
Supplementary Materials
Appendix I. DNA reference frames and conventional coordinates
Analysis of stress fields and molecular deformation was carried out with our in-home NA-BAKE code,
which allows to extract the principal components of the stress, compute invariants and other derived
quantities, compare stress fields from different simulations, and write the outputs in the portable Gaussian-
cube format for visualization. The code also includes the set of subroutines CURVES+, [40] for a detailed
analysis of the DNA helical parameters and coordinates. These latter are defined according to the so-
called Tsukuba conventional reference frame (Suppl.Fig.S1a), with the three orthonormal basis vectors
{e1,e2,e3} such that e3 is the tangent unit vector along the center line defining the DNA helical symmetry
axis, and e1 is the unit vector pointing at the major groove.

It is however worth noting that the base-pair reference frame defined in Ref. [39] and used by CURVES+
can become extremely distorted, given the large deformations between bases observed in the present work.
For this reason, NA-BAKE also uses a second, "smoother" Cartesian reference frame, centered at the
midpoint of each pair of P atoms in a base-pair (Suppl.Fig.S1b), the phosphate backbone being more
rigid than the stacked base-pairs. At each midpoint, the three basis vectors are defined as follows: the
tangent vector t lies on the direction joining two midpoints in adjacent base-pairs; the normal vector n

points at the center of the major groove; and the binormal vector is b = n⇥ t . (This can be seen as the
approximation of a Frenet-Serret continuous frame for the broken polyline connecting the midpoints of
the base-pairs.) The origin of this reference frame does not coincide with the {e1,e2,e3}, which depends
on the type of base-pair, whereas in the P-centered frame this is uniquely defined as the mid-point along
the P-P ideal segment; the origin is also shifted along t||e3 by about half a repeat distance ("rise") with
respect to the Tsukuba base-pair plane.

The ensemble of midpoints ordered according to the bp numbering, defines a pathlength 0  s  S0
along the DNA contour length. For a strand of N bp, with midpoints defined by the set of position vectors
{r1, ..rN}, s is a sum of discrete segments (a polyline):

S0 =
N�1

Â
i=1

si =
N�1

Â
i=1

ri+1 � ri (1)

The pathlength vectors si are parallel to the local tangent t . The variation of the three vectors n(s),
b(s), t(s) along the DNA pathlength can be used to identify the local bending and torsion of the line. From
the discrete variation we compute three Euler angles, defining the 3D rotation of the local reference frame
between two bp i and i+1; in NA-BAKE this is done by using quaternion algebra.

Because of the double-helix geometry there are two bending modes with different elastic constants A

and B (stiffness, usually given in units of nm�1), i.e. the DNA polyline has an effective thickness, and is
anisotropic. By looking at the definitions of the helical parameters, it turns out that the variation of n(s)
corresponds to the "tilt" q , that of b(s) corresponds to the "roll" r , and that of t(s) corresponds to the
"twist". The first two parameters also give the local curvature between consecutive bp along the line, as

k =
1
s

q
q 2 +r2 (2)

However, such a definition of "strictly local" curvature may miss the ample bending deformations that
extend over lengths longer than just 1-2 bp (see Suppl.Fig.S1c). For this reason, we introduced a more
geometric-minded, "global" notion of curvature, by calculating the radius R of the best fitting circle to a
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series of midpoints along s, projected in the best-fitting common plane. Note that the direction vector of
R does not necessarily coincide with b, which instead varies from point to point: this is the very reason
to introduce a "global", rather than "local" notion of curvature. The numerical procedure is described in
the following Appendix II. In practice, the geometric curvature k = 1/R is estimated by computing R

for a series of equal lengths Sn = Âk+n

i=k
si, the starting point k spanning the whole DNA length S0; each

set overlaps with the next one by ±1 midpoint, therefore the values of k(s) behave quite smoothly for a
sufficiently large n. In the calculations shown in Suppl.Fig.S1 we used n=5-8, such that each set spans
a length approximately equal to one half-turn of the double helix. However, by using larger values for
averaging, large bending movements can be captured. Suppl.Fig.S1c shows an example of curvature
calculated with n=25 points.

Appendix II. Numerical approximation of global curvature
We describe the method to fit a circle to a cluster of points in 3D space, used to estimate the global
curvature along the DNA backbone. Consider a set of n points {P1, ..,Pn}, where Pi = (xi,yi,zi)T 2 R

3,
obtained by extracting the centers of the pairs of P atoms of each bp along the DNA backbone. For a DNA
segment containing N base-pairs, we consider subsets of n < N consecutive points, typically n ' 6�12,
covering the whole DNA length, possibly with some overlap between adjacent subsets. We want to find a
circle that fits as close as possible to each subset of points. The circle fitting method can be split into three
steps:

1. use the least-squares method to find the best fitting plane to the set of points;

2. project all the points perpendicularly onto the fitting plane in 2D;

3. use again the least-square method, to fit a circle in the 2D plane to the set of projected points, and
obtain the circle center and radius.

Eventually, the circle center can be transformed back to 3D coordinates, if we want to collect the
ensemble of curvatures in the common reference frame other than just the scalar value of k . We will use
two different implementations of the least-squares method to obtain the radius of the best fitting circle.

Step1. Given the subset of n points in 3D, the best plane can be found by a least-squares method that
minimizes the distance of each point to the plane. The equation for a generic plane is: ax+by+ c = z.
Hence, we build an eigenvalue problem like Ax = B, or:

0

BB@

x0 y0 1
x1 y1 1
.. .. ..
xn yn 1

1

CCA

0

@
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c

1
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0

BB@

z0
z1
..
zn

1

CCA (3)

Then, solve for the x vector of coefficients. However, since each subset is made up by more than just 3
points, the system is over-determined. Therefore, we use the left pseudo-inverse matrix: A

+ = (AT
A)�1

A
T .

Finally, the coefficients of the plane are found as:
0

@
a

b

c

1

A= (AT
A)�1

A
T

B (4)
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Note that such a method is not entirely general. A more robust method should be to subtract out the
centroid of the subset of points, to form a n⇥3 matrix with the resulting coordinates, and calculate its
singular value decomposition. As a result, the normal vector of the best-fitting plane should be found as
the left singular vector corresponding to the least singular value. However, we preferred the method of
least squares because of its simpler implementation in this case.

Step2. Once the best fitting plane is obtained, the 3D coordinates of the subset of points are projected
onto this plane according to their respective perpendicular distances, thus obtaining a 2D representation of
the same subset in the new coordinates.

Step3. The implicit equation in 2D for a circle with radius R and center (xc,yc)T can be arranged as:

(x� xc)
2 +(y� yc)

2 = R
2,

2xcx+2ycy+(R2 � x
2
c � y

2
c) = x

2 + y
2, (5)

c1x+ c2y+ c0 = x
2 + y

2

with c = (c1,c2,c0)T the vector of unknown parameters. Then, by applying this definition to all the input
points Pi, it yields to a system of linear equations:

Ac = b (6)

with:

A =

0

@
x1 y1 1
.. .. ..
xn yn 1

1

A , b =

0

@
x

2
1 + y

2
1

..
x

2
n + y

2
n

1

A , (7)

Since there are more equations than unknowns, an approximate solution is obtained by the method
of least-squares, which minimizes the squared sum of the residuals ||b�Ac||2; we implemented for this
purpose the family of subroutines QR_SOLVE from LINPACK. Therefore, the center of the fitting circle
is xc = c1/2, yc = c2/2, and the radius is R = (c0 + x

2
c + y

2
c)

1/2. Then, the line curvature for the subset
{P1, ..,Pn} is just k = 1/R.

Appendix III. Stress calculation for atomistic systems
In classical macroscopic continuum elasticity, stress is constructed as a continuous field at each point r

in a homogeneous domain where a distribution of forces exists, namely a 3x3 tensor, sab (r), with the
dimensions of a force per unit surface. In practice, for a force vector f and a boundary S with normal unit
vector n, the Cartesian components of force and stress are linked as:

fa = Â
b

Z

S

(sab ·nb )dS, a,b = x,y,z (8)

In atomistic simulations, however, we deal with material points exerting forces across empty space.
Hence, the definition of the analogous of stress at the atomic level is complicated by several issues, such
as: discretization of a continuum field; what is the volume around each atom; how to precisely define a
boundary surface; last but not least, the fact that atoms have a velocity [66, 67]. With a much simplified
notation for the sake of clarity, Hardy’s definition of a continuous stress that can be mapped onto atomic

26/37

fabrizio.cleri
     3



positions, velocities and forces (that is, accelerations) of a system of N point particles ("atoms") can be
written as [68]:

sab (r) =�
N

Â
i< j=2

(ra
i j · f

b
i j
)bi j(r)+

1
2

N

Â
i=1

mi(v
a
i · vb

i
)gi j(r) (9)

where ri j = |ri � r j| is the scalar distance between atoms i, j, and fi j is the force on atom i from any other
atom j; the bi j and gi j are spatial weighting functions (usually derived by variational arguments). The first
term in the equation represents the potential (or "virial") contribution, and the second term is the kinetic
contribution to the molecular stress.

In this work we use the recently developed covariant central-force decomposition scheme (CCFD) for
the intra- and intermolecular forces [65], which is based on thermodynamical arguments rather than on
momentum conservation. We aim to extract such information from our simulations and couple it to the
state of deformation, along the lines of our first application of this method to a single nucleosome [51].

In the condition of uniaxial loading used in this work, the component of the stress parallel to the
loading condition, szz(r), may be a first, interesting quantity, at least at the beginning of the simulation; in
the early stage of loading, the compressive force (directed along the line joining the centers of mass of the
groups C and B, in Fig. 1a) is parallel to the z-direction. Therefore, the szz(r) component is practically
coincident with the s3 principal component of the diagonal stress.

At later times, however, the configuration quickly becomes so much deformed that other components
of the stress tensor describe the redistribution of the internal forces in response to the compression. Next
to the purely compressive component, also mixed transverse and shearing components arise. A quantity
that can be useful to characterise the complex deformations occurring, instead of looking at the different
components one by one, is the distribution of deviatoric, or Von Mises, stress:

edev(r) =
1+n
3E

"
1
2 Â

i< j

(sii �s j j)
2 +3 Â

i< j

s2
i j

#
(10)

where all the si j = si j(r), and E=300 MPa and n=0.4 are typical values for the Young’s modulus and
Poisson’s ratio for straight DNA, which fix the energy scale. Note that by definition this quantity is always
positive, although the various stress components may have both negative and positive values.

At a more global scale, another important quantity that can be derived from the local stress tensor is
the density of elastic energy at each point in space:

eel(r) =
1
E

Â
i, j


](sii)

2 �2n(siis j j)+
1+n

2
(si 6= j +s j 6=i)

2
�

(11)

By looking at the time evolution of this elastic energy at different positions in space, it can be observed
how the elastic energy, progressively stored by the constant loading force, is redistributed.
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force (pN) start compress (ns) relax (ns)
filename filename filename

1 40 12
n183.pdb 183_40.pdb

2 85 12
183_85.pdb

3 125 100 150
183_125.pdb 183_125_rel.pdb

3’ 125 15
183_125s.pdb

4 150 20
183_200.pdb

5 400 15
183_400.pdb

1 40 10
n169.pdb 169_40.pdb

1* 40 10
n169f.pdb 169_40f.pdb

2 85 10
169_85.pdb

2* 85 10
169_85f.pdb

3 125 15 200
169_125.pdb 169_125_rel.pdb

3* 125 15 200
169_125f.pdb 169_125f_rel.pdb

4 150 15
169_200.pdb

4* 150 25
169_200f.pdb

5 400 15
169_400.pdb

Table 1. Summary of the steered-MD simulations presented in this work. The upper and lower blocks
correspond to the T183 and T169, respectively. For the latter, the ’*’ indicates configurations produced
with alternate H3 tails initial configurations. The name of the pdb file containing the final configuration of
the run, and available from the repository, is indicated whenever available. Note that water and ions are
not included in the pdb.
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T183

TACGTAATATTGGCCAGCTAGGA
TATCACAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAAA
CGCACGTACGGA A TCCGTACGTGCGTTTAAGCGGTGCTAGAGCTGTCTACGACCAATTGA
GCGGCCTCGGCACCGGGATTGTGATA
TCCTAGCTGGCCAATATTACGTATGGCCAGCTAGGA
TATCACAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAAA
CGCACGTACGGA A TCCGTACGTGCGTTTAAGCGGTGCTAGAGCTGTCTACGACCAATTGA
GCGGCCTCGGCACCGGGATTGTGATA
TCCTAGCTGGCCATACGTAATATTGGCCAGCTAGGA
TATCACAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAAA
CGCACGTACGGA A TCCGTACGTGCGTTTAAGCGGTGCTAGAGCTGTCTACGACCAATTGA
GCGGCCTCGGCACCGGGATTGTGATA
TCCTAGCTGGCCAATATTACGTA

T169

ATCAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAAA
CGCACGTACGCGC T GTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTAGTCTCCAG
GCACGTGTCAGATATATACATCGATTG
GATAGGCCCGGACGGCCTGGAT
ATCAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAAA
CGCACGTACGCGC T GTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTAGTCTCCAG
GCACGTGTCAGATATATACATCGATTG
GATAGGCCCCAACGGCCTGGAT
ATCAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAAA
CGCACGTACGCGC T GTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTAGTCTCCAG
GCACGTGTCAGATATATACATCGATTG

Widom-601

ATCGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAA
ACGCACGTACGCG C TGTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTAGTCTCCA
GGCACGTGTCAGATATATACATCCGAT

Table 2. DNA sequences of the two trinucleosome systems employed in this work; the original
Widom-601 sequence is also reported for comparison. Red letters indicate the DNA linker regions; blue
letters indicate the hanging DNA leads; boxed letters indicate the dyad.
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H3 (96,5% identity 98% positives)

Human 1 MARTKQTARKSTGGKAPRKQLATKAARKS T PST C GVK–PHRYRPGTVALREIRRYQKSTE 59
Xenop 1 MARTKQTARKSTGGKAPRKQLATKAARKS A PST G GVKKPHRYRPGTVALREIRRYQKSTE 60
Human 60 LLIRKLPFQRLVREIAQDF N TDLRFQSAA V GALQEASEAYLVGL L EDTNLCAIHAKRVTI 119
Xenop 61 LLIRKLPFQRLVREIAQDF K TDLRFQSAA I GALQEASEAYLVGL F EDTNLCAIHAKRVTI 120
Human 120 MPKDIQLARRIRGERA 135
Xenop 121 MPKDIQLARRIRGERA 136

H4 (100% identity)

Human 1 MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLK 60
Xenop 1 MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLK 60
Human 61 VFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG 103
Xenop 61 VFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG 103

H2A (93% identity 95% positives)

Human 1 MSGRGKQGGK A RAKAK S RSSRAGLQFPVGRVHRLLRKGNYAERVGAGAPVY M AAV 55
Xenop 1 MSGRGKQGGK T RAKAK T RSSRAGLQFPVGRVHRLLRKGNYAERVGAGAPVY L AAV 55
Human 56 LEYLTAEILELAGNAARDNKKTRIIPRHLQLA I RNDEELNKLLG K VTIAQGGVLPNIQ A 114
Xenop 56 LEYLTAEILELAGNAARDNKKTRIIPRHLQLA V RNDEELNKLL G GVTIAQGGVLPNIQ S 114
Human 115 VLLPKKTES HHK AK G K 130
Xenop 115 VLLPKKTES AKS AK S K 130

H2B (93% identity 98% positives)

Human 1 MPEP S KSAPAPKKGSKKA I TK A QKKDGKKR KR SRKESY S IYVYKVLKQVHPDTG 54
Xenop 1 MPEP A KSAPAPKKGSKKA V TK T QKKDGKKR RK SRKESY A IYVYKVLKQVHPDTG 54
Human 55 ISSKAM G IMNSFVND I FERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSE 114
Xenop 55 ISSKAM S IMNSFVND V FERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSE 114
Human 115 GTKAVTKYTS S K 126
Xenop 115 GTKAVTKYTS A K 126

Table 3. Histone sequence comparison between human (used in this work) and Xenopus laevis (from the
1KX5 experimental PDB dataset). Blue letters indicate conservative (positive) replacement, red letters
non-conservative.
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Figure S1. Conventional definition of (a) the basis-centered reference frame (Tsukuba set) used in the
CURVES+ module, and (b) the second phosphate-centered reference frame also used in this work
(NA-BAKE module). The two green spheres are the C1’ carbon atoms of the base-pair, while the two red
spheres indicate the P atoms. The P-centered frame is shifted by a half-rise (0.17 nm) along e3 with
respect to the first one. (c) Example of calculation of the curvature from the procedure described in
Suppl.Mat.Appendix I, as the inverse of the radius of the circle best-fitting the ensemble of midpoints
(blue spheres) for a bent DNA linker.
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Figure S2. (a) Initial state for the T169 simulations. (b)-(i) Configuration at t=10 ns. Only DNA shown,
same color codes as Fig.1-2 for nucleosomal and linker DNA.
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Figure S3. MD compression simulation of the T183 system at F=125 pN. (a) Root-mean-squared
deviation (RMSD) from the initial configuration as a function of time (compression, 0 to 100 ns), for the
different components of the central C nucleosome to which the force is applied. (b) Root-mean-squared
fluctuation (RMSF) per residue, averaged over the compression time (0-100 ns) for the nucleosomic DNA
(in red/black the two strands, 147 bp ranging from -73 to +73, 0 being the dyad); (c-f) same as (b), for the
H3, H4, H2A, H2B pairs (red/black) of histones; N-terminal tail regions indicated by light-blue shading,
C-terminal tail regions by light-red shading.
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Figure S4. Time-plots for the roll (top left), twist (top right), tilt (bottom left) intra-bp helical
parameters, and the resulting curvature (bottom right), for the R (blue) DNA linker of Fig.2b. See Fig3 of
the main text for nomenclature.
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Figure S5. Schematic of the hydrogen-bonded water network surrounding an adjacent C-G/A-T
dinucleotide sequence in the T183 linker. (a) Configuration of a normally-stacked pair. (b) Configuration
of the flipped-out T95 base (see also Fig.5 in the main text). Color code: T blue, A green, G orange, C red
licorice-sticks; Na ions, purple spheres; water, red-white sticks. The grey ribbons in background depict
the local arrangement of the DNA backbone.
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Figure S6. Results of MD simulations of the T169 without histone tails. (a) Final configuration after 20
ns compression at 50 pN. (b) Final configuration after 20 ns compression at 100 pN. (c) Main helical
parameters along the 22 base-pairs of the cyan DNA linker for the 50 pN simulation.
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Supplementary Movie 1 - Slow compression (100 ns) of the T183 trinucleosome, followed by free
relaxation (150 ns), at a force of 125 pN. The two linkers are represented in cyan and blue, as in the main
text. The red nucleotide on the cyan linker is the thymine-95, which flips out in extrahelical position
some time after the beginning of compression, and induces the kinking (Brazier-like instability). Water
molecules and ions not shown.

Supplementary Movie 2 - Comparison of the rapid compression (10 ns) of the T169 trinucleosome,
followed by free relaxation (200 ns), at a force of 125 pN. The left and right panels correspond to
two identical simulations, starting with different initial configurations of the H3 histone tails. Only the
H3 histone tails implicated in the contacts are shown as colored surfaces (red, orange and yellow for
the C,A1,A2 nucleosome) plus the H4 tail (grey) from C nucleosome, while the rest of the proteins is
shadowed; water molecules and ions are not shown.
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