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ABSTRACT
Mechanically interlocked polymers and molecules exhibit unique topological, physical, and chemical properties, making them highly promis-
ing for applications in molecular machines, molecular switches, artificial muscles, nano-actuators, nano-sensors, and biomedical technologies.
While significant progress has been made in their synthesis and practical implementation, theoretical studies remain underexplored. In this
work, we examine the role of entropic forces in daisy chain structures incorporating rotaxanes, with the ultimate goal of characterizing
entropic nano-springs for use in nanomechanics and nanotechnology. Potential applications include artificial cytoskeletons, synthetic cells,
and nano-mechanical logic gates.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0269708

I. INTRODUCTION

Mechanically interlocked polymers (MIPs) are an extension
of mechanically interlocked molecules (MIMs), which are chemi-
cal structures incorporating mechanical or topological bonds. MIPs
can thus be considered macromolecular versions of MIMs. The
inclusion of mechanical bonds imparts significant conformational
freedom while preserving the spatial associations between their
components.1–4

The interesting aspect of these mechanical bonds is that they are
not covalent but purely topological, thereby introducing a class of
molecules and macromolecules that are entirely original and inno-
vative.5 The chemistry of structures that interact non-covalently
is known as supramolecular chemistry.6,7 In addition to topolog-
ical bonds, it also includes hydrogen bonding, hydrophobic and
hydrophilic forces, van der Waals forces, and electrostatic effects.

These weak non-covalent bonding strategies are central in the
growth, synthesis, and properties of supramolecular structures.8–10

These structures have gained significant attention since Jean-
Pierre Sauvage, Sir J. Fraser Stoddart, and Bernard L. Feringa were
awarded the Nobel Prize in Chemistry in 2016 for their pioneering
work on molecular machines and rotaxanes. A vast number of struc-
tures are now available and widely used in nanotechnology.11 For
instance, we can mention catenane, rotaxane, and daisy chains.

A catenane is a molecular structure consisting of two or more
interlocked rings that are mechanically bonded without covalent
connections (see Fig. 1, left panel). The rings are free to move relative
to each other, making catenanes and polycatenanes a key component
in molecular machines and nanotechnology.3,12,13

A rotaxane is composed of a linear molecular dumbbell thread
encircled by a ring, with bulky groups at the ends of the thread
to prevent the ring from slipping off (see Fig. 1, right panel). This
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FIG. 1. Catenane, polycatenane, rotaxane, and polyrotaxane structures. The
spheres at the ends of rotaxane and polyrotaxane should be larger than the rings
to prevent them from slipping out; here, they are shown smaller only for illustrative
purposes.

mechanical bond allows for controlled motion between the thread
and the ring, making rotaxanes and polyrotaxanes ideal for applica-
tions in molecular electronics and nanomechanics.14–16 Moreover,
bistable rotaxanes, which include two different recognition sites or
stations, have attracted considerable attention as molecular switches
and machines because of their adjustable geometrical, physical, and
chemical properties.17–20

Daisy chains are a specific type of mechanically interlocked
structure formed by multiple rings or loops connected in a
chain-like arrangement through sliding segments [see Fig. 2(a)].
These structures can exhibit sliding or rotational motion, often
used in designing responsive materials and artificial muscles [see
Fig. 2(b)].2,21–25

The utility of these supramolecular structures has already been
clearly demonstrated for many applications, including chemosen-
sors,26 catalysis,27 molecular machines,28,29 biomaterials,30,31

molecular electronic devices,32,33 molecular transporters,34 drug
delivery,35 and elastic materials.36–38 The synthesis of such
supramolecular entities has a considerable impact on their proper-
ties, and many different techniques have been developed throughout
the years. Such techniques are often based on the use of templates.
These strategies take advantage of the use of affinity sites placed
at the different interlocked counterparts, or in their precursors, to
finally access the target molecule.16 More sophisticated techniques

FIG. 2. Daisy chain structures: (a) basic element and examples of complex struc-
tures and (b) sliding structure used as a unit of artificial muscles (contracted and
stretched).

allow for more control on the structure construction, such as
self-assembly techniques,39 molecular pumping techniques,40 or
thermodynamic control.41

The ability of these structures to generate force at the molec-
ular level has been proven by using the atomic force microscope
(AFM).42–45 Being able to control the structural properties of rotax-
anes and daisy chains opens doors to technological advances in
areas such as molecular machinery and material science, among
others. Some studies were recently directed to using rotaxanes as
piston motors using the entropy of rings to exert a pressure on a
given target.46–49 Bistable rotaxanes, in which the dumbbell com-
ponent contains two different recognition stations for the ring,
effectively create two different translational isomers.17 The transi-
tion between these two states operates through oxidation-reduction
principles, and nanomechanical actuators have been developed with
this scheme.28

In this context, statistical mechanics investigations have been
performed to study the conformational isomers of linear rotaxanes50

and the threading of a ring or small tube onto a rod.51 Other inter-
esting theoretical studies concern the mechanical conformers of
particular catenanes,52 the fluctuations and switching properties of
triangular cyclic rotaxanes,53 and the isotropic–nematic transition
in rotaxane liquid crystals.54

In contrast to most other polyrotaxanes, which only exhibit
rotational and translational degrees of freedom of the rings, daisy
chains are particular structures that can alter the length of the poly-
mer and induce elongation like an elastic material. For this reason,
we study in this work the thermoelastic behavior of a particular
structure obtained by combining a daisy chain with rotaxane rings.
The basic idea is to design entropic nano-springs with applications
to nanomechanics. The versatility of the proposed scheme allows
tuning both the linear and nonlinear behavior of such structures.
At the molecular scale, temperature has a considerable impact, and
therefore, the analysis is conducted through statistical mechanics
approaches.55

First of all, in Sec. II, we study the possibility of generating a
pressure from a rotaxane ring gas. To this end, we use both the Gibbs
statistical ensemble at constant force and the Helmholtz statistical
ensemble at constant extension and prove the equivalence of the two
ensembles in the thermodynamic limit (i.e., for a large number of
rotaxane rings).56–58

Then, in Sec. III, we consider a one-dimensional daisy chain
where we introduce, in each segment, two populations of rotaxane
rings to the left and right of the main sliding ring [see Fig. 4]. These
two one-dimensional gases have the ability to greatly influence the
elastic response of the system, in both linear and nonlinear features.

In Sec. IV, we generalize the previous theory to the case of a
three-dimensional daisy chain in which segments can float freely
in three dimensions (see Fig. 7). We also show how the freely
jointed chain (FJC) model is a special case of the proposed scheme,
composed of a daisy chain with rotaxanes.

In both the one- and three-dimensional cases, we are able to
determine the effective elastic constant, the properties in unstressed
condition, i.e., without applied external forces, and the overall
nonlinear response of the system as a function of the physical
and geometric properties of the structure. We also obtain asymp-
totic expressions valid for large values of the applied force. The
comparison between one-dimensional and three-dimensional
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geometry is discussed in depth to explain the important topological
differences.

II. THERMODYNAMIC BEHAVIOR
OF A ONE-DIMENSIONAL POLYROTAXANE GAS

In order to grasp how a daisy chain behaves when subjected to a
force, we first show the response of a one-dimensional ring-gas poly-
rotaxane. We consider a polyrotaxane composed of N rings arranged
along the x-axis with these two main constraints: (i) the position at
x = 0 is an ideal wall where the rotaxanes can only be reflected; (ii)
one ring cannot pass through another ring, and therefore, the order
of the N rings cannot be changed. In other words, by denoting the
positions of the rings as x1, x2, . . . , xN , we can define the following
configurational space Ω ⊂ RN (see Fig. 3):

Ω =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x1, x2, . . . , xN) ∈ RN :

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < x1 < x2

x1 < x2 < x3

. . .

xN−2 < xN−1 < xN

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (1)

In order to study the thermoelastic response of the polyrotaxane
system, we can analyze its compression response, which is gener-
ated by entropic forces alone. We perform this study under two
distinctive statistical ensembles corresponding to different boundary
conditions: the Gibbs ensemble and the Helmholtz ensemble.

A. The Gibbs statistical ensemble
The Gibbs ensemble, or isotensional ensemble, is characterized

by the application of a deterministic force at the end of the system.
The overall extension of the system, which is a random variable, is
then observed. In our case, a force f is applied on the last ring, char-
acterized by its position xN . Therefore, the total potential energy is
V(x1, . . . , xN) = − fxN as there are no other forces applied to the sys-
tem. Of course, this force will always be negative ( f < 0, see Fig. 3) to
keep the system confined, as is also seen in the following calculations
and discussions.

It is important now to better justify and discuss these assump-
tions, already adopted in other works.46–49 Indeed, regarding the
interactions between the rings and between each ring and the main
chain, one might think of adding other forms of conservative and
dissipative interactions.

As for conservative interactions, they would be described by an
interaction potential energy, which determines the forces transmit-
ted between links or with the main chain. These effects are neglected
here because they are assumed to be at a very short range. Thus, they
only intervene when two links are close to colliding. The fact that

FIG. 3. Illustration of the polyrotaxane gas model where x1, x2, . . ., xN identify the
position of each rings along the x-axis. The applied force f is negative to keep the
system confined.

the rings collide with no possibility of passing through other rings is
quite realistic (for reasonable temperatures) since they all have the
same size and a rather complex molecular structure that increases
their thickness and rigidity. Collisions in this work are therefore con-
sidered ideal and, thus, described by a potential energy consisting
of a wall with infinite energy. The total interaction energy is then
taken to be zero except at the collision points: the collision situa-
tion is, however, taken into account geometrically and automatically
through the precise description of the integration domain in the
partition functions.

As for dissipative phenomena, particularly the possible fric-
tion between rings and the main chain, they are not described and
used in this work but may actually be present. The reason we can
neglect these dissipative phenomena lies in the fact that we are
working at thermodynamic equilibrium, and friction affects only
the relaxation regime toward equilibrium and not the equilibrium
itself. In fact, we know from Langevin’s model or similar models that
relaxation toward equilibrium in a given system is described by the
combination of thermal fluctuations (noise) and dissipation (with
a well-defined fluctuation–dissipation relation D = KBTβ, where D
is the diffusion constant, T is the temperature, and β is the friction
coefficient). The effect of friction, in this scheme, is to change the
relaxation time τ ∼ 1/β (which decreases as the coefficient of fric-
tion increases), both at the classical and quantum level.59–61 In other
words, one could say that the system is viscoelastic with a small
viscosity and that we focus here on its elastic component.

We also assumed that the main segments remain straight dur-
ing the evolution of the system. In reality, there can evidently be
flexures of these segments that should not, however, affect the behav-
ior of the system, particularly when their length is not much larger
than the characteristic persistence length of the adopted molecules
(for reasonable temperatures).57

All these effects may play a role in the system, but they are typ-
ically secondary compared to the interlocking and entropic effects
considered in this work. Possible extensions can, of course, be
explored in future studies.

Based on these premises, the Gibbs partition function for the
system in Fig. 3 can be written as

Zg( f ) = ∫
Ω⊂RN

exp(
f xN

kBT
)dx1 . . .dxN. (2)

To perform the integration, we adopt the change of variables,

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 = x1 > 0,

ξ2 = x2 − x1 > 0,

. . .

ξN = xN − xN−1 > 0,

(3)

from which we deduce that xN = ∑
N
i=1 ξi. Since the Jacobian deter-

minant of the transformation is unitary, the partition function
becomes

Zg( f ) = ∫
{ξi≥0 ∀i=1,...,N}

exp(
f∑N

i=1 ξi

kBT
)dξ1 . . .dξN

= [∫

+∞

0
exp(

f ξ
kBT
)dξ]

N

= (−
kBT

f
)

N

. (4)
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As the system remains confined only if the applied force is com-
pressive (in the direction opposite to the x-axis), the Gibbs partition
function is convergent only if f < 0. We remind that the polyrotax-
ane system acts as a gas, and accordingly, it generates a pressure
that tends to make it expand, which is balanced by the force f < 0.
Using classical thermodynamics,56–58 we can determine the average
position ⟨xN⟩ of the last ring as follows:

⟨xN⟩ = kBT
∂

∂ f
log Zg = kBT

∂

∂ f

⎡
⎢
⎢
⎢
⎢
⎣

log(−
kBT

f
)

N⎤
⎥
⎥
⎥
⎥
⎦

= −
NkBT

f
. (5)

Consequently, the applied force and the position of the last ring are
linked by the relation

⟨xN⟩ f = −NkBT. (6)

By replacing f with the “pressure” −p, we can find the equation of
state for the ring gas within the Gibbs ensemble as p⟨xN⟩ = NkBT,
which is analogous to the ideal gas law in thermodynamics.

B. The Helmholtz statistical ensemble
In contrast to the isotensional ensemble, the Helmholtz or iso-

metric statistical ensemble imposes a fixed end position rather than
a fixed force. In this case, the last ring is supposed to be fixed at xN .
Then, since xN is no longer a statistical variable, the configurational
space Ω̃ can be redefined as the following subset of RN−1:

Ω̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x1, x2, . . . , xN−1) ∈ RN−1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < x1 < x2

x1 < x2 < x3

. . .

xN−2 < xN−1 < xN

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (7)

where xN is fixed. Since the potential energy is zero, the partition
function has the following form:

Zh(xN) = ∫
Ω̃⊂RN−1

dx1 . . .dxN−1. (8)

We adopt the change of variables,

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 = x1 > 0,

ξ2 = x2 − x1 > 0,

. . .

ξN−1 = xN−1 − xN−2 > 0,

(9)

and we get

xN−1 =
N−1

∑
i=1

ξi ≤ xN. (10)

After the application of this change of variables, we can introduce
the new integration domain Ψ, defined below, which is described by
a (N − 1)-simplex,

Ψ(xN) = {ξi ≥ 0 ∀i = 1, . . . , N − 1,
N−1

∑
i=1

ξi ≤ xN} ⊂ RN−1, (11)

and, therefore, we can rewrite the Helmholtz partition function as

Zh(xN) = ∫
Ψ(xN)⊂RN−1

dξ1 . . .dξN. (12)

To calculate the measure of domains obtained from an
n-dimensional simplex of height h, referred to as σ(h) ⊂ Rn,

σ(h) = {Xi ≥ 0,∀i = 1, . . . , n,
n

∑
i=1

Xi ≤ h}, (13)

we can use the following formula,62

∫
σ(h)

dX1 . . .dXn =
hn

n!
1(h), (14)

where 1(x) is the Heaviside step function, defined as 1(x) = 1 if
x ≥ 0 and 1(x) = 0 if x < 0. By using this result in Eq. (12), we obtain
the expression of the Helmholtz partition function,

Zh(xN) =
xN−1

N

(N − 1)!
1(xN). (15)

In Eqs. (14) and (15), we included the step functions to emphasize
the fact that the expressions found are valid only for h > 0 and for
xN > 0, respectively. This notation will be especially useful in the
next logical steps, where we introduce a relationship between the
Gibbs and Helmholtz partition functions.

The average force necessary to impose the Helmholtz condition
can be calculated, for xN > 0, as follows:56–58

⟨ f ⟩ = −kBT
∂

∂xN
log Zh = kBT

∂

∂xN

xN−1
N

(N − 1)!

= kBT
∂

∂xN
[log (xN−1

N )] = −
(N − 1)kBT

xN
. (16)

The resulting force–extension relation is then obtained in the form

⟨ f ⟩xN = −(N − 1)kBT, (17)

and, by introducing the quantity p = − f , we find the gas law under
isometric condition as ⟨xN⟩p = (N − 1)kBT. We note that for large
values of N, the Helmholtz law given in Eq. (17) and the Gibbs law
obtained in Eq. (6) are asymptotically coinciding, which means that
the two statistical ensembles are equivalent in the thermodynamic
limit. However, one should remember that the statistical variables
are different for the two models: while the Gibbs law considers an
imposed force f and a corresponding average value of the last posi-
tion ⟨xN⟩, we have the dual case with ⟨ f⟩ and xN in the Helmholtz
ensemble. The equivalence of statistical ensembles is a widely stud-
ied and debated topic in statistical mechanics,56–58,63–68 and there
are explicit examples where this equivalence is not respected.69–73 In
addition, the gas model is useful for comparing the thermodynamic
limit with the continuum limit in statistical mechanics.74 Moreover,
it is crucial to notice that in both ensembles, the force is purely
entropic and therefore temperature-dependent (if the temperature is
zero, the force is zero as well). Furthermore, by drawing a compari-
son between Eqs. (2) and (8), it is possible to discern a connection
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between the Gibbs and Helmholtz partition functions, which are
indeed related through the classical Laplace transform,

Zg( f ) = ∫
+∞

−∞
Zh(x) exp(

f x
kBT
)dx. (18)

Performing the calculation, we obtain

Zg( f ) = ∫
+∞

−∞
1(x)

xN−1
N

(N − 1)!
exp(

f x
kBT
)dx

=
1

(N − 1)!
(−

f
kBT
)

−N

Γ(N) = (−
kBT

f
)

N

, (19)

with the condition f < 0, where Γ(z) = ∫
+∞

0 e−ttz−1dt is the Gamma
function and 1(x) is the Heaviside function previously defined. The
result in Eq. (19) exactly corresponds to Eq. (4), confirming the
validity of this approach. The Laplace relation between the partition
functions is very important because it is always valid regardless of the
equivalence of the ensembles in the thermodynamic limit. When the
thermodynamic limit is verified, the relationship is simplified and
reduces to the Legendre transform between the corresponding free
energies G = −kBT log Zg and F = −kBT log Zh.56,57,63

We have shown that a set of rotaxane rings inserted in a linear
chain is able to exert an entropic force dependent on the total num-
ber of elements. We exploit in the sequel this result to study more
complex structures that can be used to design entropic nano-springs.

III. ONE-DIMENSIONAL DAISY CHAIN
WITH ADDITIONAL RINGS

While we have developed a thermodynamic model for a single
polyrotaxane system in Sec. II, daisy chains present more complex
structures and, therefore, need further study in order to determine
their thermoelastic response. Here, we use the results from Sec. II
to determine the force–extension law for a one-dimensional daisy
chain with additional rotaxane rings.

A. Force–extension law of a 1D daisy chain
We consider a daisy chain aligned along the x-axis with addi-

tional rings within the Gibbs ensemble (isotensional condition). This
system is made of N segments, each of length ℓ, as depicted in Fig. 4.
Each segment contains two different populations of rotaxane rings,
separated by the main rings (a)–(c), and so on. More specifically,
there are n rotaxane rings on the left and m on the right of each
main sliding ring. The position of the main rings (in green in Fig. 4)
is identified by the abscissae xJ , where 1 ≤ J ≤ N. The geometry of
the left population of rotaxane rings is described by the variable
yJ

i , where 1 ≤ i ≤ n and 1 ≤ J ≤ N, each representing the distance
between the adjacent rotaxanes j and j − 1; similarly, the right pop-
ulation rings is described by the distances zJ

i , with 1 ≤ i ≤ m and
1 ≤ J ≤ N. We remark that subscript i refers to rotaxane rings (both
on the left and on the right of each main sliding ring), and super-
script J denotes the Jth segment of the daisy chain. Moreover, the
first segment’s left-end is fixed at the origin, while the last segment’s
right-end is subjected to an applied force f (as is typically done
in force spectroscopy experiments). Finally, as in the case of the
one-dimensional polyrotaxane gas, each ring cannot pass through
another adjacent ring (including the sliding main rings), and it can-
not leave the segment of length ℓ. All the main rings (in green) are
subject to the same restrictions and constraints as the other freely
moving rings (already discussed for the gas model).

Under these premises, we can write the Gibbs partition
function for the overall system in the form

Zg( f ) = ∫
ℓ

0
∫

ℓ

0
. . .∫

ℓ

0

⎡
⎢
⎢
⎢
⎣

exp(
f∑N

J=1 xJ

kBT
) ×

N

∏
J=1
∫

ΔJ

dyJ
1dyJ

2 . . .dyJ
n

×
N

∏
J=1
∫

ΘJ

dzJ
1dzJ

2 . . .dzJ
m

⎤
⎥
⎥
⎥
⎦

dx1dx2 . . .dxN , (20)

where the two internal integrals are evaluated, respectively, over
domains ΔJ ⊂ Rn and ΘJ ⊂ Rm, defined as

FIG. 4. Illustration of the model for the one-dimensional daisy chain made of N segments of length ℓ. In the Jth segment, xJ identifies the position of the main rings (a)–(c) and
so on (in green). Each main ring separates two different populations of rotaxanes (in red): on the left, there are n rotaxanes, with the distances between the adjacent rings j
and j − 1 identified by the quantity yJ

i , where 1 ≤ i ≤ n and 1 ≤ J ≤ N; on the right, there are m rotaxanes, where, analogously to the case of the left population, the distances
between adjacent rings are described by zJ

i , with 1 ≤ i ≤ m and 1 ≤ J ≤ N. No ring can exchange position with an adjacent ring (including with main rings in green), and no
ring can leave the segment of length ℓ.
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ΔJ = {yJ
i ≥ 0,∀1 ≤ i ≤ n,

n

∑
i=1

yJ
i ≤ xJ

},∀1 ≤ J ≤ N, (21)

concerning the rotaxane populations on the left of the main rings,
and

ΘJ = {zJ
i ≥ 0,∀1 ≤ i ≤ m,

m

∑
i=1

zJ
i ≤ ℓ − xJ

},∀1 ≤ J ≤ N, (22)

describing the behavior of the rotaxane populations on the right of
the main rings. These internal integrals must be considered to take
into account the effects of the rings located in the left and right
regions of each daisy chain segment. We know that the partition
function must sum over all possible configurations of the system,
taking into account all its subsystems. This is done by integrating
the Boltzmann factor, calculated with the total energy of the system,
over all the variables that define its microscopic state. Since all the
rings of each one-dimensional gas (to the left and right of each main
ring) are confined to a region of extent xJ (for populations placed
to the left) and to a region of extent ℓ − xJ (for populations placed
to the right) and since all xJ variables must be integrated in the par-
tition function, it follows that the integrals over the populations of
free rings must be contained in the integrals over the xJ coordinates,
defining the positions of the main rings. Such positioning of the inte-
grals ensures that the partition function no longer depends on the
internal configurational variables but only on the external force and
temperature of the system. This example shows how the structural
constraints that define the configuration of the system can alter its
thermodynamic properties and, in particular, its entropy (and rela-
tive entropic forces) through the mathematical form assumed by the
partition function. Moreover, the exponential term in Eq. (20) cor-
responds to the contribution of all the sliding segments and of the
force f applied to the last element of the chain. That said, Eq. (20)
can be simplified by means of Eq. (14), and we get

Zg( f ) = ∫
ℓ

0
∫

ℓ

0
. . .∫

ℓ

0

⎡
⎢
⎢
⎢
⎣

exp(
f∑N

J=1 xJ

kBT
) ×

N

∏
J=1

(xJ
)

n

n!

×
N

∏
J=1

(ℓ − xJ
)

m

m!

⎤
⎥
⎥
⎥
⎦

dx1dx2 . . .dxN. (23)

It is now easily seen that the remaining N integrals can be
factorized as follows:

Zg( f ) = ∫
ℓ

0

(x1
)

n
(ℓ − x1

)
m

n!m!
exp(

f x1

kBT
)dx1

× ⋅ ⋅ ⋅ × ∫

ℓ

0

(xN
)

n
(ℓ − xN

)
m

n!m!
exp(

f xN

kBT
)dxN

=
1

(n!m!)N [∫

ℓ

0
xn
(ℓ − x)m exp(

f x
kBT
)dx]

N

. (24)

We have obtained a simplified form for the Gibbs partition
function for a one-dimensional daisy chain. By further changing the
variable of the integral through the transformation t = x/ℓ, the Gibbs
partition function assumes the new form

Zg( f ) = [∫
1

0

(tℓ)n
(ℓ − tℓ)m

n!m!
exp(

f tℓ
kBT
)ℓdt]

N

, (25)

or, equivalently

Zg(η) = C[∫
1

0
tn
(1 − t)m exp (ηt)dt]

N
, (26)

where η = f ℓ/(kBT) is the non-dimensional or normalized applied

force and C = [ ℓ
n+m+1

n!m! ]
N

is a non-influential constant. The knowl-
edge of the partition function makes it possible to calculate all kinds
of average values and, thus, to study the thermodynamics of the sys-
tem. In particular, we can determine the force–extension relation by
calculating the average value of the total extension x̃ = ∑N

J=1 xJ . We
use the classical thermodynamic relations,56,57 which lead to

⟨x̃⟩ = kBT
∂ log Zg( f )

∂ f
= ℓ

∂ log Zg(η)
∂η

= Nℓ∫
1

0 tn+1
(1 − t)meηtdt

∫
1

0 tn
(1 − t)meηtdt

. (27)

First of all, we can analyze the equilibrium position of the chain with-
out any applied force. By imposing f = 0 (i.e., η = 0), the equilibrium
point of the system can be calculated as

⟨x̃⟩ ∣η=0
= Nℓ∫

1
0 tn+1

(1 − t)mdt

∫
1

0 tn
(1 − t)mdt

. (28)

We can now use the Gamma function Γ(μ) = ∫
+∞

0 e−ττμ−1dτ
and the Beta function B(α, β) = ∫

1
0 τα−1

(1 − τ)β−1dτ, satisfying
the properties Γ(n) = (n − 1)!, B(α, β) = B(β, α), and B(α, β)
= Γ(α)Γ(β)/Γ(α + β).75,76 From these properties, it is possible to
deduce the equilibrium extension of the chain in the following form:

⟨x̃⟩ ∣η=0
= Nℓ

B(n + 2, m + 1)
B(n + 1, m + 1)

= Nℓ
Γ(n + 2)Γ(m + 1)

Γ(n +m + 3)
Γ(n +m + 2)

Γ(n + 1)Γ(m + 1)

= Nℓ
(n + 1)!m!
(n +m + 2)!

(n +m + 1)!
n!m!

= Nℓ
n + 1

n +m + 2
. (29)

This obviously implies that the average extension of the sliding
segments is given by

⟨x1
⟩ ∣η=0

= ⟨x2
⟩ ∣η=0

= ⋅ ⋅ ⋅ = ⟨xN
⟩ ∣η=0

= ℓ
n + 1

n +m + 2
. (30)

This result contains interesting information as it links the properties
of rotaxane populations with the equilibrium positions of the sliding
segments. Three relevant cases can be mentioned as follows:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

⟨xJ
⟩ ∣η=0

=
ℓ

2
if n = m,

⟨xJ
⟩ ∣η=0

→ 0 if m→ +∞,

⟨xJ
⟩ ∣η=0

→ ℓ if n→ +∞.

(31)

Of course, when the number of rings is equal at the left and right of
the separating element, the two pressures balance, and we obtain the
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central position at equilibrium. We observe that the second and third
cases represent the situations of high density of right ring gas and
high density of left ring gas, respectively. When m tends to infinity,
the gas on the right becomes dominant, and the main ring shifts to
the left, ultimately reaching the extreme position 0. Similarly, when
n tends to infinity, the gas on the left becomes dominant, and the
main ring shifts to the right, reaching the extreme position ℓ. From
Eq. (27), it is possible to plot the force–extension curve ⟨x̃⟩

Nl vs η
(see Fig. 5) either by numerical integration or using its closed form
expression (demonstrated in Appendix A),

⟨x̃⟩ = −Nℓ
∑

m
h=0 (

m
h )
(n+1+h)!

ηh+1 [eη
∑

n+h+1
k=0

(−η)k

k! − 1]

∑
m
h=0 (

m
h )
(n+h)!

ηh [eη
∑

n+h
k=0

(−η)k

k! − 1]
. (32)

This relation describes the fully nonlinear thermomechanical behav-
ior of the system. In addition to being helpful for plotting the
force–extension curve (see Fig. 5), this expression can also be used
to determine the following two asymptotic behaviors:

η→ +∞ ⇒ ⟨x̃⟩ ∼ Nℓ(1 −
m + 1

η
),

η→ −∞ ⇒ ⟨x̃⟩ ∼ −Nℓ(
n + 1

η
).

(33)

For illustrative purposes, in Fig. 5, both asymptotes, as well as
the tangent at the equilibrium position η = 0, are represented for
n = m = 1. Note that in Fig. 5 and all the following ones, there
are no specified units for the quantities on the abscissa and ordi-
nate axes: this corresponds to the fact that these quantities are
always dimensionless as they are normalized. Note also that in
Figs. 5 and 6 we have always represented the normalized exten-
sion but one could also represent the strain (or stretch) defined as
ε = (⟨x̃⟩ − ⟨x̃⟩ ∣η=0)/⟨x̃⟩ ∣η=0.

Other examples of the application of Eq. (32) can be found in
Fig. 6, where we have plotted the nonlinear response for different
populations described by the parameters n and m. In the top panel,

FIG. 5. Force–extension curve representing ⟨x̃⟩
Nℓ

vs η for a one-dimensional daisy
chain. We adopted the parameters n = 1 and m = 1. We plotted the asymptotes
for very large positive and negative force and the tangent for f = 0, which has a
slope of 1

20
[see Eq. (34)].

FIG. 6. Extension–force curves representing ⟨x̃⟩
Nℓ

vs η for a one-dimensional daisy
chain: in the panel, the number n of rotaxanes to the left of the main ring varies from
0 to 10, while the number of rotaxanes to the right of the main ring is m = 1. For
f = 0, we have that ⟨x̃⟩

Nℓ
= n+1

n+m+2
= n+1

n+3
, increasing with n. In the central panel,

we have n = m, varying from 0 to 10. For f = 0, we have that ⟨x̃⟩
Nℓ
= n+1

n+m+2
= 1

2
.

Finally, in the bottom panel, the number m of rotaxanes to the right of the main ring
varies from 0 to 10, while the number of rotaxanes to the left of the main ring is
n = 1. For f = 0, we have that ⟨x̃⟩

Nℓ
= n+1

n+m+2
= 2

m+3
, decreasing with m.

we have fixed m = 1 and varied n. It can be seen how the nonlinear
response varies as n varies, and how the point of equilibrium moves
upward following the increasing law ⟨x̃⟩

Nℓ
= n+1

n+m+2 =
n+1
n+3 . In the cen-

tral panel, we have variable values of n = m. In this case, we see how
the system becomes more rigid as n = m increases, while the equilib-
rium point remains fixed at ⟨x̃⟩Nℓ

= n+1
n+m+2 =

1
2 when the applied force

is zero. Finally, in the bottom panel, we have fixed n = 1 and var-
ied m. It can be seen how the nonlinear response varies as m varies
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and how the point of equilibrium moves downward following the
decreasing law ⟨x̃⟩

Nℓ
= n+1

n+m+2 =
2

m+3 when the applied force is zero.

B. Effective elastic constant of the one-dimensional
daisy chain

Daisy chains with rotaxane rings show great potential in
material science as nanoscopic entropic springs. For that reason,
identifying the effective elastic constant is important to better under-
stand the behavior of these macromolecules. The elastic constant Keff
can be obtained by calculating the slope of the force–extension curve
in the unstressed configuration, i.e., 1/Keff =

∂⟨x̃⟩
∂ f ∣ f =0. The corre-

sponding calculation can be found in Appendix B, and the final
result is

Keff =
kBT
Nℓ2
(n +m + 2)2

(n +m + 3)
(n + 1)(m + 1)

. (34)

This formula gives the effective elastic stiffness as a function of the
temperature T, the segment length ℓ, the number of segments N,
and the rotaxane numbers m and n. Naturally, the overall behav-
ior is nonlinear, and this parameter, thus, represents the elastic
response under small applied forces. We remark that the expres-
sion is symmetric in the parameters n and m, as expected for this
one-dimensional case. As a side note, it is interesting to calculate the
elastic coefficient when n = m. In this case, ⟨x̃⟩(0) = Nℓ/2, and the
effective elastic coefficient becomes

Keff =
4kBT
Nℓ2 (2n + 3). (35)

For large values of n, we have the asymptotic behavior,

Keff ∼
n→∞

8
nkBT
Nℓ2 or, equivalently,

Keffℓ
2

2kBT
∼

n→∞
4

n
N

, (36)

which shows that the elastic to thermal energy ratio is given by
4n/N. Thus, for n = m and large values of n, the elastic constant is
proportional to n.

We finally observe that Eq. (34) can be used to explain the
effective elastic constant of the systems studied in Fig. 6. The
top panel is described by the relation Keff =

kBT
2Nℓ2

(n+3)2
(n+4)

n+1 , the
central panel by Eq. (35), and the bottom panel by the relation
Keff =

kBT
2Nℓ2

(m+3)2
(m+4)

m+1 . In each case, the effective elastic constant is
always increasing as the rotaxane populations increase, both to the
left and right of the main ring.

C. Extension to heterogeneous segments
While in the previous study, every segment was considered to

have the same population of rotaxanes on the left (n elements), and
on the right (m elements) of the main separating ring, the results
for homogeneous daisy chains can easily be generalized to the case
with heterogeneous values of the parameters. In this case, for each
Jth sliding segment, the left and right rotaxane populations assume
the values nJ and mJ , respectively. By using Eq. (24), we see that the
partition function can be factorized and assumes the new form

Zg( f ) =
N

∏
J=0
∫

ℓ

0

(xJ
)

nJ (ℓ − xJ
)

mJ

(nJ)!(mJ)!
exp(

f xJ

kBT
)dxJ. (37)

Moreover, the average extension of the chain can be determined by
means of the following generalization:

⟨x̃⟩ = ℓ
N

∑
J=1

∫
1

0 tnJ+1
(1 − t)mJ eηtdt

∫
1

0 tnJ (1 − t)mJ eηtdt
. (38)

The equilibrium extension, obtained for f = 0, is given by the
expression

⟨x̃⟩(0) = ℓ
N

∑
J=1

nJ + 1
nJ +mJ + 2

, (39)

and finally, the effective elastic coefficient is obtained, as previously
done, as

Keff =
kBT
ℓ2

1

∑
N
J=1

(nJ+1)(mJ+1)
(nJ+mJ+2)2

(nJ+mJ+3)

. (40)

These generalized expressions can be used to finely tailor the elastic
response of the system, including the linear effective elastic constant
and the nonlinear behavior.

We want to emphasize that in the previous calculations, we
have considered for the daisy chain system only the Gibbs ensem-
ble, at fixed force, for two different reasons: first, it is sufficient to
explain the elastic properties of the system; second, if we consider
the Helmholtz ensemble, at fixed extension, the calculations can-
not be developed in closed form, and thus, the possibility of easily
interpreting the results is lost. All this also applies to Sec. IV.

IV. THREE-DIMENSIONAL DAISY CHAIN
WITH ADDITIONAL RINGS

We assume now that the chain can fluctuate in the three-
dimensional space and is no longer constrained to move along a
fixed direction. We first study a simple three-dimensional chain
of interacting points through (nearest neighborhood) conservative
central forces depending on the point distance. An external force is
acting only on the last material point. We introduce here an arbitrary
potential energy, and then, we apply this system to the study of daisy
chains with additional rings (rotaxanes), as represented in Fig. 7.

A. Partition function for a chain of interacting
material points

We start by introducing the analysis of an arbitrary three-
dimensional chain of material points. This chain is composed of N
points interacting through a pairwise potential energy and subject
to an external force. Thus, the system will be analyzed in the Gibbs
isotensional ensemble.

Hence, the total energy reads

UT(r⃗1, . . . , r⃗N) =
N

∑
i=1

U(∥r⃗i − r⃗i−1∥) − f⃗ ⋅ r⃗N , (41)

where r⃗1, . . . , r⃗N are the position vectors identifying the points, U(ξ)
is the potential energy between two adjacent points at distance ξ, and
f⃗ is the force applied to the last point of the chain. We considered
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FIG. 7. Illustration of the geometry of a three-dimensional daisy chain with addi-
tional rings (in red). As an example, we considered the case with n = 2 and m = 1.
As before, no ring can exchange position with an adjacent ring (including with main
rings in green), and no ring can leave the segment of length ℓ.

r⃗0 = 0 (the point where the chain is tethered). The Gibbs partition
function of the system can be written as

Zg(f⃗ ) = ∫
R3N

exp [−
N

∑
i=1

U(∥r⃗i − r⃗i−1∥)

kBT
+

f⃗ ⋅ r⃗N

kBT
]dr⃗1 . . .dr⃗N

= ∫
R3N

N

∏
i=1

exp [−
U(∥r⃗i − r⃗i−1∥)

kBT
] exp [

f⃗ ⋅ r⃗N

kBT
]dr⃗1 . . .dr⃗N.

(42)

Let us define the bond vectors ξ⃗1 = r⃗1 − r⃗0, . . ., ξ⃗N = r⃗N − r⃗N−1 so that
r⃗N = ∑

N
i=1 ξ⃗i. We get

Zg(f⃗ ) = ∫
R3

. . .∫
R3

N

∏
i=1

exp [−
U(∥ξ⃗i∥)

kBT
+

f⃗ ⋅ ξ⃗i

kBT
]dξ⃗1 . . .dξ⃗N

= (∫
R3

exp [−
U(∥ξ⃗∥)

kBT
+

f⃗ ⋅ ξ⃗
kBT
]dξ⃗)

N

. (43)

Again, we obtain the partition function as a power of a quantity
describing a single element since all elements are statistically inde-
pendent on each other. We note that the system is fully isotropic,
and therefore, we can consider any direction for the applied force f⃗ .
To simplify the analysis, we fix f⃗ = (0, 0, f ), and we adopt spheri-
cal coordinates for the vector ξ⃗. It means that dξ⃗ = ξ2 sin θdθdϕdξ,
∥ξ⃗∥ = ξ, and f⃗ ⋅ ξ⃗ = f ξ cos θ. The partition function can be then
simplified in the form

Zg( f ) = {∫
+∞

0
∫

2π

0
∫

π

0
exp [−

U(ξ)
kBT
]

× exp(
f ξ cos θ

kBT
)ξ2 sin θdθdϕdξ}

N

={2π∫
+∞

0
exp [−

U(ξ)
kBT
]

× [∫

π

0
exp(

f ξ cos θ
kBT

) sin θdθ]ξ2dξ}
N

, (44)

where the inner integral can be solved as

∫

π

0
exp(

f ξ cos θ
kBT

) sin θdθ = 2
kBT
f ξ

sinh(
f ξ

kBT
). (45)

Finally, we obtain

Zg( f ) = CN
[∫

+∞

0
exp [−

U(ξ)
kBT
]

ξ
f

sinh(
f ξ

kBT
)dξ]

N

, (46)

where C = 4πkBT is a constant.
The result in Eq. (46) represents the Gibbs partition func-

tion for a chain where each couple of adjacent points interacts by
an arbitrary potential energy U. The determination of the three-
dimensional daisy chain partition function relies on this result,
which can be helpful for other applications as well. For instance,
it can be applied to the freely jointed chain (FJC) model,56 which
will be re-obtained later as a daisy chain in specific configurations.
Indeed, if the interaction between the material points is purely
harmonic, described by U(ξ) = 1

2 K(ξ − ℓ)2, the partition function
becomes

Zg( f ) = CN
[∫

+∞

0
e−

K
2kBT (ξ−ℓ)

2 ξ
f

sinh(
f ξ

kBT
)dξ]

N

. (47)

The FJC model prescribes rigid segments of fixed length ℓ.56 In
order to fix this length, we can consider the elastic constant
K → +∞, and therefore, we can apply the relationship e−

K
2kBT (ξ−ℓ)

2

→
√

2πkBT/Kδ(ξ − ℓ) (for K → +∞), where δ(ξ) is the Dirac delta
function. Hence, the partition function converges to

Zg(η) = C̃ N
⎡
⎢
⎢
⎢
⎢
⎢
⎣

sinh ( f ℓ
kBT )

f ℓ
kBT

⎤
⎥
⎥
⎥
⎥
⎥
⎦

N

= C̃ N
(

sinh η
η
)

N

, (48)

where η = f ℓ/(kBT) is the normalized force and C̃ is a non-
influential constant. This delivers the well-known force–extension
relation

⟨rN⟩ = kBT
∂ log Zg( f )

∂ f
= NℓL (

f ℓ
kBT
) = NℓL (η), (49)

where rN = ∥r⃗N∥ and L (y) = coth (y) − 1
y is the Langevin func-

tion. We remark that while there is no purely elastic contribution
in the FJC model since the connecting segments are rigid, the
force–extension curve still exhibits elastic behavior. The elastic con-
stant for low values of force can be written as Keff =

3kBT
Nℓ2 , which is

proportional to the temperature T, and therefore, the behavior is
fully entropic. We will see that we can re-obtain the FJC model as
a particular case of the three-dimensional daisy chain. Recent gener-
alizations concern the freely jointed chain with reversible hinges77,78

and the closed form expressions for the wormlike chain in the Gibbs
and Helmholtz ensembles.79

B. Thermoelastic model of a three-dimensional
daisy chain

We first consider a daisy chain fluctuating in the three-
dimensional space without additional rings. In this case, the poten-
tial U(ξ) is zero in the interval (0, ℓ) (each ring can slide on the
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segment without experiencing forces) and is infinite for ξ > ℓ (the
ring cannot go beyond the length of the segment, and its end then
becomes an infinite energy barrier). Therefore, we deduce from
Eq. (46) that the partition function for a daisy chain without rings
is given by

Zg( f ) = CN
[∫

ℓ

0

ξ
f

sinh(
f ξ

kBT
)dξ]

N

. (50)

However, if we consider a three-dimensional daisy chain with the
same structure of the system defined in Sec. II, the contributions
from the left and right rotaxane populations need to be added. By
generalizing the one-dimensional result stated in Eq. (24), we obtain
the complete partition function,

Zg( f ) = CN
[∫

ℓ

0

ξn

n!
(ℓ − ξ)m

m!
ξ
f

sinh(
f ξ

kBT
)dξ]

N

. (51)

As before, adopting the change of variable ξ = tℓ, we get

Zg( f ) = CN
[∫

1

0

tnℓn

n!
ℓm
(1 − t)m

m!
tℓ
f

sinh(
f tℓ

kBT
)ℓdt]

N

(52)

or, equivalently,

Zg(η) = Ĉ[∫
1

0
tn+2
(1 − t)m sinh (ηt)

ηt
dt]

N

, (53)

where η = f ℓ
kBT is the rescaled non-dimensional or normalized force

and Ĉ is the new non-influential constant. This relation describes
the behavior of the three-dimensional daisy chain represented in
Fig. 7. We emphasize the similarity between the expressions for
the one-dimensional case, Eq. (26), and for the three-dimensional
case, Eq. (53). However, an important difference between the
two partition functions lies in dependence on the force term,
with the presence of a hyperbolic sinc (sine cardinal) function
sinh x

x in the three-dimensional case and an exponential function
in the one-dimensional case. By using the classical thermody-
namic relations,56,57 we can now determine the force–extension
response,

⟨rN⟩ = kBT
∂ log Zg( f )

∂ f
= ℓ

∂ log Zg(η)
∂η

= Nℓ
∫

1
0 tn+2

(1 − t)m ∂
∂η

sinh (ηt)
ηt dt

∫
1

0 tn+2
(1 − t)m sinh (ηt)

ηt dt
. (54)

Performing the internal derivative, we obtain

⟨rN⟩ = Nℓ
∫

1
0 tn+2

(1 − t)m ηt cosh (ηt)−sinh (ηt)
η2t dt

∫
1

0 tn+2
(1 − t)m sinh (ηt)

ηt dt
. (55)

As already done in Sec. III A, a closed-form expression for ⟨rN⟩

was calculated for easier implementation,

⟨rN⟩ = −Nℓ
∑

m
j=0 (

m
j )
(n+j+1)!(n+j+3)

ηj+1 [eη
∑

n+j+1
k=0

(−η)k

k! + (−1)n+j+1e−η
∑

n+j+1
k=0

ηk

k! − (1 + (−1)n+j+1
)]

∑
m
j=0 (

m
j )
(n+j+1)!

η j [eη
∑

n+j+1
k=0

(−η)k

k! + (−1)n+j+1e−η
∑

n+j+1
k=0

ηk

k! − (1 + (−1)n+j+1
)]

, m ≠ 0,

⟨rN⟩ = −Nℓ
2(−η)n sinh (η) + (n+1)!(n+3)

η2 [eη
∑

n+1
k=0

(−η)k

k! + (−1)n+1e−η
∑

n+1
k=0

ηk

k! − (1 + (−1)n+1
)]

(n+1)!
η [eη

∑
n+1
k=0

(−η)k

k! + (−1)n+1e−η
∑

n+1
k=0

ηk

k! − (1 + (−1)n+1
)]

, m = 0.

(56)

We obtained these results with the same procedure discussed
in Appendix A for the one-dimensional case. These relationships
completely describe the nonlinear thermoelastic behavior of the
three-dimensional daisy chain with an arbitrary number of rotax-
anes in the two populations on the left and the right with respect to
the main sliding ring. As an example, with n = m = 0, we get

⟨rN⟩ = Nℓ
3η cosh η − 3 sinh η − η2 sinh η

η(sinh η − η cosh η)
, (57)

which corresponds to the system in the absence of rotaxanes,
described by the partition function in Eq. (50).

Let us now consider two simple tests to assess the validity of
this result (η ≃ 0 and η→ +∞). Let us focus on the general case
without external applied force ( f ≃ 0 or, equivalently, η ≃ 0 for a
force small compared to thermal fluctuations). For η ≃ 0, we have

sinh (ηz)
ηz ≃ 1 and ηt cosh (ηt)−sinh (ηt)

η2t ≃ 1
3 t2η. Thus, Eq. (55), consider-

ing η ≃ 0, results in ⟨rN⟩∝ η. This means that in the absence of
an applied force, the average value ⟨rN⟩ is close to zero due to the
isotropy of the system, coming from the spherical symmetry. As
a consequence, since the free system can take the same configu-
ration in all space directions, the average position of the free end
is zero. Another noteworthy behavior of the system occurs when
η→ +∞ (i.e., f → +∞). In this case, from Eq. (56), we can obtain
the asymptotic expression

⟨rN⟩ ∼ Nℓ(1 −
m + 2

η
) ∼

η→+∞
Nℓ. (58)

Of course, when the force is very large, the system is quite perfectly
aligned with the direction of the force, and thus, all the segments
reach their maximum extension ℓ. The total length for large forces
is therefore Nℓ. As an example of application of these results, the
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force–extension curve for the case with n = m = 1 is displayed in
Fig. 8. In this case, the force–extension relation is given by

⟨rN⟩

Nℓ
=
(30 + 7η2

) sinh η − (22 + η2
)η cosh η − 8η

η[4η cosh η − (6 + η2
) sinh η + 2η]

, (59)

as obtained from Eq. (56). In Fig. 8, we also show the asymptotic
behavior given by Eq. (58), and the tangent corresponding to the
effective elastic constant defined for small values of the force (see
below for the detailed analysis). We remark that the analysis based
on asymptotic limits for small and large forces is typically performed
for polymer chains, such as FJC or WLC,80 and this approach has
been applied here to daisy chains.

C. Effective elastic constant of the three-dimensional
daisy chain

Similarly to what was developed in Sec. III B, we deal with
the determination of the elastic coefficient Keff of the three-
dimensional daisy chain as a function of n and m, i.e., the slope
of the force–extension for η = 0: 1/Keff =

∂⟨rN⟩

∂ f ∣η=0. The mathemat-
ical details can be found in Appendix C, where we obtain this final
result,

Keff =
3kBT
Nℓ2

(n +m + 5)(n +m + 4)
(n + 4)(n + 3)

. (60)

Importantly, we note that Keff ∼
3kBT
Nℓ2 when n→ +∞ (with m fixed),

which is exactly the value of the FJC model previously discussed.
Indeed, when the number of rings at the left of each sliding seg-
ment becomes large, the configuration of the system is such that
the extension of each element assumes the fixed length ℓ because
of the dominant effect of the left rotaxane gas. This explains the
convergence to the FJC model. In this sense, the developed model
appears to be a generalization of the FJC model. We also note that
the expression for Keff in the three-dimensional case is not symmet-
ric with respect to n and m. This happens because of the spherical

FIG. 8. Force–extension curve representing η vs ⟨rN⟩
Nℓ

for a three-dimensional daisy
chain. In this example, we consider n = 1 and m = 1, and we also plot the tangent
straight line in η = 0 [see Eq. (60)] and the asymptote for η→ +∞ [see Eq. (58)].
The equations for these limiting behaviors are given by η = 126

20
kBT
Nℓ2 ⟨rN⟩ and

η = 3/(1 − ⟨rN⟩
Nℓ
), respectively.

symmetry. In fact, the increase in force always results in a com-
pression of the gas composed of m rotaxanes. Otherwise, a decrease
in force creates more configurational freedom (or entropy) with-
out necessarily resulting in a compression of the gas composed of n
rotaxanes. This asymmetry can be also understood well by calculat-
ing the limit for m→ +∞ (with n fixed), leading, for example, to an
effective constant Keff ≃

kBT
4Nℓ2 m2 when n = 0. Note that this quadratic

behavior is completely different from the one observed in the one-
dimensional case. This quadratic law can be used to design very stiff
nano-springs, but in this case, they will also be very short, as will
be discussed in Sec. IV D. We also observe that when n = m→∞,
we get the asymptotic behavior Keff →

12kBT
Nℓ2 , similar to the FJC

model, except for the constant. This expression is easily explained by
observing that in the case where n = m→∞, the effective length of
each segment becomes ℓ/2. This is intuitive and follows strictly from
Eq. (62) of Sec. IV D. In any case, the expression Keff →

12kBT
Nℓ2 comes

therefore from the FJC result Keff =
3kBT
Nℓ2 , where we implement the

substitution ℓ→ ℓ/2.
The effect of n and m on the thermoelastic response is graph-

ically described in Fig. 9. In the top panel, we considered m = 1
and varied n. In this case, we see that the elastic constant is always
decreasing (slope of the curves in the origin). This can be deduced
from our previous analysis of Keff for small values of η. For large val-
ues of n, the elastic constant converges to the characteristic value
Keff =

3kBT
Nl2 of the FJC model. In the central panel, we considered

increasing values of n = m. In such a case, we see that the elastic
constant is always increasing, and for large values of n = m, it con-
verges to the characteristic value Keff =

12kBT
Nl2 , previously discussed.

In the bottom panel, we considered n = 1 and increasing values of
m. In such a case, we see that the elastic constant is strongly increas-
ing with the law Keff =

3kBT
20Nℓ2 (m + 6)(m + 5), which turns out to be

quadratically unlimited for large values of m. We also observe that
all top panel curves, in accordance with Eq. (58), have the same
asymptotic behavior for large applied forces since m is constant. Dif-
ferently, the curves of the other two panels have different asymptotic
behaviors because the parameter m is variable, and thus, it intervenes
in Eq. (58).

D. Average length of each segment
of the daisy chain

In addition to the force–extension relationship and the effec-
tive elastic constant, it is interesting to calculate the average value
⟨ξ⟩ of the distance between adjacent main rings in the daisy chain
segments. Of course, this average value is independent of the seg-
ment considered since all elements are statistically independent, as
previously discussed. From Eq. (51), it is not difficult to calculate the
average value of ξ, and we find the expression

⟨ξ⟩ =
∫

l
0

ξn+1

n!
(ℓ−ξ)m

m!
ξ
f sinh ( f ξ

kBT )dξ

∫
l

0
ξn

n!
(ℓ−ξ)m

m!
ξ
f sinh ( f ξ

kBT )dξ

= ℓ
∫

1
0 tn+3

(1 − t)m sinh (ηt)
ηt dt

∫
1

0 tn+2
(1 − t)m sinh (ηt)

ηt dt
, (61)

where we used the substitution ξ = tℓ. While the full expression can
be calculated by evaluating the integrals, it is now interesting to
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FIG. 9. Force–extension curve representing η vs ⟨rN⟩
Nℓ

for some three-dimensional
daisy chains. In the top panel, we vary n while keeping m = 1. In the central panel,
we vary n = m, and finally, in the bottom panel, we vary m with the fixed value
n = 1.

consider the average value of ξ when the system is free, that is,
without applied forces (η = 0). In this case, we get

⟨ξ⟩ ∣η=0
= ℓ∫

1
0 tn+3

(1 − t)mdt

∫
1

0 tn+2
(1 − t)mdt

= ℓ
(n + 3)!m!
(n +m + 4)!

(n +m + 3)!
(n + 2)!m!

= ℓ
n + 3

n +m + 4
. (62)

In accordance with our previous deductions, these results confirm
that for n→ +∞, each sliding segment will have a length ℓ (due
to the effect of dominant left ring gas). Inversely, for m→ +∞, the
pressure exerted by the right ring gas reduces the average length to

zero. These mechanisms are now quite clear. However, a peculiar
case arise when there are no rotaxane rings (n = m = 0), for which
we obtain

⟨ξ⟩ ∣η=0; n=m=0
=

3
4
ℓ. (63)

This result can be correctly interpreted as follows. In the one-
dimensional case, we have obtained a similar result stating that
⟨xi
⟩∣η=0 =

ℓ
2 if n = m. It means that in the one-dimensional chain, the

average length of the segment is ℓ
2 when n = m = 0, without applied

force. This symmetry is intuitive for the one-dimensional case, in
contrast to the asymmetry induced by the value 3

4 ℓ in the three-
dimensional case, which, therefore, needs to be further explained.
To do this, we consider two adjacent points of the chain (corre-
sponding to the main rings, in green in Fig. 7) and fix the first in
the origin of the reference frame. We adopt spherical coordinates
to deal with this problem. The second point is randomly distributed
(with a uniform distribution) in a sphere of radius ℓ centered on the
first point. This is true because the two rotaxane gases are absent in
this case. Hence, the goal now is to determine the average radius of
a point randomly distributed in a sphere of radius ℓ. The probability
density is uniform inside the sphere and, therefore, assumes the con-
stant value 1

4
3 πℓ3 . Since the measure element in the sphere is given by

dxdydz = ρ2 sin θdθdϕdξ, we obtain

⟨ξ⟩ = ∫
ℓ

0
∫

π

0
∫

2π

0

1
4
3 πℓ3 ρρ2 sin θdρdϕdθ =

3
4
ℓ, (64)

which exactly corresponds to the value obtained for the chain. In
conclusion, this means that the difference in the average value of the
segment length, between one-dimensional and three-dimensional
geometry, is due to spherical symmetry.

The generalization to the case where the segments are different
from each other can be developed, as described in Sec. III C, for the
one-dimensional geometry. We do not report all the results here for
the sake of brevity.

V. CONCLUSIONS
In this work, we proposed the design of a structure consisting

of a daisy chain with additional rotaxane rings, aimed at creating
entropic springs for a range of nanomechanical applications.

As a preliminary step, the origin of entropic forces is inves-
tigated for a one-dimensional system of rotaxane rings arranged
along the same axis. For this simpler system, we demonstrated the
origin of the pressure exerted by the gas of rings using both the
Gibbs ensemble, at constant force, and the Helmholtz ensemble, at
constant extension. Furthermore, we showed that these statistical
ensembles are equivalent in the thermodynamic limit in this specific
case.

The results obtained were then applied to the daisy chain model
with additional loops. Specifically, two populations of rotaxanes
were incorporated into each segment of the daisy chain, one to
the left and the other to the right of the main sliding ring, respec-
tively. These two populations exert opposing pressures on the main
ring, significantly altering the system’s elastic response. By selecting
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appropriate values for the number of rings in the left and right pop-
ulations, the thermoelastic properties of the structure can be tailored
to suit specific applications.

We analyzed the system in both the one-dimensional case,
where the segments of the daisy chain are restricted to slide along
a single direction, and the three-dimensional case, where the seg-
ments are free to move and rotate in three dimensions, as in the
classical case of polymer models. In both cases, we determined
the nonlinear force–extension response, the effective elastic coef-
ficient, and the behavior in the absence of applied force. These
results are consistently expressed as functions of n and m, repre-
senting the number of rotaxanes in the left and right populations,
respectively.

We found that the effective elastic coefficient is always a linear
function of temperature, confirming that the phenomena described
have a purely entropic origin. It is interesting to note that both the
linear (effective elastic constant) and nonlinear behaviors can be
finely tuned by adjusting the n and m parameters.

We highlighted significant differences in the behavior of one-
dimensional and three-dimensional systems. First, we recovered the
natural result that in the absence of applied external forces, the aver-
age value of the position of the free end in the three-dimensional
case is always zero in the reference frame centered on the fixed end.
This is due to the spherical symmetry of the system and contrasts
with the one-dimensional case, where the average value is nonzero
and depends on the system’s structure.

Furthermore, the elastic constant is symmetric with respect to
the parameters n and m in the one-dimensional case. However, this
symmetry is broken in the three-dimensional case, once again due
to the spherical symmetry of the system. In fact, compression and
extension phenomena are symmetric in the one-dimensional case
but lose this symmetry in the three-dimensional case. While exten-
sion can always be interpreted in the same way, compression behaves
entirely differently in three dimensions due to the higher number of
degrees of freedom and increased entropy. These factors allow for
alternative configurations to pure compression.

The proposed structure can find applications in several direc-
tions, including artificial cytoskeletons, synthetic cells, and nano-
mechanical logic gates. The development of artificial cells with
specific programmable and tunable functions helps to explore the
complex biological processes in natural cells with applications to
medicine, environment, and the theory of the origin of life.81–84

In particular, one of the subsystems that must be recreated is the
cytoskeleton, which has important mechanical functions in struc-
turing and protecting the cellular environment.85–87 Therefore, the
construction of synthetic cytoskeletons that mimic the features of
their natural counterparts outlines a crucial step toward synthetic
cell assembling. The proposed daisy chain scheme with rotaxanes is
an excellent candidate for mimicking interlinking protein filaments
constituting the cytoskeleton because of their linear and nonlinear
mechanical versatility. Another interesting application concerns the
development of units for computation. We know that the linear
processing of signals is not sufficient to perform logic operations.
However, if we add to the set of linear operations any nonlinear
function, the resulting set is able to perform digital computation.88

This principle has been largely used to develop micro- and nano-
mechanical devices able to implement logic gates.89–92 The elastic
supramolecular elements introduced in this work can be used to

develop logic gates, and their tunable nonlinearity is useful for
optimizing their response in terms of signal stability.

Further prospects involve the generalization to cases where the
segments of the daisy chain exhibit bistable behavior,58,65 similar
to that already studied and used in simpler rotaxanes. This could
lead to a better design of complex systems with phase transitions
induced by temperature and applied forces.93–95 For the study of
such systems, not only the equilibrium regime, as considered in this
work, is of interest but also the out-of-equilibrium regime, includ-
ing rate effects on the transitions between the two states of the
bistable elements.96–98 Further perspectives may concern the two-
dimensional case involving some additional mathematical difficulty
because of the appearance of Bessel functions in the partition func-
tions or the case where there is damage in the structure induced by,
for example, chain breaks or removal of links in segments of the
structure.
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APPENDIX A: FORCE–EXTENSION RELATION
FOR THE ONE-DIMENSIONAL DAISY CHAIN

The force–extension relation for the one-dimensional daisy
chain is given in Eq. (27). To obtain a closed form representation,
we first study the following integral:

In = ∫

a

0
zneηzdz. (A1)

By parts, we get

In = −∫

a

0
n

zn−1

η
eηzdz +

zn

η
eηz
∣
a
0
= −

n
η

In−1 +
an

η
eηa, (A2)

and then, we can obtain the final result recursively,

In =
n!

(−1)nηn+1 [e
aη

n

∑
k=0

(−aη)k

k!
− 1]. (A3)

As an example, we can calculate I0, I1, and I2 as follows:

I0 =
1
η
(eηa
− 1), (A4)

I1 = −
1
η2 [e

aη
(1 − aη) − 1], (A5)

I2 =
2
η3 [e

aη
(1 − aη +

a2η2

2
) − 1]. (A6)

This result allows for the simplification of the partition function Zg
given in Eq. (26). By first using the binomial identity, we get

Zg( f ) = C[∫
1

0
zn
(1 − z)meηzdz]

N

= C[∫
1

0
zn

m

∑
h=0
(

m
h
)(−1)hzheηzdz]

N

, (A7)

and using Eq. (A3), we have

Zg( f ) = C[
m

∑
h=0
(−1)n

(
m
h
)
(n + h)!
ηn+h+1 (eη

n+h

∑
k=0

(−η)k

k!
− 1)]

N

. (A8)

To conclude, we can implement the thermodynamic relation ⟨x̃⟩
= ℓ

∂ log Zg(η)
∂η , and we obtain Eq. (32) of the main text.

APPENDIX B: THE ELASTIC CONSTANT
FOR THE ONE-DIMENSIONAL STRUCTURE

The elastic constant of the one-dimensional daisy chain can be
derived from the slope of the force–extension curve in the unstressed
configuration. Starting from Eq. (27), we first calculate the following
derivative:

∂⟨x̃⟩
∂ f
=
∂⟨x̃⟩
∂η

∂η
∂ f
=

Nℓ2

kBT
∂

∂η
∫

1
0 tn+1

(1 − t)meηtdt

∫
1

0 tn
(1 − t)meηtdt

=
Nℓ2

kBT
∫

1
0 tn+2

(1 − t)meηtdt∫
1

0 tn
(1 − t)meηtdt

[∫
1

0 tn
(1 − t)meηtdt]

2

−
Nℓ2

kBT

[∫
1

0 tn+1
(1 − t)meηtdt]

2

[∫
1

0 tn
(1 − t)meηtdt]

2 . (B1)

Now, for η = 0, we use the Beta functions, and we get

∂⟨x̃⟩
∂ f
∣

f =0
=

Nℓ2

kBT
B(n + 3, m + 1)B(n + 1, m + 1)

B2
(n + 1, m + 1)

−
Nℓ2

kBT
B2
(n + 2, m + 1)

B2
(n + 1, m + 1)

=
Nℓ2

kBT
(n + 1)(m + 1)

(n +m + 2)2
(n +m + 3)

. (B2)

We can therefore define the reciprocal effective elastic stiffness
through the expression 1/Keff =

∂⟨x̃⟩
∂ f ∣ f =0, and we obtain the final

result as

Keff =
kBT
Nℓ2
(n +m + 2)2

(n +m + 3)
(n + 1)(m + 1)

. (B3)

This is the expression used in the main text.

APPENDIX C: THE ELASTIC CONSTANT
FOR THE THREE-DIMENSIONAL STRUCTURE

We determine the elastic constant for the three-dimensional
structure, defined as the slope of the force–extension curve in
the unstressed configuration (i.e., for η = 0). First of all, by using
Eq. (55), we have to elaborate the following derivative:

∂⟨rN⟩

∂ f
=

Nℓ2

kBT
∫

1
0 tn+2

(1 − t)mF′′dt∫
1

0 tn+2
(1 − t)mFdt

[∫
1

0 tn+2
(1 − t)mFdt]

2

−
Nℓ2

kBT

[∫
1

0 tn+2
(1 − t)mF′dt]

2

[∫
1

0 tn+2
(1 − t)mFdt]

2 , (C1)
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where we introduced

F =
sinh (ηt)

ηt
,

F′ =
∂F
∂η
=

ηt cosh (ηt) − sinh (ηt)
η2t

,

F′′ =
∂2F
∂η2 =

ηt sinh (ηt)
η

− 2
ηt cosh (ηt) − sinh (ηt)

η3t
.

(C2)

For η ≃ 0, these quantities read F ≃ 1, F′ ≃ 0, and F′′ ≃ 1
3 t2. There-

fore, we can write

∂⟨rN⟩

∂ f
∣
η=0
=

Nℓ2

3kBT
∫

1
0 tn+4

(1 − t)mdt

∫
1

0 tn+2
(1 − t)mdt

=
Nℓ2

3kBT
B(n + 5, m + 1)
B(n + 3, m + 1)

=
Nℓ2

3kBT
(n + 4)(n + 3)

(n +m + 5)(n +m + 4)
. (C3)

This leads to the definition of the inverse effective elastic coefficient
for η = 0 as 1/Keff =

∂⟨rN⟩

∂ f ∣η=0, leading to this final result,

Keff =
3kBT
Nℓ2

(n +m + 5)(n +m + 4)
(n + 4)(n + 3)

, (C4)

corresponding to the expression used in the main text.
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