) 

 tot = 

⎧ ⎨ 

⎩ 

L 

(1) ( S − I ) ε ∗ + L 

(1) ε ∞ if � x ∈ �, 

L 

(1) S ∞ ( � x ) ε ∗ + L 

(1) ε ∞ if � x / ∈ �. (7) 

f the inhomogeneity is described by a linear tensor L 

(2) we must

mpose T tot = L 

(2) ε tot within �, which corresponds to an equation

n ε∗, and then we can easily obtain the constant value of the

quivalent eigenstrain 

 

∗ = 

{[ 
I −

(
L 

(1) 
)−1 L 

(2) 
] −1 

− S 
}−1 

ε ∞ , (8) 

nd the constant strain induced within the inhomogeneity � fol-

ows 

 tot = 

{ 

I − S 
[ 
I −

(
L 

(1) 
)−1 L 

(2) 
] } −1 

ε ∞ . (9) 

We can generalize this result to the case where the inho-

ogeneity is nonlinear, i.e. T tot = 

˜ L 

(2) (ε tot ) ε tot within �, where
˜ 
 

(2) (ε tot ) is any strain-dependent anisotropic stiffness tensor

 Giordano et al., 20 08, 20 09 ). In order to cope with this problem,

e suppose to have found a solution for the equation 

 tot = 

{ 

I − S 
[ 
I −

(
L 

(1) 
)−1 

˜ L 

(2) (ε tot ) 
] } −1 

ε ∞ , (10) 

btained from Eq. (9) through the substitution L 

(2) → 

˜ L 

(2) (ε tot ) .

ere, εtot represents the uniform strain induced inside the non-

inear inhomogeneities. If such a solution exists for a given ε∞ ,

t means that the nonlinear inhomogeneity could be replaced

y a linear one with constant stiffness, without modifications of

he elastic fields at any point. Therefore, if the solution exists,

hen Eq. (10) exactly describes, through self-consistency, the elas-

ic behavior of the nonlinear anisotropic inclusion ( Giordano, 2009;

olombo and Giordano, 2011 ). The existence and unicity of a solu-

ion for Eq. (10) can be exactly proved under the sole hypothesis

f convexity for the strain energy function of the inhomogeneity

 Giordano et al., 2008, 2009 ). 

. First homogenization: the nonlinear composite ellipsoid 

We consider now a second ellipsoidal region �d containing

he inhomogeneity � ( �d ⊃�). The definition of this region is

urely geometrical and does not affect the elastic properties of the

ystem. Therefore, we have again the elastic tensors ˜ L 

(2) inside �

nd L 

(1) outside it (i.e. in � 

3 ��). The two ellipsoidal regions �

nd �d are completely arbitrary (neither coaxial nor confocal, nor

imilar) but centred at the same point. The new region �d is use-

ul to properly define the distribution of inhomogeneities within a

omposite materials characterized by the so-called ellipsoidal mi-

rostructure (see Section 2 ). For the moment, we consider a single

onlinear particle and we suppose to have solved the nonlinear

quation stated in Eq. (10) . Then, we try to characterize the region

d from the linear and nonlinear elastic point of view. First of all,

e determine the average value of S ∞ ( � x ) in the external region

d ��∫ 
�d \ �

S ∞ 

nmhk ( � x ) d � x 

= −
∫ 
� \ �

L 

(1) 
i jhk 

∫ 
�

�nmi j ( � x − �
 x ′ ) d � x ′ d � x 
d 
= −
∫ 
�

∫ 
�d \ �

L 

(1) 
i jhk 

�nmi j ( � x − �
 x ′ ) d � x d � x ′ 

= −
∫ 
�

∫ 
�d 

L 

(1) 
i jhk 

�nmi j ( � x − �
 x ′ ) d � x d � x ′ 

+ 

∫ 
�

∫ 
�
L 

(1) 
i jhk 

�nmi j ( � x − �
 x ′ ) d � x d � x ′ 

= 

∫ 
�

(
S d,nmhk − S nmhk 

)
d � x ′ , (11) 

here S d and S are constant Eshelby tensors corresponding to the

llipsoidal regions �d and �, respectively. Therefore, we finally

btain ∫ 
�d \ �

S ∞ 

nmhk ( � x ) d � x = v i 
(
S d,nmhk − S nmhk 

)
, (12) 

here v i = mes (�) . Incidentally, if � and �d are coaxial and sim-

lar, then we have that S d = S and we obtain 

∫ 
�d \ � S ∞ ( � x ) d � x = 0 ,

epresenting the Tanaka–Mori lemma ( Tanaka and Mori, 1972; Li

nd Wang, 2008 ). In order to evaluate the effective behavior of the

egion �d , we determine the average values 〈 ε 〉 �d 
and 〈 T 〉 �d 

of

train and stress in this region. For the strain average, we have 

 

ε 〉 �d 
= 

1 

v d 

∫ 
�

ε tot d � x + 

1 

v d 

∫ 
�d \ �

ε tot d � x 

= 

1 

v d 

∫ 
�

[ Sε ∗ + ε ∞ ] d � x 

+ 

1 

v d 

∫ 
�d \ �

[ S ∞ ( � x ) ε ∗ + ε ∞ ] d � x 

= �[ Sε ∗ + ε ∞ ] + [ �( S d − S ) ε ∗ + (1 − �) ε ∞ ] 

= �S d ε ∗ + ε ∞ , (13) 

here we defined v d = mes( �d ), � = v i / v d and we used Eqs.

6) and (12) . On the other hand, for the stress average, we obtain 

 

T 〉 �d 
= 

1 

v d 

∫ 
�

T tot d � x + 

1 

v d 

∫ 
�d \ �

T tot d � x 

= 

1 

v d 

∫ 
�

[
L 

(1) ( S − I ) ε ∗ + L 

(1) ε ∞ 

]
d � x 

+ 

1 

v d 

∫ 
�d \ �

[
L 

(1) S ∞ ( � x ) ε ∗ + L 

(1) ε ∞ 

]
d � x 

= �
[
L 

(1) ( S − I ) ε ∗ + L 

(1) ε ∞ 

]
+ 

[
�L 

(1) ( S d − S ) ε ∗ + (1 − �) L 

(1) ε ∞ 

]
= 

= �L 

(1) ( S d − I ) ε ∗ + L 

(1) ε ∞ , (14) 

here we used Eqs. (7) and (12) . Now, the relation between ε∗

nd ε∞ can be written as 

 

∗ = 

{[ 
I −

(
L 

(1) 
)−1 

˜ L 

(2) 
] −1 

− S 
}−1 

ε ∞ � 

˜ B ε ∞ , (15) 

epresenting the nonlinear generalization of Eq. (8) . We can there-

ore rewrite Eqs. (13) and (14) by taking into account Eq. (15) 

 

ε 〉 �d 
= 

[
I + �S d ˜ B 

]
ε ∞ , (16) 

 

T 〉 �d 
= L 

(1) 
[
I + �( S d − I ) ̃  B 

]
ε ∞ . (17) 

hese exact results allow us to determine the relationship between

 

T 〉 �d 
and 〈 ε 〉 �d 

. Indeed, by eliminating ε∞ in previous relations,

e obtain the equivalent constitutive equation for the region �d 

 

T 〉 �d 
= L 

(1) 
[
I + �S d ˜ B − I ˜ B 

][
I + �S d ˜ B 

]−1 〈 ε 〉 �d 

= L 

(1) 〈 ε 〉 � − �L 

(1) 
[

˜ B 

−1 + �S d 
]−1 〈 ε 〉 � . (18) 
d d 
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By using the definition of ˜ B given in Eq. (15) , we eventually

obtain 

〈 T 〉 �d 
= 

{
L 

(1) + �
[

˜ L 

(2) − L 

(1) 
]

˜ A 

−1 
}〈 ε 〉 �d 

, (19)

where we defined 

˜ A = I − ( S − �S d ) 
[ 
I −

(
L 

(1) 
)−1 

˜ L 

(2) 
] 
. (20)

It is important to remark that we are working with a nonlinear

inhomogeneity and therefore we must consider ˜ L 

(2) = 

˜ L 

(2) (ε tot ) . It

means that into Eqs. (19) and (20) we must substitute the relation

ε tot = ε tot ( 〈 ε 〉 �d 
) , for obtaining the nonlinear constitutive equation

(see Eq. (19) ), linking 〈 T 〉 �d 
and 〈 ε 〉 �d 

. In order to find the implicit

dependence ε tot = ε tot ( 〈 ε 〉 �d 
) , we can use the following system of

equations based on Eqs. (6) and (7) for � x ∈ � and Eq. (13) for 〈 ε 〉 �d 

ε tot = Sε ∗ + ε ∞ , (21)

T tot = 

˜ L 

(2) (ε tot ) ε tot = L 

(1) ( S − I ) ε ∗ + L 

(1) ε ∞ , (22)

〈 ε 〉 �d 
= �S d ε ∗ + ε ∞ . (23)

By determining ε∞ from the first equation and substituting it into

the other ones, we get 

˜ L 

(2) (ε tot ) ε tot = L 

(1) ( S − I ) ε ∗ + L 

(1) ( ε tot − Sε ∗) , (24)

〈 ε 〉 �d 
= �S d ε ∗ + ε tot − Sε ∗. (25)

Further, by eliminating ε∗, we obtain the requested relation

between εtot and 〈 ε 〉 �d 
in the implicit form { 

I − ( S − �S d ) 
[ 
I −

(
L 

(1) 
)−1 

˜ L 

(2) (ε tot ) 
] } 

ε tot = 〈 ε 〉 �d 
, (26)

or, equivalently, in the simplified form 

˜ A ε tot = 〈 ε 〉 �d 
. The elas-

tic behavior of the region �d is therefore summed-up by the

nonlinear constitutive equation 

〈 T 〉 �d 
= L 

(1) 〈 ε 〉 �d 
+ �

[
˜ L 

(2) (ε tot ) − L 

(1) 
]
ε tot , (27)

˜ A ε tot = 〈 ε 〉 �d 
, (28)

coming from Eqs. (19) and (26) and where ˜ A is given in Eq. (20) .

Once solved Eq. (28) for εtot , the solution can be substituted in

Eq. (27) giving the overall behavior of �d . We underline that this

result is exact, i.e. not affected by any form of approximation. In

particular, it is valid for any value of the volume fraction � in

the entire range 0 < � < 1. Moreover, it is valid for any strain-

dependent and anisotropic stiffness tensor ˜ L 

(2) (ε tot ) , describing

the nonlinear particle elasticity. In the next section, we specialize

this result to a second order constitutive equation. 

4.1. Second order constitutive equation 

In order to show an explicit application of the previous theory,

we consider for the inhomogeneity a nonlinear constitutive equa-

tion expanded up to the second order in the strain 

˜ L 

(2) (ε tot ) = L 

(2) + N 

(2) ε tot , (29)

which means, by explicitly considering the tensor components,
˜ L 

(2) 
i jhk 

(ε tot ) = L 

(2) 
i jhk 

+ N 

(2) 
i jhknm 

ε tot,nm 

. Here, N 

(2) is the tensor describ-

ing the nonlinear properties of the inhomogeneity. It follows that

Eq. (28) assumes the form 

A ε tot + ( S − �S d ) 
(
L 

(1) 
)−1 N 

(2) ε tot ε tot = 〈 ε 〉 �d 
, (30)

where 

A = I − ( S − �S d ) 
[ 
I −

(
L 

(1) 
)−1 L 

(2) 
] 
. (31)
he latter represents the simplified counterpart of Eq. (20) , where
˜ 
 

(2) is substituted by L 

(2) . The product N 

(2) ε tot ε tot in Eq. (30) rep-

esents the operation (N 

(2) ε tot ε tot ) i j = N 

(2) 
i jhknm 

ε tot,hk ε tot,nm 

. In or-

er to solve Eq. (30) , we search for a solution in the form ε tot =
 〈 ε 〉 �d 

+ D 〈 ε 〉 �d 
〈 ε 〉 �d 

, representing a second order expansion in

he average strain. By substituting this guess into Eq. (30) , and re-

aining only the terms up to the second order in 〈 ε 〉 �d 
we get 

AC 〈 ε 〉 �d 
+ AD 〈 ε 〉 �d 

〈 ε 〉 �d 
(32)

+ ( S − �S d ) 
(
L 

(1) 
)−1 N 

(2) 
(
C 〈 ε 〉 �d 

)(
C 〈 ε 〉 �d 

)
= 〈 ε 〉 �d 

. 

he product N 

(2) 
(
C 〈 ε 〉 �d 

)(
C 〈 ε 〉 �d 

)
must be interpreted as follows:

N 

(2) 
(
C 〈 ε 〉 �d 

)(
C 〈 ε 〉 �d 

)]
i j 

= N 

(2) 
i jkhrs 

C khnm 

〈 ε 〉 �d ,nm 

C rspq 〈 ε 〉 �d ,pq = 

N 

(2) C C 〈 ε 〉 �d 
〈 ε 〉 �d 

]
i j 

where 
[
N 

(2) C C 
]

i jnmpq 
= N 

(2) 
i jkhrs 

C khnm 

C rspq . It

ollows that Eq. (32) is equivalent to AC = I and AD + N 

(2) CC = 0 .

umming up, we easily obtain the tensor quantities C and D and

e can write εtot in terms of 〈 ε 〉 �d 
as follows 

ε tot = A 

−1 〈 ε 〉 �d 
(33)

−A 

−1 ( S − �S d ) 
(
L 

(1) 
)−1 N 

(2) A 

−1 A 

−1 〈 ε 〉 �d 
〈 ε 〉 �d 

. 

o conclude, we can substitute Eq. (33) into Eq. (27) , eventually

ielding the nonlinear constitutive equation of the region �d 

 

T 〉 �d 
= 

[
L 

(1) + �
(
L 

(2) − L 

(1) 
)
A 

−1 
]〈 ε 〉 �d 

(34)

+ �
[ 
I −

(
L 

(2) − L 

(1) 
)
A 

−1 ( S − �S d ) 
(
L 

(1) 
)−1 

] 
×N 

(2) A 

−1 A 

−1 〈 ε 〉 �d 
〈 ε 〉 �d 

. 

his is the final exact result expanded up to the second order in

he overall strain, where A is given in Eq. (31) . The higher order

erms are not considered here since we are interested in the sec-

nd order homogenization. Nevertheless, the exposed techniques

an be adopted to determine any needed term in the expansion.

q. (34) can be also summarized by identifying the linear effective

roperties 

 

(d) = L 

(1) + �
(
L 

(2) − L 

(1) 
)
A 

−1 , (35)

nd the nonlinear effective properties 

 

(d) = �
[ 
I −

(
L 

(2) − L 

(1) 
)
A 

−1 ( S − �S d ) 
(
L 

(1) 
)−1 

] 
×N 

(2) A 

−1 A 

−1 , (36)

ertaining to the region �d . It is useful to remember that this re-

ult is valid for any value of the volume fraction � in the entire

ange 0 < � < 1. 

. Second homogenization: the dispersion of nonlinear 

nhomogeneities 

Now, we take into consideration a population of parallel ellip-

oidal inhomogeneities described by the arbitrary strain-dependent

lastic tensor ˜ L 

(d) (ε d ) embedded in the linear matrix with con-

tant stiffness L 

(1) . The shape of each ellipsoidal particle is rep-

esented by the Eshelby tensor S d . Moreover, we suppose to deal

ith a dilute distribution characterized by the volume fraction � .

f we apply a remote strain ε∞ to the system, the internal strain in

 given particle is implicitly given by the equation 

 d = 

{ 

I − S d 
[ 
I −

(
L 

(1) 
)−1 

˜ L 

(d) (ε d ) 
] } −1 

ε ∞ , (37)

oming from Eq. (10) . Indeed, because of the small volume frac-

ion � , the interactions among inhomogeneities can be neglected

n the calculation of the internal strain εd . If we consider, as be-

ore, a second order nonlinear constitutive equation given by T d =
˜ 
 

(d) (ε ) ε = L 

(d) ε + N 

(d) ε ε , we get from Eq. (37) 
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{ 

I − S d 
[ 
I −

(
L 

(1) 
)−1 L 

(d) 
] } 

ε d 

+ S d 
(
L 

(1) 
)−1 N 

(d) ε d ε d = ε ∞ . (38) 

To homogenize the overall system, we generalize the classical

ori–Tanaka scheme in order to consider the second order nonlin-

ar behavior. To this aim we determine the average strain tensor

ithin the structure through the simple weighted mean 

 

ε 〉 ϒ = �ε d + (1 − �) ε ∞ , (39) 

ver the whole region ϒ = �
⋃ 


, composed of matrix (region �)

nd particles (region 
). Of course, this approximation is valid un-

er the hypothesis of small volume fraction � . On the other hand,

e can determine the average stress tensor as follows 

 

T 〉 ϒ = 

1 

v 

∫ 
ϒ

T d � x = 

1 

v 
L 

(1) 

∫ 
�
εd � x + 

1 

v 

∫ 



T d � x 

= 

1 

v 
L 

(1) 

∫ 
�
εd � x + 

1 

v 

∫ 



T d � x 

+ 

1 

v 
L 

(1) 

∫ 



εd � x − 1 

v 
L 

(1) 

∫ 



εd � x 

= 

1 

v 
L 

(1) 

∫ 
ϒ

ε d � x + 

1 

v 

∫ 



(
T − L 

(1) ε 
)
d � x 

= L 

(1) 〈 ε 〉 ϒ + �
(
T d − L 

(1) ε d 
)
, (40) 

here we defined v = mes (ϒ) . The averages in Eqs. (39) and

40) can be rewritten by taking into account the second order con-

titutive equation of the particles and Eq. (38) 

 

ε 〉 ϒ = A d ε d + (1 − �) S d 
(
L 

(1) 
)−1 N 

(d) ε d ε d , (41) 

 

T 〉 ϒ = L 

(1) 〈 ε 〉 ϒ + �
[
(L 

(d) − L 

(1) ) ε d + N 

(d) ε d ε d 
]
, (42) 

here 

 d = �I + (1 − �) 
{ 

I − S d 
[ 
I −

(
L 

(1) 
)−1 L 

(d) 
] } 

= I − (1 − �) S d 
[ 
I −

(
L 

(1) 
)−1 L 

(d) 
] 
. (43) 

he combination of Eqs. (41) and (42) gives the characterization of

he composite material. Indeed, we can invert Eq. (41) to get εd in

erms of 〈 ε〉 Y 
 d = A 

−1 
d 

〈 ε 〉 ϒ
− (1 − �) A 

−1 
d 

S d 
(
L 

(1) 
)−1 N 

(d) A 

−1 
d 

A 

−1 
d 

〈 ε 〉 ϒ〈 ε 〉 ϒ . (44) 

f course, this expression represents the expansion of εd up to the

econd order in 〈 ε〉 Y . Then, we can substitute Eq. (44) into Eq. (42) ,

ventually obtaining the following effective nonlinear constitutive

quation 

 

T 〉 ϒ = 

[
L 

(1) + �
(
L 

(d) − L 

(1) 
)
A 

−1 
d 

]〈 ε 〉 ϒ (45) 

+ �
[ 
I − (1 − �) 

(
L 

(d) − L 

(1) 
)
A 

−1 
d 

S d 
(
L 

(1) 
)−1 

] 
×N 

(d) A 

−1 
d 

A 

−1 
d 

〈 ε 〉 ϒ〈 ε 〉 ϒ . 

his is the homogenization result expanded up to the second order

n the overall strain. Eq. (45) corresponds to the linear effective

ensor 

 

(e f f ) = L 

(1) + �
(
L 

(d) − L 

(1) 
)
A 

−1 
d 

, (46) 

nd to the nonlinear effective tensor 

 

(e f f ) = �
[ 
I − (1 − �) 

(
L 

(d) − L 

(1) 
)
A 

−1 
d 

S d 
(
L 

(1) 
)−1 

] 
×N 

(d) A 

−1 
d 

A 

−1 
d 

, (47) 
ertaining to the whole region Y. While the linear result stated

n Eq. (46) is in perfect agreement with the Mori and Tanaka ’s

1973) scheme, the nonlinear tensor given in Eq. (47) is a new

chievement. Nevertheless, if we consider the particular case of a

ispersion of isotropic nonlinear spheres in an isotropic linear ma-

rix, Eq. (47) gives specific results already discussed in the litera-

ure ( Giordano et al., 2008, 2009; Giordano, 2009; Colombo and

iordano, 2011 ). 

. Results for the ellipsoidal microstructure 

In this section we combine the two homogenization procedures

bove proposed, in order to determine the linear and nonlinear ef-

ective properties of the composite material with ellipsoidal mi-

rostructure. This approach, based on a multiscale approach, is

ummarized in Fig. 4 , where we can observe the two-level mul-

iscale paradigm applied to the present problem. 

We underline the different character of the two steps involved

n the procedure: while the first homogenization is based on an

xact result for a single composite particle, the second one is an

pproximation valid only for small volume fractions of the disper-

ion of particles. If we combine the two schemes, we finally obtain

 composite material with a real volume fraction c = 

Nv i 
v = �� of

he dispersed phase in the matrix. In principle, the final result con-

erning the nonlinear homogenization can be obtained by simply

ubstituting Eqs. (35) and (36) in Eqs. (46) and (47) . Nevertheless,

his calculation reveals non-trivial algebraic issues. 

We start the calculation by considering the linear response. The

irect calculation yields 

 

(e f f ) = L 

(1) + �
(
L 

(d) − L 

(1) 
)
A 

−1 
d 

= L 

(1) + �
(
L 

(d) − L 

(1) 
){ 

I − (1 − �) S d 

×
[ 
I −

(
L 

(1) 
)−1 L 

(d) 
] } −1 

= L 

(1) + �
{ (

L 

(d) − L 

(1) 
)−1 

+ (1 − �) S d 
(
L 

(1) 
)−1 

} −1 

= L 

(1) + �
{ 

�−1 A 

(
L 

(2) − L 

(1) 
)−1 

+ (1 − �) S d 
(
L 

(1) 
)−1 

} −1 

= L 

(1) + �
{ 

�−1 
(
L 

(2) − L 

(1) 
)−1 

+ �−1 ( S − �S d ) 
(
L 

(1) 
)−1 

+ (1 − �) S d 
(
L 

(1) 
)−1 

} −1 

= L 

(1) + ��
{ (

L 

(2) − L 

(1) 
)−1 + S 

(
L 

(1) 
)−1 

−��S d 
(
L 

(1) 
)−1 

} −1 

= L 

(1) + c 
(
L 

(2) − L 

(1) 
)
A 

−1 
e f f 

, (48) 

here we defined 

 e f f = I − ( S − cS d ) 
[ 
I −

(
L 

(1) 
)−1 L 

(2) 
] 
. (49) 

o develop Eq. (48) , we used the definitions of tensors A and A d ,

iven in Eqs. (31) and (43) , respectively. 

The calculation concerning the nonlinear response is more in-

olved. To begin, we substitute Eq. (36) in Eq. (47) , getting 
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Fig. 4. Distribution of particles embedded in the matrix L (1) showing the so-called ellipsoidal microstructure. Each nonlinear inhomogeneity is characterized by an ellipsoidal 

region �, a volume v i = mes (�) , an Eshelby tensor S and a strain-dependent stiffness tensor ˜ L (2) (ε tot ) . Moreover, every particle is surrounded by another ellipsoidal region 

�d having volume v d and Eshelby tensor S d . 
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(e f f ) = ��

×
[ 
I − (1 − �) 

(
L 

(d) − L 

(1) 
)
A 

−1 
d 

S d 
(
L 

(1) 
)−1 

] 

×
[ 
I −

(
L 

(2) − L 

(1) 
)
A 

−1 ( S − �S d ) 
(
L 

(1) 
)−1 

] 
× N 

(2) 
(
A 

−1 A 

−1 
d 

)(
A 

−1 A 

−1 
d 

)
. (50)

We analyse now the product A 

−1 A 

−1 
d 

. From Eq. (35) we easily

find 

A 

−1 = 

1 

�

(
L 

(2) − L 

(1) 
)−1 (L 

(d) − L 

(1) 
)
. (51)

Similarly, by comparing the first and the last line in Eq. (48) , we

have 

A 

−1 
d 

= �
(
L 

(d) − L 

(1) 
)−1 (L 

(2) − L 

(1) 
)
A 

−1 
e f f 

. (52)

Hence, by multiplying Eqs. (51) and (52) , we obtain the important

relation 

A 

−1 A 

−1 
d 

= A 

−1 
e f f 

. (53)

Therefore, the nonlinear effective tensor can be rewritten as 

N 

(e f f ) = ��

×
[ 
I − (1 − �)�

(
L 

(2) − L 

(1) 
)
A 

−1 
e f f 

S d 
(
L 

(1) 
)−1 

] 

×
[ 
I −

(
L 

(2) − L 

(1) 
)
A 

−1 ( S − �S d ) 
(
L 

(1) 
)−1 

] 
× N 

(2) A 

−1 
e f f 

A 

−1 
e f f 

, (54)

where 
(
L 

(d) − L 

(1) 
)
A 

−1 
d 

in the first square brackets has been sub-

stituted with �
(
L 

(2) − L 

(1) 
)
A 

−1 
e f f 

, according to Eq. (52) . The second

square brackets term can be elaborated with the following tensor

property 

( I + YX ) 
−1 = I − Y ( I + X Y ) 

−1 X , (55)

which is valid when I + X Y and I + YX are non-singular. First

of all, we can prove this property by directly multiplying I −
 ( I + X Y ) −1 X and I + YX , as follows [
I − Y ( I + X Y ) 

−1 X 

]
( I + YX ) 

= I + YX − Y ( I + X Y ) 
−1 X − Y ( I + X Y ) 

−1 X YX 

= I + YX − Y ( I + X Y ) 
−1 

( I + X Y ) X = I. (56)

hen, we can elaborate Eq. (54) by considering the expression

 = I + ( S − �S d ) 
(
L 

(1) 
)−1 (L 

(2) − L 

(1) 
)

(see Eq. (31) ). Indeed, if

e take account of this expression, the second square brackets

erm of Eq. (54) assumes the form I − Y ( I + X Y ) −1 X where X =
( S − �S d ) 

(
L 

(1) 
)−1 

and Y = L 

(2) − L 

(1) . It is true since A takes the

imple form I + X Y . Hence, the second square brackets term of Eq.

54) , according to Eq. (55) , can be finally written as ( I + YX ) −1 

nd we get 

 

(e f f ) = ��EG −1 N 

(2) A 

−1 
e f f 

A 

−1 
e f f 

, (57)

here we introduced 

 = I − (1 − �)�
(
L 

(2) − L 

(1) 
)
A 

−1 
e f f 

S d 
(
L 

(1) 
)−1 

, (58)

 = I + 

(
L 

(2) − L 

(1) 
)
( S − �S d ) 

(
L 

(1) 
)−1 

. (59)

e can now prove that the product F = EG −1 can be performed

y eventually obtaining 

 = I −
(
L 

(2) − L 

(1) 
)
A 

−1 
e f f ( S − cS d ) 

(
L 

(1) 
)−1 

. (60)

o prove this statement, we calculate FG − E as follows 

G − E = �
(
L 

(2) − L 

(1) 
)
A 

−1 
e f f 

S d 
(
L 

(1) 
)−1 

+ 

(
L 

(2) − L 

(1) 
)
( S − �S d ) 

(
L 

(1) 
)−1 

−
(
L 

(2) − L 

(1) 
)
A 

−1 
e f f 

S 
(
L 

(1) 
)−1 

−
(
L 

(2) − L 

(1) 
)
A 

−1 
e f f ( S − cS d ) 

(
L 

(1) 
)−1 

×
(
L 

(2) − L 

(1) 
)
( S − �S d ) 

(
L 

(1) 
)−1 
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t

〈

= 

(
L 

(2) − L 

(1) 
)[
I − A 

−1 
e f f 

− A 

−1 
e f f ( S − cS d ) 

×
(
L 

(1) 
)−1 (L 

(2) − L 

(1) 
)] 

( S − �S d ) 
(
L 

(1) 
)−1 

= 

(
L 

(2) − L 

(1) 
){ 

I − A 

−1 
e f f 

×
[ 
I + ( S − cS d ) 

(
L 

(1) 
)−1 (L 

(2) − L 

(1) 
)] } 

×( S − �S d ) 
(
L 

(1) 
)−1 = 0 , (61) 

here we used the definition of A e f f given in Eq. (49) . 

The final result concerning the linear and nonlinear homoge-

ization can be therefore summed up as follows. For the linear

roperties we find 

 

(e f f ) = L 

(1) + c 
(
L 

(2) − L 

(1) 
)
A 

−1 
e f f 

, (62) 

oming from Eq. (48) . Similarly, for the nonlinear properties we

et 

 

(e f f ) = c 

[ 
I −

(
L 

(2) − L 

(1) 
)
A 

−1 
e f f ( S − cS d ) 

(
L 

(1) 
)−1 

] 
×N 

(2) A 

−1 
e f f 

A 

−1 
e f f 

, (63) 

y using Eq. (57) . In both results we must use the definition of

 e f f given in Eq. (49) , reported here for convenience 

 e f f = I − ( S − cS d ) 
[ 
I −

(
L 

(1) 
)−1 L 

(2) 
] 
. (64) 

t is interesting to observe that the procedure yields two results

hat depends only on the volume fraction c and not on the par-

ial volume fractions � and � . Indeed, only the value of c can be

nterpreted as physical volume fraction of the real composite mate-

ial. We also remark that the mathematical form of the final equa-

ions is exactly the same of that obtained for the composite ellip-

oid in Section 4.1 . Therefore, we can say that the combination of

he composite ellipsoid homogenization scheme with the (nonlin-

ar) Mori–Tanaka theory gives, as result, the same mathematical

xpressions of the composite ellipsoid homogenization. It means

hat the Mori–Tanaka theory has the effect to generalize the pro-

edure to the case of a dispersion of particles, without modifying

he mathematical form of the equations involved. To conclude, it is

mportant to note that Eq. (62) for the linear response, combined

ith Eq. (49) or (64) , exactly corresponds to the Ponte Castañeda–

illis scheme ( Castañeda and Willis, 1995 ). However, the nonlin-

ar result stated in Eq. (63) is a new achievement with relevant

heoretical and practical applications. 

These results have been obtained for a second order nonlin-

ar constitutive equation T tot = L 

(2) ε tot + N 

(2) ε tot ε tot . Nevertheless,

hey can be generalized to a constitutive equation with an ar-

itrary number of nonlinear terms with different orders in the

train. However, the solutions become somewhat cumbersome and

re not reported here for the sake of brevity. A particular case,

seful in several applications, concerns the third order relation

 tot = L 

(2) ε tot + M 

(2) ε tot ε tot ε tot , where the tensor M 

(2) represents

he third order response of the nonlinear particles. In this case, we

ventually get the linear solution 

 

(e f f ) = L 

(1) + c 
(
L 

(2) − L 

(1) 
)
A 

−1 
e f f 

, (65) 

nd the nonlinear one as 

 

(e f f ) = c 

[ 
I −

(
L 

(2) − L 

(1) 
)
A 

−1 
e f f ( S − cS d ) 

(
L 

(1) 
)−1 

] 
×M 

(2) A 

−1 
e f f 

A 

−1 
e f f 

A 

−1 
e f f 

, (66) 

here 

 e f f = I − ( S − cS d ) 
[ 
I −

(
L 

(1) 
)−1 L 

(2) 
] 
, (67) 

imilarly to Eq. (49) or (64) . 
We remark that when L 

(1) = L 

(2) (no linear contrast between

atrix and particles), we deduce from Eqs. (63) and (66) that

 

(e f f ) = cN 

(2) and M 

(e f f ) = cM 

(2) . This means that the effec-

ive nonlinear behavior is proportional to the particles nonlinear-

ty, with a coefficient given by the volume fraction of the disper-

ion. This property has been proved for composites without the el-

ipsoidal microstructure in earlier literature ( Giordano et al., 2008,

0 09; Giordano, 20 09; Colombo and Giordano, 2011 ). Indeed, this

roperty is manifestly true for both the cases with S = S d and

 � = S d . 
It is interesting to observe that our solutions, stated in Eqs.

62) –(64) for the second order nonlinearity and in Eqs. (65) –(67)

or the third order nonlinearity, are also valid for an arbitrary

agneto-electro-elastic (or thermo-magneto-electro-elastic) fully 

oupled physical behavior ( Pérez-Fernández et al., 2009; Giordano

t al., 2014; Giordano, 2014 ). In this case the tensors L 

(1) and L 

(2) 

ontain all the elastic, dielectric, magnetic, piezoelectric, magne-

oelastic and magnetoelectric properties and the tensors N 

(2) or

 

(2) describe their nonlinear counterparts. The corresponding Es-

elby tensors can be calculated through well known procedures

 Huang and Kuo, 1997; Huang et al., 1998 ). An important appli-

ation concerns the combination of piezoelectric and magnetoelas-

ic materials, which yields a stress-mediated magnetoelectric effect

 Giordano et al., 2012; Koutsawa et al., 2010; Koutsawa, 2015 ). 

. Application to the Landau coefficients of the nonlinear 

lasticity 

We consider here a purely elastic case and we analyse the effect

f the particles distribution (ellipsoidal microstructure) on the ef-

ective nonlinear behavior of a particulate composite. The matrix is

escribed by the linear isotropic constitutive equation T = 2 μ1 ε +
K 1 − 2 

3 μ1 

)
Tr ( ε ) I, where K 1 and μ1 are the bulk and shear mod-

li, respectively. To model the inhomogeneities, we adopt the most

eneral isotropic nonlinear constitutive equation expanded up to

he second order in the strain components. It follows that the

train energy function U ( ε), leading to the constitutive equation

 (ε) = 

∂U(ε) 
∂ε 

, can only depend upon the principal invariants of

he strain tensor, i.e. U = U 

(
Tr (ε) , Tr (ε 2 ) , Tr (ε 3 ) 

)
. Therefore, by

xpanding U ( ε) up to the third order in the strain components

 Giordano et al., 2008 ), we obtain 

(ε) = μ2 Tr 
(
ε 2 

)
+ 

1 

2 

(
K 2 − 2 

3 

μ2 

)
[ Tr ( ε ) ] 2 (68) 

+ 

A 

3 

Tr 
(
ε 3 

)
+ B Tr ( ε ) Tr 

(
ε 2 

)
+ 

C 

3 

[ Tr ( ε ) ] 3 , 

nd deriving the stress, we get ( Giordano et al., 2008 ) 

 = 2 μ2 ε + 

(
K 2 − 2 

3 

μ2 

)
Tr ( ε ) ̂ I (69) 

+ Aε 2 + B 

{
Tr 

(
ε 2 

)
I + 2 ε Tr ( ε ) 

}
+ C [ Tr ( ε ) ] 2 I, 

or the material corresponding to the inhomogeneites. The parame-

ers A, B , and C are the Landau moduli ( Landau and Lifschitz, 1986 )

nd they represent the deviation from the standard linearity. It

eans that, in this case, we can identify the operator N 

(2) through

he expression N 

(2) ε ε = Aε 2 + B 
{

Tr 
(
ε 2 

)
I + 2 ε Tr ( ε ) 

}
+ C [ Tr ( ε ) ] 2 I .

he application of the general results stated in Eqs. (62) and

63) allows us to obtain the effective nonlinear constitutive equa-

ion of the composite material as follows 

 

T 〉 = 

[
L 

(1) + c 
(
L 

(2) − L 

(1) 
)
A 

−1 
e f f 

]〈 ε 〉 (70) 

+ c 

[ 
I −

(
L 

(2) − L 

(1) 
)
A 

−1 
e f f ( S − cS d ) 

(
L 

(1) 
)−1 

] 

×
{ 

A 

(
A 

−1 
e f f 

〈 ε 〉 )2 + B Tr 

[ (
A 

−1 
e f f 

〈 ε 〉 )2 
] 
I 
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Fig. 5. Geometry of the ellipsoidal microstructure: spherical inhomogeneities of ra- 

dius R surrounded by parallel security spheroids �d of aspect ratio e . The smallest 

regions �d are represented for the prolate (a) and the oblate (b) case. It is proved 

that the volume fraction fulfils the conditions c < 1/ e for e > 1 ( �d prolate) and c 

< e 2 for e < 1 ( �d oblate). 
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+ 2 B 

(
A 

−1 
e f f 

〈 ε 〉 )Tr 
(
A 

−1 
e f f 

〈 ε 〉 )
+ C 

[
Tr 

(
A 

−1 
e f f 

〈 ε 〉 )]2 I 
} 

, 

where A e f f is given in Eq. (64) . 

When both regions � (particles) and �d (ellipsoidal distribu-

tion) are spherical, we can introduce the explicit expression of the

Eshelby tensor reported below ( Mura, 1987 ) 

S i jkh = S d ,i j kh = 

1 

15(1 − ν1 ) 

[(
δik δ jh + δih δ jk 

)
(4 − 5 ν1 ) 

+ δkh δi j (5 ν1 − 1) 
]
, (71)

where ν1 is the Poisson ratio of the matrix. The effect of the el-

lipsoidal distribution disappears and, basically, the effective consti-

tutive equation is written as Eq. (69) where, however, the effective

linear and nonlinear elastic moduli μeff, K eff, A eff, B eff, and C eff must

be introduced. As for the linear elastic coefficients, we obtain 

μe f f = μ1 + c 
μ2 − μ1 

c + ( 1 − c ) 
[
1 + 

6 
5 

(
μ2 

μ1 
− 1 

)
K 1 +2 μ1 

3 K 1 +4 μ1 

] , (72)

K e f f = K 1 + 

( 3 K 1 + 4 μ1 ) ( K 2 − K 1 ) c 

3 K 2 + 4 μ1 − 3 c(K 2 − K 1 ) 
. (73)

Moreover, the effective Landau coefficients show a more compli-

cated structure 

A e f f = c 
A 

L ′ 2 
− 2 c 

N 

′ ( μ2 − μ1 ) 

L ′ 3 
, (74)

B e f f = 2 c 

(
N 

′ M 

′ − L ′ P ′ 
)
( μ2 − μ1 ) 

L ′ 3 ( L ′ + 3 M 

′ ) 
+ (75)

− c 

(
N 

′ + 3 P ′ 
)[

K 2 − K 1 − 2 
3 
( μ2 − μ1 ) 

]
L ′ 2 ( L ′ + 3 M 

′ ) 
+ c 

B 

L ′ 2 
, 

 e f f = 

1 

9 

c ( 9 C + 9 B + A ) 

( L ′ + 3 M 

′ ) 2 
+ 

1 

9 

c ( A − 3 B ) 

L ′ 2 
(76)

+ 

1 

9 

c(4 N 

′ + 6 O 

′ )(μ2 − μ1 ) 

L ′ 2 ( L ′ + 3 M 

′ ) 
− 2 

9 

c ( 3 B + A ) 

L ′ ( L ′ + 3 M 

′ ) 

+ 

1 

9 

c(3 N 

′ + 9 P ′ )(K 2 − K 1 ) 

L ′ 2 ( L ′ + 3 M 

′ ) 
− 4 

9 

N 

′ ( μ2 − μ1 ) c 

L ′ 3 

− 1 

3 

c(9 Q 

′ + 3 O 

′ + 3 P ′ + N 

′ )(K 2 − K 1 ) 

( L ′ + 3 M 

′ ) 3 
, 

where we have introduced the parameters L ′ = c + ( 1 − c ) L, M 

′ =
(1 − c) M, N 

′ = (1 − c) N, O 

′ = (1 − c) O, P ′ = (1 − c) P, and Q 

′ = (1 −
c) Q . Finally, the parameters 

L = 1 + 

6 

5 

K 1 + 2 μ1 

3 K 1 + 4 μ1 

(
μ2 

μ1 

− 1 

)
(77)

M = 

5 K 2 − K 1 

(
3 + 2 

μ2 

μ1 

)
− 4 ( μ2 − μ1 ) 

5 ( 3 K 1 + 4 μ1 ) 
(78)

N = 

3 

5 

A 

μ1 

K 1 + 2 μ1 

3 K 1 + 4 μ1 

(79)

O = 

6 

5 

B 

μ1 

K 1 + 2 μ1 

3 K 1 + 4 μ1 

(80)

P = 

1 

15 ( 3 K 1 + 4 μ1 ) 

[ 
15 B − A 

(
1 + 3 

K 1 

μ1 

)] 
(81)

Q = 

1 

15 ( 3 K 1 + 4 μ1 ) 

[ 
15 C − 2 B 

(
1 + 3 

K 1 

μ1 

)] 
(82)

depend on both linear and nonlinear moduli. The results stated in

Eqs. (72) –(76) are in agreement with previous literature ( Giordano

et al., 2008, 2009; Giordano, 2009; Colombo and Giordano, 2011 ). 
In order to show the results for the ellipsoidal microstructure,

e apply Eq. (70) to a specific geometry: we consider a dispersion

f nonlinear spherical particles � with security surfaces �d shaped

s (prolate or oblate) ellipsoids of revolutions (see Fig. 5 ). We de-

ne the aspect ratio e = b z /b x = b z /b y , where ( b x , b y , b z ) are the

emi-axes of �d (with b x = b y ). For prolate security ellipsoids ( e >

), the smallest �d is obtained when the semi-axes are ( R, R, eR ),

eing R the radius of the spherical inhomogeneities (see Fig. 5 a).

n this conditions, � = 1 /e and, therefore, c = �� = �/e ; since 0

 � < 1, we have c < 1/ e for the overall composite. Similarly,

or oblate security ellipsoids ( e < 1), the smallest �d is obtained

hen the semi-axes are ( R / e, R / e, R ) (see Fig. 5 b). In this condi-

ions, � = e 2 and, therefore, c = �� = �e 2 ; since 0 < � < 1, we

ave c < e 2 for the overall composite. The conditions c < 1/ e for

 > 1 and c < e 2 for e < 1 can be summed up by stating that
 

c < e < 1 /c, consistently with the hypothesis of impenetrability

f the security ellipsoids. 

We give an example of application of Eq. (70) by considering

 1 = 10 0 0 and μ1 = 200 for the matrix and k 2 = 3 , μ2 = 1 . 5 and

 = B = C = 10 for the particles (in arbitrary units). Once deter-

ined the constitutive equation through Eq. (70) , we can analyse

he response of the overall system under deformation. When e � =
, the composite material exhibits a uniaxial symmetry (transverse

sotropy). Hence, we analyse both the longitudinal and transverse

esponse. 

Firstly, we apply the overall strain ε i j = 0 for i � = 3 and j � =
 and ε 33 = ε (longitudinal deformation). We can then calculate

he average stress within the composite. In particular, we con-

ider the longitudinal component T 33 � T ‖ , which can be written as

 ‖ = � ‖ ε(1 + n ‖ ε) , where we defined the linear and nonlinear lon-

itudinal coefficients � ‖ and n ‖ . 
Secondly, we apply the overall strain ε i j = 0 for i � = 1 and

 � = 1 and ε 11 = ε (transverse deformation). If we consider the

orresponding transverse stress component T 11 � T ⊥ , we have T ⊥ =
 ⊥ ε(1 + n ⊥ ε) , where we defined the linear and nonlinear trans-

erse coefficients � ⊥ and n ⊥ . 
The results can be found in Fig. 6 , where the linear and non-

inear, longitudinal and transverse effective coefficients are shown

ersus log 10 e for different values of c . Albeit the method has been

eveloped under the hypothesis of small c (0 < � < 1 and � �
), we present the results in the range 0 < c < 1/2. As a matter of

act, it is not difficult to observe that the effect of the correlation

ellipsoidal symmetry) on the effective properties is of the second

rder in the volume fraction ( Ponte Castañeda and Willis, 1995 ).

ence, to better understand this effect, we plotted the results in a

arge range of volume fraction values. For e = 1 (green circles), we

an observe the perfect correspondence between longitudinal and

ransverse properties since the overall material is isotropic from

he elastic, both linear and nonlinear, point of view. In particular,
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Fig. 6. Linear coefficients � ‖ (red continuous line) and � ⊥ (blue dashed line) and 

nonlinear ones n ‖ (red continuous line) and n ⊥ (blue dashed line) versus log 10 e for 

different values of c ∈ (0, 1/2] ( c = j/ 20 ∀ j = 1 , . . . 20) . Square red and blue sym- 

bols represent the realistic limitations 
√ 

c < e < 1 /c, while the green circular sym- 

bols represent the case with e = 1 , described by Eqs. (72) –(76) . (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 7. Anisotropy coefficients a � = 

l ⊥ −l ‖ 
l ⊥ + l ‖ (dashed magenta curves) and a n = 

n ⊥ −n ‖ 
n ⊥ + n ‖ 

(solid cyan curves) versus log 10 e and c ( c assumes the same values used in Fig. 6 ). 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 8. Effective nonlinear coefficients � ⊥ n ⊥ (solid blue lines) and � ‖ n ‖ (solid red 

lines) versus c and e (ten values of log 10 e in the range from −1.5 to 1.5). Thick 

green curves correspond to e = 1 and dashed and dotted-dashed black curves rep- 

resent the bounds induced by the inequality 
√ 

c < e < 1 /c. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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he green circular symbols are in perfect agreement with Eqs. (72) –

76) , concerning the nonlinear homogenization of a dispersion of

pheres without the ellipsoidal microstructure. On the other hand,

or e � = 1, we can observe a deviation from the classical homoge-

ization theories, revealing the linear and nonlinear anisotropy in-

uced by the ellipsoidal microstructure. In Fig. 6 , square symbols

epresent the limitations 
√ 

c < e < 1 /c, above discussed. Interest-

ngly enough, we observe a stronger effect of the aspect ratio e on

he nonlinear response than on the linear one. Moreover, we also

ote a stronger effect on the nonlinear longitudinal component.

his behavior is confirmed in Fig. 7 where the linear and non-
inear anisotropy coefficients a � = 

l ⊥ −l ‖ 
l ⊥ + l ‖ and a n = 

n ⊥ −n ‖ 
n ⊥ + n ‖ are repre-

ented versus e and c . These coefficients represent a normalized

easure of the difference between the longitudinal and transverse

esponses for both the linear and nonlinear behavior. Also in Fig. 7 ,

quare symbols represent the limitation 

√ 

c < e < 1 /c. To conclude

his analysis, we also show in Fig. 8 the total nonlinear coeffi-

ients � ⊥ n ⊥ and � ‖ n ‖ versus the volume fraction c for different

alues of the aspect ratio e . The important point is that it exists

 maximum value of the nonlinear response for a given value of

he volume fraction c . This result confirms previous achievements

 Giordano et al., 2008, 2009; Giordano, 2009; Colombo and Gior-

ano, 2011 ), represented by the thick green lines in Fig. 8 ( e = 1 ),

nd extend their applicability to the ellipsoidal microstructure. In-

eed, we can observe the effect of e � = 1 (solid red and blue lines)

nd the bounds (dashed and dotted-dashed black lines) generated

y the relation 

√ 

c < e < 1 /c. We can observe that the nonlinear

ongitudinal behavior is more influenced by the values of e � = 1

han its transverse counterpart. The existence of maximum values

f the nonlinear response is useful for tuning the elastic nonlinear-

ties in composite nanomaterials ( Guerder et al., 2015 ). The maxi-

um point in the curve of the nonlinear features versus the vol-

me fraction depends on the ratio k 1 / k 2 , defining the compressibil-

ty contrast between matrix and particles. As a matter of fact, the

aximum point exists only if k 1 � k 2 . Indeed, in this case, it is

ossible to prove that the optimal volume fraction is proportional

o k 2 / k 1 � 1 and the amplification of the nonlinearity is propor-

ional to k 1 / k 2 � 1. The detailed explication of the origin of the

aximum value for the effective nonlinearity can be found in re-

ent literature ( Guerder et al., 2015 ). 
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Fig. 9. Linear coefficients σ ‖ (red continuous line) and σ⊥ (blue dashed line) and 

nonlinear coefficients ξ ‖ (red continuous line) and ξ⊥ (blue dashed line). The re- 

sults correspond to σ1 = 1 , σ2 = 10 and χ = 1 and are plotted versus log 10 e for dif- 

ferent values of c ∈ (0, 1/2] ( c = j/ 20 ∀ j = 1 , . . . 20) . Square red and blue symbols 

represent the realistic limitations 
√ 

c < e < 1 /c, while the green circular symbols 

represent the case with e = 1 , described by Eq. (88) . (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 10. Anisotropy coefficients a σ = 

σ⊥ −σ‖ 
σ⊥ + σ‖ (dashed magenta curves) and a ξ = 

ξ⊥ −ξ‖ 
ξ⊥ + ξ‖ 

(solid cyan curves) versus log 10 e and c ( c assumes the same values used in Fig. 9 ). 

The results correspond to σ1 = 1 , σ2 = 10 and χ = 1 . (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 
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8. Application to the hypersusceptibility of the nonlinear 

transport processes 

In this Section, we consider the homogenization of the trans-

port properties in a particulate composite material. To fix the ideas,

we consider the electric conduction problem and we study the ef-

fects of the ellipsoidal microstructure on the effective conductivity

of the dispersion. As it is well known, the results are equally valid

for the heat conductivity, the diffusivity, the dielectric permittivity

and the magnetic permeability. The matrix is characterized by a

linear isotropic behavior L 

(1) = σ1 I with a scalar conductivity σ 1 

relating a current density with an electric field, i.e. � J = σ1 
�
 E . On the

other hand, the particles are characterized by a linear conductivity

σ 2 corresponding to the isotropic tensor L 

(2) = σ2 I and by an hy-

persusceptibility χ describing the third order nonlinear behavior

M 

(2) �
 E � E � E = χ | � E | 2 � E . Summing up, the constitutive relation of the

embedded particles can be written as � J = σ2 
�
 E + χ | � E | 2 � E (Kerr like

response Giordano, 2016 ). Within the transport context, the Es-

helby tensor of the particle ( �) is defined as 

S i j = L i δi j , (83)

L i = 

a 1 a 2 a 3 
2 

∫ ∞ 

0 

dξ

(a 2 
i 

+ ξ ) 

√ ∏ 3 
j=1 (a 2 

j 
+ ξ ) 

, (84)

where a 1 , a 2 and a 3 are the semi-axes of the ellipsoid and L i are

the so-called depolarization coefficients. Similarly, the Eshelby ten-

sor of the ellipsoid �d is given by 

S d,i j = L d,i δi j , (85)

L d,i = 

b 1 b 2 b 3 
2 

∫ ∞ 

0 

dξ

(b 2 
i 
+ ξ ) 

√ ∏ 3 
j=1 (b 2 

j 
+ ξ ) 

, (86)

where b 1 , b 2 and b 3 are the semi-axes and L d, i are the depolariza-

tion coefficients. 

We use the results obtained in Section 6 , see Eqs. (65) and (66) ,

to write the effective constitutive response of the heterogeneous

material as follows 

〈 � J 〉 = 

[
L 

(1) + c 
(
L 

(2) − L 

(1) 
)
A 

−1 
e f f 

]〈
�
 E 
〉

(87)

+ cχ
[ 
I −

(
L 

(2) − L 

(1) 
)
A 

−1 
e f f ( S − cS d ) 

(
L 

(1) 
)−1 

] 

×
(
A 

−1 
e f f 

〈
�
 E 
〉)∣∣A 

−1 
e f f 

〈
�
 E 
〉∣∣2 

, 

where A e f f is given in Eq. (67) . This expression allows us to eval-

uate the effect of the particles distribution, described by the sur-

faces �d , on both the linear and nonlinear transport properties. 

For the particular case with S = S d = 1 / 3 I, corresponding to a

random distribution of spheres, we obtain the result 

〈 � J 〉 = σ1 
2 σ1 + σ2 − 2 c(σ1 − σ2 ) 

2 σ1 + σ2 + c(σ1 − σ2 ) 

〈
�
 E 
〉

(88)

+ 

81 cχσ 4 
1 

[ 2 σ1 + σ2 + c(σ1 − σ2 ) ] 
4 

∣∣〈�
 E 
〉∣∣2 〈�

 E 
〉
, 

in perfect agreement with earlier findings ( Yu et al., 1993; Gior-

dano and Rocchia, 2005, 2006 ). 

In order to show the results for the ellipsoidal microstructure,

we apply Eq. (87) to the same geometry used in Section 7 (see

Fig. 5 ). As before, for prolate security ellipsoids ( e > 1), we have c

< 1/ e and for oblate security ellipsoids ( e < 1), we have c < e 2 . 

We give two examples of application of Eq. (87) by considering:

(i) σ1 = 1 for the matrix and σ2 = 10 and χ = 1 for the particles,

and (ii) σ1 = 10 for the matrix and σ2 = 1 and χ = 1 for the par-

ticles (in arbitrary units). As before, when e � = 1, the composite
aterial exhibits a transverse isotropy. Hence, we analyse both the

ongitudinal and transverse response. 

Firstly, we apply an electric field E aligned with the z -axis and

e observe the longitudinal current density J z = J ‖ , which can be

ritten as J ‖ = σ‖ E(1 + ξ‖ E) , where we defined the linear and

onlinear longitudinal coefficients σ ‖ and ξ‖ . 
Secondly, we apply an electric field E aligned with the x -axis

nd we observe the transverse current density J x = J ⊥ , given by

 ⊥ = σ⊥ E(1 + ξ⊥ E) , where we defined the linear and nonlinear

ransverse coefficients σ⊥ and ξ⊥ . 
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Fig. 11. Linear coefficients σ ‖ (red continuous line) and σ⊥ (blue dashed line) and 

nonlinear coefficients ξ ‖ (red continuous line) and ξ⊥ (blue dashed line). The re- 

sults correspond to σ1 = 10 , σ2 = 1 and χ = 1 and are plotted versus log 10 e for dif- 

ferent values of c ∈ (0, 1/2] ( c = j/ 20 ∀ j = 1 , . . . 20) . Square red and blue symbols 

represent the realistic limitations 
√ 

c < e < 1 /c, while the green circular symbols 

represent the case with e = 1 , described by Eq. (88) . (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 12. Anisotropy coefficients a σ = 

σ⊥ −σ‖ 
σ⊥ + σ‖ (dashed magenta curves) and a ξ = 

ξ⊥ −ξ‖ 
ξ⊥ + ξ‖ 

(solid cyan curves) versus log 10 e and c ( c assumes the same values used in Fig. 11 ). 

The results correspond to σ1 = 10 , σ2 = 1 and χ = 1 . (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 
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The results are shown in Figs. 9 and 10 for the first set of pa-

ameters ( σ1 = 1 , σ2 = 10 and χ = 1 ) and in Figs. 11 and 12 for the

econd set ( σ1 = 10 , σ2 = 1 and χ = 1 ). For both sets of parame-

ers, we can observe the coincidence of longitudinal and transverse

esults for e = 1 (see, e.g., green circles in Figs. 9 and 11 ): this is in

greement with earlier theories represented by Eq. (88) . Moreover,

e note a deviation from this result when e � = 1. In this case, we

an notice a stronger influence of the aspect ratio e on the non-

inear properties than on the linear ones. Besides, the longitudinal

onlinear response is even more affected by e than its transverse

ounterpart. By comparing the two set of parameters adopted, we

an deduce that the effective nonlinear response of the system is
arger if σ 1 > σ 2 . In addition, we note that, when σ 1 > σ 2 , ξ‖ 
s an increasing function of e while ξ⊥ is a decreasing function

f e . On the other hand, when σ 2 > σ 1 , ξ‖ is a decreasing func-

ion of e while ξ⊥ is an increasing function of e . This behavior can

e also deduced from Figs. 10 and 12 where the anisotropy coeffi-

ients a σ = 

σ⊥ −σ‖ 
σ⊥ + σ‖ (dashed magenta curves) and a ξ = 

ξ⊥ −ξ‖ 
ξ⊥ + ξ‖ (solid

yan curves) are shown versus log 10 e and c . Indeed, while the sign

f a σ (see dashed magenta curves) is the same for the two sets of

arameters (for the same value of e ), the sign of a ξ (see solid cyan

urves) is different for the cases σ 1 > σ 2 and σ 2 > σ 1 . This com-

lex scenario proves the importance of considering the real dis-

ribution of inhomogeneities (e.g., the elliposidal microstructure)

hen studying the nonlinear properties of dispersions of particles.

n particular, this is relevant for the synthesis or the analysis of

anocomposites with tuned nonlinear effective response. 

. Conclusions 

A nonlinear homogenization scheme is presented for analysing

ispersions of particles exhibiting an ellipsoidal microstructure. It

eans that we can evaluate the effects of the real distribution of

articles on the linear and nonlinear effective behavior of the het-

rogeneous material. Under this respect, we can say that we have

eneralized the classical Ponte Castañeda–Willis theory in order

o take into account the nonlinear features of the composite. We

dopted a two-step multiscale approach taking account the con-

titutive nonlinearity at the underling level and the statistical dis-

ribution at the intermediate level. The first step is based on the

efinition of an ellipsoidal security surface describing the correla-

ion of the particle positions. Moreover, the second step represents

 nonlinear generalization of the Mori–Tanaka scheme. While this

ethodology is able to consider both the correlation and the non-

inearity of the particles, the non-local effects emer ging by the mi-

rostrucure have been neglected in this context. Through two ex-

mples, dealing with elastic and transport properties, we showed

hat the nonlinear effective response can be significantly modified

y the actual distribution of particles, in particular when described

y the ellipsoidal microstructure. Indeed, we observed the linear

nd nonlinear anisotropic behavior induced by the ellipsoidal cor-

elation among the inhomogeneities. These effects play an impor-

ant role for studying the nonlinear composite structures used in

iverse technological applications, including acoustic, electromag- 

etic and multiphysics devices. Moreover, the proposed approach

an be used for validating advanced numerical models and multi-

cale techniques, largely used for the description of materials with

andom microstructure. 
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