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 A B S T R A C T

This paper investigates the impact of thermal effects on fracture propagation, a subject that 
poses significant theoretical and experimental challenges across multiple scales. While previous 
experimental and numerical studies have explored the relationship between temperature fluctu-
ations and mechanical behavior, a comprehensive theoretical framework in fracture mechanics 
that rigorously incorporates temperature effects is still absent. Building upon the Griffith 
energetic approach and equilibrium statistical mechanics, we incorporate entropic effects into 
the overall energy balance of the system and replace the total mechanical energy with free 
energies. Indeed, our model captures the energetic interplay between elastic deformation, 
external loads, fracture energy, and entropic contributions. We propose a simplified approach 
in which both discrete and continuum representations are formulated concurrently, reflecting 
a multiscale paradigm. The discrete model leverages statistical mechanics to account for 
temperature effects, while the continuum model provides a mesoscopic description of the 
fracture process. This framework provides (temperature dependent) analytical expressions for 
key mechanical parameters, such as the stress and displacement fracture thresholds, the energy 
release rate, the fracture surface energy, and the J-integral. Notably, we identify a critical 
temperature at which the system undergoes a phase transition from an intact to a fractured 
state in the absence of mechanical loading. We believe that this approach lays the foundation 
for a new theoretical framework, enabling a rigorous multiscale understanding of thermal 
fluctuations in fracture mechanics. We finally propose a comparison with numerical data 
concerning the fracture of graphene as a function of temperature exhibiting the efficiency of 
the model in describing thermal effects in fracture behavior.

. Introduction

The study of thermal effects on fracture propagation is a highly engaging yet complex field of research. It is engaging because 
t presents theoretical and experimental challenges that span multiple scales, from molecular architecture to macroscopic nonlinear 
ehavior and the history of fracture mechanics reveals the involvement of numerous intricate physical phenomena. The importance 
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Nomenclature

𝑛 Number of total units
𝑚 Number of broken units
𝜉 Broken fraction of the system 𝑚∕𝑛
𝜁 Crack extension 𝜉𝐿
𝑎 Fractured area
𝐿 Total system length
ℎ Equilibrium system height
𝑏 System depth
𝑌𝑀 Displacement threshold
𝑥 Abscissa
𝑥̃ Non-dimensional abscissa 𝑥∕𝐿
𝜀 Extensional strain
𝜀𝑑 Extensional device strain
𝛾 Shear strain
𝑘𝑡 Elastic constant breakable springs
𝑘𝑒 Elastic constant shear springs
𝑘𝑑 Elastic constant device springs
𝑣𝑖 Displacements
𝑣̃𝑖 Non-dimensional displacements
𝒗̃ Non-dimensional displacement vector
𝒗̃𝑒 Equilibrium non-dim. Gibbs displ. vec-

tor
𝒗̃𝑒 Equilibrium non-dim. Helmholtz displ. 

vector
𝑣̃𝑎𝑣 Average Gibbs displacement vector
𝑣̃𝑎𝑣 Average Helmholtz displacement vector
𝐸 Young modulus
𝐸𝑑 Device Young modulus
𝜇 Shear modulus
𝜈2 Elastic ratio 𝜇ℎ2∕(𝐸𝐿2)
𝜌2 Stiffness ratio ℎ𝐸𝑑∕(𝑑𝐸)
𝜒𝑖 Spin variable
𝝌 Spin variable vector
𝑩 Tridiagonal Gibbs matrix
𝑸 Tridiagonal Helmholtz matrix
𝟏 Vectors with 𝑛 ones
𝑓 Force on each unit
𝐹𝑡 Total force 𝑛𝑓
𝐹 Configurational force
𝑆𝑓 Shear force
𝜎 Applied tensile stress
𝜆 Non-dimensional applied tensile stress
𝜆𝑐𝑟 Griffith–Gibbs critical load
𝜆𝑐𝑟 Griffith–Helmholtz critical load

 𝛺 Prescribed overall extension
𝛺̃ Non-dim. prescribed overall extension
𝛺̃𝑐𝑟 Griffith-Helmholtz critical extension
𝑈𝑖 Potential energy breakable springs
𝑉𝑖 Potential energy shear springs
𝑇𝑖 Potential energy device springs
𝑔 Mechanical energy (Gibbs ensemble)
𝑔̃ Non-dimensional Gibbs energy
𝑔̃𝑒 Equilibrium non-dimensional Gibbs en-

ergy
 Gibbs free energy 𝐻 − 𝑇𝑆
̃ Non-dimensional Gibbs free energy
𝜙 Mechanical energy (Helmholtz ensem-

ble)
𝜙̃ Non-dimensional Helmholtz energy
𝜙̃𝑒 Equilibrium non-dim. Helmholtz energy
 Helmholtz free energy 𝑈 − 𝑇𝑆
̃ Non-dimensional Helmholtz free energy
𝛱 Total potential energy
𝛱̃ Non-dimensional potential energy
𝜋 Potential energy density
𝛤 Fracture energy
𝛤 Non-dimensional fracture energy
𝛾𝑠 Fracture energy per unit surface
𝐺 Energy release rate
𝐺𝑐 Critical energy release rate
𝐺̃ Non-dimensional energy release rate
𝐾 Stress intensity factor
𝜅 Gibbs Lagrangian density
𝜍 Helmholtz Lagrangian density
𝑇 Temperature
𝑇 
𝑐 Gibbs critical temperature

𝑇
𝑐 Helmholtz critical temperature

𝑇
𝑐,𝛿 Helmholtz critical temperature (𝛿 ≠ 0)

𝑘𝐵 Boltzmann constant
𝛽 Non-dimensional thermodynamic beta 

𝐸𝐿𝑏𝑌 2
𝑀

ℎ𝑘𝐵𝑇

𝛽𝑐 Gibbs critical beta
𝛽𝑐 Helmholtz critical beta
𝑈 Internal energy
𝐻 Enthalpy
𝑆 Entropy
 Gibbs partition function
 Helmholtz partition function

of this topic is underscored by its relevance across various domains, ranging from classical mechanical sciences to emerging fields 
such as advanced materials (Low and Mai, 1989; Miracle and Senkov, 2017; Gali and George, 2013; Rabbi and Chalivendra, 2021), 
nanotechnology (Mastrangelo, 1997; Kang and Cai, 2010; Wang et al., 2007; Wu et al., 2012), and biological systems (Yan et al., 
2007; Creton and Ciccotti, 2016).

Numerous experimental studies (Slootman et al., 2022; Gent and Petrich, 1969; Slootman et al., 2020) and numerical simu-
lations (Zhao and Aluru, 2010; Pereira Junior et al., 2020; Blumberg Selinger et al., 1991) have explored the interplay between 
thermal fluctuations and mechanical properties, demonstrating that thermal effects play a critical role in fracture processes, 
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particularly in nanoscale systems and soft materials with significant entropic contributions, such as rubber-like materials and 
biomaterials (De Tommasi et al., 2013; Manca et al., 2013; Prados et al., 2013; Bonilla et al., 2015; Dudko, 2016; Buche and 
Silberstein, 2020; Bleha and Cifra, 2022). However, despite the extensive research in this area, no rigorous theoretical approach 
in fracture mechanics currently integrates temperature effects from the first principles of statistical mechanics. Classical models in 
Linear Elastic Fracture Mechanics (LEFM), still prevalent in both theoretical and numerical studies, primarily address the mechanical 
properties of materials. Thermal effects are typically considered only in a phenomenological manner and are not systematically 
incorporated.

One of the most influential contributions in fracture mechanics is the work of Griffith (1921), which laid the foundation of LEFM 
by introducing an energy-based approach into fracture studies. Before Griffith’s theory, material failure was generally considered 
to occur when the maximum stress or strain exceeded a critical value. Researchers had already recognized that material failure was 
associated with the presence of cracks and flaws, which lead to localized stress and strain intensification. This insight motivated 
several studies on stress fields in materials with cracks of various sizes and shapes, such as those involving circular (Kirsch, 1898) 
or elliptical holes (Inglis, 1913). However, failure criteria based solely on stress concentration were found to be inconsistent with 
experimental observations.

Griffith addressed this issue by developing a model based on energy balance. His key innovation was to consider not only the 
elastic strain energy but also the energy required to create new fracture surfaces. Using this approach, Griffith derived an expression 
for the stress required to fracture a material with a pre-existing crack. His analysis began with an infinite plane subjected to tensile 
loading and containing an elliptical crack, which he then simplified to a slit crack based on Inglis (1913) results. While this model has 
been validated by numerous experiments (Lawn, 1993; Öchsner, 2016), it has a significant limitation: as the crack length approaches 
zero, the predicted stress required for fracture becomes infinite, making it unsuitable for predicting crack nucleation.

Although Griffith’s theory correctly predicts the relationship between flaw size and fracture strength in brittle materials, it fails 
to account for plastic deformation, which is crucial for ductile materials such as metals. Extensions to the Griffith model by Irwin 
(1948) and Orowan (1948) incorporated plastic phenomena, leading to models that can describe ductile fracture behavior. Moving 
beyond the LEFM theory, Irwin (1961) included a new term into the energy balance, accounting for the plastic zone correction. This 
idea paved the way for the development of cohesive fracture models. Unlike Griffith’s approach in which the fracture energy density 
is a constant, in cohesive models the fracture energy density is assigned as a continuous function of the crack opening. Interestingly, 
cohesive models avoid the nonphysical stress singularity at the crack tip, a typical drawback of LEFM models. An approach that 
yields similar results but based on different concepts was previously developed by Elliott (1947). His idea was to examine matter 
from an atomic perspective, extending Griffith’s criterion with interatomic forces that prevent the crack opening. In this case, crack 
propagation occurs when interatomic bonds break, that is when adjacent atoms are pulled apart, exceeding a critical distance.

On this basis, Barenblatt (1959, 1962) developed his model by considering the forces that prevent the crack from opening, applied 
between the opposite sides of the fracture. To implement this concept, he introduced a ‘‘modulus of cohesion’’, the continuous 
counterpart of the atomic interaction force of Elliott (1947), characterizing each material. Successively, this model became known 
as the ‘‘cohesive zone model’’, and several researchers followed this paradigm. For instance, Dugdale (1960) employed a cohesive 
model to investigate yielding at the crack tip and the size of the plastic zone. It can be shown that cohesive and Griffith models 
are in agreement when the cohesive zone is much smaller than the crack size (Willis, 1967; Marigo and Truskinovsky, 2004). The 
theory of the cohesive zone has been further extended to different geometries and physical responses (Wells, 1961; Hillerborg et al., 
1976; Hui et al., 2011; Kramer, 2005; Tijssens et al., 2000; Estevez et al., 2000; Del Piero and Truskinovsky, 2001).

Later, Rice (1968) introduced the 𝐽 -integral, characterizing the material behavior ahead of a crack, and generalizing the energy 
release rate to nonlinear materials. The effectiveness of this approach has been proved by Shih and Hutchinson (1976), who defined 
an explicit relationship between the 𝐽 -integral, the stress and the defect size. Alongside the 𝐽 -integral, Wells (1961) introduced a 
parameter known as Crack Tip Opening Displacement (CTOD), which resulted in an alternative fracture criterion. This provided a 
new perspective in understanding fracture behavior in situations characterized by large plastic deformations anticipating material 
failure. Further developments are represented by the CTOD design curve (Burdekin and Dawes, 1971), and by the comparison 
between 𝐽 -integral and CTOD methods (Shih, 1981).

While previous approaches are mostly based on the analysis of driving forces in continuum media with preassigned crack (they 
are not able to describe crack nucleation), a new recent paradigm has been developed through variational approaches for free 
discontinuities problems (Mumford and Shah, 1989; De Giorgi et al., 1989). Specifically, the variational models made it possible 
to predict crack nucleation, and to describe fracture propagation along a non-prescribed path (Francfort and Marigo, 1998). The 
fundamental idea behind this model is to determine the elastic fields of the fractured solids by minimizing the total energy (elastic 
and fracture contributions). The works of Bourdin et al. (2000) and Bourdin (2007) provided a numerical implementation of 
this complex mathematical theory useful to deal with realistic situations. Further investigations with several forms of cohesive 
energy have been performed using different variational techniques, in particular focusing on the important role of meta-stable 
solutions (Del Piero, 2013).

Homogenization methods have also been introduced for studying fracture in heterogeneous and microstructured systems, with 
both continuous and discrete models (Dormieux and Kondo, 2016; Sahimi, 2003a,b; Kachanov, 1992, 1993; Giordano and Colombo, 
2007a,b, 2008; Markov and Kanaun, 2017; Markov et al., 2019).

A parallel line of research concerns numerical discrete approaches for understanding fracture phenomena at the molecular scale. 
The idea of considering fracture from a discrete perspective is credited to Novozhilov (1969a,b), and follows from the observation 
that crack propagation can be viewed as a discrete succession of atomic bond breaks (Marder, 1996). The same idea is behind 
molecular dynamics simulations, where Newton’s law is numerically solved for an assembly of atoms described by a given interaction 
3 
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potential energy. Thomson et al. (1971) applied this approach to fracture in order to calculate the force required to open a straight 
crack in a regular lattice. Other results were obtained by Sinclair and Lawn (1972) for diamond lattices, using complex angle-
dependent potentials. Moreover, molecular dynamics simulations were essential in discovering the lattice trapping phenomenon, 
identifying a stress range where cracks neither propagate nor heal, as observed by Esterling and Swaroop (1979) and Paskin et al. 
(1981). The world of atomistic simulations for fracture mechanics is vast and full of important results, which we do not have the 
space here to discuss in detail (Gumbsch et al., 1997; Rountree et al., 2002; Bitzek et al., 2015; Frenkel and Smit, 2023). Recently, 
the Griffith criterion for brittle materials has been validated by atomistic simulations in ideal monocrystalline systems by Mattoni 
et al. (2005) and Giordano et al. (2010).

While molecular dynamics simulations represent a very accurate method for the description of fracture propagation, the so-called 
lattice models have been introduced to reduce the computational cost. Indeed, in this case each mass point only interacts with a 
predefined set of neighboring points, as opposed to molecular dynamics in which any atom can move and interact with any other 
atom. Moreover, unlike in molecular dynamics simulations, in lattice models rupture typically does not appear spontaneously, but 
must be introduced as an additional feature. Analytical solutions for the dynamic behavior of cracks in a one-dimensional lattice were 
first obtained by Slepyan (1981), with further extensions to the 2D case by Kulakhmetova et al. (1984), Ryvkin and Slepyan (2010), 
and Mishuris et al. (2009). Another approach that addresses fracture as a discrete process is the Quantized Fracture Mechanics 
by Pugno and Ruoff (2004). This method eliminates the stress singularity at the crack tip and derives a finite stress to break the 
material even in the absence of fractures, thus solving the main problems of LEFM.

Despite the substantial volume of research conducted on fracture phenomena, achieving a comprehensive and analytically 
rigorous approach to describe the effects of temperature on fracture propagation has proven elusive. Nevertheless, the examination 
of thermal effects holds crucial importance for several systems, including nano-materials, rubber-like and biological materials, 
bio-inspired materials, and innovative artificial materials designed to withstand high temperatures. Hence, the present work aims 
at exploring how temperature induced fluctuations affect failure through a new theoretical framework. One of the challenges in 
this analysis is to bridge the nano-scale with the meso-scale through a multiscale approach. Here, this paradigm is employed by 
concurrently introducing a discrete and a continuum model of the mode I fracture.

As we demonstrate, this approach ensures that both the local and global minimizers of the discrete model converge to the 
equilibria of the mesoscopic model in the continuum limit, thereby preserving all the essential physical information of the discrete 
lattice. The discrete model let us incorporate temperature effects through statistical mechanics, measuring fluctuations at molecular- 
or nano-scales, whereas the continuous model enables the description of elasticity and energy release rate at mesoscale. It is 
important to note that, while the considered model is quite simple, it allows us both to capture all main qualitative features of the 
fracture phenomenology and to integrate temperature effects. Moreover, all results are deduced in closed analytical form, allowing 
for deeper description of the fundamental underlying physical phenomena.

From a methodological point of view, we employ tools from equilibrium statistical mechanics (Gibbs, 1902; Weiner, 1983). This 
implies that the results are valid in a quasi-static regime, in which the system is able to re-equilibrate on timescales smaller than 
those of applied loading. It is noteworthy to underline that the phenomenon of fracture in solids has been previously analyzed 
through statistical approaches (Truskinovsky, 1996; Zapperi et al., 1997; Moreno et al., 2000; Alava et al., 2006; Kawamura et al., 
2012; Cannizzo and Giordano, 2023; Buche and Grutzik, 2024). In particular, fracture phenomena in disorder materials have been 
largely investigated (Herrmann and Roux, 1990; Charmet et al., 1990; Ponson and Pindra, 2017; Parisi et al., 2017; Lebihain 
et al., 2021; Borja da Rocha and Truskinovsky, 2022). In addition, some works directly investigated thermal effects on fracture 
propagation (Peyrard and Bishop, 1989; Peyrard, 2004; Santucci et al., 2003; Guarino et al., 2006; Guarino and Ciliberto, 2011; 
Vincent-Dospital et al., 2020a,b, 2021). At the discrete level, we base our analysis on spin type models describing the debonding of 
links associated with fracture propagation. This type of approach has shown to be successful in the analysis of several instability, 
stick–slip, decohesion, and unzipping phenomena at the molecular scale for different biological and artificial systems (Caruel and 
Truskinovsky, 2016, 2018; Giordano, 2017; Benedito and Giordano, 2018a,b; Bellino et al., 2019; Florio and Puglisi, 2019; Florio 
et al., 2020; Cannizzo et al., 2021; Bellino et al., 2020; Cannizzo et al., 2022; Florio and Puglisi, 2023; Giordano, 2022, 2023). It 
has been recently extended also to the numerical analysis of two dimensional systems by Nitecki and Givli (2021) and Shuminov 
and Givli (2024). We remark that, as in classical statistical mechanics approaches, these models are typically based on a global
minimization of the total energy. In our development, we extend the classical Griffith criterion for crack propagation, by replacing 
the total mechanical energies with Gibbs or Helmholtz free energies. This concept is consistent with the observation that fracture 
processes are typically irreversible and thus associated with entropy increase (Eftis and Liebowitz, 1976; Stevens and Guiu, 1991). 
Furthermore, out-of-equilibrium thermodynamics states that the evolution of a system, e.g. from an intact configuration to a broken 
one, results in the decrease of a suitable free energy (Blumberg Selinger et al., 1991). Hence, we analyze the local minima of the 
wiggly energy landscape, where the wells correspond to different fracture configurations, and, according with the Griffith approach, 
we assume that the fracture propagates when the total Helmholtz or Gibbs free energy decreases. The essential role of local energy 
minimizers, as opposed to the classical variational approaches for fracture that are based on global energy minimization, has been 
fully exploited by Del Piero (2013).

The approach that we here propose allows us to analytically obtain different results. From one side, we can predict a finite stress 
required for fracture propagation, even when the limit of zero-length crack is considered (crack nucleation). This is coherent with 
the experimental behavior. We recall that this possibility is attained by introducing discrete effects also in the so called Quantized 
Fracture Mechanics approach developed by Pugno and Ruoff (2004). In addition, our model predicts a finite stress in correspondence 
with the crack tip, thus overcoming the classical difficulties of LEFM theory.
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Fig. 1. Multiscale approach for modeling a crack propagating in a solid under the action of a tensile stress: (a) macroscopic phenomenon; (b) process zone 
with microcracking formation at the crack tip; (c) crystal lattice representation of the crack near the process zone; (d) microscopic model developed in the (𝑥, 𝑦)
plane. We plotted a symmetry line in this scheme, which further allows us to simplify the mathematical treatment of the problem.

The second important step is that we are able to investigate the thermo-mechanical response of the system under two distinct 
boundary conditions. In the first scenario, the stress is imposed to open the crack (isotensional conditions, generated by a soft device). 
In the second scenario, the displacement is prescribed to the system (isomeric conditions, induced by a hard device). These two 
boundary conditions correspond to the Gibbs and Helmholtz ensembles of statistical mechanics, respectively. The equivalence or non-
equivalence of these statistical ensembles in the thermodynamic limit is the subject of numerous studies, with applications ranging 
from macromolecules behavior to mechanical phenomena, adhesion and fracture in particular (Dimitrov et al., 2009; Winkler, 2010; 
Manca et al., 2012, 2014; Dutta and Benetatos, 2018, 2019). We underline that the isometric condition is rarely investigated in 
fracture mechanics since in two- and three-dimensional geometries the domain is typically considered unbounded allowing only 
for the definition of an asymptotic applied stress. Here, we can study both isotensional and isometric conditions so as to make an 
accurate comparison.

We are thus able to determine the threshold load for crack propagation, which depends on the type of boundary condition 
considered and on the temperature. Specifically, we observe a classical critical behavior, with the critical load decreasing according 
to the law √1 − 𝑇 ∕𝑇𝑐 , as the temperature 𝑇  increases. As a consequence of the temperature effects on fracture propagation, we prove 
that in correspondence to the critical temperature 𝑇𝑐 , the system undergoes a phase transition, corresponding to the complete rupture 
even in the absence of mechanical actions. We find the analytical expression for this critical temperature, which depends on both 
mechanical parameters and state of fracture advancement. It is noteworthy that despite the extreme simplicity of the proposed model, 
we provide a rigorous conceptual link between fracture phenomena and phase transitions, enabling the study of failure processes 
in variable temperature systems. This is also interesting because such type of thermal induced phase transition in continuous model 
represents by itself a theoretical important result. Moreover, we underline that phase transitions in rupture or decohesion phenomena 
are well known and experimentally demonstrated in several biophysical contexts (Florio and Puglisi, 2023; Blom and Godec, 2021).

The paper is structured as follows. In Section 2, we introduce the discrete model that describes fracture propagation, and we 
introduce the rupture strategies. In Section 3, we study the system’s response within the soft device configuration (isotensional Gibbs 
ensemble), and in Section 4, we calculate the energy release rate (by also introducing the stress intensity factor, the fracture surface 
energy, and the 𝐽 -integral). Then, in Section 5, we explore the system’s response under hard device boundary conditions (isometric 
Helmholtz ensemble). In both soft and hard device configurations, we firstly examine the purely mechanical behavior of the fracture 
process and then we introduce the statistical mechanics to study the corresponding phase transitions. An explicit comparison between 
the behaviors of the two ensembles is then performed. A first analysis of the feasibility of the model is developed in Section 6, where 
we draw a comparison with molecular dynamics simulation for fracture in graphene. The theoretical thermal dependence of the 
fracture surface energy is also compared with experimental data exhibiting a linear decreasing with temperature in accordance with 
our theoretical results. Conclusions and a mathematical Appendix close the article.

2. The model

To introduce the model developed to study the propagation of a crack in a solid, we begin as in the classical Griffith approach, 
by considering an elastic body containing a crack and subjected to a tensile stress, as shown in Fig.  1(a). As anticipated in the 
Introduction, our goal is to determine the critical load which induces the fracture propagation, and how this load is influenced by 
thermal fluctuations.

To attain analytical results, we choose to develop a simple model describing the phenomenon of crack propagation. Applying a 
downscaling, as shown in Fig.  1(b) and (c), we first consider a discrete model composed of repetitions of identical units at the small 
scale, as in Fig.  1(d), and we study the continuum limit that gives us insights into the mesoscopic phenomena.

We may think to this model as a paradigmatic system mimicking the fracture process zone, where classical fracture phenomena 
occur (Hillerborg et al., 1976; Hillerborg, 1983; Moore and Lockner, 1995). The process zone represents the bridging element 
between the already opened crack and the intact portion of the solid, whether the material is ductile or brittle. In the first case, a 
5 
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Fig. 2. Schematic representation of the model considered: 𝑛 − 1 nonbreakable horizontal elastic springs of stiffness 𝑘𝑒 mimic the elastic properties of the solid, 
and the progressive rupture of the 𝑛 breakable vertical units of stiffness 𝑘𝑡 describe the crack propagation. The state of these breakable springs is described by 
the spin variable 𝜒 . The quantity 𝐿 is the length of the system, and ℎ is its height. We study the response of the system when is subjected to a total tensile 
force 𝐹 , uniformly applied to all units (isotensional condition). In the following Sections, we also analyze the isometric condition, which prescribe the overall 
displacement.

sort of plastic and damage phenomena (dislocations and voids nucleation) are observed around the crack tip (Hilton and Hutchinson, 
1971; Levy et al., 1971), as in the case of metals. On the other hand, failure in brittle materials is triggered by the development of 
microcracks around the crack tip, as in Fig.  1(b), originated by the concentration of stresses in this region, and coalescing to form 
a meso-scale discontinuity representing the fracture surfaces (Bazant and Kazemi, 1990; Dutler et al., 2018; Hoagland et al., 1973). 
It is therefore interesting to pursue a multi-scale study to understand how these local microscopic events (microcrack formation) in 
the process zone influence the global system response.

In more detail, the discrete system is modeled limiting the attention to a subsystem of the lattice represented in Fig.  1(c): 
two elastic chains accounting for the elastic properties of the material are connected by breakable bonds, describing the crack 
propagation, see Fig.  1(d). To further simplify the mathematical treatment of the problem, we identify an horizontal symmetry line 
in Fig.  1(d), and we consider the final model shown in Fig.  2, where the geometrical parameters considered are the length 𝐿 along the 
𝑥 axis, the height ℎ along the 𝑦 axis, and the depth 𝑏 along (out of plane) 𝑧 axis. This model is composed of 𝑛 vertical breakable units 
of stiffness 𝑘𝑡, and 𝑛−1 horizontal elastic springs of stiffness 𝑘𝑒. The position of the 𝑛 contact points between horizontal and vertical 
springs is described by the displacement 𝑣𝑖 (𝑖 = 1,… , 𝑛), along the 𝑦 direction. Hence, the breakable links are characterized by a 
strain 𝜀𝑖 = 𝑣𝑖∕ℎ. The horizontal elastic springs connecting the breakable units operate in shear (Maddalena et al., 2009; Puglisi and 
Truskinovsky, 2013), being the shear strain related to the 𝑖th unit given by 𝛾𝑖 = (𝑣𝑖+1 − 𝑣𝑖)∕ℎ. Of course, more general deformations 
could be considered at the expenses of analytical clarity.

To model the fracture, we assume that the vertical units are breakable and that they may be modeled as two-state elements. 
The intact state is linearly elastic whereas the broken state is characterized by a constant energy (equal to the fracture energy) and 
zero force. We observe that we can give a twofold interpretation of our model. In the first case, depicted in the first row of Fig. 
3, we can interpret the proposed system as a very schematic model of the whole body, representing the competition between the 
elastic (and subsequently entropic) energy and the fracture dissipation. In this situation, the elastic energy of the unbroken zone 
coincides with the energy of the vertical and horizontal elastic links, which compete with the fracture energy. In the second case, 
the model describes the behavior of the process zone at a lower scale. Therefore, we consider the breaking phenomena induced 
by the elastic state of the system, as shown in the second row of Fig.  3. In fact, following a Barenblatt-like cohesive criterion, we 
assume that the energy of breakable units is characterized by the piecewise function in Fig.  3(b), describing the transition between 
intact and broken states. This local behavior can be introduced, e.g. through numerical approaches, in two- or three-dimensional 
elastic structures representing the overall body.

To be more precise, we describe in detail the differences of the two strategies in the following. Specifically, in Fig.  3(a) we 
observe that the state of breakable springs is defined a priori, and thus each spring is characterized by either a quadratic energy 
response (intact state) or a constant energy response (broken state). This energy constant represents the fracture energy of one 
breakable spring. Following the approach used in Florio et al. (2020), we introduce an internal ‘‘spin’’ variable 𝜒𝑖 (𝑖 = 1,… , 𝑛) that 
assumes value 𝜒𝑖 = 0 if the link is intact, and 𝜒𝑖 = 1 if the link is broken, so that we can write the energy of one spring as 

𝑈𝑖(𝑣𝑖) =
1
2
𝑘𝑡𝑣

2
𝑖 if 𝜒𝑖 = 0, 𝑈𝑖(𝑣𝑖) =

1
2
𝑘𝑡𝑌

2
𝑀 if 𝜒𝑖 = 1. (1)

Here the constant 12𝑘𝑡𝑌 2
𝑀  represents the fracture energy of one breakable spring. It means that in this first strategy, the spins are 

imposed a priori, and this approach coincides with the application of Griffith’s idea, which is based on the exploration of local 
minima. There is no evolution of the spin state during the analysis of the system, but the model is studied for all possible spins 
combinations. Therefore, we can compare the energy pertaining to different spins combinations, and we can predict the evolution 
of the system. Let us develop this analysis later, and we anticipate here that the corresponding results will be represented by red 
points in the graphs.

On the other side, in Fig.  3(b), we define another fracture strategy. In this case, the broken state is attained when the displacement 
𝑣𝑖 overcomes a critical threshold 𝑌𝑀 . Thus the energy function of each breakable spring is defined by a piecewise function, 
represented by a quadratic form for small extensions and a constant for large extensions. These units thus describe the residual 
cohesive forces present in the process zone preceding the definitive crack opening. Unlike cohesive fracture models (e.g., Barenblatt), 
6 
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Fig. 3. Two different strategy adopted to define the braking process. In (a), we see that the state of each breakable spring is imposed a priori: when the vertical 
unit is intact (𝜒𝑖 = 0), the behavior is linearly elastic with the stiffness 𝑘𝑡, and when it is broken (𝜒𝑖 = 0), the energy is constant and the force drops to zero. 
The system is studied with all spin fixed, and Griffith’s approach is applied by exploring all local energy minima. In (b), the state of each vertical unit depends 
on its extension, following the represented piecewise energy function. In this case, the system evolution can be studied by following the global energy minima. 
In both cases, the horizontal nonbreakable spring are always linear elastic with stiffness 𝑘𝑒 (see the rightmost plot in the first row of the figure).

in which the stress in the process zone is considered to be decreasing with distance from the crack tip, the units considered in this 
model are simply linearly elastic (with stiffness 𝑘𝑡) when unbroken, with the force dropping to zero when broken. Anyway, the 
elastic energy of the 𝑖th breakable unit can be written as 

𝑈𝑖(𝑣𝑖) =

⎧

⎪

⎨

⎪

⎩

1
2
𝑘𝑡𝑣

2
𝑖 if |𝑣𝑖| ≤ 𝑌𝑀 ,

1
2
𝑘𝑡𝑌

2
𝑀 if |𝑣𝑖| > 𝑌𝑀 .

(2)

In this second approach, one can consider the spins as variables in the phase space of the system, and therefore their evolution 
is derived from the application of statistical mechanics. This has been applied in other earlier investigations, and corresponds to 
the study of the global minima of the system (Florio et al., 2020; Cannizzo et al., 2022). In this work, we mostly adopt the first 
methodology, in Fig.  3(a), in order to generalize the Griffith criterion with the effects of the temperature. However, some applications 
of the second strategy will be discussed, and the corresponding results will be represented by blue points in the graphs.

With both strategies, by introducing the ‘‘spin’’ variables 𝜒𝑖 (𝑖 = 1,… , 𝑛), we can write the internal energy (strain energy + 
fracture energy) of each breakable spring as 

𝑈𝑖
(

𝑣𝑖, 𝜒𝑖
)

= 1
2
𝑘𝑡

[(

1 − 𝜒𝑖
)

𝑣2𝑖 + 𝜒𝑖𝑌
2
𝑀
]

. (3)

It should be further emphasized that although this equation is the same for the two strategies introduced, conceptually the two lines 
of thought are completely different. On the other side, the potential energy of each horizontal nonbreakable elastic spring always 
reads 

𝑉𝑖(𝑣𝑖) =
1
2
𝑘𝑒

(

𝑣𝑖+1 − 𝑣𝑖
)2 . (4)

In the following, we study the behavior of this system under different boundary conditions. Specifically, we consider the case 
of an assigned stress acting on the system (by means of a soft device), and the case when a displacement is prescribed (through a 
rigid device). In both cases, we first study the system in the purely mechanical setting, when thermal fluctuations are absent, and 
then we extend the analysis to the case with thermal effects.

3. Soft device (statistical Gibbs ensemble)

We first study the mechanical response of the system subjected to a tensile stress 𝜎, acting on the whole surface 𝐿𝑏. Therefore, 
the total potential energy for a system of 𝑛 units includes the strain energy, the fracture energy and the potential energy of the 
external forces 

𝑔
(

{𝑣𝑖}, {𝜒𝑖}
)

= 1𝑘𝑡
𝑛
∑

[(

1 − 𝜒𝑖
)

𝑣2𝑖 + 𝜒𝑖𝑌
2
𝑀
]

+ 1𝑘𝑒
𝑛−1
∑

(

𝑣𝑖+1 − 𝑣𝑖
)2 −

𝑛
∑

𝑓𝑣𝑖, (5)

2 𝑖=1 2 𝑖=1 𝑖=1

7 
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where 𝑓 = 𝐹𝑡∕𝑛 is the force applied to each unit, 𝐹𝑡 is the total force, and the applied tensile stress is given by 

𝜎 =
𝐹𝑡
𝑏𝐿

. (6)

The Young and shear moduli can be introduced as follows 

𝐸 =
𝑛𝑘𝑡ℎ
𝑏𝐿

, 𝜇 =
𝐿𝑘𝑒
𝑛ℎ𝑏

. (7)

These expressions represent a rescaling corresponding to the continuum limit of the system. It means that the energy density is 
convergent to a finite value in the limit of 𝑛 approaching infinity keeping the total length 𝐿 fixed. It is now useful to write the total 
energy in non-dimensional form. For this purpose, let us introduce the non-dimensional parameters 𝑣̃𝑖 (breakable units elongation), 
𝜆 (applied load), 𝑔̃ (energy), 𝜈2 (elastic ratio between Young and shear moduli) defined as follows 

𝑣̃𝑖 =
𝑣𝑖
𝑌𝑀

, 𝜆 = 𝜎ℎ
𝐸𝑌𝑀

𝑔̃ =
𝑔ℎ

𝐸𝐿𝑏𝑌 2
𝑀

, 𝜈2 =
𝜇ℎ2

𝐸𝐿2
. (8)

So doing, Eq. (5) assumes the form 

𝑛𝑔̃
({

𝑣̃𝑖
}

,
{

𝜒𝑖
})

=1
2

𝑛
∑

𝑖=1

[(

1 − 𝜒𝑖
)

𝑣̃2𝑖 + 𝜒𝑖
]

+ 1
2
𝑛2𝜈2

𝑛−1
∑

𝑖=1

(

𝑣̃𝑖+1 − 𝑣̃𝑖
)2 −

𝑛
∑

𝑖=1
𝜆𝑣̃𝑖. (9)

In particular, since the fracture energy is proportional to 𝑘𝑡𝑌 2
𝑀 , we notice that 𝑔̃ represents the energy normalized with respect to the 

fracture energy, and 𝜈2 gives a measure of the competition between the elastic energy and the fracture energy. In order to simplify 
the notation, we may rewrite Eq. (9) in the compact form 

𝑛𝑔̃ (𝒗̃,𝝌) = 1
2
𝐁𝒗̃ ⋅ 𝒗̃ + 1

2
𝝌 ⋅ 𝟏 − 𝜆𝒗̃ ⋅ 𝟏, (10)

where we have introduced the tridiagonal matrix 𝐁, and the vectors 𝒗̃, 𝝌 , 𝟏, as follows 

𝐁 = 𝑛2𝜈2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 0 … 0

−1 2 −1 ⋱ ⋮

0 ⋱ ⋱ ⋱ 0

⋮ ⋱ −1 𝑛−1 −1

0 … 0 −1 𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (11)

𝒗̃ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑣̃1
𝑣̃2
𝑣̃3
...

𝑣̃𝑛

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, 𝝌 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜒1

𝜒2

𝜒3

...

𝜒𝑛

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, 𝟏 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1

1

1

...

1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (12)

Here, we defined 𝑖 =
(

1 − 𝜒𝑖
)

∕
(

𝑛2𝜈2
)

+2, for 𝑖 = 2,… 𝑛−1, and the first and last coefficients as it follows: 1 =
(

1 − 𝜒1
)

∕
(

𝑛2𝜈2
)

+1, 
and 𝑛 =

(

1 − 𝜒𝑛
)

∕
(

𝑛2𝜈2
)

+ 1.

3.1. Equilibrium configurations

Concerning the purely mechanical system, to determine the equilibrium configurations, we consider the stationary states at fixed 
broken configuration defined by 𝝌 , namely 

𝜕
𝜕𝒗̃

(𝑛𝑔̃ (𝒗̃,𝝌)) = 𝐁𝒗̃ − 𝜆𝟏 = 𝟎. (13)

The equilibrium configurations are then given by 
𝒗̃𝑒 = 𝜆𝐁−1𝟏. (14)

Due to the local convexity of the energy, these stationary solutions are also local energy minimizers when they are defined, and 
they are characterized by an equilibrium energy 

𝑛𝑔̃
(

𝒗̃𝑒 ,𝝌
)

=∶ 𝑛𝑔̃𝑒 (𝝌) = −1
2
𝜆2𝐁−1𝟏 ⋅ 𝟏 + 1

2
𝝌 ⋅ 𝟏. (15)

Here and in the following, we adopt the superscript  for the soft device (Gibbs) equilibrium solutions, whereas we will adopt the 
superscript  for the hard device (Helmholtz) case. The expression in Eq. (15) defines the non-dimensional energy of the system 
at assigned applied load 𝜆, and assigned fracture configuration 𝝌 . For the moment, the vector 𝝌 is completely arbitrary. Thus, we 
might consider an arbitrary number of interacting cracks in a finite domain. However, for the sake of simplicity, and in accordance 
with the classical Griffith approach, we restrict the attention to the single domain wall fracture configuration. In other words we 
8 
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Fig. 4. Equilibrium configurations for the Gibbs discrete system. Top panels: minimized energy 𝑔̃𝑒 as function of the stress 𝜆 for different values of 𝑚. Bottom 
panels: force–displacement curves for different values of 𝑚 (here, 𝑣̃𝑎𝑣 = 𝒗̃ ⋅ 𝟏∕𝑛 is the average non-dimensional displacement). The left panels show the results 
for a system with 𝑛 = 6, while the right panels show the results for a system with 𝑛 = 20. In each panel gray curves describe the system response with a fixed 
number of broken units 𝑚. Moreover, in the energy diagrams, the intact configuration is represented by the thick curve at the bottom, while each upper curve 
illustrates a configuration with an additional broken unit. The blue points indicate the critical threshold represented by the condition 𝑣̃𝑛−𝑚 = 1. The red points 
describe the situation where the energy of the system with 𝑚 broken units equals the energy of the system with 𝑚+ 1 broken units. The parameter used in this 
diagram is 𝜈2 = 0.1.

consider fracture configurations where the system is decomposed into a segment of 𝑚 broken links on the right, and a segment of 
𝑛−𝑚 intact links on the left. We then study the (energetic) conditions for the propagation of such a fracture configuration. Observe 
that when all the links are broken, 𝐁 is singular. For an arbitrary configuration, to prove the invertibility of the tridiagonal matrix 𝐁
is not trivial, being this matrix not strictly diagonally dominant (Meurant, 1992). On the other hand, in the case of large systems and 
single domain wall solutions, we will obtain explicit expressions of the determinant, so that we are able to prove the invertibility 
(see Eq. (40) and Appendix).

In Fig.  4 (top panels), we show the energy curves corresponding to a system with a variable number 𝑚 of broken units: the 
thickest curve corresponds to the fully intact system (𝑚 = 0), while the other curves are characterized by an increasing value of 𝑚. 
We can anticipate some considerations, which will be taken up later in the discussion. We first observe that it is possible to prove 
that each single wall equilibrium configuration is monotonic, which means that the displacements 𝑣̃𝑖 are increasing with 𝑖 (going 
from the left intact domain to the right broken domain). As a result, each equilibrium energy curve is defined for a stress value 
lower than a given threshold stress, corresponding to the last intact element attaining the limit condition 𝑣̃𝑛−𝑚 = 1 (blue points A, 
B, . . . , F in the figure), see Fig.  4 (top panel). Thus the system follows the equilibrium branch up to these points, if we assume 
that it remains in a given equilibrium branch until it becomes unstable. This represents the so called maximum delay convention
in multistable systems and reproduces the limit case of systems that are not able to overcome any energy barrier (Puglisi and 
Truskinovsky, 2000). This strategy, represented in Fig.  3(b), can be related to the Barenblatt model, where the pull forces between 
the fracture faces try to prevent its propagation until the moment of rupture. Conversely, the red points A′, B′, . . . , E′ represent the 
positions where the energy of the system with 𝑚 broken units equals the energy of the system with 𝑚 + 1 broken units. Hence, the 
red points represent the energy thresholds obtained through a discrete version of the Griffith’s energy crack propagation criterion. 
This analysis corresponds to the rupture strategy defined in Fig.  3(a). By applying the Griffith’s approach, the intersection points 
between adjacent energy curves were considered, but the curves could be plotted for any value of applied stress, so the blue points 
are not relevant in this case. Interestingly, we observe that while in a system with few units (left panels), the difference between 
the blue and red points is evident, in a system with a higher number of units (anticipating the rigorous continuum limit studied 
in the following), the blue points converge to the red points (right panels). This implies that in the continuum limit, the Griffith’s 
9 
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Fig. 5. Scheme of the continuum limit defined by 𝑛 → ∞. As 𝑛 increases, the system represents a continuous medium of finite length with well-defined elastic 
properties and energy.

threshold (see scheme in Fig.  3a) coincides with the existence condition of a local energy minimum (see scheme in Fig.  3b). This 
gives an interesting energetic interpretation of Griffith’s criterion in relation to local stability. This will be analytically demonstrated 
in the next Sections, for both Gibbs and Helmholtz ensembles in the continuum limit. We also remark that our model, differently 
from the classical Griffith approach, also allows for the determination of the nucleation crack force. Although many of the results 
that follow can be established in the discrete case, which are important for systems in which discrete effects are not negligible, we 
will analyze all the details directly in the case with large 𝑛, which gives a much clearer analytical example.

In Fig.  4 (bottom panels), we plot the equilibrium force as a function of the average displacement 𝑣̃𝑎𝑣 = 𝒗̃ ⋅ 𝟏∕𝑛. In these plots, 
each straight line corresponds to a different value of 𝑚 and the blue and red point are exactly defined as before. As expected, the 
system becomes softer as the number 𝑚 of broken elements increases. Also the equilibrium force of red limit points converges to 
the one of blue points for increasing values of 𝑛.

3.2. Continuum limit

Starting from the minimized energy, obtained in Eq. (15), we consider now the continuum limit attained with 𝑛 → ∞ (see Fig.  5). 
It means that the total length 𝐿 remains fixed so that the shear horizontal spring length 𝓁 = 𝐿∕𝑛 approaches zero. We then introduce 
𝜉 = 𝑚∕𝑛, representing the broken fraction of the system. The quantity 𝜉, in the continuum limit, can be considered as a continuum 
variable that varies from 0 (intact system) to 1 (completely broken system). It identifies the position of the propagating fracture 
front, assuming that the crack nucleates on the right and widens toward the left. The development of the analytic expressions for 
the discrete system, and for the related continuum limit, requires the explicit calculus of the inverses of tridiagonal matrices. To 
this end, we performed extensive calculations using Usmani (1994) theorems concerning tridiagonal matrix inversion (details are 
reported in Appendix). Eventually, the energy in the continuum limit reads 

𝑔̃𝑒 (𝜉) = −1
2
𝜆2 − 1

2
𝜆2

𝜈2
𝜉
[

𝜈2 + 𝜈𝜉 coth
(

1 − 𝜉
𝜈

)

+
𝜉2

3

]

+
𝜉
2
. (16)

We remark that the term 𝜉∕2 represents the (non dimensional) fracture energy, increasing as fracture propagates.
Interestingly, we now prove that it is possible to deduce the same result for the total energy of the system at equilibrium through 

a variational approach, starting from a continuous model. In passing, we can also observe that the continuous system is similar to 
a shear elastic beam placed on a Winkler foundation consisting of a breakable extensional layer (Dillard et al., 2018).

Defined 𝑥 ∈ [0, 𝐿], we introduce the displacement of the system along 𝑦 as a continuous function 𝑣 = 𝑣(𝑥). In order to describe 
the fracture propagation, we also introduce a state function 𝜒 . This variable assumes the value 1 in the intact region and the 
value 0 in the broken region. This is a simple choice, coherent with the energy described for the previous discrete model in Fig.  3. 
However, alternative more complicated (continuously varying) profiles of 𝜒 can be implemented as is done for example in phase 
field models (Ren et al., 2019; Miehe et al., 2010).

Considering the discrete version of the energy in Eq. (5), and the rescaled elastic constants defined in Eq. (7), the continuum 
limit of total energy can be obtained by the functional 

𝑔(𝑣, 𝑣′) = ∫

𝐿

0

[

1
2
𝐸

(

𝑣2(𝑥)
ℎ2

(1 − 𝜒(𝑥)) + 𝜒(𝑥)
𝑌 2
𝑀

ℎ2

)

𝑏ℎ + 1
2
𝜇𝑣′2(𝑥)𝑏ℎ − 𝜎

𝑣(𝑥)
ℎ

𝑏ℎ

]

𝑑𝑥. (17)

For this continuum system, the extensional and shear strains can be defined respectively as 

𝜀(𝑥) =
𝑣(𝑥)
ℎ

, 𝛾(𝑥) =
𝑑𝑣(𝑥)
𝑑𝑥

=∶ 𝑣′(𝑥), (18)

and the shear force is given by 

𝑆 (𝑥) = 𝜇
𝑑𝑣(𝑥)

. (19)
𝑓 𝑑𝑥
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Fig. 6. Displacement function for the equilibrium configurations of the continuous system. Each curve represents a different value of 𝜉. Black lines describe the 
displacement 𝑣̃𝐼 in the intact region, and gray lines represent 𝑣̃𝐵 in the broken region. The parameters used to obtain these curves are 𝜈 = 0.2 and 𝜆 = 0.1.

By rescaling 𝑥 with 𝑥̃ = 𝑥∕𝐿, where 𝑥̃ ∈ [0, 1], and 𝑣 with 𝑣̃ = 𝑣∕𝑌𝑀 , we can rewrite the total energy in the following non-dimensional 
form 

𝑔̃(𝑣̃, 𝑣̃′) = ∫

1

0

[ 1
2
(1 − 𝜒(𝑥̃)) 𝑣̃2(𝑥̃) + 1

2
𝜒(𝑥̃) + 1

2
𝜈2𝑣̃′2(𝑥̃) − 𝜆𝑣̃(𝑥̃)

]

𝑑𝑥̃, (20)

where we used the non dimensional quantities defined in Eq. (8). Hence, in order to find the equilibrium configurations, we look 
for the extremals of 𝑔̃, obtained by the classical Euler–Lagrange equation 

𝑑
𝑑𝑥̃

𝜕
𝜕𝑣̃′

𝜅(𝑣̃, 𝑣̃′) − 𝜕
𝜕𝑣̃

𝜅(𝑣̃, 𝑣̃′) = 0, (21)

where 𝜅 represents the Lagrangian density 
𝜅(𝑣̃, 𝑣̃′) = 1

2
(1 − 𝜒(𝑥̃)) 𝑣̃2(𝑥̃) + 1

2
𝜒(𝑥̃) + 1

2
𝜈2𝑣̃′2(𝑥̃) − 𝜆𝑣̃(𝑥̃). (22)

We obtain the classical equation 
𝜈2𝑣̃′′(𝑥̃) − (1 − 𝜒(𝑥̃)) 𝑣̃(𝑥̃) = −𝜆, (23)

which can be easily solved as follows. In the broken domains (𝜒 = 1), the solution is 
𝑣̃𝐵(𝑥̃) = − 𝜆

2𝜈2
𝑥̃2 + 𝐴𝑥̃ + 𝐵, (24)

whereas, in the intact domains (𝜒 = 0), the displacement is given by 
𝑣̃𝐼 (𝑥̃) = 𝐶𝑒𝑥̃∕𝜈 +𝐷𝑒−𝑥̃∕𝜈 + 𝜆. (25)

Here, the subscript 𝐵 means broken, and the subscript 𝐼 means intact. As before, we address the case concerning a single domain 
wall separating the intact region 𝑥̃ ∈ (0, 1 − 𝜉) from the broken region 𝑥̃ ∈ (1 − 𝜉, 1). The coefficients can be obtained by imposing 
zero shear forces at the extremities, and shear and displacement continuity at the interface (propagation front) 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑣̃
′
𝐼 (0) = 0,

𝑣̃
′
𝐵 (1) = 0,

𝑣̃𝐼 (1 − 𝜉) = 𝑣̃𝐵(1 − 𝜉),

𝑣̃
′
𝐼 (1 − 𝜉) = 𝑣̃

′
𝐵 (1 − 𝜉).

(26)

We then obtain 
𝑣̃𝐼 (𝑥̃) =

𝜆𝜉

𝜈 sinh
(

1 − 𝜉
𝜈

) cosh
( 𝑥̃
𝜈

)

+ 𝜆 𝑥̃ ∈ (0, 1 − 𝜉) ,

𝑣̃𝐵(𝑥̃) = −1
2
𝜆
𝜈2

[

𝑥̃2 − (1 − 𝜉)2
]

+ 𝜆
𝜈2

(𝑥̃ − 1 + 𝜉) +
𝜆𝜉
𝜈

coth
(

1 − 𝜉
𝜈

)

+ 𝜆 𝑥̃ ∈ (1 − 𝜉, 1) .

(27)

In Fig.  6, it is possible to observe the graphical representation of an example of displacement given in Eq. (27). We remark the 
monotonic behavior of the displacement, as mentioned above.

Importantly, we observe that if we substitute the functions 𝑣̃𝐼  and 𝑣̃

𝐵 in the total energy defined in Eq. (20), we obtain the same 

expression for the minimized energy 𝑔̃𝑒 given in Eq. (16). Thus, as in the classical 𝛤 -convergence theory, the minima of the discrete 
system converge, for 𝑛 → ∞, to the minima of the continuous model (Braides, 2002; Dal Maso, 2012).
11 
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Fig. 7. Analysis of the equilibrium configurations for the Gibbs continuous system. Panel (a): minimized energy versus detached extension 𝜉, for different values 
of 𝜆. The blue dashed curve passes through the points of maximum energy. For this diagrams the values 𝜈 = 0.05 and 𝜆 ∈ [0.01, 0.1] are used. Panel (b): critical 
load (versus 𝜉) required for fracture propagation according to the Griffith energy criterion: 𝜆𝑐𝑟 decreases as the system progressively breaks. The different curves 
correspond to the values of 𝜈 ∈ [0.01, 0.1].

3.3. Griffith energy criterion for fracture propagation

After determining the equilibrium configurations for a system describing an elastic solid weakened by a flaw, our attention shifts 
to examining fracture propagation through the lens of Griffith’s classical energy criterion. This criterion affirms that crack widening 
occurs when the available energy for crack growth exceeds the so called material’s resistance. To apply this approach to our system, 
let us revisit the total energy in Eq. (16): the first two terms denote the potential energy 𝛱̃ , including the energy associated with the 
external load and the strain energy, while the third term represents the fracture energy 𝛤 . Considering non-dimensional quantities, 
we study the propagation of a fracture with extension 𝜉, starting at the right end of the system, and moving to the left. The rate 
of change of the potential energy, 𝜕𝛱̃∕𝜕𝜉, corresponds to the crack driving force (𝐺̃ = −𝜕𝛱̃∕𝜕𝜉 is the energy release rate, see the 
next Section), and the rate of change of the fracture energy 𝜕𝛤∕𝜕𝜉 represents the material resistance to overcome. It follows that, 
according to Griffith criterion, we must have 

𝜕𝛱̃
𝜕𝜉

+ 𝜕𝛤
𝜕𝜉

=
𝜕𝑔̃𝑒 (𝜉)
𝜕𝜉

< 0, (28)

in order for the crack to propagate. The derivative of the energy in Eq. (16) with respect to the crack length is 
𝜕𝑔̃𝑒 (𝜉)
𝜕𝜉

= 1
2
− 1

2
𝜆2 − 𝜆2

𝜉
𝜈
coth

(

1 − 𝜉
𝜈

)

−
𝜆2𝜉2

2𝜈2
coth2

(

1 − 𝜉
𝜈

)

(29)

and therefore we obtain the following condition for the crack propagation 

𝜆 > 𝜆𝑐𝑟 ∶=
1

1 +
𝜉
𝜈
coth

(

1 − 𝜉
𝜈

) . (30)

In Fig.  7(a), we show the equilibrium total energy 𝑔̃𝑒 versus 𝜉, for different values of the applied load 𝜆. Note that when higher 
forces are applied, fracture propagation is attained in correspondence of a smaller broken region, consistently with the classical 
Griffith criterion. In Fig.  7(b), we plot the critical stress, inducing crack propagation, versus the damage state 𝜉, for different values 
of the stiffness ratio coefficient 𝜈. Observe that the critical stress decreases with 𝜉, confirming that the critical load decreases as the 
crack extension 𝜉 increases.

Interestingly, the displacement 𝑣̃𝑐𝑟 corresponding to 𝜆𝑐𝑟, and evaluated at the fracture propagation front 𝑥̃ = 1− 𝜉, is exactly the 
critical threshold 1 (or 𝑌𝑀  with dimensional quantities). Indeed, if we evaluate Eq. (27) for 𝑥̃ = 1 − 𝜉 and 𝜆 = 𝜆𝑐𝑟, we get 

𝑣̃𝐵(1 − 𝜉) = 𝜆𝑐𝑟

[

𝜉
𝜈
coth

(

1 − 𝜉
𝜈

)

+ 1
]

. (31)

Then, by substituting the critical load 𝜆𝑐𝑟 from Eq. (30), we obtain 𝑣̃𝐵(1−𝜉) = 1, when 𝜆 = 𝜆𝑐𝑟. This result is consistent with previous 
observation on the convergence for 𝑛 → ∞ of the two energetic and Griffith fracture strategies, described by the red points and the 
12 
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blue points in Fig.  4. This means that Griffith’s stress threshold exactly corresponds to the existence threshold of any equilibrium 
solution at 𝜉 fixed. We stress that this result gives a new energetic interpretation of the Griffith’s approach, being consistent with 
the scheme based on breakable springs described by the piece-wise energy function shown in Fig.  3(b).

3.4. Temperature effects within the Gibbs ensemble

In this Section, we focus on the main aim of this paper, i.e. the analysis of temperature effects on the fracture behavior. The 
main theoretical novelty is based on the extension of the Griffith criterion stated in Eq. (28) for the purely mechanical system, by 
substituting the total mechanical energy with the Gibbs free energy 

 = 𝐻 − 𝑇𝑆, (32)

where 𝑇  is the temperature, 𝐻 is the enthalpy of the system, and 𝑆 is its entropy.
To take care of thermal fluctuations, in the classical framework of equilibrium statistical mechanics, we consider again the 

discrete system and in particular we start from the energy 𝑔, defined in Eq. (5). Assuming that the system is at thermodynamic 
equilibrium with a thermal bath at temperature 𝑇 , we can evaluate the Gibbs partition function associated with the canonical 
distribution of the statistical mechanics (Gibbs, 1902; Weiner, 1983). We have 

 (𝝌 , 𝑇 ) = ∫𝐑𝑛
exp

[

−
𝑔 (𝒗,𝝌)
𝑘𝐵𝑇

]

𝑑𝒗, (33)

where 𝒗 = {𝑣1, 𝑣2 … 𝑣𝑛}, 𝝌 = {𝜒1, 𝜒2,…𝜒𝑛}, and 𝑘𝐵 is the Boltzmann constant. Substituting 𝑔 with its non-dimensional counterpart 
̃ introduced in Eq. (10), and 𝒗 by 𝒗̃ = 𝒗∕𝑌𝑀 , we have 

 (𝝌 , 𝑇 ) =
(

𝑌𝑀
)𝑛

∫𝐑𝑛
exp

[

−𝛽𝑔̃ (𝒗̃,𝝌)
]

𝑑𝒗̃, (34)

where we have defined the non-dimensional parameter 𝛽 as 

𝛽 =
𝐸𝐿𝑏𝑌 2

𝑀
ℎ𝑘𝐵𝑇

. (35)

Observe that this parameter can be considered as a measure of the ratio between fracture and thermal energy. By using Eqs. (10) 
and (34), we obtain 

 (𝝌 , 𝑇 ) =
(

𝑌𝑀
)𝑛

∫𝐑𝑛
exp

[

−
𝛽
𝑛

( 1
2
𝐁𝒗̃ ⋅ 𝒗̃ + 1

2
𝝌 ⋅ 𝟏 − 𝜆𝒗̃ ⋅ 𝟏

)

]

𝑑𝒗̃

=
(

𝑌𝑀
)𝑛 exp

[

−
𝛽
2𝑛

𝝌 ⋅ 𝟏
]

∫𝐑𝑛
exp

[

−
𝛽
2𝑛

𝐁𝒗̃ ⋅ 𝒗̃ +
𝛽
𝑛
𝜆𝒗̃ ⋅ 𝟏

]

𝑑𝒗̃.
(36)

The integration can be performed through the classical Gaussian integral 

∫𝐑𝑛
exp

[

−𝐌𝐲 ⋅ 𝐲 − 𝐚 ⋅ 𝐲
]

𝑑𝐲 =
√

𝜋𝑛

det𝐌
exp

[1
4
𝐌−1𝐚 ⋅ 𝐚

]

, (37)

which is valid for a positive definite symmetric matrix 𝐌, and for any vector 𝐚. We obtain 

 (𝝌 , 𝑇 ) =
(

𝑌𝑀
)𝑛

√

(2𝜋𝑛)𝑛

𝛽𝑛 det 𝐁
exp

[

−
𝛽
𝑛

( 1
2
𝝌 ⋅ 𝟏 − 1

2
𝜆2𝐁−1𝟏 ⋅ 𝟏

)

]

, (38)

which, recalling the expression obtained in Eq. (15), can be rewritten in terms of the minimized mechanical energy 

 (𝝌 , 𝑇 ) =
(

𝑌𝑀
)𝑛

√

(2𝜋𝑛)𝑛

𝛽𝑛 det 𝐁
exp

[

−𝛽𝑔̃𝑒 (𝝌)
]

. (39)

While this expression can be studied numerically, to get insight in the results, we consider here the case of large systems under the 
hypothesis of single domain wall fractured configurations, assigned by the parameter 𝜉 ∈ [0, 1[. In the limit for 𝑛 → ∞, the quantity 
̃𝑒(𝝌) in Eq. (39) can be substituted with the explicit expression 𝑔̃𝑒 (𝜉) obtained in Eq. (16). In Appendix, we also prove that the 
asymptotic value of det 𝐁, for 𝑛 → ∞, is given by 

det 𝐁 ∼
𝑛→∞

(

𝑛2𝜈2
)𝑛

sinh
(

1 − 𝜉
𝜈

)

𝑛𝜈
. (40)

Therefore, the partition function in the Gibbs ensemble reads 

 (𝜉, 𝑇 ) =
(

𝑌𝑀
)𝑛

√

√

√

√

√

√

(2𝜋𝑛)𝑛 𝑛𝜈

𝛽𝑛
(

𝑛2𝜈2
)𝑛 sinh

(

1 − 𝜉
𝜈

) exp
[

−𝛽𝑔̃𝑒 (𝜉)
]

. (41)

It is worth noticing that, consistently with the Griffith approach, we have evaluated the partition function at assigned 𝜉, so that 
we will obtain the Gibbs free energy at fixed 𝜉. Different approaches have been proposed in the analysis of the thermal effects in 
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Fig. 8. Temperature effects on the system within the Gibbs ensemble. In panel (a), the non-dimensional Gibbs free energy ̃ is plotted versus the detached 
extension 𝜉: the curves describe the behavior at different temperatures 𝑇  such that 1∕𝛽 ∈ [0, 0.02]. The blue dashed curve passes through the energy maximum 
points. The red curve represent the purely mechanical system at 𝑇 = 0. For this diagram the values 𝜈 = 0.02 and 𝜆 = 0.025 have been used. In panel (b), we 
show the influence of the temperature on the critical stress required for fracture propagation: the different curves correspond to different values of 𝜉. These 
curves are obtained with 𝜈 = 0.5. We also assumed 𝐸𝐿𝑏𝑌 2

𝑀∕(ℎ𝑘𝐵 ) = 1 so that 𝑇 = 1∕𝛽.

unzipping and decohesion phenomena of discrete systems in Florio et al. (2020), where the energy was minimized also with respect 
to the fraction of broken system 𝜉. We can now, following the Griffith approach, develop the new temperature dependent stability 
criterion. Indeed, we can evaluate the Gibbs free energy at fixed 𝜉, which is defined as (Manca et al., 2012; Gibbs, 1902; Weiner, 
1983) 

 (𝜉, 𝑇 ) = −𝑘𝐵𝑇 ln
(

 (𝜉, 𝑇 )
)

. (42)

Its non-dimensional version is 
̃ (𝜉, 𝑇 ) = ℎ

𝐸𝐿𝑏𝑌 2
𝑀

 (𝜉, 𝑇 ) = −
ℎ𝑘𝐵𝑇
𝐸𝐿𝑏𝑌 2

𝑀

ln (𝜉, 𝑇 ) = − 1
𝛽
ln (𝜉, 𝑇 ) . (43)

In order to evaluate ln, we introduce the constant 𝑐 defined as 

𝑐 =
(

𝑌𝑀
)𝑛

√

(2𝜋𝑛)𝑛 𝑛𝜈
𝛽𝑛

(

𝑛2𝜈2
)𝑛 , (44)

and we obtain 

ln (𝜉, 𝑇 ) = ln 𝑐 − 1
2
ln
[

sinh
(

1 − 𝜉
𝜈

)]

− 𝛽𝑔̃𝑒(𝜉). (45)

Eventually, we can write the non-dimensional Gibbs free energy in the form 

̃ (𝜉, 𝑇 ) = ̃0(𝑇 ) +
1
2𝛽

ln
[

sinh
(

1 − 𝜉
𝜈

)]

+ 𝑔̃𝑒(𝜉), (46)

where the first term ̃0 = − ln 𝑐∕𝛽 takes into account the non-influential multiplicative constant in the partition function  (this 
term depends on the temperature, but not on 𝜉), the second term accounts for the entropic contribution with temperature effects, 
and the last term represents the enthalpic part, identical to the system energy when thermal effects are neglected, as defined in 
Eq. (16), thus including the elastic (internal) energy and the fracture energy term 𝜉∕2.

By following the same approach of the Griffith criterion for the purely mechanical case, in the presence of temperature we have 
to consider the Gibbs or Helmholtz free energies, depending on the boundary condition adopted. In the case here considered of 
assigned force, we thus extend the Griffith approach by requiring that the derivative of ̃ (𝜉, 𝑇 ) with respect to the extension of the 
fracture must be negative in order to have propagation 

𝜕̃ (𝜉, 𝑇 )
𝜕𝜉

< 0. (47)

In this way the fracture propagation is possible when the gain in free energy overcomes the energy dissipation due to fracture. This 
is consistent with the principle of non-equilibrium thermodynamics, which states that free energies must always decrease during 
the natural evolution of a physical system.

In this case as expected the stability criterion becomes temperature-dependent. The calculation of the derivative of Eq. (46) 
yields the generalized Griffith criterion here proposed: 

𝜕̃ (𝜉, 𝑇 )
= − 1 coth

(

1 − 𝜉
)

+ 1 − 𝜆2 − 𝜆2 𝜉 coth
(

1 − 𝜉
)

−
𝜉2𝜆2

coth2
(

1 − 𝜉
)

< 0. (48)

𝜕𝜉 2𝜈𝛽 𝜈 2 2 𝜈 𝜈 2𝜈2 𝜈
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After straightforward calculations, we obtain 

𝜆2
[

1 +
𝜉
𝜈
coth

(

1 − 𝜉
𝜈

)]2
> 1 − 1

𝛽𝜈
coth

(

1 − 𝜉
𝜈

)

, (49)

which leads to the necessary condition for fracture propagation 

𝜆 >

√

1 −
𝛽𝑐
𝛽

1 + 𝜉𝛽𝑐
, (50)

where 𝛽𝑐  is defined as follows 

𝛽𝑐 = 1
𝜈
coth

(

1 − 𝜉
𝜈

)

. (51)

We can also introduce the critical temperature 𝑇 
𝑐  of the system by means of the relation 

𝛽𝑐
𝛽

= 𝑇
𝑇 
𝑐
. (52)

We observe that 𝑇 
𝑐  depends on the crack extension 𝜉 and assumes the following explicit expression 

𝑇 
𝑐 =

𝜈𝐸𝐿𝑏𝑌 2
𝑀

ℎ𝑘𝐵 coth
(

1 − 𝜉
𝜈

) =

√

𝜇𝐸𝑏𝑌 2
𝑀

𝑘𝐵 coth
(

𝐿 − 𝜁
ℎ

√

𝐸
𝜇

)

, (53)

where we have introduced 𝜁 = 𝜉𝐿, which is the crack extension, defined with its real physical dimensions. Based on this definition, 
we can write an alternative form of Eq. (50), which describes explicitly the temperature dependent propagation criterion 

𝜆 >

√

1 − 𝑇
𝑇 
𝑐

1 +
𝜉
𝜈
coth

(

1 − 𝜉
𝜈

) = 𝜆𝑐𝑟(0)
√

1 − 𝑇
𝑇 
𝑐

=∶ 𝜆𝑐𝑟(𝑇 ), (54)

where 𝜆𝑐𝑟(0) is the critical load defined for the purely mechanical system in Eq. (30).
The obtained results have been summarized in Fig.  8. In particular in Fig.  8(a) we show how the energy is influenced by thermal 

fluctuations. All the curves are obtained with the same value of the applied stress 𝜆. We observe that for increasing temperature, 
the maximum of the energy function, assigning the Griffith propagation threshold, shifts toward lower values of 𝜉. Therefore, as the 
temperature is increased, a smaller broken region is sufficient to generate a Griffith instability. In other words thermal fluctuations 
promote fracture propagation.

In Fig.  8(b) we further describe this effect by plotting how the stress required for fracture propagation is influenced by thermal 
fluctuations. Observe that for the assigned initial crack length 𝜉 the Griffith propagation threshold decreases as temperature 
increases. In particular, when 𝑇 → 0 we obtain that Eq. (54) converges to Eq. (30). It is important to underline that we observe the 
emergence of a critical behavior, which is characterized by a phase transition, describing the spontaneous breaking of the system at 
a critical temperature 𝑇 = 𝑇 

𝑐 . In other words, for supercritical temperatures, the system is fully broken even without the application 
of external loads, only due to the thermal fluctuations acting on the system. When the temperature reaches its critical value 𝑇 

𝑐  the 
stress required for fracture propagation is zero, evidencing again the existence of the phase transition.

To conclude, in Fig.  9 we show the force–extension behavior of the system with varying temperature. The different straight lines 
correspond to different values of the crack extension 𝜉. The colors represent different temperatures of the system, and the endpoints 
of the straight lines represent the Griffith stability threshold, which we have already determined analytically. It is clearly seen that 
critical stress decreases with temperature as described above. We underline that the average displacement 𝑣̃𝑎𝑣 is calculated from 
the expectation value of the displacement conjugated to the applied stress 𝜆 in the Gibbs ensemble. Specifically, recalling Eqs. (39) 
and (42) we have 

⟨𝑣̃⟩ = −
𝜕̃ (𝜉, 𝑇 )

𝜕𝜆
= 1

𝛽(𝜉, 𝑇 )
𝜕(𝜉, 𝑇 )

𝜕𝜆
= 1

𝛽(𝜉, 𝑇 )
(𝜉, 𝑇 )

(

−𝛽
) 𝜕𝑔̃𝑒(𝜉, 𝑇 )

𝜕𝜆

= 𝜆 +
𝜆𝜉
𝜈2

[

𝜈2 + 𝜈𝜉 coth
(

1 − 𝜉
𝜈

)

+
𝜉2

3

]

= 𝑣̃𝑎𝑣(𝑇 ) = 𝑣̃𝑎𝑣(0),
(55)

where 𝑣̃𝑎𝑣(0) is the purely mechanical averaged displacement. Hence, we obtain that the expression for this quantity is not influenced 
by thermal fluctuations.

4. Energy release rate in the soft device configuration

In this Section, with the aim of comparing our theory with the classical fracture approaches when thermal effects are neglected, 
we determine the temperature dependent expression of the ‘‘energy release rate’’, of the system. We next also introduce the concepts 
of stress intensity factor and 𝐽 -integral for our system.
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Fig. 9. Temperature effects on force–displacement relation within the Gibbs ensemble. We remember that 𝑣̃𝑎𝑣 is the average displacement. The different straight 
lines correspond to different values of 𝜉, and the endpoint of each line coincides with the temperature dependent Griffith threshold. The different colors represent 
different temperature values (the black lines correspond to the zero temperature case, and the red ones to the larger temperature). The parameter used for this 
diagram is 𝜈 = 0.4.

Let us again begin with the purely mechanical system when thermal effects are neglected. The energy release rate is related to 
the variation of the potential energy 𝛱 (sum of the strain energy and the potential energy of the external load) with respect to the 
crack extension (Griffith, 1921). Let us recall Eq. (16), which represents the total energy of the system, minimized with respect to 
the displacement 𝑣̃(𝑥̃). We observe that the last term of Eq. (16) represents the non-dimensional fracture energy 

𝛤 =
𝜉
2
, (56)

while the first two terms represent the non-dimensional potential energy, namely 

𝛱̃ = −1
2
𝜆2 − 1

2
𝜆2

𝜈2
𝜉
[

𝜈2 + 𝜈𝜉 coth
(

1 − 𝜉
𝜈

)

+
𝜉2

3

]

. (57)

Then, being 𝜉 the non-dimensional counterpart of the crack area, defined as 𝜉 = 𝑎∕(𝐿𝑏), where 𝑎 is the actual fractured area, we 
evaluate the (non-dimensional) energy release rate 𝐺̃ as 

𝐺̃ = − 𝜕𝛱̃
𝜕𝜉

= 𝜆2

2
+

𝜆2𝜉
𝜈

coth
(

1 − 𝜉
𝜈

)

+
𝜆2𝜉2

2𝜈2
coth2

(

1 − 𝜉
𝜈

)

= 𝜆2

2

[

1 +
𝜉
𝜈
coth

(

1 − 𝜉
𝜈

)]2
. (58)

Recalling that the critical stress 𝜆𝑐𝑟, obtained through the Griffith energy criterion, is given by Eq. (30), we can write 𝐺̃ as 

𝐺̃ = 1
2

(

𝜆
𝜆𝑐𝑟

)2

. (59)

We can come back to quantities with real physical units through the relation 𝜉 = 𝑎∕(𝐿𝑏) and Eq. (8), and we obtain the energy 
release rate 

𝐺 = − 𝜕𝛱
𝜕𝑎

= −
𝐸𝑌 2

𝑀
ℎ

𝜕𝛱̃
𝜕𝜉

=
𝐸𝑌 2

𝑀
ℎ

𝐺̃ =
𝐸𝑌 2

𝑀
2ℎ

𝜎2

𝜎2𝑐𝑟
, (60)

where 𝜎 = 𝐸𝑌𝑀𝜆∕ℎ and 𝜎𝑐𝑟 = 𝐸𝑌𝑀𝜆𝑐𝑟∕ℎ. Similarly, we can deduce the fracture energy as 

𝛤 =
𝐸𝑌 2

𝑀
2ℎ

𝑎 = 𝛾𝑠(0)𝑎 (61)

where we have introduced the fracture energy per unit surface for the purely mechanical system (𝑇 = 0) 

𝛾𝑠(0) =
𝐸𝑌 2

𝑀
2ℎ

. (62)

We can then reformulate Eq. (60) as 

𝐺 = 𝛾𝑠(0)
𝜎2

𝜎2𝑐𝑟
. (63)

We note that typically 𝛾𝑠(0) is linked with the ‘‘critical energy release rate’’ 𝐺𝑐 through the relation 𝐺𝑐 = 2𝛾𝑠(0), where the 
multiplicative factor 2 is associated to the two free surfaces created by the propagating crack (top and bottom faces) so that the 
total fracture energy is multiplied by two. Since we are considering half of the system in our analysis (due to the symmetry of the 
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process we are describing, see Fig.  1d), the considered fracture energy density is two times the energy of the single face. Therefore, 
we obtain the relation 𝐺𝑐 = 𝛾𝑠(0), and from Eq. (63) we get 

𝐺
𝐺𝑐

= 𝜎2

𝜎2𝑐𝑟
. (64)

We observe that this relation is consistent with classical results obtained by Griffith. In fact, the Griffith criterion predicts that 
𝐺 = 𝜋𝜎2𝑎∕𝐸, and 𝐺𝑐 = 𝜋𝜎2𝑐𝑟𝑎∕𝐸, and thus the relation 𝐺∕𝐺𝑐 = 𝜎2∕𝜎2𝑐𝑟 is proved. It is interesting to point out that in our model this 
relationship is valid as well. This shows that despite the geometric simplifications of our dissipative model the system is keeping 
the correct ratio between the involved (elastic and fracture) energies.

We can now apply the same reasoning for the full thermo-mechanical system, when thermal effects are considered. It should be 
noted that in this case, by using the Gibbs free energy in Eq. (46), the total energy (except for the fracture energy) is the sum of the 
potential energy in the mechanical limit given in Eq. (57) and the entropic term, eventually resulting in the following expression 

𝛱̃𝑇 = ̃0 +
1
2𝛽

ln
[

sinh
(

1 − 𝜉
𝜈

)]

+ 𝛱̃. (65)

Thus, recalling that the term ̃0 does not depend on 𝜉, and by using the result obtained in Eq. (59), the (non-dimensional, Gibbs) 
energy release rate in the thermo-mechanical system reads 

𝐺̃𝑇 = − 𝜕𝛱̃𝑇

𝜕𝜉
=

coth
(

1 − 𝜉
𝜈

)

2𝜈𝛽
+ 1

2

(

𝜆
𝜆𝑐𝑟

)2

. (66)

We can now use Eqs. (8), (35) and (62) to write 

𝐺𝑇 = 𝛾𝑠(0)
√

𝐸
𝜇
𝐿
ℎ

ℎ𝑘𝑏𝑇
𝐸𝐿𝑏𝑌 2

𝑀

coth
(

𝐿𝑏 − 𝑎
𝑏ℎ

√

𝐸
𝜇

)

+ 𝛾𝑠(0)
𝜎2

𝜎2𝑐𝑟
. (67)

We finally observe that, considering the result obtained for the critical temperature in Eq. (53), we can rewrite 𝐺𝑇  as 

𝐺𝑇 = 𝛾𝑠(0)
𝑇
𝑇 
𝑐

+ 𝛾𝑠(0)
𝜎2

𝜎2𝑐𝑟
= 𝛾𝑠(0)

(

𝜎2

𝜎2𝑐𝑟
+ 𝑇

𝑇 
𝑐

)

, (68)

where it is important to remember that 𝜎𝑐𝑟 is the Griffith critical stress at zero temperature. It means that 𝜎𝑐𝑟 = 𝐸𝑌𝑀𝜆𝑐𝑟∕ℎ, where 
𝜆𝑐𝑟 is given in Eq. (30). It can be seen immediately that in our simplified model the energy release rate increases linearly with 
temperature. This result is in fairly good agreement with some experimental results (Wang et al., 2020; Belhouari et al., 2023). 
Since the critical energy release rate is given by 𝐺𝑇

𝑐 = 𝛾𝑠(0), the Griffith criterion for the crack propagation can be written as 
𝐺𝑇 > 𝛾𝑠(0). This exactly corresponds to 𝜎 > 𝜎𝑐𝑟

√

1 − 𝑇 ∕𝑇 
𝑐 , which is consistent with Eq. (54). Finally, the presence of a critical 

behavior described by a second-order phase transition is equivalent to a linear behavior of the energy release rate as a function of 
temperature, as stated in Eq. (68).

4.1. Temperature-dependent fracture surface energy

As anticipated in Section 4, 𝛾𝑠(0) defined in Eq. (62), represents the purely mechanical value of the fracture energy per unit 
surface at zero temperature. Based on previous results, we are able to determine the fracture surface energy 𝛾𝑠(𝑇 ) at an arbitrary 
temperature. Observe that the dependence of the fracture surface energy on temperature is implicitly captured in Eq. (54), where the 
temperature-dependent critical load is expressed as the purely mechanical critical load multiplied by the entropic term 

√

1 − 𝑇 ∕𝑇 
𝑐 . 

It is worth noting that, within the Griffith theory, the critical stress for fracture propagation is proportional to the square root of 
the surface energy √𝛾𝑠. This proportionality can be deduced also for the proposed model. Indeed, considering the critical load in 
Eq. (30) and the appropriate rescalings introduced in Eq. (8), we obtain 

𝜎𝑐𝑟(0) =
√

2𝐸
ℎ

𝜆𝑐𝑟(0)
√

𝛾𝑠(0). (69)

Moreover, from Eq. (54), we deduce the similar relation 

𝜎𝑐𝑟(𝑇 ) =
√

2𝐸
ℎ

𝜆𝑐𝑟(𝑇 )
√

𝛾𝑠(0). (70)

Hence, since 𝜆𝑐𝑟(𝑇 ) = 𝜆𝑐𝑟(0)
√

1 − 𝑇
𝑇 
𝑐
, we can write 𝜎𝑐𝑟(𝑇 ) =

√

2𝐸
ℎ 𝜆𝑐𝑟(0)

√

𝛾𝑠(0)
(

1 − 𝑇
𝑇 
𝑐

)

, and we can identify the fracture surface 
energy as 

𝛾𝑠(𝑇 ) ∼ 𝛾𝑠(0)

(

1 − 𝑇


)

, (71)

𝑇𝑐
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Fig. 10. Comparison of the temperature-dependent fracture surface energy 𝛾𝑠(𝑇 ) obtained by the model described in the present paper, see Eq. (71), with 
experimental results on platinum and iron proposed by McLean and Mykura (1966) and Schönecker et al. (2015). Panel (a) shows results for fcc (111) and 
(100) facets of Pt, and panel (b) shows results for bcc (110) and (001) facets of Fe.

demonstrating that the proposed model is fully consistent with existing theoretical and experimental results in the literature, which 
recognize that surface energy decreases linearly with temperature (Kitamura, 2008; McLean and Mykura, 1966; Schönecker et al., 
2015; Maksimov et al., 2001; Ramanaiah et al., 2015; Cheng et al., 2017; Kholtobina et al., 2023).

For instance, this equation aligns with the results obtained by Kitamura (2008), apart from the second-order term. Observe that 
the higher-order contribution in Kitamura’s work arises from the nonlinearities of the system, whereas in our present model such 
effect is not observed, as the analysis is restricted to a linear force–extension behavior. Of course, the linear behavior of 𝛾𝑠(𝑇 ) with 
temperature is valid only in a certain range that depends on the material, beyond which the behavior becomes more complex.

In Fig.  10, we compare the results obtained through Eq. (71) with experimental results concerning the fracture surface energy of 
platinum and iron proposed by McLean and Mykura (1966) and Schönecker et al. (2015), and we observe a quite good agreement.

4.2. Stress intensity factor

It is well known that the energy release rate 𝐺 can be related to the stress intensity factor 𝐾 by the expression (Irwin, 1957; 
Paris and Sih, 1965) 

𝐾 =
√

𝐸𝐺, (72)

where we considered the mode 𝐼 of the fracture propagation. In particular, substituting Eq. (63) in Eq. (72), we obtain 
𝐾 = 𝜎

𝜎𝑐𝑟

√

𝐸𝛾𝑠(0), (73)

which is the stress intensity factor for a purely mechanical system, without thermal effects. Similarly, for the thermo-mechanical 
fracture process, using Eq. (68), we obtain 

𝐾𝑇 =
√

𝐸𝐺𝑇 = 𝜎
𝜎𝑐𝑟

√

√

√

√𝐸𝛾𝑠(0)

(

𝜎2𝑐𝑟
𝜎2

𝑇
𝑇 
𝑐

+ 1

)

, (74)

where, as before, 𝜎𝑐𝑟 is the Griffith critical stress at zero temperature. This result shows that the stress intensity factor grows 
proportionally to the root of temperature. It is worth noting that in this context the stress intensity factor is simply defined by 
Eq. (72) to be consistent with general fracture theory and can be used, for example, to reformulate the Griffith criterion in terms of 
this parameter. Nevertheless, in our model, the parameter itself does not describe the divergence of stress near the crack tip since 
the stress remains finite and regular everywhere in our structure.

4.3. 𝐽 -Integral

Another application of the energy release rate concept for the crack propagation in the system under isotensional boundary 
condition consists in the calculation of the 𝐽 -integral. We start by defining the ‘‘configurational force’’ (also referred to as ‘‘driving 
force’’) on a defect, first introduced by Eshelby (1951). He defined the ‘‘force acting on an elastic singularity’’ within a solid as the 
derivative of the energy with respect to the defect’s displacement. Then, for a defect moving along the 𝑥-direction in a solid under 
tension, this force has been related to the Rice (1968) 𝐽 -integral. Specifically Eshelby defined the ‘‘energy–momentum tensor’’ that, 
for the three-dimensional linear elasticity, reads 

𝐏 = 𝐈 − (∇𝐮)𝑇 𝝈, 𝑃𝓁𝑗 = 𝛿𝓁𝑗 −
𝜕 𝑢𝑖,𝓁 = 𝛿𝓁𝑗 − 𝜎𝑖𝑗𝑢𝑖,𝓁 , (75)

𝜕𝑢𝑖,𝑗

18 



C. Binetti et al. Journal of the Mechanics and Physics of Solids 201 (2025) 106157 
where  is the strain energy density, 𝛿𝑖𝑗 is the Kronecker delta, 𝑢𝑖 are the components of the elastic displacement vector, and 𝜎𝑖𝑗
are the components of the stress tensor. Here, as usually, the subscripts following a comma mean partial differentiation. Then he 
found that the integral over a closed surface  of normal 𝐧 of this tensor, namely 

𝐹𝓁 = ∫
𝐏 ⋅ 𝐧𝑑𝑆 = ∫

(

𝛿𝓁𝑗 − 𝜎𝑖𝑗𝑢𝑖,𝓁
)

𝑛𝑗𝑑𝑆, (76)

vanishes for any closed surface free of defects, whereas 𝐹𝓁 measures exactly the configurations force if the surface contains a crack 
moving along the 𝓁-direction. This is consistent with the Rice’s development when 𝓁 coincides with the 𝑥-direction (Rice, 1968).

For our system, we consider the total potential energy (in the continuum limit), which consists of Eq. (17) without the fracture 
term 

𝛱
(

𝑣(𝑥), 𝑣′(𝑥)
)

= ∫

𝐿

0

[𝐸𝑏
2ℎ

(1 − 𝜒(𝑥)) 𝑣2(𝑥) + 1
2
𝜇𝑣′2(𝑥)𝑏ℎ − 𝜎𝑏𝑣(𝑥)

]

𝑑𝑥. (77)

Then, we can define the potential energy density 

𝜋
(

𝑣(𝑥), 𝑣′(𝑥)
)

= 𝐸𝑏
2ℎ

(1 − 𝜒(𝑥)) 𝑣2(𝑥) + 1
2
𝜇𝑏ℎ𝑣′2(𝑥) − 𝜎𝑏𝑣(𝑥). (78)

We observe that such a potential energy density is defined by the two quantities introduced in Eq. (18). It means that it depends 
not only on the shear strain 𝑣′(𝑥), but also directly on the extensional field 𝑣(𝑥). In the classical Eshelby theory, the strain energy 
density  depends on the strain components 𝑢𝑖,𝑗 , but not on the displacement component 𝑢𝑖. Therefore, we cannot directly apply the 
Eshelby’s theory in its classical form and we must apply the following alternative procedure. We first remember that the characteristic 
function 𝜒 distinguishes between intact and broken regions of the system. Equivalently, we can affirm that 𝜒 takes into account 
discontinuity in the stiffness of the system (being 0 in the broken region and 1 in the intact region). For the following calculations, 
we will consider explicitly the dependence of the stiffness of the system C on the position, and on the fracture extension within the 
system. We then define C = 𝐸 in the intact region, and C = 0 in the broken one. Then, the crack propagation is represented by 

C(𝑥, 𝜁 ) = 𝐸 {1 − 𝟏 [𝑥 − (𝐿 − 𝜁 )]} , (79)

where 0 ≤ 𝑥 ≤ 𝐿 is the position where we define the stiffness, and 𝜁 is the crack extension corresponding to 𝜁 = 𝜉𝐿, with 0 ≤ 𝜉 ≤ 1. 
Here, 𝟏(𝑧) is the Heaviside step function, the value of which is zero for negative arguments and one for positive arguments. The 
crack nucleates to the left and moves to the right, as defined above, and thus we have the following two extreme cases. For 𝜁 = 0
(or 𝜉 = 0), the system is fully intact and we have C(𝑥, 0) = 𝐸 [1 − 𝟏(𝑥 − 𝐿)], that is C(𝑥, 0) = 𝐸 within the system. Similarly, for 𝜁 = 𝐿
(or 𝜉 = 1), the system is fully broken and we have C(𝑥,𝐿) = 𝐸 [1 − 𝟏(𝑥)], that is C(𝑥,𝐿) = 0 within the system. Using this notation, 
we rewrite the energy density of the system, given in Eq. (78), as 

𝜋
(

𝑣(𝑥), 𝑣′(𝑥)
)

= 𝑏
2ℎ

C (𝑥, 𝜁 ) 𝑣2(𝑥) + 1
2
𝜇𝑏ℎ𝑣′2(𝑥) − 𝜎𝑏𝑣(𝑥). (80)

According to Eshelby, the configurational force acting on the crack is given by 

𝐹 = −
𝜕𝛱

(

𝑣, 𝑣′
)

𝜕𝜁
= − 𝜕

𝜕𝜁

[

∫

𝐿

0

( 𝑏
2ℎ

C𝑣2 + 1
2
𝜇𝑏ℎ𝑣′2 − 𝜎𝑏𝑣

)

𝑑𝑥
]

. (81)

Since both 𝑣 and C depend on 𝜁 , the differentiation provides 

𝐹 = −∫

𝐿

0

(

𝑏
2ℎ

𝜕C
𝜕𝜁

𝑣2 + 𝑏
ℎ
C𝑣 𝜕𝑣

𝜕𝜁
+ 𝜇𝑏ℎ𝑣′ 𝜕𝑣

′

𝜕𝜁
− 𝜎𝑏 𝜕𝑣

𝜕𝜁

)

𝑑𝑥. (82)

Here we have, with a little abuse, derived the function C as if it were regular, and we have clearly assumed that 𝑣 depends on 𝜁
since it is the solution of the problem with C (and thus 𝜁) fixed. The governing equation for 𝑣 has been obtained in non-dimensional 
form in Eq. (23), and it is rewritten here in its dimensional form 

𝜇𝑏ℎ𝑣′′ − 𝑏
ℎ
C𝑣 = −𝜎𝑏, (83)

which is associated with the boundary conditions 𝑣′(0) = 𝑣′(𝐿) = 0. Now, we consider the configurational force in Eq. (82), and we 
substitute 𝜎 taken from Eq. (83). We get 

𝐹 = −∫

𝐿

0

(

𝑏
2ℎ

𝜕C
𝜕𝜁

𝑣2 + 𝑏
ℎ
C𝑣 𝜕𝑣

𝜕𝜁
+ 𝜇𝑏ℎ𝑣′ 𝜕𝑣

′

𝜕𝜁
+ 𝜇𝑏ℎ𝑣′′ 𝜕𝑣

𝜕𝜁
− 𝑏

ℎ
C𝑣 𝜕𝑣

𝜕𝜁

)

𝑑𝑥

= −∫

𝐿

0

[

𝑏
2ℎ

𝜕C
𝜕𝜁

𝑣2 + 𝜇𝑏ℎ
(

𝑣′ 𝜕𝑣
′

𝜕𝜁
+ 𝑣′′ 𝜕𝑣

𝜕𝜁

)]

𝑑𝑥,
(84)

and we observe that 
𝜕
𝜕𝑥

(

𝑣′ 𝜕𝑣
𝜕𝜁

)

= 𝑣′′ 𝜕𝑣
𝜕𝜁

+ 𝑣′ 𝜕𝑣
′

𝜕𝜁
, (85)

leading to 
𝐿 𝜕

(

𝑣′ 𝜕𝑣
)

𝑑𝑥 = 0, (86)
∫0 𝜕𝑥 𝜕𝜁
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Fig. 11. Schematic representation of the hard device configuration: the material properties are mimicked by 𝑛 − 1 horizontal elastic springs of stiffness 𝑘𝑒, and 
by 𝑛 vertical breakable units of stiffness 𝑘𝑡, describing the crack propagation. 𝐿 is the total length of the system, and ℎ is its height. We study the response 
of the system when is subjected to a prescribed displacement 𝛺, uniformly applied to all units by a device of length 𝐿 and height 𝑑, modeled as a discrete 
sequence of linear elastic springs of stiffness 𝑘𝑑 .

as we assume that the two ends of the system are free, that is 𝑣′(0) = 𝑣′(𝐿) = 0. Hence, Eq. (84) becomes 

𝐹 = −∫

𝐿

0

𝑏
2ℎ

𝜕C
𝜕𝜁

𝑣2𝑑𝑥. (87)

We use now the form of the stiffness C defined in Eq. (79), and we obtain that 𝜕C𝜕𝜁 = −𝐸𝛿 [𝑥 − (𝐿 − 𝜁 )], where 𝛿(𝑧) = 𝑑𝟏(𝑧)∕𝑑𝑧
represents the Dirac delta function. Thus, we obtain 

𝐹 = ∫

𝐿

0

𝐸𝑏
2ℎ

𝛿 [𝑥 − (𝐿 − 𝜁 )] 𝑣2(𝑥)𝑑𝑥 = 𝐸𝑏
2ℎ

𝑣2(𝐿 − 𝜁 ). (88)

This is the main result concerning the configurational force and the 𝐽 -integral in our model. Substituting now the solution for the 
displacement obtained in Eq. (27), and using the rescaling 𝑣 = 𝑣̃𝑌𝑀 , it is easy to verify that 

𝐹 =
𝐸𝑌 2

𝑀
2ℎ

𝑏 𝜎
2

𝜎2𝑐𝑟
= 𝛾𝑠(0)

𝜎2

𝜎2𝑐𝑟
𝑏, (89)

which is consistent with the energy release obtained in Eq. (63), provided that we impose 𝐺 = 𝐹∕𝑏. In fact, to obtain the 
configurational force we derived the energy with respect to the linear extent of the fracture 𝜁 , and to obtain the energy release 
rate we derived with respect to the fracture surface 𝑎 (being 𝑏 = 𝑎∕𝜁 their ratio).

To conclude, we can calculate the driving force for the crack propagation within the system with thermal effects. In this case, 
we have to include the entropic term in the total energy, as it was already done in Eq. (46). We get 

𝛱𝑇 (𝑣, 𝑣′, 𝑇 ) = 𝛱 − 𝑇𝑆 = 𝛱(𝑣, 𝑣′) +
𝑘𝑏𝑇
2

ln

⎡

⎢

⎢

⎢

⎢

⎣

sinh

⎛

⎜

⎜

⎜

⎜

⎝

𝐿 − 𝜁
√

𝜇
𝐸
ℎ

⎞

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎦

, (90)

where 𝛱(𝑣, 𝑣′) refers to the mechanical energy defined in Eq. (77). Following the same procedure previously developed, and using 
Eqs. (53) and (62), we determine the temperature-dependent driving force as follows 

𝐹 𝑇 = − 𝜕𝛱𝑇

𝜕𝜁
= 𝐸𝑏

2ℎ
𝑣2(𝐿 − 𝜁 ) +

𝑘𝐵𝑇

2
√

𝜇
𝐸
ℎ
coth

⎛

⎜

⎜

⎜

⎜

⎝

𝐿 − 𝜁
√

𝜇
𝐸
ℎ

⎞

⎟

⎟

⎟

⎟

⎠

= 𝛾𝑠(0)

(

𝜎2

𝜎2𝑐𝑟
+ 𝑇

𝑇 
𝑐

)

𝑏, (91)

which is in perfect agreement with Eq. (68), provided that we define 𝐺𝑇 = 𝐹 𝑇 ∕𝑏. To conclude, the result of the 𝐽 -integral calculation 
obtained in Eq. (88) gives the correct results for the energy release rate in both the purely mechanical case and the case with thermal 
fluctuations.

5. Hard device (statistical Helmholtz ensemble)

While in the previous Section the fracture propagation was analyzed under an externally applied load (soft device), in this Section 
we delve into the study of a different type of external loading inducing crack propagation, i.e. the case when the total extension 
of the system is prescribed (hard device). Similarly to the approach used with the soft device configuration, we initially examine 
the purely mechanical model and subsequently we incorporate the influence of thermal fluctuations. We start by considering the 
mechanical model represented in Fig.  11. The geometric parameters are the same as those of the soft device configuration: 𝐿 is the 
total length of the system along the 𝑥-axis, ℎ is the height along the 𝑦-axis, and 𝑏 is the (out of plane) depth along the 𝑧-axis. The 
external hard device is composed of a discrete sequence of linearly elastic springs of stiffness 𝑘𝑑 , which impose a displacement 𝛺 on 
the entire system. It should be noted that the springs, describing the traction device, were not considered in the case of the Gibbs 
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ensemble because with force applied these springs transmit the force unchanged and are therefore irrelevant to the behavior of the 
system. The geometrical parameters of the device are the length, equal to the system’s length 𝐿 along the 𝑥-direction and the height 
𝑑 along 𝑦-direction. The elastic energy describing the 𝑖th unit of the device is 

𝑇𝑖
(

𝑣𝑖
)

= 1
2
𝑘𝑑

(

𝛺 − 𝑣𝑖
)2 , (92)

where 𝛺 is the prescribed overall extension. By recalling Eqs. (3) and (4), the total mechanical energy of the system reads 

𝜙
({

𝑣𝑖
}

,
{

𝜒𝑖
})

=
𝑛
∑

𝑖=1
𝑈𝑖

({

𝑣𝑖
}

,
{

𝜒𝑖
})

+
𝑛−1
∑

𝑖=1
𝑉𝑖

({

𝑣𝑖
})

+
𝑛
∑

𝑖=1
𝑇𝑖

({

𝑣𝑖
})

=1
2
𝑘𝑡

𝑛
∑

𝑖=1

[(

1 − 𝜒𝑖
)

𝑣2𝑖 + 𝜒𝑖𝑌
2
𝑀
]

+ 1
2
𝑘𝑒

𝑛−1
∑

𝑖=1

(

𝑣𝑖+1 − 𝑣𝑖
)2 + 1

2
𝑘𝑑

𝑛
∑

𝑖=1

(

𝛺 − 𝑣𝑖
)2 .

(93)

Following the same methodology as the soft device configuration, we define the following material parameters 

𝐸 =
𝑛𝑘𝑡ℎ
𝑏𝐿

, 𝐸𝑑 =
𝑛𝑘𝑑𝑑
𝑏𝐿

, 𝜇 =
𝐿𝑘𝑒
𝑛ℎ𝑏

, (94)

where 𝐸 is the material’s Young modulus, 𝐸𝑑 is the device’s Young’s modulus, and 𝜇 is the material’s shear modulus. Moreover, we 
introduce the non-dimensional parameters 𝑣̃𝑖 (breakable units elongation), 𝛺̃ (assigned displacement), 𝜙̃ (energy), 𝜈2 (reduce ratio 
between material’s shear and Young moduli), 𝜌2 (reduced ratio between device’s and material’s Young moduli) as follows 

𝑣̃𝑖 =
𝑣𝑖
𝑌𝑀

, 𝛺̃ = 𝛺
𝑌𝑀

, 𝜙̃ =
𝜙ℎ

𝐸𝐿𝑏𝑌 2
𝑀

, 𝜈2 =
𝜇ℎ2

𝐸𝐿2
, 𝜌2 =

ℎ𝐸𝑑
𝑑𝐸

=
𝑘𝑑
𝑘𝑡

, (95)

in order to have the correct continuum rescaling. Hence, from Eq. (93), we can obtain the non-dimensional energy in the case of 
hard device 

𝑛𝜙̃
({

𝑣̃𝑖
}

,
{

𝜒𝑖
})

= 1
2

𝑛
∑

𝑖=1

[(

1 − 𝜒𝑖
)

𝑣̃2𝑖 + 𝜒𝑖
]

+ 1
2
𝑛2𝜈2

𝑛−1
∑

𝑖=1

(

𝑣̃𝑖+1 − 𝑣̃𝑖
)2 + 1

2
𝜌2

𝑛
∑

𝑖=1

(

𝛺̃ − 𝑣̃𝑖
)2 . (96)

As before, it is useful to rewrite the mechanical energy in Eq. (96), by using the matrix notation 

𝑛𝜙̃ (𝒗̃,𝝌) = 1
2
𝐐𝒗̃ ⋅ 𝒗̃ + 1

2
𝝌 ⋅ 𝟏 + 1

2
𝑛𝜌2𝛺̃2 − 𝜌2𝛺̃𝒗̃ ⋅ 𝟏, (97)

where the structure of 𝒗̃, 𝝌 and 𝟏 is defined in Eq. (12), and 𝐐 is a tridiagonal symmetric matrix defined as 

𝐐 = 𝑛2𝜈2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Q1 −1 0 … 0

−1 Q2 −1 ⋱ ⋮

0 ⋱ ⋱ ⋱ 0

⋮ ⋱ −1 Q𝑛−1 −1

0 … 0 −1 Q𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (98)

Here, we introduced Q𝑖 = (1 − 𝜒𝑖 + 𝜌2)∕(𝑛2𝜈2) + 2 for 𝑖 = 2,… 𝑛 − 1, and the first and last coefficients as it follows: Q1 =
(1 − 𝜒1 + 𝜌2)∕(𝑛2𝜈2) + 1, and Q𝑛 = (1 − 𝜒𝑛 + 𝜌2)∕(𝑛2𝜈2) + 1.

5.1. Equilibrium configurations

As we have already done in the isotensional case, also for the isometric one we can find the equilibrium configurations for the 
purely mechanical system by minimizing the energy with respect to the displacement vector 𝒗̃, considering a fixed number of broken 
units assigned by means of the vector 𝝌 . The equilibrium equations then read 

𝜕
𝜕𝒗̃

(

𝑛𝜙̃ (𝒗̃,𝝌)
)

= 𝐐𝒗̃ − 𝜌2𝛺̃𝟏 = 𝟎, (99)

which can be solved eventually obtaining the displacement vector at equilibrium as 
𝒗̃𝑒 = 𝜌2𝛺̃𝐐−1𝟏. (100)

So doing, the equilibrium energy assumes the value 

𝑛𝜙̃
(

𝒗̃𝑒 ,𝝌
)

= 𝑛𝜙̃𝑒 (𝝌) = −1
2
𝜌4𝛺̃2𝐐−1𝟏 ⋅ 𝟏 + 1

2
𝝌 ⋅ 𝟏 + 1

2
𝑛𝜌2𝛺̃2, (101)

which describes the non-dimensional energy of the equilibrated system at prescribed displacement 𝛺̃, and assigned fracture 
configuration 𝝌 . As before, we consider a fracture that nucleates to the right and propagates to the left, and is described by a 
number 𝑚 of broken springs. This choice fully defines the vector 𝝌 .

In Fig.  12(a) we show the energy curves corresponding to a system composed by 𝑛 = 20 units, with a variable number 𝑚 of 
broken springs: the thickest curve (left side) corresponds to the fully intact system (𝑚 = 0), while the horizontal thick line (right 
side) describes the completely broken system (𝑚 = 20). The thin curves represent all the intermediate possible configurations between 
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Fig. 12. Equilibrium configurations for a discrete system with 𝑛 = 20 units, in hard device configuration. In both panels gray curves describe the system response 
with a fixed number of broken units 𝑚. In panel (a), we show the minimized energy 𝜙̃𝑒 as function of the imposed total displacement 𝛺̃. The thickest curves 
indicate the energy global minima of the system, switching from fully intact to completely broken configurations. The blue points indicate the critical threshold 
value of 𝛺̃, represented by the condition 𝑣̃𝑛−𝑚 = 1. The red points describe the situation where the energy of the system with 𝑚 broken units equals the energy 
of the system with 𝑚 + 1 broken units (Griffith threshold). In panel (b), we show the force–displacement relations. Each straight line corresponds to a different 
value of 𝑚, and the red and blue points are defined as in the panel (a). The parameters used in this diagram are 𝜈 = 0.5 and 𝜌 = 1.

fully intact and fully broken states, characterized by an increasing value of 𝑚. It is interesting to note in Fig.  12(a) that the global 
minima of the energy for the system in the hard device configuration are represented by the thickest curves, exploring the fully 
intact system (represented by the bottom curve on the left side of the plot) and the completely broken configuration (horizontal line 
on the right side), without passing through intermediate configurations. However, according with the Griffith approach, we deduce 
the fracture strategy by comparing the local energy minima of two adjacent configurations (with 𝑚 and 𝑚 + 1 broken springs), 
corresponding to the crack propagation. Moreover, as in the case of soft device configuration, we indicate with the blue points 
the critical threshold represented by the condition 𝑣̃𝑛−𝑚 = 1, and with the red points the situation where the energy of the system 
with 𝑚 broken units equals the energy of the system with 𝑚 + 1 broken units. Thus representing a discrete version of the Griffith 
propagation threshold. Observe that, as in the case with a soft device, that as 𝑛 increases, the red points converge to blue points. 
This is in particular the case of the continuum 𝛤 -limit analyzed in the following.

In Fig.  12(b), we show the curves representing the relation between the force 𝜆 and the average displacement 𝑣̃𝑎𝑣, for a system 
composed of 𝑛 = 20 units, with a varying number of broken units 𝑚. Specifically, each curve represents the system’s response for 
a given number of broken units 𝑚, with the upper curve representing the system with 𝑚 = 0, and the curve parallel to the 𝑥-axis 
describing the case with 𝑚 = 20. The decrease in slope as fracture extension increases represents the progressive decrease in stiffness. 
The force–displacement relation is obtained by defining the non-dimensional stress as 

𝑛𝜆 = 𝜕
𝜕𝛺̃

(

𝑛𝜙̃(𝒗̃𝑒 ,𝝌)
)

= 𝑛𝜌2𝛺̃ − 𝜌4𝛺̃𝐐−1𝟏 ⋅ 𝟏, (102)

and the average displacement as 

𝑣̃𝑎𝑣 = 1
𝑛
𝒗̃𝑒 ⋅ 𝟏 = 1

𝑛
𝜌2𝛺̃𝐐−1𝟏 ⋅ 𝟏, (103)

which represent the mean value of the displacements at equilibrium of all the units in the system for a given 𝑚, and assigned 
displacement 𝛺. These values would be particularly representative in a multiscale approach when the proposed model represents 
the process zone of fracture propagation. Therefore, the force–extension relations are given by 

𝜆 =
(

𝑛
𝐐−1𝟏 ⋅ 𝟏

− 𝜌2
)

𝑣̃𝑎𝑣. (104)

These straight lines are plotted in Fig.  12(b), together with the red and blue points, defined shortly above. One moves on each 
straight line by varying the value of the total extension 𝛺, and then reaches such limit points representing the fracture state existence 
threshold (blue) and Griffith’s threshold describing propagation (red), respectively. As we have seen before for the isotensional case, 
and as we will also demonstrate shortly for the isometric case, red points tend to the blue ones in the continuous limit that is, for 
𝑛 → ∞. Also we point out again that the existence thresholds (blue dots) are not considered in the classical Griffith approach.

5.2. Continuum limit

To study the behavior of the system in the continuum limit, we can proceed with two different but equivalent approaches, as 
demonstrated for the soft device configuration. In the first approach, we start from the minimized energy given in Eq. (101), and we 
analyze the limit for 𝑛 → ∞. In that case, the detailed calculations were provided in Appendix. In the second approach, we consider 
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the continuum limit of the non-minimized energy given in Eq. (96), and we apply the energy minimization through a variational 
method. Since the equivalence of the two procedures has been demonstrated with the isotensional configuration, in the present 
isometric case, for the sake of brevity, we perform only the variational procedure, which is simpler. By using the same notation 
introduced in Eq. (17), we can write the functional representing the total mechanical energy under isometric condition as 

𝜙
(

𝑣, 𝑣′
)

= ∫

𝐿

0

[

1
2
𝐸

(

𝑣2

ℎ2
(1 − 𝜒(𝑥)) + 𝜒(𝑥)

𝑌 2
𝑀

ℎ2

)

𝑏ℎ + 1
2
𝜇𝑣′2(𝑥)𝑏ℎ + 1

2
𝐸𝑑

(𝛺 − 𝑣(𝑥))2

𝑑2
𝑏𝑑

]

𝑑𝑥, (105)

which corresponds to the discrete version given in Eq. (96). For the continuum description, as before, the extensional and the shear 
strains of the system are defined in Eq. (18) and the shear force is given in Eq. (19). For the hard device configuration we also 
define the device extensional strain 

𝜀𝑑 (𝑥) =
𝛺 − 𝑣(𝑥)

𝑑
. (106)

We rewrite the total energy in the non-dimensional form, rescaling 𝑥 as 𝑥̃ = 𝑥∕𝐿, with 𝑥̃ ∈ [0, 1], and introducing once again the 
non-dimensional quantities 

𝑣̃ = 𝑣
𝑌𝑀

, 𝛺̃ = 𝛺
𝑌𝑀

, 𝜙̃ =
𝜙ℎ

𝐸𝐿𝑏𝑌 2
𝑀

, 𝜈2 =
𝜇ℎ2

𝐸𝐿2
, 𝜌2 =

ℎ𝐸𝑑
𝑑𝐸

. (107)

Straightforward calculations deliver 

𝜙̃(𝑣̃, 𝑣̃′) = ∫

1

0

[1
2
(1 − 𝜒(𝑥̃)) 𝑣̃2(𝑥̃) + 1

2
𝜒(𝑥̃) + 1

2
𝜈2𝑣̃′2(𝑥̃) + 1

2
𝜌2

(

𝛺̃ − 𝑣̃(𝑥̃)
)2
]

𝑑𝑥̃. (108)

In order to find the equilibrium configurations, we look for the extremals of the functional 𝜙̃. Therefore, once the Lagrangian density 
𝜍 is defined as 

𝜍(𝑣̃, 𝑣̃′) = 1
2
(1 − 𝜒(𝑥̃)) 𝑣̃2(𝑥̃) + 1

2
𝜒(𝑥̃) + 1

2
𝜈2𝑣̃′2(𝑥̃) + 1

2
𝜌2

(

𝛺̃ − 𝑣̃(𝑥̃)
)2 , (109)

we study the Euler–Lagrange equation 
𝑑
𝑑𝑥

𝜕
𝜕𝑣̃′

𝜍(𝑣̃, 𝑣̃′) − 𝜕
𝜕𝑣̃

𝜍(𝑣̃, 𝑣̃′) = 0, (110)

which leads to 
𝜈2𝑣̃′′(𝑥̃) −

(

1 − 𝜒(𝑥̃) + 𝜌2
)

𝑣̃(𝑥̃) = −𝜌2𝛺̃. (111)

As before, we study the case of a single domain wall separating the intact region 𝑥̃ ∈ (0, 1 − 𝜉) from the broken region 𝑥̃ ∈ (1 − 𝜉, 1). 
The solutions for the displacement 𝑣̃ in the intact region (𝜒 = 0), and in the broken region (𝜒 = 1), can be analytically obtained by 
solving the elastica equations as 

𝑣̃𝐼 (𝑥̃) = 𝐴 exp
⎡

⎢

⎢

⎣

−

√

1 + 𝜌2

𝜈2
𝑥̃
⎤

⎥

⎥

⎦

+ 𝐵 exp
⎡

⎢

⎢

⎣

√

1 + 𝜌2

𝜈2
𝑥̃
⎤

⎥

⎥

⎦

+
𝜌2

1 + 𝜌2
𝛺̃,

𝑣̃𝐵 (𝑥̃) = 𝐶 exp
[𝜌
𝜈
𝑥̃
]

+𝐷 exp
[

−
𝜌
𝜈
𝑥̃
]

+ 𝛺̃.

(112)

The four constants 𝐴,𝐵, 𝐶,𝐷 can be evaluated by imposing that there are no applied shear forces at the two ends of the system, 
and that both the force and the displacement are continuous in the point representing the fracture propagation front (domain wall 
at 𝑥̃ = 1 − 𝜉). These boundary conditions can be summed up by the following system of equations 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑣̃′𝐼 (0) = 0,

𝑣̃′𝐵 (1) = 0,

𝑣̃′𝐼 (1 − 𝜉) = 𝑣̃′𝐵 (1 − 𝜉),

𝑣̃𝐼 (1 − 𝜉) = 𝑣̃𝐵 (1 − 𝜉).

(113)

Its solution allows us to determine the displacement field in the intact and broken regions of the system as 

𝑣̃𝐼 (𝑥̃) = 𝛺̃
1 + 𝜌2

⎡

⎢

⎢

⎣

𝜌
𝛶 (𝜉)

sinh
(

𝜌𝜉
𝜈

)

cosh
⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
𝑥̃
⎞

⎟

⎟

⎠

+ 𝜌2
⎤

⎥

⎥

⎦

,

𝑣̃𝐵 (𝑥̃) = 𝛺̃ − 𝛺̃

𝛶 (𝜉)
√

1 + 𝜌2
sinh

⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

cosh
[𝜌
𝜈
(1 − 𝑥̃)

]

,

(114)

where 𝛶 (𝜉) is given by 

𝛶 (𝜉) = 𝜌 sinh
(

𝜌𝜉
𝜈

)

cosh
⎛

⎜

⎜

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

+
√

1 + 𝜌2 cosh
(

𝜌𝜉
𝜈

)

sinh
⎛

⎜

⎜

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

. (115)

⎝ ⎠ ⎝ ⎠
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Fig. 13. Equilibrium solutions for the continuum system within the hard device configuration. In panel (a), we show the displacement field for different values 
of 𝜉. Black lines describe the displacement 𝑣̃𝐼  in the intact region, and gray lines represent 𝑣̃𝐵  in the broken region. We used the parameters 𝜈 = 0.1, 𝜌 = 0.5
and 𝛺̃ = 1. In panel (b), we represent the minimized energy versus detached extension 𝜉, for different values of 𝛺̃. The blue dashed curve passes through the 
points of maximum energy. For this diagrams the values 𝜈 = 0.5, 𝜌 = 0.2 and 𝛺̃ ∈ [3, 12] have been used.

In Fig.  13(a), we deliver a graphical representation of the displacement field 𝑣̃(𝑥̃), obtained at the equilibrium for different values 
of 𝜉. Thick and thin lines distinguish the intact area from the broken area. Moreover, by substituting 𝑣̃𝐼 (𝑥̃) and 𝑣̃𝐵 (𝑥̃) in the total 
energy stated in Eq. (108), we obtain the final expression for the energy minimized with respect to the displacement 𝑣̃, for the 
system with prescribed extension 𝛺̃, and assigned broken portion 𝜉. The result is 

𝜙̃𝑒 (𝜉) =
1
2
𝜉 + 1

2
𝛺̃2 𝜌2

1 + 𝜌2
(1 − 𝜉) + 1

2
𝛺̃2 𝜌𝜈

𝛶 (𝜉)(1 + 𝜌2)
√

1 + 𝜌2
sinh

(

𝜌𝜉
𝜈

)

sinh
⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

= 1
2
𝜉 + 1

2
𝛺̃2 𝜌2

1 + 𝜌2
(1 − 𝜉) + 1

2
𝛺̃2 𝜌𝜈

(1 + 𝜌2)
√

1 + 𝜌2
1

√

1 + 𝜌2 coth
(

𝜌𝜉
𝜈

)

+ 𝜌 coth
⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

.
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In Fig.  13(b), we observe the evolution of the energy 𝜙̃𝑒 with respect to the extension 𝜉 of the broken region of the system, for 
different values of the prescribed overall displacement 𝛺̃. In particular, we observe the influence of 𝛺̃ on the fracture propagation, 
noting that as 𝛺̃ increases, the maximum of the energy function shifts toward lower values of 𝜉. This means that as the imposed 
displacement increases, smaller cracks are stable, in agreement with Griffith’s criterion (see below for quantitative details). Such a 
behavior is similar to what has already been observed for the soft device case in Fig.  7(a). However, we can point out a difference 
between soft and hard device behaviors. In the case of soft device, the total energy decreases with applied load, while in the case of 
hard device, the total energy increases with prescribed displacement. This is due to the fact that in the case with soft device the total 
energy also includes the energy associated to external forces that, being negative for positive forces, tends to reduce the value of 
the total energy. In the case of hard device, conversely, there are no energy terms due to the applied load. From the thermodynamic 
point of view, this means that we use the enthalpy function within the Gibbs ensemble and the internal energy within the Helmholtz 
ensemble.

5.3. Griffith energy criterion for fracture propagation

In this Section, we examine the propagation of an existing crack of extension 𝜉 under isometric condition. The propagation is 
induced by the variable displacement 𝛺̃, applied to the system by an hard device. More specifically, as in the case of a system 
subjected to a mechanical load, we apply the Griffith’s energy criterion. Hence, the condition for having the crack propagation can 
be written as 

𝜕𝜙̃𝑒 (𝜉)
𝜕𝜉

< 0. (117)

By evaluating the derivative of the energy with respect to the crack extension, we can rewrite the propagation Griffith’s condition 
as 

𝛺̃2𝜌2
[

𝛥(𝜉)
]2

> 1, (118)

1 + 𝜌2 𝛶 (𝜉)

24 



C. Binetti et al. Journal of the Mechanics and Physics of Solids 201 (2025) 106157 
where we have defined the function 𝛥(𝜉), as follows 

𝛥(𝜉) = 𝜌 cosh
(

𝜌𝜉
𝜈

)

sinh
⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

+
√

1 + 𝜌2 sinh
(

𝜌𝜉
𝜈

)

cosh
⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

, (119)

while 𝛶 (𝜉) is defined in Eq. (115). From Eq. (118), we deduce the equivalent inequality 

𝛺̃ >

√

1 + 𝜌2

𝜌
𝛶 (𝜉)
𝛥(𝜉)

. (120)

Therefore, we can define the following critical threshold 𝛺̃𝑐𝑟 of the prescribed displacement, which generates propagation 

𝛺̃𝑐𝑟 =

√

1 + 𝜌2

𝜌
𝛶 (𝜉)
𝛥(𝜉)

= 1 +

cosh
(

𝜌𝜉
𝜈

)

sinh
⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

𝜌𝛥(𝜉)

= 1 +
coth

(

𝜌𝜉
𝜈

)

𝜌2 coth
(

𝜌𝜉
𝜈

)

+ 𝜌
√

1 + 𝜌2 coth
⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

.

(121)

In Fig.  14(a) and (b), we show how the critical value 𝛺̃𝑐𝑟 decreases as the broken extension of the system 𝜉 increases, by 
considering different values of the parameters 𝜈 and 𝜌. This trend is fully consistent with the behavior shown in Fig.  13(b). 
Furthermore, in Fig.  14(c) and (d), it is possible to observe the critical stress 𝜆𝑐𝑟 corresponding to 𝛺̃𝑐𝑟, defined as follows 

𝜆𝑐𝑟 =
𝜕𝜙̃𝑒

𝜕𝛺̃
|

|

|

|𝛺̃=𝛺̃𝑐𝑟

=
𝜌𝛺̃

1 + 𝜌2

⎡

⎢

⎢

⎣

𝜌(1 − 𝜉) + 𝜈
√

1 + 𝜌2𝛶 (𝜉)
sinh

(

𝜌𝜉
𝜈

)

sinh
⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦𝛺̃=𝛺̃𝑐𝑟

=
𝛶 (𝜉)
𝛥(𝜉)

1
√

1 + 𝜌2

⎡

⎢

⎢

⎣

𝜌(1 − 𝜉) + 𝜈
√

1 + 𝜌2𝛶 (𝜉)
sinh

(

𝜌𝜉
𝜈

)

sinh
⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

.

(122)

This quantity is plotted versus 𝜉 and parameterized with respect to both coefficients 𝜈 and 𝜌. We observe that also the quantity 
𝜆𝑐𝑟 decreases with increasing 𝜉. Particularly noteworthy is the fact that the curves in Fig.  14(c) are obtained by varying 𝜈 and 
maintaining a very low value of 𝜌. This describes the response of a system where the stiffness of the device is significantly lower 
than the one of the system itself. Consequently, it can be inferred that in this case, the response converges to that of the system in 
the soft device configuration (Florio et al., 2024). This is confirmed by comparing Fig.  14(c) with Fig.  7(b). To conclude, we observe 
that the displacement 𝑣̃𝑐𝑟, corresponding to 𝛺̃ = 𝛺̃𝑐𝑟, and calculated at the fracture propagation front 𝑥̃ = 1 − 𝜉, is identically equal 
to the critical threshold 1 (or 𝑌𝑀  with dimensional quantities). It is possible to prove this result by evaluating Eq. (114) for 𝑥̃ = 1−𝜉
and 𝛺̃ = 𝛺̃𝑐𝑟, as follows 

𝑣̃𝐵 (1 − 𝜉) = 𝛺̃𝑐𝑟 −
𝛺̃𝑐𝑟

𝛶 (𝜉)
√

1 + 𝜌2
sinh

⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

cosh
(

𝜌𝜉
𝜈

)

. (123)

Substituting 𝛺̃𝑐𝑟 from Eq. (121) into Eq. (123), we obtain 

𝑣̃𝐵 (1 − 𝜉) =
𝛶 (𝜉)

√

1 + 𝜌2

𝜌𝛥(𝜉)
− 1

𝜌𝛥(𝜉)
sinh

⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

cosh
(

𝜌𝜉
𝜈

)

, (124)

and, by using the definitions of 𝛶 (𝜉) and 𝛥(𝜉) in Eqs. (115) and (119), respectively, we can easily demonstrate that 𝑣̃𝐵 (1−𝜉) = 1. This 
means that, also in the case with hard device, Griffith’s threshold coincides with the existence threshold of any equilibrium solution 
at 𝜉 fixed. And therefore, we have rigorously proved that the red points in Fig. 12 converge to the blue points in the continuum 
limit.

5.4. Temperature effects within the Helmholtz ensemble

In this Section, we introduce the effect of thermal fluctuations on breakable systems under isometric boundary conditions. As 
before, we study the system at thermodynamic equilibrium, in contact with a thermal bath at temperature 𝑇 . The isometric condition 
corresponds to the Helmholtz ensemble in the statistical mechanics framework. Therefore, we consider the energy 𝜙 of the discrete 
system stated in Eq. (93), where we have prescribed the total extension 𝛺 of the system. Based on these premises, we evaluate the 
Helmholtz partition function 

 (𝝌 , 𝑇 ) = exp
[

−
𝜙(𝒗,𝝌)

]

𝑑𝒗, (125)
∫𝐑𝑛 𝑘𝐵𝑇
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Fig. 14. In panels (a) and (b), we show the critical displacement, required for fracture propagation according to the Griffith energy criterion, versus 𝜉, and for 
different values of the parameters 𝜈 and 𝜌: in both cases, 𝛺̃𝑐𝑟 decreases as the system progressively breaks. In panel (a), we assigned 𝜌 = 0.5, and the curves are 
obtained for 𝜈 ∈ [0.01, 0.1]. In panel (b), we used 𝜈 = 0.2, and 𝜌 ∈ [0.05, 0.12]. In panels (c) and (d), we show the behavior of the critical load corresponding to 
𝛺̃𝑐𝑟, obtained through Eq. (122). In panel (c), we adopted 𝜌 = 0.08, and 𝜈 ∈ [0.01, 0.1], while in panel (d), we assigned 𝜈 = 0.05, and 𝜌 ∈ [0.05, 0.5].

where 𝑘𝐵 is the Boltzmann constant, 𝒗 = {𝑣1, 𝑣2,… 𝑣𝑛} and 𝝌 = {𝜒1, 𝜒2,…𝜒𝑛}. To simplify the calculations, we substitute 𝜙 with 
the non-dimensional counterpart 𝜙̃, defined in Eq. (107), and 𝒗 with 𝒗̃ = 𝒗∕𝑌𝑀 , eventually obtaining 

 (𝝌 , 𝑇 ) =
(

𝑌𝑀
)𝑛 exp

[

−𝛽𝜙̃(𝒗̃,𝝌)
]

𝑑𝒗̃, (126)
∫𝐑𝑛
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where the non-dimensional parameter 𝛽 is defined in Eq. (35). By substituting Eq. (97) in Eq. (126), we can write 

 (𝝌 , 𝑇 ) =
(

𝑌𝑀
)𝑛

∫𝐑𝑛
exp

[

−
𝛽
𝑛

( 1
2
𝑸𝒗̃ ⋅ 𝒗̃ + 1

2
𝝌 ⋅ 𝟏 + 1

2
𝑛𝜌2𝛺̃2 − 𝜌2𝛺̃𝒗̃ ⋅ 𝟏

)

]

𝑑𝒗̃

=
(

𝑌𝑀
)𝑛 exp

[

−
𝛽
2𝑛

(

𝝌 ⋅ 𝟏 + 𝑛𝜌2𝛺̃2)
]

∫𝐑𝑛
exp

[

−
𝛽
𝑛

( 1
2
𝑸𝒗̃ ⋅ 𝒗̃ − 𝜌2𝛺̃𝒗̃ ⋅ 𝟏

)

]

𝑑𝒗̃.
(127)

As already done within the Gibbs ensemble, the integration can be performed through the classical Gaussian property stated in 
Eq. (37), and recalling the expression for the minimized energy in Eq. (101), we get 

 (𝝌 , 𝑇 ) =
(

𝑌𝑀
)𝑛

√

(2𝜋𝑛)𝑛

𝛽𝑛 det𝑸
exp

[

−
𝛽
𝑛

(

−1
2
𝜌4𝛺̃2𝑸−1𝟏 ⋅ 𝟏 + 1

2
𝝌 ⋅ 𝟏 + 1

2
𝑛𝜌2𝛺̃2

)

]

=
(

𝑌𝑀
)𝑛

√

(2𝜋𝑛)𝑛

𝛽𝑛 det𝑸
exp

[

−𝛽𝜙̃𝑒(𝝌)
]

.

(128)

In the limit for 𝑛 → ∞, the energy 𝜙̃𝑒(𝝌) in Eq. (128) can be substituted with the explicit expression for 𝜙̃𝑒(𝜉), obtained in Eq. (116). 
Moreover, following the same method shown in Appendix for the Gibbs ensemble, it is possible to calculate the asymptotic behavior 
of det𝑸 as 𝑛 → ∞ that gives 

det𝑸 =

(

𝑛2𝜈2
)𝑛

𝑛𝜈
𝛶 (𝜉), (129)

where 𝛶 (𝜉) is defined in Eq. (115). Therefore, the partition function for large values of 𝑛, in the Helmholtz ensemble, is given by 

 (𝜉, 𝑇 ) =
(

𝑌𝑀
)𝑛

√

(2𝜋𝑛)𝑛𝑛𝜈
𝛽𝑛

(

𝑛2𝜈2
)𝑛 𝛶 (𝜉)

exp
[

−𝛽𝜙̃𝑒(𝜉)
]

. (130)

We can now calculate the Helmholtz free energy as follows (Manca et al., 2012; Gibbs, 1902; Weiner, 1983) 
 (𝜉, 𝑇 ) = −𝑘𝐵𝑇 ln

(

 (𝜉, 𝑇 )
)

. (131)

As already done within the Gibbs ensemble, we adopt its non-dimensional version 

̃ (𝜉, 𝑇 ) = ℎ
𝐸𝐿𝑏𝑌 2

𝑀

 (𝜉, 𝑇 ) = −
ℎ𝑘𝐵𝑇
𝐸𝐿𝑏𝑌 2

𝑀

ln
(

 (𝜉, 𝑇 )
)

= − 1
𝛽
ln
(

 (𝜉, 𝑇 )
)

, (132)

where we used the non-dimensional parameters introduced in Eq. (107), and 𝛽 defined in Eq. (35). Therefore, we can evaluate 
ln
(

 (𝜉, 𝑇 )
) as follows 

ln
(

 (𝜉, 𝑇 )
)

= ln 𝑐 − 1
2
ln𝛶 (𝜉) − 𝛽𝜙̃𝑒(𝜉), (133)

where the constant 𝑐 is defined below 

𝑐 =
(

𝑌𝑀
)𝑛

√

(2𝜋𝑛)𝑛 𝑛𝜈
𝛽𝑛

(

𝑛2𝜈2
)𝑛 . (134)

We can finally write the non-dimensional Helmholtz free energy in the form 

̃ (𝜉, 𝑇 ) = ̃0 +
1
2𝛽

ln𝛶 (𝜉) + 𝜙̃𝑒(𝜉), (135)

where ̃0 takes into account the non-influential multiplicative constant 𝑐 in front of the partition function  (𝜉, 𝑇 ). We underline 
that ̃0 depends on the temperature but it cannot depend on 𝜉. Moreover, we observe that, as already found in the Gibbs free energy, 
the second term in Eq. (135) accounts for the entropic contribution (effect of thermal fluctuations), whereas the last term represents 
the purely mechanical energy. This is consistent with the classical definition of Helmholtz free energy 

 = 𝑈 − 𝑇𝑆, (136)

where 𝑇  is the temperature, 𝑈 is the internal energy of the system, and 𝑆 is its entropy. In this case, since it is the displacement 
that is imposed, the internal energy is used instead of the enthalpy, see Eq. (32) for comparison. In fact, in the enthalpy function, in 
addition to the internal energy, there is also the contribution of the energy associated with the applied forces, which are not present 
here. To summarize, the Gibbs free energy (based on enthalpy) is used for isotensional conditions, and the Helmholtz free energy 
(based on internal energy) is used with isometric conditions.

The explicit form of the Helmholtz free energy in Eq. (135) represents an important result because it allows us to develop the 
new version of the Griffith criterion for fracture propagation in a system where the total elongation is prescribed. Specifically, in 
order to understand how thermal fluctuations influence the crack extension, we study when the derivative of ̃ (𝜉, 𝑇 ) with respect 
to the extension of the fracture 𝜉 is negative 

𝜕̃ (𝜉, 𝑇 )
< 0, (137)
𝜕𝜉
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Fig. 15. Temperature effects on the system within the Helmholtz ensemble. In panel (a), the non-dimensional Helmholtz free energy ̃ is plotted versus the 
broken portion 𝜉. The curves describe the behavior at different temperatures 𝑇  such that 1∕𝛽 ∈ [0, 0.03]. The blue dashed curve passes through the energy 
maximum points. The red curve represent the purely mechanical system at 𝑇 = 0. For this diagram, the values 𝜈 = 0.05, 𝜌 = 0.1 and 𝛺̃ = 10 have been used. In 
panel (b), we show the influence of the temperature on the 1.0 force–displacement relation. We recall that 𝑣̃𝑎𝑣 is the average displacement. The different straight 
lines correspond to different values of 𝜉, and the endpoint of each line represents the temperature dependent Griffith threshold. The different colors indicate 
different temperature values (the black lines correspond to the purely mechanical case (𝑇 = 0), and the red ones to the larger temperature). The parameter used 
for this diagram are 𝜈 = 0.5 and 𝜌 = 0.5.

which corresponds to the condition of fracture propagation. We emphasize again that we have substituted the purely mechanical 
energy with the Helmholtz free energy to introduce the effects of temperature into the Griffith’s criterion. The calculation of the 
derivative of Eq. (135) yields the temperature dependent condition 

𝜕̃ (𝜉, 𝑇 )
𝜕𝜉

= 1
2𝛽𝛶 (𝜉)

𝜕𝛶 (𝜉)
𝜕𝜉

+
𝜕𝜙̃𝑒 (𝜉)
𝜕𝜉

< 0. (138)

The first term can be calculated through the result 

𝜕𝛶 (𝜉)
𝜕𝜉

= −1
𝜈
cosh

(

𝜌𝜉
𝜈

)

cosh
⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

, (139)

while the derivative 𝜕𝜙̃𝑒∕𝜕𝜉 of the mechanical energy is given by 

𝜕𝜙̃𝑒(𝜉)
𝜕𝜉

= 1
2
−

𝛺̃2𝜌2

2(1 + 𝜌2)

[

𝛥(𝜉)
𝛶 (𝜉)

]2
. (140)

Therefore, using Eqs. (115), (138), (139), (140), and introducing the parameter 𝛽𝑐  defined as 

𝛽𝑐 = 1
𝜈𝛶 (𝜉)

cosh
(

𝜌𝜉
𝜈

)

cosh
⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

(141)

we obtain the following necessary condition for fracture propagation 

𝛺̃ >

√

1 + 𝜌2

𝜌
𝛶 (𝜉)
𝛥(𝜉)

√

1 −
𝛽𝑐
𝛽

. (142)

Moreover, similarly to what has been developed for the Gibbs ensemble, we can calculate the critical temperature 𝑇
𝑐  by means of 

the relation 

𝛽𝑐 = 𝑇
 . (143)
𝛽 𝑇𝑐
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The explicit expression of 𝑇
𝑐  reads 

𝑇
𝑐 =

𝜈𝐸𝐿𝑏𝑌 2
𝑀𝛶 (𝜉)

ℎ𝑘𝐵 cosh
(

𝜌𝜉
𝜈

)

cosh
⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

=
𝜈𝐸𝐿𝑏𝑌 2

𝑀
ℎ𝑘𝐵

⎡

⎢

⎢

⎣

𝜌 tanh
(

𝜌𝜉
𝜈

)

+
√

1 + 𝜌2 tanh
⎛

⎜

⎜

⎝

√

1 + 𝜌2

𝜈2
(1 − 𝜉)

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

=

√

𝜇𝐸𝑏𝑌 2
𝑀

𝑘𝐵

⎡

⎢

⎢

⎣

√

ℎ𝐸𝑑
𝑑𝐸

tanh
⎛

⎜

⎜

⎝

𝜁
ℎ

√

ℎ𝐸𝑑
𝑑𝜇

⎞

⎟

⎟

⎠

+
√

1 +
ℎ𝐸𝑑
𝑑𝐸

tanh

(
√

𝑑𝐸 + ℎ𝐸𝑑

𝜇𝑑ℎ2
(𝐿 − 𝜁 )

)

⎤

⎥

⎥

⎦

,

(144)

where 𝜁 is the crack extension, corresponding to 𝜁 = 𝜉𝐿. Hence, we can write an alternative form of Eq. (142), which describes 
explicitly the temperature dependent behavior of the Griffith’s criterion 

𝛺̃ >

√

1 + 𝜌2

𝜌
𝛶 (𝜉)
𝛥(𝜉)

√

1 − 𝑇
𝑇
𝑐

= 𝛺̃𝑐𝑟(0)

√

1 − 𝑇
𝑇
𝑐

=∶ 𝛺̃𝑐𝑟(𝑇 ), (145)

where 𝛺̃𝑐𝑟(0) is the critical threshold defined for the purely mechanical system in Eq. (121). It is easy to verify that when 𝑇 → 0, 
Eq. (145) converges to Eq. (120).

In Fig.  15(a), we exhibit thermal effect on the Helmholtz free energy. Similarly to what has already been observed for the 
Gibbs ensemble, for increasing temperature values, the maximum of the energy function shifts toward lower values of detached 
extension 𝜉. All the curves are obtained applying the same value of prescribed extension 𝛺̃. Consequently, this plot demonstrates 
that as temperature increases, a smaller broken region is sufficient to generate Griffith instability. As before, this means that thermal 
fluctuations promote fracture propagation.

In Fig.  15(b), we show the force–extension behavior as a function of temperature. More precisely, we use the expected values of 
force and extension, derived from the fundamental relations of statistical mechanics. To begin, the expectation value of the force, 
conjugated to the prescribed extension 𝛺̃, can be calculated from the Helmholtz free energy, see Eq. (132), as follows 
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where 𝜆 = 𝜕𝜙̃𝑒(𝜉)∕𝜕𝛺̃ is the non-dimensional stress calculated for the purely mechanical system. This result shows that this quantity 
is not affected by thermal effects. We can also determine the expectation value of the displacement vector 𝒗̃ by means of the relation 

⟨𝒗̃⟩ =
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𝑑𝒗̃. (147)

By the definition of 𝜙̃(𝒗̃,𝝌), given in Eq. (97), we can obtain the more explicit expression 
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Now, if we differentiate Eq. (37) with respect to 𝐚, we get the new integral expression 
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Therefore, we can develop Eq. (148), as follows 
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(150)

where we have used Eqs. (101) and (128) for 𝜙̃𝑒(𝒗̃) and  (𝝌 , 𝑇 ), respectively, and 𝑣̃𝑒 (0) represents the displacement vector at 
equilibrium obtained for the purely mechanical system in Eq. (100). As a consequence, we observe that the average displacement 
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Fig. 16. Comparison of the purely mechanical response in soft and hard device configurations. The dashed green curves represent the isometric system (hard 
device) for different values of 𝜌, while the solid black curves correspond to the isotensional system (soft device). In panel (a), we observe that the critical force 
required for fracture propagation, 𝜆𝑐𝑟 , in Eq. (122), converges to 𝜆𝑐𝑟, in Eq. (30), for low values of 𝜌. In panel (b), the force-average displacement behavior is 
shown (see Eqs. (30) and (55) for the Gibbs ensemble, and Eqs. (103) and (104) for the Helmholtz ensemble). Also in this case, the convergence for low values 
of 𝜌 is demonstrated and this means that Gibbs’ behavior converges to Helmholtz’s behavior with a soft device. In both plots, 𝜈 = 0.1 and 𝜌 ∈ [0.1, 1] have been 
used.

for the thermo-mechanical system within the Helmholtz ensemble converges to the average displacement of the purely mechanical 
system, previously evaluated in Eq. (103). Indeed, we can write 
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In the limit for 𝑛 → ∞, we can calculate the average displacement from Eq. (114), and we get 
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The relationships found allow us to obtain the force–strain relationship as depicted in Fig.  15(b). Each straight line corresponds to 
a different value of 𝜉 and it is determined by using Eqs. (146) and (152). Therefore, the slope is not affected by the temperature. 
This depends on the fact that the system is linear from the point of view of elasticity theory when 𝜉 has a well-determined value. 
However, the Griffith threshold is influenced by the temperature as indicated in the plot, where one can see that the fracture 
threshold decreases with increasing temperature. This behavior is consistent with what has already been described for the Gibbs 
ensemble, and with the general idea that thermal fluctuations promote fracture propagation.

To conclude this discussion, let us compare the behavior of the system in the isotensional and isometric conditions. Although the 
behavior is quantitatively different, we can find a condition of convergence between the two statistical ensembles, corresponding to 
a very soft traction device. In fact, when the device is soft (𝜌 → 0), the Helmholtz ensemble converges to the Gibbs ensemble. This 
is true for the purely mechanical case (i.e., at zero temperature) as seen in Fig.  16, and also for arbitrary values of temperature as 
seen in Fig.  17.

In Fig.  16(a), we show the behavior of critical load as a function of the fracture progress. It is clearly seen that, as the value 
of 𝜌 decreases, the curves corresponding to the isometric conditions converge to the curve of the isotensional model. Moreover, 
all curves are consistent with Griffith’s criterion since the critical load decreases as the initial fracture extension increases. Similar 
behavior is observed in Fig.  16(b), where the relationship between applied load and average displacement is shown for the two 
boundary conditions. Again, in fact, the isometric curves converge to the isotensional one for small values of 𝜌, i.e., with an easily 
deformable tensile device. We remark that, in that plot, the curves are constructed by the same method adopted in Fig.  15(b), but 
we used zero temperature. We remark that, when we consider this model as a tool for describing the behavior of the process zone, 
Figs.  15 and 16 show that different Barenblatt type cohesive fracture behaviors can be obtained by varying the molecular scale 
geometrical and material parameters.

When we consider the effects of temperature, we find the critical behavior for both Gibbs and Helmholtz ensembles, as shown in 
Fig.  17(a). In fact, for both statistical ensembles we observe the presence of a phase transition characterized by a critical temperature 
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Fig. 17. Comparison of thermal effects under Gibbs and Helmholtz ensembles. The dashed green curves represent the Helmholtz ensemble, while the solid 
black curve describes the Gibbs ensemble. In panel (a), we show the critical stress versus the temperature (represented by 1∕𝛽). For Gibbs ensemble we used 
Eq. (54), while for Helmholtz ensemble, we used Eq. (146), where we substituted the temperature dependent critical value of the prescribed extension 𝛺̃𝑐𝑟 given 
in Eq. (145). In panel (b), the critical temperature is represented versus the broken fraction, by using Eqs. (53) and (144). For both panels, we adopted the 
elastic ratio 𝜈 = 0.5 and 𝜌 ∈ [0.1, 1] (in the first panel, we also considered a broken fraction equal to 𝜉 = 0.5).

corresponding to the complete fracture caused only by thermal fluctuations. With respect to this point, it is interesting to observe that 
the Helmholtz critical temperature value in Eq. (144) converges to the corresponding Gibbs value in Eq. (53), when 𝜌 approaches 
zero. This can be also underlined in Fig.  17(a), where it can be seen that the critical load as a function of temperature in the 
Helmholtz ensemble converges to that of Gibbs for increasingly soft devices. Finally, in Fig.  17(b), we directly represented the 
behavior of critical temperature as a function of fracture state of progression for the two statistical ensembles. Once again we 
observe the convergence of the Helmholtz response to the Gibbs response for 𝜌 → 0. Furthermore, it is interesting to point out that 
for higher values of the parameter 𝜌, the critical temperature in the Helmholtz ensemble exhibits a maximum value for some value 
of 𝜉, and that this non-monotonic behavior is absent in the Gibbs ensemble. It means that the Helmholtz system is able to resist 
thermal fluctuations better in an intermediate state of fracture progression.

Observe that the critical temperature obtained within the Helmholtz ensemble is defined as the temperature able to induce the 
complete fracture when the applied displacement is fixed to zero. Of course, it is also possible to redefine this critical temperature by 
maintaining the system at an arbitrary value 𝛿 of the applied displacement. For 𝛿 = 0 the critical behavior is described by Eq. (145), 
and this expression can be elaborated as follows 
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This expression allows us to define a new value of the critical temperature corresponding to a fixed displacement 𝛿, as follows 
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𝑐𝑟(0) − 𝛿2

𝛺̃2
𝑐𝑟(0)
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𝑐 . (154)

An interesting case corresponds to 𝛿 = 1, which is exactly the decohesion threshold. The behavior of 𝑇
𝑐,1 is represented in Fig.  18, 

where we show the critical temperature versus 𝜉 when the applied displacement is 𝛿 = 1. We represented this quantity for two 
different values of 𝜈 in panels (a) and (b). In both cases, we see that the critical temperature at the fully broken system (𝜉 = 1) is 
always zero, regardless of the value of 𝜌 and consistent with the results of the Gibbs ensemble. This happens because the value 𝛿 = 1
corresponds precisely to the breaking threshold. In Fig.  17(b), this did not happen because the system was kept at 𝛿 = 0 and thus 
there was a conflict between mechanical and thermal detachment. Finally, we observe that the value of 𝜈 can affect the behavior 
of the critical temperature shifting from a non-monotonic to a monotonic curve from Fig.  18(a) to (b).

In conclusion, we observe that despite the convergence of the Helmholtz ensemble to the Gibbs ensemble for 𝜌 → 0, the two 
behaviors remain different for arbitrary values of 𝜌, and thus the two ensembles are not equivalent in the continuous limit we have 
developed. This observed non-equivalence is similar to the one previously proved for the adhesion phenomena, where we considered 
the alternative thermodynamic limit (Florio et al., 2020; Cannizzo et al., 2021).

6. Comparison with simulations of graphene fracture

In this section, we test the effectiveness of our model in capturing the influence of thermal fluctuations on fracture propagation 
by comparing our theoretical results with molecular dynamics (MD) simulations of 2D pristine graphene, reported by Gamboa-
Suárez et al. (2022). In their paper, the authors investigate the impact of temperature on the fracture mechanical properties of 2D 
carbon sheets, in particular those of pristine graphene. Previous studies had already observed a general decrease in mechanical 
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Fig. 18. Critical temperature for a prescribed displacement 𝛿 = 1. In both panels we represent the curves for the Helmholtz ensemble (dashed green) that 
converge to the Gibbs ensemble (solid black curves). For both panels 𝜌 ∈ [0.1, 1]. In panel (a) the elastic ratio is 𝜈 = 0.5, and in panel (b) it is 𝜈 = 0.9.

Fig. 19. Graphene elastic moduli at different temperatures: the diamond symbols correspond to the Young’s modulus tangent values, obtained by Gamboa-Suárez 
et al. (2022), the upward-pointing triangle symbols represent the Young’s modulus secant values, and the asterisk symbols correspond to the shear modulus we 
adopted for the comparison.

properties with increasing temperature (both elastic constants and strength), though these analyses were limited to a relatively 
narrow temperature range (Wang et al., 2012; Li et al., 2019). In Gamboa-Suárez et al. (2022), the authors examine the mechanical 
properties over a broader temperature spectrum, from 300 K to 5000 K. We emphasize that the exact melting temperature of graphene 
is not known but the initial stages of melting of graphene have been observed between 4000 K and 6000 K (Ganz et al., 2017). 
More specifically, Gamboa-Suárez et al. (2022) consider a 2D pristine graphene sheet consisting of 10 032 atoms, and calculate 
the mechanical properties using molecular dynamics methods, and modeling the interatomic interactions through the SED-REBO 
potential (Perriot et al., 2013). The authors report the temperature dependence of graphene’s mechanical properties applying the 
traction along both the armchair (AC) and zigzag (ZZ) directions. In the following, we focus on the thermo-mechanical response 
along the AC direction, since in this case the fracture propagates between parallel carbon bonds, exactly as in our theoretical model, 
see Fig. 4 in Gamboa-Suárez et al. (2022).

To compare our theoretical results with those presented in Gamboa-Suárez et al. (2022), we adopt the following approach: 
considering that the MD simulations use a graphene sheet composed of 10 032 carbon atoms, the system forms a square with 
dimensions 𝐿 × 𝐿, with 𝐿 ≃ 123 Å. From this configuration, we select a single layer of hexagonal cells aligned in a row. This 
system resembles the structure illustrated in Fig.  2, with the key difference being that graphene’s cells are hexagonal rather than 
square. The height ℎ is taken as the length of one side of the hexagonal graphene cell, namely ℎ = 1.42 Å, while the thickness 𝑏 is 
assumed, as is customary in graphene MD simulations, as the diameter of a carbon atom, 𝑏 = 3.35 Å.

To derive the stress–strain and critical stress–temperature curves, we use the dimensional form of the Eqs. (30) and (54), taking 
into account Eqs. (6) and (8). We get 
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with critical temperature defined in Eq. (53), and the average strain calculated from Eq. (55) as 
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Since the molecular dynamics simulations have been performed by implementing both a thermostat and a barostat, we used the 
theoretical results obtained within the Gibbs ensemble. We assume that the initial broken portion of the system represents 0.9% of 
the total length 𝐿, thus 𝜁 = 0.009𝐿, and the extension threshold corresponds to 37% of the height ℎ, 𝑌 = 0.529 Å.
𝑀
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Fig. 20. Comparison of results obtained with our model and with MD simulations proposed by Gamboa-Suárez et al. (2022). In panel (a) stress–strain curves at 
different temperatures: the solid lines are the responses given by our model, the points represent MD simulations. In panel (b) critical stress–temperature curve: 
the red triangles show the MD simulation points, and the black curve is obtained from the results given by our model.

Regarding Young’s modulus 𝐸, we choose to use the secant modulus, which slightly differs from the tangent modulus calculated 
in Gamboa-Suárez et al. (2022). This choice is motivated by the fact that graphene exhibits highly nonlinear behavior (Cadelano 
et al., 2009). We are attempting to give an interpretation of numerical results concerning this nonlinear system with a linear model. 
Hence, the secant Young’s modulus helps to mitigate this different behavior by accurately reflecting the temperature-dependent 
response of the system, avoiding the bias introduced by the nonlinearity. Also for the shear modulus, we fitted its value for each 
temperature. In Fig.  19 we show the values of graphene elastic moduli at different temperatures: the diamond symbols correspond 
to the Young’s modulus tangent values, obtained by Gamboa-Suárez et al. (2022), the upward-pointing triangle symbols represent 
the Young’s modulus secant values, and the asterisk symbols correspond to the shear modulus we adopted for the comparison.

In Fig.  20 we show the comparison between the results obtained with the proposed model and the MD simulations for the 
stress–strain curves and for the critical stress as function of the temperature. In Fig.  20(a), we plot stress–strain curves at different 
temperatures, ranging from 300 K to 5000 K: the solid lines are obtained from Eqs. (155) and (156), while the points are extracted 
from MD simulations. In Fig.  20(b), we show the critical stress as function of the temperature: the solid black line is derived from 
Eq. (155), and the red triangles are the points computed in Gamboa-Suárez et al. (2022). A good agreement between MD simulations 
and our theoretical model can be underlined and validates the use of our model for describing fracture in nanosystems.

7. Discussion and conclusion

In this paper, we have presented a simplified fracture model that allows the effects of thermal fluctuations to be introduced in 
a rigorous way, namely through classical statistical mechanics (Gibbs, 1902; Weiner, 1983). In addition, such a model is able to 
correct some well-known problems of linear elastic fracture mechanics. In particular, we obtain a finite fracture nucleation stress, 
and a finite value of the stress at the crack tip, which are features experimentally verified. In the development of the model, the 
multiscale paradigm was implemented in the following way: initially, the model is introduced through a discrete structure formed 
by linear springs, some of which have a rupture threshold useful to study the propagation of a fracture. This allows us to discuss a 
discrete version of the Griffith’s criterion and its interpretation. In a second step, the continuous limit of that structure was developed 
in order to have a model capable of describing the behavior of a system at the mesoscopic scale. For this purpose, all the discrete 
parameters were properly rescaled to have a correct convergence of the discrete model to the continuous one, exactly as happens in 
𝛤 -convergence theory (Braides, 2002; Dal Maso, 2012). The need to begin the treatment from a discrete model comes from the fact 
that we need a numerable set of variables to apply statistical mechanics, and in particular to calculate the partition function of the 
system in the established statistical ensemble (Gibbs, 1902; Weiner, 1983). The partition function is the most important quantity, 
which allows by derivation to obtain the average value of any physical observable. Once the main thermodynamic variables have 
been calculated for the discrete model (in particular free energies), the continuous limit can be applied to obtain the thermomechanic 
behavior of the continuous system at the mesoscale. In both the discrete model and its continuous limit, the fracture geometry is 
introduced by imposing the fracture progress state in a one-dimensional breakable structure. This means that the fraction of the 
fractured system (starting from the right and proceeding to the left, considering only one front or domain wall) is imposed and the 
corresponding elastic fields and energy functions are calculated analytically. In this way it is possible to determine the propagation 
condition for the fracture by applying the Griffith (1921) criterion: the fracture propagates if this process is energetically favorable,
i.e., if the total energy decreases with the advancement of the fracture. This total energy, for the purely mechanical system, is 
composed of the elastic energy, the energy of the applied loads, and the fracture energy, originally introduced by Griffith (1921). 
However, when we study the effects of the thermal fluctuations on the Griffith condition, we have to add the entropic term, whose 
evaluation represents the most important result obtained through the application of the statistical mechanics. In other terms, we can 
33 



C. Binetti et al. Journal of the Mechanics and Physics of Solids 201 (2025) 106157 
say that for applying the Griffith criterion to a system embedded in a thermal bath at a given temperature, we have to substitute 
the total mechanical energy with the pertinent free energy, compatible with the specific boundary conditions, and automatically 
considering thermal fluctuations (Eftis and Liebowitz, 1976; Stevens and Guiu, 1991). The decrease in total energy (or free energy) 
for a propagating fracture immediately leads to the concept of energy release rate, which represents the derivative of energy (except 
for the fracture energy) with respect to the state of advancement (extension) of the fracture. This quantity, useful for an alternative 
characterization of the Griffith criterion, was calculated exactly for our model, and its link with the concepts of stress intensity 
factor and 𝐽 -integral was shown. The elastic energy of the proposed models does not depend exclusively on the elastic strain, as 
usually happens, but also on the displacement field. For this reason, in calculating the 𝐽 -integral, we had to implement an original 
approach that takes into account the actual complexity of our energy function. The approach described has been carefully developed 
for two different boundary conditions, which represent two different statistical ensembles of the statistical mechanics: the soft device 
configuration, which corresponds to the application of an external force field, that is to the Gibbs statistical ensemble, and the 
hard device configuration, which corresponds to the prescription of the displacement field, and then to the Helmholtz statistical 
ensemble (Giordano, 2017; Bellino et al., 2019). In both cases, the fundamental result we demonstrate concerns the temperature 
dependence of the Griffith threshold for the fracture advancement, describing a specific critical behavior. In fact, both the threshold 
force and the threshold displacement decrease with temperature with a law of the type √1 − 𝑇 ∕𝑇𝑐 , which corresponds to a second 
order phase transition. More precisely, we proved that the purely mechanical Griffith threshold must be multiplied by √1 − 𝑇 ∕𝑇𝑐
when thermal fluctuations are to be taken into account. The critical temperature 𝑇𝑐 has been calculated in closed form, and depends 
on the physical and geometrical parameters of the system. Moreover, it also depends on the actual extension of the fracture and 
therefore it can change its value during the fracture propagation. We want to underline that the critical behavior, characterized by 
phase transitions, obtained for systems in the continuum limit represents an important theoretical result from the point of view of 
the statistical mechanics. These behaviors are in fact mostly studied in discrete systems. We showed the application of our model, in 
the case of the Gibbs ensemble, to the interpretation of fracture in graphene, studied by molecular dynamics methods. The results 
showed good agreement between simulations and theory. Also the temperature dependent fracture surface energy obtained from 
experiments on platinum and iron has been compared with theoretical results, showing an excellent agreement.

This work opens different perspectives. First of all, we can think to generalize the model in order to consider the real dynamics 
imposed by the speed of application of the loads. In our development, we adopted the equilibrium statistical mechanics and therefore 
the results are valid in a quasi-static regime, in which the system is able to re-equilibrate on timescales smaller than those of applied 
loading. For higher speed of the traction process, it becomes important to implement the out-of-equilibrium statistical mechanics 
and, in particular, to approach the problem by means of Langevin or Fokker–Planck equations. A simplified method could be based 
on the Kramers law and the transition state theory (Weiner, 1983; Giordano et al., 2023; Cannizzo and Giordano, 2024). In any 
case, the fracture propagation with thermal and dynamic effects requires further studies in the near future. Another important 
aspect, regarding the possible applications of our approach, concerns the integration of the model within numerical techniques 
for continuum mechanics. In fact, we can think of using numerical multiscale techniques, where the mesoscale behavior of the 
fracture process zone is implemented through our model, and the surrounding zones are described by classical finite element 
or finite difference schemes. To this end it is necessary to implement a bridging between the two methodologies to eventually 
get a combined system, which can be numerically studied to couple the mechanical and thermal effects on fracture propagation. 
Another generalization concerns the consideration of a more complex fracture structure. Indeed, the developed model allows the 
determination of the fracture propagation strategy also in presence of complex cracks configurations such as bubbles, different 
interacting cracks, periodic distribution of cracks, and so on. These aspects were not considered in this first work as we focused on 
the thermal effects on a single fracture front, but will be investigated in future developments.
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Appendix. Calculations for the soft device

In this Appendix, we provide all detailed calculations required to obtain the expressions for the minimized energy and for the 
partition function within the Gibbs isotensional configuration, when the continuum limit is considered (𝑛 → ∞). We begin by 
outlining our procedure for calculating the inverse matrix 𝐁−1, used in Eq. (15). Next, we analyze the asymptotic behavior, as 
𝑛 → ∞, of the sum 𝐁−1𝟏 ⋅𝟏, useful to derive Eq. (16) for the total energy in the continuum limit. Finally, we examine the asymptotic 
behavior of det 𝐁 to obtain the Gibbs partition function, given in Eq. (41).

A.1. Determination of the inverse matrix 𝐁−1

To make the calculations easier, we observe that 𝐁 can be written as 
𝐁 = 𝑛2𝜈2

[

𝐀 −
(

𝐞1 ⊗ 𝐞1 + 𝐞𝑛 ⊗ 𝐞𝑛
)]

, (A.1)

where we have defined the tensor product of two vectors 𝐚 and 𝐛 such that (𝐚⊗ 𝐛)𝐜 = (𝐛 ⋅ 𝐜)𝐚 for all vectors 𝐜 (so that in a given 
framework (𝐚⊗𝐛)𝑖𝑗 = 𝑎𝑖𝑏𝑗). Moreover, we defined 𝐞𝑖 as the 𝑖th element of the canonical basis of 𝐑𝑛. The matrix 𝐀 is tridiagonal and 
symmetric, and can be written as 

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 0 … 0

−1 2 −1 ⋱ ⋮

0 ⋱ ⋱ ⋱ 0

⋮ ⋱ −1 𝑛−1 −1

0 … 0 −1 𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.2)

with 𝑖 =
(

1 − 𝜒𝑖
)

∕
(

𝑛2𝜈2
)

+ 2, for 𝑖 = 1… 𝑛. Therefore, we have to determine the inverse matrix 

𝐁−1 = 1
𝑛2𝜈2

[

𝐀 −
(

𝐞1 ⊗ 𝐞1 + 𝐞𝑛 ⊗ 𝐞𝑛
)]−1 . (A.3)

Since 𝐀 is a tridiagonal symmetric matrix, also its inverse is symmetric. For later use, we identify the elements of the first and last 
row and column of the inverse 𝐀−1 as 

−1
1𝑗 = −1

𝑗1 = 𝑞𝑗 , −1
𝑛𝑗 = −1

𝑗𝑛 = 𝑤𝑗 , (A.4)

where we have introduced the two vectors 𝒒 and 𝒘

𝒒 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞1
𝑞2
⋮

𝑞𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, 𝒘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤1

𝑤2

⋮

𝑤𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (A.5)

Therefore, we notice that 𝑞𝑛 = 𝑤1. It is possible now to prove that for a generic non-singular matrix 𝐌, a vector 𝐦, and a scalar 
quantity 𝛽, the inverse of [𝐌 + 𝛽 (𝐦⊗𝐦)] reads 

[𝐌 + 𝛽 (𝐦⊗𝐦)]−1 = 𝐌−1 − 𝛽
𝐌−1(𝐦⊗𝐦)𝐌−1

. (A.6)

1 + 𝛽𝐌−1𝐦 ⋅𝐦
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Therefore, we apply this property twice to Eq. (A.3), considering that in our case 𝛽 = −1 in both steps. We evaluate 

𝑛2𝜈2𝐁−1 = 𝐘−1 +
𝐘−1𝐞𝑛 ⊗ 𝐞𝑛𝐘−1

1 − 𝐘−1𝐞𝑛 ⋅ 𝐞𝑛
, (A.7)

where 

𝐘−1 = 𝐀−1 +
𝐀−1𝐞1 ⊗ 𝐞1𝐀−1

1 − 𝐀−1𝐞1 ⋅ 𝐞1
. (A.8)

It is easy to recognize that 
𝐀−1𝐞1 ⊗ 𝐞1𝐀−1 = 𝒒 ⊗ 𝒒,

𝐀−1𝐞1 ⋅ 𝐞1 = 𝑞1,
(A.9)

and therefore, Eq. (A.8) can be written as 

𝐘−1 = 𝐀−1 +
𝒒 ⊗ 𝒒
1 − 𝑞1

. (A.10)

Substituting this result in Eq. (A.7), we obtain 

𝑛2𝜈2𝐁−1 = 𝐀−1 +
𝒒 ⊗ 𝒒
1 − 𝑞1

+

(

𝐀−1 +
𝒒 ⊗ 𝒒
1 − 𝑞1

)

𝐞𝑛 ⊗ 𝐞𝑛
(

𝐀−1 +
𝒒 ⊗ 𝒒
1 − 𝑞1

)

1 −
(

𝐀−1 +
𝒒 ⊗ 𝒒
1 − 𝑞1

)

𝐞𝑛 ⋅ 𝐞𝑛
= 𝐀−1 +

𝒒 ⊗ 𝒒
1 − 𝑞1

+ 


. (A.11)

We calculate the denominator  as follows 

 = 1 − 𝐀−1𝐞𝑛 ⋅ 𝐞𝑛 −
𝒒 ⊗ 𝒒
1 − 𝑞1

𝐞𝑛 ⋅ 𝐞𝑛 = 1 −𝑤𝑛 −
𝑞2𝑛

1 − 𝑞1
, (A.12)

where we used the properties 
𝐀−1𝐞𝑛 ⋅ 𝐞𝑛 = 𝑤𝑛,

(𝒒 ⊗ 𝒒) 𝐞𝑛 ⋅ 𝐞𝑛 = 𝑞2𝑛 .
(A.13)

On the other side, expanding the products, the numerator   can be written as 

 =
(

𝐀−1𝐞𝑛 ⊗ 𝐞𝑛𝐀−1) +
(

𝐀−1𝐞𝑛 ⊗ 𝐞𝑛
𝒒 ⊗ 𝒒
1 − 𝑞1

)

+
(

𝒒 ⊗ 𝒒
1 − 𝑞1

𝐞𝑛 ⊗ 𝐞𝑛𝐀−1
)

+

(

(𝒒 ⊗ 𝒒)
(

𝐞𝑛 ⊗ 𝐞𝑛
)

(𝒒 ⊗ 𝒒)
(

1 − 𝑞1
)2

)

. (A.14)

The four terms can be calculated as follows 
𝐀−1𝐞𝑛 ⊗ 𝐞𝑛𝐀−1 = 𝒘⊗𝒘,

𝐀−1 (𝐞𝑛 ⊗ 𝐞𝑛
)

(𝒒 ⊗ 𝒒) = (𝒘⊗ 𝒒) 𝑞𝑛,

(𝒒 ⊗ 𝒒)
(

𝐞𝑛 ⊗ 𝐞𝑛
)

𝐀−1 = (𝒒 ⊗𝒘) 𝑞𝑛,

(𝒒 ⊗ 𝒒)
(

𝐞𝑛 ⊗ 𝐞𝑛
)

(𝒒 ⊗ 𝒒) = (𝒒 ⊗ 𝒒) 𝑞2𝑛 ,

(A.15)

so that   becomes 

 = 𝒘⊗𝒘 +
(𝒘⊗ 𝒒) 𝑞𝑛
1 − 𝑞1

+
(𝒒 ⊗𝒘) 𝑞𝑛
1 − 𝑞1

+
(𝒒 ⊗ 𝒒) 𝑞2𝑛
(

1 − 𝑞1
)2

. (A.16)

By substituting  and   in Eq. (A.11), we obtain 

𝑛2𝜈2𝐁−1 = 𝐀−1 +
𝒒 ⊗ 𝒒
1 − 𝑞1

+

𝒘⊗𝒘 +
(𝒘⊗ 𝒒) 𝑞𝑛
1 − 𝑞1

+
(𝒒 ⊗𝒘) 𝑞𝑛
1 − 𝑞1

+
(𝒒 ⊗ 𝒒) 𝑞2𝑛
(

1 − 𝑞1
)2

1 −𝑤𝑛 −
𝑞2𝑛

1 − 𝑞1

, (A.17)

and simplifying, we get the expression for the inverse matrix 𝐁−1

𝑛2𝜈2𝐁−1 = 𝐀−1 +

(

1 −𝑤𝑛
)

𝒒 ⊗ 𝒒 +
(

1 − 𝑞1
)

𝒘⊗𝒘 + (𝒒 ⊗𝒘 +𝒘⊗ 𝒒) 𝑞𝑛
(

1 −𝑤𝑛
) (

1 − 𝑞1
)

− 𝑞2𝑛
. (A.18)

This is the first result of our procedure, and it shows that only the inverse matrix 𝐀−1 must be calculated to obtain 𝐁−1. For this 
purpose, we adopt the algorithm developed by Usmani (1994) for determining the explicit inverse of a general tridiagonal matrix. 
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Accordingly, we consider a generic tridiagonal matrix 𝐓, 

𝐓 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑏1 𝑐1 0

𝑎1 𝑏2 𝑐2
⋱ ⋱ ⋱

𝑎𝑛−2 𝑏𝑛−1 𝑐𝑛−1
0 𝑎𝑛−1 𝑏𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (A.19)

and we remember that the element 𝜏𝑖𝑗 of the inverse matrix 𝐓−1 is defined as follows 

𝜏𝑖𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(−1)𝑖+𝑗 𝑐𝑖𝑐𝑖+1 … 𝑐𝑗−1𝜃𝑖−1𝜙𝑗+1

𝜃𝑛
for 𝑖 < 𝑗,

𝜃𝑖−1𝜙𝑖+1
𝜃𝑛

for 𝑖 = 𝑗,

(−1)𝑖+𝑗 𝑎𝑗+1𝑎𝑗+2 … 𝑎𝑖𝜃𝑗−1𝜙𝑖+1

𝜃𝑛
for 𝑖 > 𝑗,

(A.20)

where we have introduced the two sequences 𝜃𝑖 and 𝜙𝑖 for 𝑖 = 1… 𝑛

𝜃𝑖 ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜃𝑖 = 𝑏𝑖𝜃𝑖−1 − 𝑎𝑖𝑐𝑖−1𝜃𝑖−2,

𝜃−1 = 0,

𝜃0 = 1,

𝜙𝑖 ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜙𝑖 = 𝑏𝑖𝜙𝑖+1 − 𝑐𝑖𝑎𝑖+1𝜙𝑖+2,

𝜙𝑛+2 = 0,

𝜙𝑛+1 = 1.

(A.21)

We remark that the first sequence is defined by a progressive recursion (𝑖 from 1 to 𝑛), and the second one by a regressive recursion 
(𝑖 from 𝑛 to 1). Moreover, we have that 𝜙1 = 𝜃𝑛 = det 𝐓. In our system the matrix 𝐀 can be subdivided in two blocks (corresponding 
to intact and broken regions), as follows 

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 + 𝛼 −1 0

−1 2 + 𝛼 −1
⋱ ⋱ ⋱

−1 2 + 𝛼 −1

−1 2 −1
⋱ ⋱ ⋱

−1 2 −1

0 −1 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (A.22)

where 𝛼 = 1∕𝑛2𝜈2. The broken part of the system is represented by the lower part of matrix 𝐀. It is evident that we have 𝑎𝑖 = 𝑐𝑖 = −1, 
while 𝑏𝑖 is given by 

𝑏𝑖 =

⎧

⎪

⎨

⎪

⎩

2 + 𝛼 for 𝑖 ≤ 𝑝,

2 for 𝑖 > 𝑝,
(A.23)

where 𝑝 is the number of unbroken elements. It follows that the 𝑖𝑗th element of the inverse matrix 𝐀−1, in our case, is obtained as 

−1
𝑖𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝜃𝑖−1𝜙𝑗+1

𝜃𝑛
for 𝑖 < 𝑗,

𝜃𝑖−1𝜙𝑖+1
𝜃𝑛

for 𝑖 = 𝑗,

𝜃𝑗−1𝜙𝑖+1 for 𝑖 > 𝑗,

(A.24)
⎩
𝜃𝑛
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where we have different expressions for the sequences 𝜃𝑖 and 𝜙𝑖, depending on the region (intact or broken) under consideration. 
Specifically, for the intact part (𝑖 ≤ 𝑝), considering the conditions given in Eq. (A.21), we have 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜃𝑖 = (2 + 𝛼) 𝜃𝑖−1 − 𝜃𝑖−2

𝜃0 = 1

𝜃−1 = 0

for 𝑖 ≤ 𝑝. (A.25)

The solutions of this difference equation exhibit an exponential form 𝜃𝑖 ∼ 𝛬𝑖, which, when substituted into the equation, delivers 

𝛬𝑖 = (2 + 𝛼)𝛬𝑖−1 − 𝛬𝑖−2, or 𝛬2 − (2 + 𝛼)𝛬 + 1 = 0. (A.26)

The solution for 𝜃𝑖 is then a linear combination 𝜃𝑖 = 𝐴𝛬𝑖
1 + 𝐵𝛬𝑖

2, where 𝛬1 and 𝛬2 are the two roots of Eq. (A.26), and where the 
two constants 𝐴 and 𝐵 must be evaluated considering the conditions for 𝜃0 and 𝜃−1. Eventually, 𝜃𝑖 assumes the compact form 

𝜃𝑖 = 𝛩 (𝑖 + 1) for 𝑖 ≤ 𝑝, (A.27)

where we have introduced the function 𝛩(𝑧) as 

𝛩 (𝑧) = 1
√

𝛼2 + 4𝛼

[(

2 + 𝛼 +
√

𝛼2 + 4𝛼
2

)𝑧

−

(

2 + 𝛼 −
√

𝛼2 + 4𝛼
2

)𝑧]

. (A.28)

Since 𝛬1𝛬2 = 1, we can observe that 𝛩 (−𝑧) = −𝛩 (𝑧). Following the same approach, we can determine the solution for 𝜃𝑖 in the 
broken region of the system (𝑖 > 𝑝). In this case, the system to be solved reads 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜃𝑖 = 2𝜃𝑖−1 − 𝜃𝑖−2,

𝜃𝑝 = 𝛩 (𝑝 + 1) ,

𝜃𝑝−1 = 𝛩 (𝑝) ,

for 𝑖 > 𝑝 (A.29)

where the two conditions ensure the continuity of 𝜃𝑖 between the intact and broken regions. We remark that in this case the solution 
is 𝜃𝑖 = 𝐶 +𝐷𝑖. By applying the initial conditions, we obtain 

𝜃𝑖 = (𝑝 − 𝑖)𝛩 (𝑝) − (𝑝 − 𝑖 − 1)𝛩 (𝑝 + 1) , for 𝑖 > 𝑝. (A.30)

Summing up, the sequence 𝜃𝑖 can be rewritten as 

𝜃𝑖 =

⎧

⎪

⎨

⎪

⎩

𝛩 (𝑖 + 1) for 𝑖 ≤ 𝑝,

(𝑝 − 𝑖)𝛩 (𝑝) − (𝑝 − 𝑖 − 1)𝛩 (𝑝 + 1) for 𝑖 > 𝑝.
(A.31)

For the calculation of the sequence 𝜙𝑖, we proceed using a similar method. The difference equations to solve for the intact and 
broken regions of the system are

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜙𝑖 = 2𝜙𝑖+1 − 𝜙𝑖+2

𝜙𝑛+1 = 1

𝜙𝑛+2 = 0

for 𝑖 > 𝑝, (A.32)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜙𝑖 = (2 + 𝛼)𝜙𝑖+1 − 𝜙𝑖+2

𝜙𝑝+1 = 𝑛 − 𝑝 + 1

𝜙𝑝+2 = 𝑛 − 𝑝

for 𝑖 ≤ 𝑝, (A.33)

where the boundary conditions follow from Eq. (A.21) in the broken region, and from continuity arguments in the unbroken one. 
The solution can be written as follows 

𝜙𝑖 =

{

(𝑛 − 𝑝)𝛩 (𝑖 − 𝑝 − 1) − (𝑛 − 𝑝 + 1)𝛩 (𝑖 − 𝑝 − 2) for 𝑖 ≤ 𝑝,
𝑛 + 2 − 𝑖 for 𝑖 > 𝑝.

(A.34)

The sequences 𝜃𝑖 and 𝜙𝑖 give the 𝑖𝑗th element of the inverse 𝐀−1, as stated in Eq. (A.24). Hence, we can deduce the expression for 
the 𝑖𝑗th element of the inverse of 𝐁 through Eq. (A.18). Moreover, we remember that 𝜙 = 𝜃 = det 𝐀.
1 𝑛
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A.2. Asymptotic behavior for 𝑛 → ∞ of the minimized energy

We can now estimate the asymptotic behavior for 𝑛 → ∞ of the minimized energy 𝑔̃𝑒 defined in Eq. (15). For this purpose, we 
use Eqs. (A.1) and (A.18), and we obtain 

𝑛𝑔̃𝑒(𝝌) = − 1
2

𝜆2

𝑛2𝜈2
[

𝐀 − 𝐞𝟏 ⊗ 𝐞𝟏 − 𝐞𝐧 ⊗ 𝐞𝐧
]−1 𝟏 ⋅ 𝟏 + 1

2
𝝌 ⋅ 𝟏

= − 1
2

𝜆2

𝑛2𝜈2

[

𝐀−1𝟏 ⋅ 𝟏 +

(

1 −𝑤𝑛
)

𝛴2
𝑞 +

(

1 − 𝑞1
)

𝛴2
𝑤 + 2𝛴𝑞𝛴𝑤𝑞𝑛

(

1 −𝑤𝑛
) (

1 − 𝑞1
)

− 𝑞2𝑛

]

+ 1
2
(𝑛 − 𝑝),

(A.35)

where we have used the symbols 𝛴𝑞 and 𝛴𝑤 to indicate the sums 

𝛴𝑞 =
𝑛
∑

𝑖=1
𝑞𝑖 = 𝒒 ⋅ 𝟏, 𝛴𝑤 =

𝑛
∑

𝑖=1
𝑤𝑖 = 𝒘 ⋅ 𝟏. (A.36)

It is useful to introduce the parameter 𝜉, representing the broken fraction of the system. If 𝑛− 𝑝 is the number of broken units, 𝜉 is 
defined as (𝑛− 𝑝)∕𝑛 with 𝑛 → ∞. Hence, from now on, we will substitute the number of unbroken units 𝑝 with 𝑛(1− 𝜉). For example, 
we can study the asymptotic behavior of the function 𝛩(𝑝) = 𝛩(𝑛(1 − 𝜉)), defined in Eq. (A.28)

𝛩 (𝑛(1 − 𝜉)) = 1
√

𝛼2 + 4𝛼

⎡

⎢

⎢

⎣

(

2 + 𝛼 +
√

𝛼2 + 4𝛼
2

)𝑛(1−𝜉)

−

(

2 + 𝛼 −
√

𝛼2 + 4𝛼
2

)𝑛(1−𝜉)
⎤

⎥

⎥

⎦

. (A.37)

Recalling that 𝛼 = 1∕𝑛2𝜈2, the asymptotic value of the square root reads 
1

√

𝛼2 + 4𝛼
= 1

√

1
𝑛4𝜈4

+ 4
𝑛2𝜈2

∼
𝑛→∞

1
√

4
𝑛2𝜈2

= 𝑛𝜈
2

(A.38)

In the continuum limit, 𝛩(𝑛(1 − 𝜉)) becomes 

𝛩 (𝑛(1 − 𝜉)) ∼
𝑛→∞

𝑛𝜈
2

[

(

1 + 1
2𝑛2𝜈2

+ 1
𝑛𝜈

)𝑛(1−𝜉)
−
(

1 + 1
2𝑛2𝜈2

− 1
𝑛𝜈

)𝑛(1−𝜉)
]

∼
𝑛→∞

𝑛𝜈
2

[

(

1 + 1
𝑛𝜈

)𝑛(1−𝜉)
−
(

1 − 1
𝑛𝜈

)𝑛(1−𝜉)]

∼
𝑛→∞

𝑛𝜈
2

[

exp
(

1 − 𝜉
𝜈

)

− exp
(

−
1 − 𝜉
𝜈

)]

= 𝑛𝜈 sinh
(

1 − 𝜉
𝜈

)

.

(A.39)

We can calculate the asymptotic behavior of 𝜃𝑛 by considering Eq. (A.31), as follows 
𝜃𝑛 = −𝑛𝜉𝛩(𝑛(1 − 𝜉)) + (𝑛𝜉 + 1)𝛩(𝑛(1 − 𝜉) + 1)

= 𝛩(𝑛(1 − 𝜉) + 1) + 𝑛𝜉 [𝛩(𝑛(1 − 𝜉) + 1) − 𝛩(𝑛(1 − 𝜉))]

= 𝛩(𝑛(1 − 𝜉) + 1) + 𝜉
𝛩
(

𝑛
(

1 − 𝜉 + 1
𝑛

))

− 𝛩(𝑛(1 − 𝜉))

1
𝑛

.

(A.40)

We observe that when 𝑛 → ∞, the asymptotic behavior of the first term 𝛩(𝑛(1 − 𝜉) + 1) is again 𝑛𝜈 sinh[(1 − 𝜉)∕𝜈], while the second 
term can be seen as a derivative of 𝛩(𝑛(1 − 𝜉)) with respect to 1 − 𝜉. Therefore, we eventually obtain 

𝜃𝑛 ∼
𝑛→∞

𝑛𝜈 sinh
(

1 − 𝜉
𝜈

)

+ 𝑛𝜉 cosh
(

1 − 𝜉
𝜈

)

. (A.41)

Following the same approach, we can write the asymptotic behavior of 𝑞1, which corresponds to the first element −1
11  of the inverse 

matrix of 

𝑞1 = −1
11 =

𝜃0𝜙2
𝜃𝑛

=
𝜙2
𝜃𝑛

=
𝑛𝜉𝛩(1 − 𝑛(1 − 𝜉)) − (𝑛𝜉 + 1)𝛩(−𝑛(1 − 𝜉))
−𝑛𝜉𝛩(𝑛(1 − 𝜉)) + (𝑛𝜉 + 1)𝛩(𝑛(1 − 𝜉) + 1)

, (A.42)

where we have used the expression for 𝜙2 within the intact region since we assume that the fracture propagates from the left to 
the right. Thus, the term −1

11  necessarily corresponds to an intact element (otherwise 𝐀 would be singular). It is not difficult to see 
that 𝑞1 ∼

𝑛→∞
1. Moreover, we are interested in the asymptotic behavior of (1 − 𝑞1), that reads 

(1 − 𝑞1) ∼
𝑛→∞

𝜉
𝜈
sinh

(

1 − 𝜉
𝜈

)

+ cosh
(

1 − 𝜉
𝜈

)

𝑛𝜈 sinh
(

1 − 𝜉
𝜈

)

+ 𝑛𝜉 cosh
(

1 − 𝜉
𝜈

) . (A.43)

Similarly, for 𝑤𝑛 we have the expression 

𝑤𝑛 = −1 =
𝜃𝑛−1𝜙𝑛+1 =

𝜃𝑛−1 , (A.44)
𝑛𝑛 𝜃𝑛 𝜃𝑛
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which can be used to determine the asymptotic behavior of (1 −𝑤𝑛). The result follows 

(1 −𝑤𝑛) ∼
𝑛→∞

cosh
(

1 − 𝜉
𝜈

)

𝑛𝜈 sinh
(

1 − 𝜉
𝜈

)

+ 𝑛𝜉 cosh
(

1 − 𝜉
𝜈

) . (A.45)

The term 𝑞𝑛, in the limit for 𝑛 → ∞, is simply obtained as 

𝑞𝑛 = −1
1𝑛 =

𝜃0𝜙𝑛+1
𝜃𝑛

= 1
𝜃𝑛

∼
𝑛→∞

1

𝑛𝜈 sinh
(

1 − 𝜉
𝜈

)

+ 𝑛𝜉 cosh
(

1 − 𝜉
𝜈

) . (A.46)

By using the last achievements, we can calculate the asymptotic value of the denominator in Eq. (A.35), finally obtaining 

(1 − 𝑞1)(1 −𝑤𝑛) − 𝑞2𝑛 ∼
𝑛→∞

sinh
(

1 − 𝜉
𝜈

)

𝑛2𝜈
[

𝜉 cosh
(

1 − 𝜉
𝜈

)

+ 𝜈 sinh
(

1 − 𝜉
𝜈

)] . (A.47)

We can now determine the asymptotic behavior of 𝛴𝑞 , which can be written as 

𝛴𝑞 =
𝑛
∑

𝑖=1
𝑞𝑖 =

𝑛
∑

𝑖=1
−1

1𝑖 =
𝑛
∑

𝑖=1

𝜃0𝜙𝑖+1
𝜃𝑛

=
𝑛
∑

𝑖=1

𝜙𝑖+1
𝜃𝑛

, (A.48)

where 𝜙𝑖+1 is given by 

𝜙𝑖+1 =

{

𝑛𝜉𝛩 (𝑖 − 𝑛(1 − 𝜉)) − (𝑛𝜉 + 1)𝛩 (𝑖 − 𝑛(1 − 𝜉) − 1) for 𝑖 < 𝑛(1 − 𝜉),
𝑛 + 1 − 𝑖 for 𝑖 ≥ 𝑛(1 − 𝜉).

(A.49)

Therefore we can write 𝛴𝑞 as 

𝛴𝑞 =
𝑛(1−𝜉)−1
∑

𝑖=1

𝑛𝜉𝛩 (𝑖 − 𝑛(1 − 𝜉)) − (𝑛𝜉 + 1)𝛩 (𝑖 − 𝑛(1 − 𝜉) − 1)
𝜃𝑛

+
𝑛
∑

𝑖=𝑛(1−𝜉)

𝑛 − 𝑖 + 1
𝜃𝑛

. (A.50)

We observe that for 𝑚 ≤ 𝑛, we have 
𝑛
∑

𝑗=𝑚
𝑗 =

𝑛(𝑛 + 1)
2

−
𝑚(𝑚 − 1)

2
, (A.51)

so that the second term of Eq. (A.50) can be elaborated as follows 
𝑛
∑

𝑖=𝑛(1−𝜉)

𝑛 − 𝑖 + 1
𝜃𝑛

=
𝑛
∑

𝑖=𝑛(1−𝜉)

𝑛 + 1
𝜃𝑛

−
𝑛
∑

𝑖=𝑛(1−𝜉)

𝑖
𝜃𝑛

∼
𝑛→∞

𝑛2𝜉2

2𝜃𝑛
. (A.52)

On the other side, the asymptotic behavior of the numerator of first term of Eq. (A.50) is 
𝑛(1−𝜉)−1
∑

𝑖=1
[𝑛𝜉𝛩 (𝑖 − 𝑛(1 − 𝜉)) − (𝑛𝜉 + 1)𝛩 (𝑖 − 𝑛(1 − 𝜉) − 1)]

∼
𝑛→∞

𝑛2 ∫

1−𝜉

0

[

𝜉 cosh
(

𝑥 − 1 + 𝜉
𝜈

)

− 𝜈 sinh
(

𝑥 − 1 + 𝜉
𝜈

)]

𝑑𝑥

∼
𝑛→∞

𝑛2𝜈
[

𝜉 sinh
(

1 − 𝜉
𝜈

)

+ 𝜈 cosh
(

1 − 𝜉
𝜈

)

− 𝜈
]

.

(A.53)

Recalling the results obtained in Eqs. (A.41) and (A.52), we can write the asymptotic value of 𝛴𝑞 in the following final form 

𝛴𝑞 ∼
𝑛→∞

𝑛
𝜈
[

𝜉 sinh
(

1 − 𝜉
𝜈

)

+ 𝜈 cosh
(

1 − 𝜉
𝜈

)

− 𝜈
]

+ 1
2
𝜉2

𝜈 sinh
(

1 − 𝜉
𝜈

)

+ 𝜉 cosh
(

1 − 𝜉
𝜈

) . (A.54)

Following a similar procedure, we calculate the asymptotic behavior for the sum 𝛴𝑤 and we get 

𝛴𝑤 =
𝑛
∑

𝑖=1
𝑤𝑖 =

𝑛
∑

𝑖=1
−1

𝑖𝑛 =
𝜃𝑖−1𝜙𝑛+1

𝜃𝑛
=

𝑛
∑

𝑖=1

𝜃𝑖−1
𝜃𝑛

∼
𝑛→∞

𝑛
𝜈2 cosh

(

1 − 𝜉
𝜈

)

− 𝜈2 + 𝜉𝜈 sinh
(

1 − 𝜉
𝜈

)

+
𝜉2

2
cosh

(

1 − 𝜉
𝜈

)

𝜈 sinh
(

1 − 𝜉
)

+ 𝜉 cosh
(

1 − 𝜉
) .

(A.55)
𝜈 𝜈
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The last term that we have to evaluate is 𝐀−1𝟏 ⋅ 𝟏. It corresponds to the sum of all elements of the matrix 𝐀−1, which can be 
decomposed into the sum of the terms on the main diagonal and the sum of the terms out of diagonal, as follows 

𝐀−1𝟏 ⋅ 𝟏 =
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
−1

𝑖𝑗 =
𝑛
∑

𝑖=1
−1

𝑖𝑖 + 2
𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1
−1

𝑖𝑗

= 1
𝜃𝑛

𝑛
∑

𝑖=1
𝜃𝑖−1𝜙𝑖+1 +

2
𝜃𝑛

𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1
𝜃𝑖−1𝜙𝑗+1 = 1 + 2.

(A.56)

Notice that both sequences 𝜃𝑖 and 𝜙𝑖 are given in Eqs. (A.31) and (A.34). Therefore, we have to consider different sums for each 
intact or broken region. For instance, for the sum 1 of the terms on the diagonal, we split the result into two terms 

1𝜃𝑛 =
𝑛(1−𝜉)
∑

𝑖=1
𝜃𝑖−1𝜙𝑖+1 +

𝑛
∑

𝑖=𝑛(1−𝜉)+1
𝜃𝑖−1𝜙𝑖+1. (A.57)

On the other side, for the sum 2 of the terms out of diagonal, we split the result into three terms 

2𝜃𝑛
2

=
𝑛(1−𝜉)−1
∑

𝑖=1

𝑛(1−𝜉)
∑

𝑗=𝑖+1
𝜃𝑖−1𝜙𝑗+1 +

𝑛(1−𝜉)−1
∑

𝑖=1

𝑛
∑

𝑗=𝑛(1−𝜉)+1
𝜃𝑖−1𝜙𝑗+1 +

𝑛−1
∑

𝑖=𝑛(1−𝜉)

𝑛
∑

𝑗=𝑖+1
𝜃𝑖−1𝜙𝑗+1. (A.58)

After performing very long but straightforward calculations, we observe that in the limit as 𝑛 → ∞, the term 1 can be neglected 
since it scales as 𝑛2, whereas 2 scales as 𝑛3. In the end, we obtain the asymptotic expression for 𝐀−1𝟏 ⋅ 𝟏, which reads 

𝐀−1𝟏 ⋅ 𝟏 ∼
𝑛→∞

2 ∼
𝑛→∞

𝑛3 

𝜈 sinh
(

1 − 𝜉
𝜈

)

+ 𝜉 cosh
(

1 − 𝜉
𝜈

) , (A.59)

where 

 =𝜈2(2𝜈2 − 𝜉2)
[

1 − cosh
(

1 − 𝜉
𝜈

)]

+ 𝜈2𝜉(1 − 𝜉) cosh
(

1 − 𝜉
𝜈

)

+ 1
12

𝜉4 cosh
(

1 − 𝜉
𝜈

)

+ (1 − 2𝜉)𝜈3 sinh
(

1 − 𝜉
𝜈

)

+ 1
3
𝜈𝜉3 sinh

(

1 − 𝜉
𝜈

)

.
(A.60)

From results obtained in Eqs. (A.41), (A.43), (A.45), (A.46), (A.47), (A.54), (A.55), and (A.59), we can finally calculate the 
asymptotic behavior for 𝑛 → ∞ of the energy in Eq. (A.35) as 

𝑔̃𝑒(𝜉) = −1
2
𝜆2 − 1

2
𝜆2

𝜈2
𝜉
[

𝜈2 + 𝜈𝜉 coth
(

1 − 𝜉
𝜈

)

+
𝜉2

3

]

+ 1
2
𝜉, (A.61)

which corresponds to Eq. (16) of the main text. If we consider the term 

𝐀−1𝟏 ⋅ 𝟏 +

(

1 −𝑤𝑛
)

𝛴2
𝑞 +

(

1 − 𝑞1
)

𝛴2
𝑤 + 2𝛴𝑞𝛴𝑤𝑞𝑛

(

1 −𝑤𝑛
) (

1 − 𝑞1
)

− 𝑞2𝑛
, (A.62)

we easily deduce that it scales as 𝑛3, and therefore, the energy defined in Eq. (A.35) remains finite in the continuum limit, that is 
for 𝑛 → ∞.

To conclude, we emphasize that this result was found in two ways: in this Appendix the minimized discrete energy was considered 
and the limit for 𝑛 → ∞ was carried out. In the main text we reobtained the same result by first applying the limit for 𝑛 → ∞ to 
the not-yet-minimized energy, and then minimization was carried out by variational calculus. The coincidence of the two results is 
consistent with the 𝛤 -convergence, as already mentioned in the main text.

A.3. Asymptotic behavior of det 𝐁 as 𝑛 → ∞

To evaluate the asymptotic behavior of det 𝐁 we consider again Eq. (A.1). In general, it is possible to prove that for a generic 
non-singular matrix 𝐌, a vector 𝐦, and a scalar quantity 𝛽, the determinant of 𝐌 + 𝛽𝐦⊗𝐦 is given by 

det (𝐌 + 𝛽𝐦⊗𝐦) = det𝐌 (1 + 𝛽𝐦 ⋅𝐦) . (A.63)

Then, to obtain the determinant of 𝐁, we apply this formula (with 𝛽 = −1) twice to Eq. (A.1)
det 𝐁 =

(

𝑛2𝜈2
)𝑛 det

(

𝐀 − 𝐞1 ⊗ 𝐞1 − 𝐞𝑛 ⊗ 𝐞𝑛
)

=
(

𝑛2𝜈2
)𝑛 [det

(

𝐀 − 𝐞1 ⊗ 𝐞1
)]

[

1 −
(

𝐀 − 𝐞1 ⊗ 𝐞1
)−1 𝐞𝑛 ⋅ 𝐞𝑛

]

=
(

𝑛2𝜈2
)𝑛 det 𝐀

[

1 − 𝐀−1𝐞1 ⋅ 𝐞1
]

[

1 −
(

𝐀 − 𝐞1 ⊗ 𝐞1
)−1 𝐞𝑛 ⋅ 𝐞𝑛

]

.

(A.64)

From Eq. (A.6), we know that 
(

𝐀 − 𝐞1 ⊗ 𝐞1
)−1 = 𝐀−1 +

𝐀−1𝐞1 ⊗ 𝐞1𝐀−1
, (A.65)
1 − 𝐀−1𝐞1 ⋅ 𝐞1
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and then, by recalling Eqs. (A.9) and (A.13), we can write 
(

𝐀 − 𝐞1 ⊗ 𝐞1
)−1 𝐞𝑛 ⋅ 𝐞𝑛 = 𝐀−1𝐞𝑛 ⋅ 𝐞𝑛 +

𝐀−1𝐞1 ⊗ 𝐞1𝐀−1

1 − 𝐀−1𝐞1 ⋅ 𝐞1
𝐞𝑛 ⋅ 𝐞𝑛 = 𝑤𝑛 +

𝑞2𝑛
1 − 𝑞1

. (A.66)

Substituting this result in Eq. (A.64), we obtain 

det 𝐁 =
(

𝑛2𝜈2
)𝑛 det 𝐀

(

1 − 𝑞1
)

(

1 −𝑤𝑛 −
𝑞2𝑛

1 − 𝑞1

)

=
(

𝑛2𝜈2
)𝑛 det 𝐀

[(

1 −𝑤𝑛
) (

1 − 𝑞1
)

− 𝑞2𝑛
]

. (A.67)

We remember that the asymptotic value of (1 −𝑤𝑛
) (

1 − 𝑞1
)

− 𝑞2𝑛 has been evaluated in Eq. (A.47). Moreover from Eq. (A.41), we 
deduce the behavior of det 𝐀 = 𝜃𝑛. Finally, substituting Eqs. (A.47) and (A.41) into Eq. (A.67), we obtain the expression for det 𝐁 in 
the continuum limit 

det 𝐁 ∼
𝑛→∞

(

𝑛2𝜈2
)𝑛

sinh
(

1 − 𝜉
𝜈

)

𝑛𝜈
, (A.68)

useful to develop the partition function within the Gibbs ensemble.
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