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SUMMARY

A material composed of a mixture of distinct homogeneous media can be considered as a homogeneous
one at a su�ciently large observation scale. The problem of mixture characterization has been exactly
solved in case of linear random mixtures, that is, materials for which the various components are
isotropic, linear and mixed together as an ensemble of particles having random shapes and positions. In
the present work the authors brie�y review the linear theory and then consider mixtures of non-linear
media. In particular they give formulas for obtaining their constitutive equations for current density,
electrical displacement, and magnetic induction. These relations have been derived by means of heuristic
considerations on random networks and they have been veri�ed with simulations obtaining a high degree
of accuracy. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A widely dealt topic concerning the physical behaviour of heterogeneous materials (mixtures)
is that of calculating their (d.c.) conductivity starting from the knowledge of the conductivity
of each medium composing the mixture as well as of the structural properties of the mixture
itself (percentage of each medium, shapes and relative positions of the single parts of the
various media). Clearly, it concerns with isotropic linear media, which combine to form
linear mixtures. We �nd in literature a large number of approximate analytical expressions
for the e�ective conductivity of composed media as a function of the conductivity of its
homogeneous constituents and some stoichiometric parameter [1–3].
It must be underlined that from a merely mathematical standpoint, the problem of calculat-

ing the mixture conductivity is identical to a number of others, for instance to that regarding
permeability (in a magnetostatic situation), permittivity (in the electrostatic case), thermal
conductivity (in a steady-state thermal regime) and so on. This point is rather well known:
we remember that the formal identity of all cases bears on the fact that in each case the
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fundamental physical function dealt with is some V (x; y; z) which is harmonic in each sin-
gle homogeneous region: for example, V is the electrical potential, or the magnetic one, or
the temperature; and the boundary conditions for this V are formally identical in the various
examples considered here: they all state that across the boundary between two di�erent re-
gions the product of the normal derivative of V and of the proper parameter (conductivity,
permittivity, permeability, thermal conductivity etc.) is continuous across the boundary.
If V (x; y; z) is the electrical potential, one has ∇2V =0 in each homogeneous region and

�@V=@n continuous at any interface between di�erent media (� is the conductivity); these
equations can be studied with �nite di�erence methods, so that the mixture can be replaced
with a cubic lattice network (or a square lattice network, in a two-dimensional case) composed
of linear resistors. This is the transition between actual continuous media and lumped networks.
The paper is devoted to an investigation on the linear and non-linear random networks and

mixtures. Roughly speaking, a random (or statistical) mixture is a material composed of little
particles, having completely haphazard sizes, positions and shapes; each particle is entirely
composed of one of some given homogeneous materials. This de�nition has a clear intuitive
meaning, though it does not withstand an accurate criticism. This fact explains why, as a
matter of fact, several di�erent theoretical results have been obtained by various authors, e.g.
concerning the permittivity or the conductivity of a random mixture [4].
Some elements that may characterize a random material are:

• the nature of the materials that compose the mixture (they may be linear or non-linear,
isotropic or anisotropic);

• the concentrations of the components;
• the dimensionality of the mixture (a mixture is said two-dimensional when its proper-
ties do not depend on a given direction; a mixture is said three-dimensional when its
properties depend on all the co-ordinates x; y; z).

If we are dealing with continuous random media the analysis of the equations by means of the
�nite di�erence method leads to lumped random networks. Therefore, the interest to random
networks chie�y arises from the study of these random mixtures.
From a historical point of view we review some formulas describing a mixture composed

of two linear isotropic components; one of the most famous is the Maxwell formula [1,5] for
a strongly diluted suspension of spheres (three-dimensional case):

v
�1 − �2
2�1 + �2

=
�1 − ��
2�1 + ��

(1)

where �1 is the conductivity of the suspending medium, �2 is the conductivity of the embedded
spheres, v the volume fraction of medium 2 and �� is the equivalent conductivity of the mixture.
A similar equation holds true for a mixture of parallel circular cylinders (two-dimensional
case):

v
�1 − �2
�1 + �2

=
�1 − ��
�1 + ��

(2)

Other relations have been found by Bruggeman and Hanaii and should maintain the
validity also for less diluted suspensions [1]; the three-dimensional case leads to the
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formula:

1− v= �2 − ��
�2 − �1

(�1
��

)1=3
(3)

and the two-dimensional case to the following:

1− v= �2 − ��
�2 − �1

(�1
��

)1=2
(4)

Finally, we recall the Looyenga–Landau–Lifshitz formulas that should be approximately used
in the same hypothesis of the previous expressions [1,6]; they are only an approximation,
explicitly derived under the hypothesis that �1 ∼= �2:

��1=3 = (1− v)�1=31 + v�1=32 (5)

for the three-dimensional case and

ln ��=(1− v) ln �1 + v ln �2 (6)

for the two-dimensional case. Equation (6) is not explicitly derived by Looyenga–Landau–
Lifshitz, but it can be easily found by repeating their calculation for the two-dimensional
case. It is interesting to observe, for the following purposes, that by letting v=1=2 the above
formula (6) yields ��=

√
�1�2; this relation, rather surprisingly, will be exactly veri�ed for

a particular class of random mixtures in the following section. The proof will be based on
duality concepts for two-dimensional mixtures [7].
The structure of the paper is the following: in Sections 2–4 we describe the analysis per-

formed on linear networks and mixtures and we show the proposed numerical solutions draw-
ing a comparison with the analytical relations. In Section 5 we generalize the linear results to
the non-linear networks and mixtures using the standard small-signal technique. Furthermore,
in Section 6, another generalization is made, from symmetric to asymmetric components:
some general relations have been found out to describe the average behaviour of non-linear
networks. Finally, some non-linear simulations are presented to verify the heuristic predictions.

2. DUALITY FOR TWO-DIMENSIONAL MIXTURES

Firstly we consider a medium having a conductivity �(x; y) arbitrarily variable with x and
y but independent of z. The average conductivity �� is de�ned as the conductance for unit
square in the xz plane, for a unit spacing between the electrodes.
Figure 1 represents the system under consideration. In a d.c. situation, one has: ∇·J=0; J=

�E; E=−∇V where J is the current density, E is the electrical �eld and V is the potential;
therefore, with reference to Figure 1:

@
@x

(
�
@V
@x

)
+
@
@y

(
�
@V
@y

)
=0

V (x; l) = V0

V (x; 0) = 0 (7)
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Figure 1. A two-dimensional random mixture (size lxl) characterized by the non-homogeneous con-
ductivity �(x; y) and embedded between two electrodes V =0 and V0. We may observe the boundary

conditions on the lateral sides, where no current can �ow.

@V
@x
(0; y) = 0

@V
@x
(l; y) = 0

The �rst two boundary conditions are imposed by the presence of two electrodes at the
potential 0 (y=0) and V0 (y= l) and the others mean that there is no current �owing across
the vertical sides of the structure. This di�erential problem has only one solution. The current
�owing between the electrodes per unit square is

J =
1
l

l∫
0

�(x; y)
@V (x; y)
@y

dx (8)

which is independent on the variable y; the average conductivity is de�ned as

��=
Jl
V0
=
1
V0

l∫
0

�(x; y)
@V (x; y)
@y

dx (9)

Now, if the �rst equation in (7) is written as follows:

@
@x

(
−� @V

@x

)
=
@
@y

(
�
@V
@y

)
(10)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2003; 31:199–218



RANDOM NETWORKS AND MIXTURES 203

it is apparent that the two-dimensional di�erential form �(@V=@y) dx − �(@V=@x) dy is exact,
which means that there exists a function U (x; y) such that

@U
@x
= �

@V
@y

@U
@y

=−� @V
@x

(11)

This function U is fully determined but for an arbitrary integration constant. Furthermore, U
ful�ls a di�erential equation very similar to that of V :

@
@x

(
−1
�
@U
@x

)
=
@
@y

(
1
�
@U
@y

)
(12)

Now we are going to analyse the boundary conditions for U . From Equations (7) and (11),
one �nds that along each vertical side U is constant (since there @V=@x=0, hence @U=@y=0).
So we can impose U =0 on the left side (x=0); this determines the additive constant inherent
to U ; along the right side (x= l); U has some unknown but constant value, referred to as U0.
On the other hand, along the horizontal sides, one has @U=dy=0 (since there V is constant
with respect to x, hence @V=dx=0). So, we have found two dual cases: the original one with
horizontal electrodes, conductivity � and potential V ; the dual case with vertical electrodes,
conductivity 1=� and potential U . The original structure has average conductivity:

��=
Jl
V0
=
1
V0

l∫
0

�(x; y)
@V (x; y)
@y

dx =
U0
V0

(13)

The dual system ful�ls the relation

��∗=
J ∗l
U0

=
1
U0

l∫
0

1
�(x; y)

@U (x; y)
@x

dy =
V0
U0

(14)

Therefore, the following duality theorem holds true: if the original structure has conductivity
�(x; y), horizontal electrodes and average conductivity ��, the dual structure with conductivity
1=�(x; y) and vertical electrodes has average conductivity 1= ��.
This theorem may be applied to the case of a random two-dimensional mixture: we consider

a random mixture with two components with conductances respectively �1 and �2 (with
volume fraction v of the second medium). We assume by hypothesis that the only structural
information on the mixture is the volume fraction of the second medium, since either medium
is composed of particles completely randomised in size, position and shape. So, we state that
�� is a function of �1; �2 and v only:

��=F(�1; �2; v) (15)

This statement is actually a de�nition of random mixture: a mixture composed by parts so
randomised, as above said, that the only signi�cant structural information is merely the volume
fraction v (1 − v for the �rst medium). We understand that this de�nition could hardly be
defended against a severe criticism; however it is heuristically useful to calculate average
parameters, as it is shown in the sequel.
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Now, F must be homogeneous, of degree one with respect to �1 and �2 (this is the so-called
Wiener postulate [2]). This implies

��=�1F
(
1;
�2
�1
; v
)

(16)

Another mixture having v as concentration of the �rst medium is characterized by another
conductance � such that

�=�2F
(
1;
�1
�2
; v
)

(17)

The dual mixture of the original one is once again described by the relation F because of the
randomness and of the isotropy, so that

��∗=
1
��
=F

(
1
�1
;
1
�2
; v
)
=
1
�1
F
(
1;
�1
�2
; v
)

(18)

From Equations (17) and (18) one �nds ���=�1�2.
If we consider a random two-dimensional mixture with v=1=2 we must have ��=�; there-

fore, in such case

��=�=
√
�1�2 (19)

This is the main result of this paragraph: a two-dimensional random mixture, composed of
two media each at 50% volume concentration, has a conductivity given by the geometrical
mean between �1 and �2.

3. RANDOM MIXTURES OF LINEAR HOMOGENEOUS ISOTROPIC MEDIA

This section deals with random mixtures composed of N homogeneous media, having volume
fractions v1; v2; : : : ; vn (�vi=1) and conductivities �1; �2; : : : ; �n, respectively. Our aim is to �nd
an expression of the mixture conductivity in terms of the above quantities. We review here
a particular solution given in literature [8], which is very suitable to make the generalization
to the non-linear cases considered in the subsequent sections.
Firstly, we again consider the case of a random mixture (either two-dimensional or three-

dimensional) composed by two media �1 and �2 with concentrations v1 = 1 − v2 and v2,
respectively. For such a mixture we can use a relation of this kind for the average conductivity:
�=F(�1; �2; v2). The function F , which is a priori unknown in its structure, must ful�l the
following constraints:

�1 = F(�1; �2; 0)
�2 = F(�1; �2; 1)

F(h�1; h�2; v2) = hF(�1; �2; v2)
(20)

The third one is the Wiener’s postulate already used (it simply states the fact that, if one
changes the system of units, then � must change as �1; �2 do). In order to develop the study,
�rst a discrete model is assumed for the mixture: it is considered as a lumped-element resistive
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σ2

σ1

A
B

Figure 2. A generic one-port representing a whole network where a resistor �2 and several resistors �1
are present and randomly distributed.

network, composed of resistors arranged in a regular order; for example, the nodes form a
cubic lattice (three-dimensional mixture) or a square lattice (two-dimensional mixture). The
network elements are speci�ed according to one of the following criteria:

(I) each resistor of the network has conductance �k (k=1 or 2) with probability vk ;
(II) the network contains 100 · vk percent resistors having conductance �k .
Moreover, the resistors are spatially distributed at random in the network. Both criteria are used
to develop the study, whilst only the second one has been used for the computer simulations
whose results will be presented later on. However, when the number of resistors is large, as
we suppose, the two criteria should practically coincide in the average.
Let us examine the situation for very low values of v2; according to the criterion II, in the

discrete model the lowest v2 is reached when the lumped network contains only a single ‘�2’
element. In this case the whole network can be represented as shown in Figure 2.
According to standard network-theory theorems, the conductance �AB between terminals A

and B is a bilinear function of �2 [9]:

�AB=
a′�2 + b′

c′�2 + d′
(21)

where a′; b′; c′ and d′ depend on �1.
The di�erence of average conductivity between the case of a homogeneous medium with

conductivity �1 and the case of a mixture with a single element �2 is

�AB|only one �2 − �AB|all �1 =
a′�2 + b′

c′�2 + d′
− �1 = a�2 + bc�2 + d

(22)

or, dividing by c (we assume c �=0; it could be easily shown that the case c=0 leads to an
expression of F which is surely incorrect for a random mixture):

�AB|only one �2 − �AB|all �1 =
(a=c)�2 + (b=c)
�2 + (d=c)

(23)

Therefore, from now on, we can consider the relation:

@F
@v2

∣∣∣∣
v2=0

=
A�2 + B
�2 +D

(24)

where A; B and D are functions of �1 only.
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We try to identify A; B and D using the properties of F : if �1 =�2 it follows that
F(�1; �1; v2)=�1 = cost and then @F=@v2 = 0; therefore A�1 + B=0 and B= − �1A. Conse-
quently, the �rst result is:

@F
@v2

∣∣∣∣
v2=0

=A
�2 − �1
�2 +D

(25)

But F is a homogeneous function of �1 and �2 and clearly @F=@v2 has the same property, so
that, we can write for any value of the constant h:

A(h�1)
h�2 − h�1

h�2 +D(h�1)
= hA(�1)

�2 − �1
�2 +D(�1)

(26)

or, after some straightforward computation:

A(h�1)�2 + A(h�1)D(�1)= hA(�1)�2 + A(�1)D(h�1) (27)

Dividing the above expression by �2 and letting �2→∞ we �nd A(h�1)= hA(�1), hence
A(�1)= ��1 where � is some constant; in Equation (27) we can let �2 = 0 obtaining: A(h�1)
D(�1)=A(�1)D(h�1) which is equivalent to �h�1D(�1)= ��1D(h�1) so: D(�1)=��1 being �
some other constant.
Summing up, one has

@F
@v2

∣∣∣∣
v2=0

= ��1
�2 − �1
�2 + ��1

(28)

where, as it has been said above, � and � are constants (independent on �1 and �2).
Now we are ready to consider a generic mixture with N di�erent media. Equation (28)

plays an essential role in the further development of the theory. Each medium, in the generic
mixture, has conductivity �i and volume concentration vi; � is the equivalent conductivity of
the mixture.
If we add to the mixture a little volume dv with conductivity �k we create a new heteroge-

neous material formed by the original mixture (conductivity �) and a volume with conductivity
�k ; this new mixture can be analysed considering it as a two component one; therefore, its
conductivity, referred to as �′k , is given by

�′k =F(�; �k ; dv=1 + dv)∼=F(�; �k ; dv) (29)

This procedure is not new in principle, since it has been used, e.g. by Maxwell, Looyenga
and Bruggemann even for non in�nitesimal volumes of the medium added to the original
mixture; here it is used in a weaker sense, i.e. for an in�nitesimal added volume. The above
considerations are not justi�cations of the procedure, which remains heuristic and whose
validity stems on the agreement with the computer simulation discussed later on.
Now, let us suppose that the procedure of adding a volume dv is made for each medium

(k=1; 2; : : : ; n), giving a probability vk to the case of conductivity �k . The average conductivity
is clearly the very same � of the original mixture, hence one may state that Equation (30)
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below holds true:

�=
N∑
k=1
�′kvk =

N∑
k=1
F(�; �k ; dv)vk =

N∑
k=1


F(�; �k ; 0) + @F

@v

∣∣∣∣ �
�k
0

dv


vk (30)

or, after some manipulation

0=
N∑
k=1

@F
@v

∣∣∣∣�
�k
0

vk (31)

and, equivalently

1
(�+ 1)�

=
N∑
k=1

vk
�k + ��

(32)

Equation (32) is, in implicit form, the required expression which gives the average conduc-
tivity � in terms of the �k and of the vk .
The evaluation of the constant �, which for the moment is unknown, is discussed now. In

a one-dimensional structure the result must be

1
�
=

N∑
k=1

vk
�k

(33)

since it is a very simple case of ‘conductances in cascade’.
Indeed, a one-dimensional mixture is composed of a superposition of sheets with given

conductances, and the current �ows perpendicular to the sheets.
So, in this condition we can let �=0. Moreover, it is known that for two-dimensional

structures with v=1=2 and N =2 the relation �=
√
�1�2 must hold true (see Section 2 of this

paper); this leads, after some straightforward calculations, to �=1. Hence, we state that �=1
for any two-dimensional structure. This theoretical result has been tested over a large number
of di�erent situations through a computer simulation as discussed in a following section.
On the basis of this discussion, it seems reasonable to assume that � + 1 actually is the

dimensionality of the mixture. Therefore, we conjecture that �=2 for three-dimensional struc-
tures. As we have previously recalled, all these formulas are correct for many physical pa-
rameters: permeability (in a magnetostatic situation), permittivity (in the electrostatic case),
thermal conductivity (in a steady-state thermal regime) and so on. Therefore, at this point a
summary of the �nal results with generic symbol p (and not with conductivity symbol �) is
useful:
Two-dimensional case:

The equation for the scalar �eld f involved (the electrical potential in the previous discussion)
and the de�nition of the average parameter (the conductivity for example) are:

�∇(p �∇f)=0 �p=
∫ 1

0
p
@f
@y
dx (34)

Here p is a random scalar �eld, which describes the random mixture.
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The proposed solution of the problem is

1
2 �p
=

N∑
k=1

vk
pk + �p

(35)

Three-dimensional case:
The equation for the scalar �eld involved and the de�nition of the average parameter are:

�∇(p �∇f)=0 �p=
∫ 1

0

∫ 1

0
p
@f
@z
dx dy (36)

where the z-axis is orthogonal to the planes where f=0 and 1 and p is the random scalar
�eld. The obtained solution is given by

1
3 �p
=

N∑
k=1

vk
pk + 2 �p

(37)

Equations (35) and (37) are N th degree algebraic equations in the unknown �p (it is not
di�cult to verify that a single positive or null solution exists for both equations).
We remember that the above results had been heuristically obtained with the following

assumptions on the statistical composition of the heterogeneous material: we subdivide the
whole medium in many smaller pieces; each of these part is homogeneous and has the pa-
rameter pk with probability vk . The value of the parameter in a given little piece is statistically
independent on the values assigned in the other pieces. This means, using the law of large
numbers, that the stoichiometric coe�cient of the kth components is vk . Finally, we assumed
that a large network or a mixture subdivided in many little pieces (with size very smaller
than the whole compound) normally behaves as the mean value given by Equation (35) and
(37).
In other words, the density probability of the value of the parameter in a given piece of

material has the form W (p)=
∑N

k=1 pk�(p − pk) where the pk’s and the vk’s are the above
de�ned quantities and �(x) is the Dirac delta function: this means that the probability for p
to assume values between p and p+ dp is exactly W (p) dp and the values are statistically
independent for di�erent parts of the whole material.
These are the main assumptions used to derive our predictions on the behaviour of the

heterogeneous material. Obviously, if one considers values of the parameter extracted from
a density probability di�erent from the discrete one above described, the results presented in
this work are no more valid. Therefore, any continuous density probability is not correct for
our analysis. In conclusion, we observe that other limits of validity are the independence of
the values assumed in each part and the large size of the networks, which simulates a large
scale of observation of the mixture.

4. RANDOM MIXTURES AND RANDOM NETWORKS

A random mixture can be numerically analysed by means of the �nite di�erence method [10];
so doing, the procedure leads to lumped electrical networks, which approximately describe
the mixture. In a two-dimensional case such a network can be represented as in Figure 4.
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The voltage V is assumed constant and we observe the current I when the components are
randomly varied. Each component is a linear resistor with the value taken at random (with
the probability proportional to the concentration) in a set of N values corresponding to the
N di�erent materials.
Figure 4 represents the case N =2. Let M be the number of components in any row and

Q the number of components in any column of the two-dimensional grid; moreover, let G1
and G2 be the conductances of the introduced linear resistors; the analysis outlined in the
previous section gives the following average solution if one considers, for example, v=1=2:

I =
M + 1
Q

√
G1G2V (38)

This means that the behaviour of the network is unchanged if one consider all the components
with conductance

√
G1G2.

Similarly, for the three-dimensional case we may consider a grid with dimensions MxLxQ
and we randomly introduce two components G1 and G2 with equal probability. The analytical
result for the average characteristic is given by

I =
(M + 1)(L+ 1)

Q


G1 +G2

8
+
1
4

√(
G1 +G2
2

)2
+ 8G1G2


V (39)

In both two- and three-dimensional cases, Equations (38) and (39) have been veri�ed by
numerical simulation; we use the Monte-Carlo method averaging over several networks with
di�erent distribution of resistors; each resistor, in a given network, has been randomly cho-
sen with equal probability between two possible values (G1 and G2). For each network we
calculate the whole actual conductance corresponding to the particular choice of the resistors:
when a network is established it is solved by means of the relaxation method applied to the
equations written in each node (it is well known that this method always leads to convergence
in the case of linear networks). Finally, after having considered a large number of networks,
we calculated the arithmetic mean of the obtained values for the conductance; this average
value corresponds to a linear characteristic which is very similar to the analytical one given by
Equation (38) or (39). Therefore, such simulations have veri�ed the heuristic predictions with
high degree of accuracy. Furthermore, other simulations have been performed with di�erent
concentrations for the media and with a greater number of composing media. A particular
case is found when one medium has zero conductivity, say �2 = 0, and the other one has
positive conductivity �1; this case is interesting because it is the most critical one for linear
mixtures [1]. For two-dimensional structures Equation (35) becomes �2 + ��1(2v2 − 1)=0
which has two solutions: �=0 and �1(1− 2v2).
Since it is reasonable to assume that � be a non-negative, continuous function of v2, the true

solution is given by �=�1(1−2v2) if 0¡v2¡1=2 and �=0 if 1=2¡v2¡1. Let us consider now
the case when �2 = 0 in two-component three-dimensional mixtures; Equation (37) becomes
2�2 + ��1(3v2 − 2)=0 with two solutions: �=0 and �=�1(1− 3v2=2); requiring, as before,
that � be a non negative continuous function of v2 the correct solution is �=�1(1− 3v2=2) if
0¡v2¡2=3 and �=0 if 2=3¡v2¡1. Figure 3 shows the comparison between these analytical
results and the numerical ones obtained with the corresponding two and three-dimensional
random networks. Once again, the agreement with the equations is very satisfactory.
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Figure 3. Comparison between analytical results (continuous lines) and numerical ones (triangles in
two-dimensional case and circles in three-dimensional case) for the two component linear mixture,
having �2 = 0, described in the main text. For the two-dimensional case we used a square lattice
with 100 nodes and the result represents the mean value over 20 realizations of the network; in the
three-dimensional case the cubic lattice contained 125 nodes and we used 25 di�erent networks.

5. ISOTROPIC NON-LINEAR NETWORKS AND MIXTURES

The problem of mixture characterization has been previously solved in case of linear random
mixtures, that is, materials for which the various components are isotropic, linear and mixed
together as an ensemble of particles having random shapes and positions. In the present section
we consider mixtures of isotropic but non-linear media and by using statistical-network meth-
ods we obtain formulas for evaluating their constitutive equations. Each medium is described
by a constitutive relation of the kind J =fk(E) (or D=fk(E); B=fk(H) and so on) between
scalar quantity because of the isotropy. The function fk(v) represents the non-linearity of the
material and must be considered an odd function fk(−v)=−fk(v).
We consider N di�erent media mixed together with concentrations v1; v2; : : : ; vn and N odd

functions f1; f2; : : : ; fn: we are interested in the non-linear equivalent characteristic of the
whole structure J =f(E). We can verify that

J =f(E)=
∫ E

0
g(y) dy (40)
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Figure 4. A two-dimensional square mesh random network: the symbols 1 and 2
identify two di�erent kinds of linear or non-linear resistive one-port. V and I represent

the whole voltage and current, respectively.

g(y) satis�es Equation (41) in the two-dimensional case:

1
2g(y)

=
N∑
k=1

vk
f′
k (y) + g(y)

(41)

and Equation (42) in the three-dimensional case:

1
3g(y)

=
N∑
k=1

vk
f′
k (y) + 2g(y)

(42)

To justify such statements, �rst of all, we consider a square-mesh network (composed by M
components along each row and Q components along each column) of memoryless non-linear
one ports, each one described by some voltage–current relationship i=fk(v) being the fk’s,
k=1; : : : ; N , increasing di�erentiable functions of their argument. So, there are N di�erent
kinds of non-linear resistors. It is assumed that both Q and M are very large, in order to
simulate a large observation scale, and that the various resistors are completely randomised
as regards their spatial distribution in the network.
The whole structure is endowed with two electrodes (see Figure 4 where the case N =2 is

considered: one deals with a random distribution of two types of non-linear resistors indicated
in the �gure by the labels 1 and 2).
Finally, it is assumed that the fraction vk of the kth type components (i.e. the ratio of their

number to the total number of non-linear resistors in the network) is �xed for all values of k.
In this situation, for any choice of the distribution of the various non-linear resistors in

the network, the one-port in �gure is a memoryless one, say a resistor (in general again
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non-linear) for which there is some relationship, I =F∗(V ), relating to the overall voltage V
and current I .
Now, if we take into consideration the various possible spatial distributions of the single

resistors in the network (being v1; v2; : : : ; vk �xed) then the network becomes a statistical one,
which models a two-dimensional mixture of non-linear media, having the vi’s as volume frac-
tions of each component. The question is: what is the relationship I =F(V ) of the statistical
one-port, or preferably what is the average of the function F∗(V )? F(V ) characterizes the
statistical non-linear resistor in Figure 4 (In a continuous scheme, this function, once the
appropriate scaling operations are performed, becomes the constitutive equation J =F(E), of
a two-dimensional random mixture: see below).
To calculate F(V ), we notice that in the particular case when all media are linear, in such

a way that fk(v)= gkv (being the gk’s positive constants, actually, conductances) the electrical
behaviour of the structure is well known, as already mentioned.
Now, let us consider the non-linear case. If V is changed to V + dV , then the current

I =F(V ) will change up to some value I +dI . Now, one can apply the standard small-signal
technique, considering a network where the overall voltage is dV , the overall current is dI ,
and each resistor is substituted with its di�erential conductance gk =f′

k (v).
Each ‘small signal’ resistor has, in the average, a given voltage bias: the mean voltage

across each one-port (in the original network) is precisely V=Q, in the columns; as regards
the resistors in the rows, their average voltage is zero so that their mean contribution may be
neglected.
So, the small-signal network corresponding to the original one is linear and composed of

resistors having conductances gk =f′
k (V=Q)¿0 (because the function fk are increasing). But

for such a network, one can apply the theory of linear random network, which yields, for the
(di�erential) conductance g=(dI=dV )(Q=(M + 1)), the following equation:

1
2g(V=Q)

=
N∑
k=1

vk
f′
k (V=Q) + g(V=Q)

(43)

so that

I =
M + 1
Q

∫ V

0
g(x) dx (44)

With the substitution x=Qy, the above equations can be reformulated as follows:

1
2g(y)

=
N∑
k=1

vk
f′
k (y) + g(y)

I = F(V ) = (M + 1)
∫ V=Q

0
g(y) dy

(45)

These equations allow us to calculate I =F(V ), though implicitly: speci�cally, for any y in
the range 06y6V=Q one solves the (algebraic, of degree N − 1) equation for g(y), then
calculates I performing the indicated integration.
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Similarly, for a three-dimensional network MxLxQ we have:

1
3g(y)

=
N∑
k=1

vk
f′
k (y) + 2g(y)

I = F(V ) = (M + 1)(L+ 1)
∫ V=Q

0
g(y) dy

(46)

Equations (45) and (46) completely solve the problem of the two- and three-dimensional
non-linear random networks composed by symmetrical components. These relationships have
been also veri�ed by means of some computer simulations described in a following section.
From the development of this theory one can easily �nd the solutions for random mixtures.

If we consider a as di�erentiation step, the density of current J in the three-dimensional case
corresponds to I=((M + 1)a(L+ 1)a) in the network, the �eld corresponds to V=(Qa) and so
on for the other quantities; therefore

J =f(E)=
∫ E

0
g(y) dy (47)

The relationships for g(y) are unchanged with respect to Equations (45) and (46).
The following relationships give two examples of application of the random network anal-

ysis; for two components with the same probability in the two-dimensional case we have

I =(M + 1)
∫ V=Q

0

√
df1
dx

df2
dx

dx (48)

and in the three-dimensional case

I =(M + 1)(L+ 1)
∫ V=Q

0


1
8

(
df1
dx

+
df2
dx

)
+
1
4

√
1
4

(
df1
dx

+
df2
dx

)2
+ 8

df1
dx

df2
dx


dx (49)

Some of these relationships will be numerically veri�ed in a following section.

6. RANDOM NETWORKS WITH ASYMMETRIC NON-LINEAR RESISTORS

The previous results describing the non-linear random networks can be generalized to the
case of asymmetric components. Now, we suppose that the condition fk(−v)=−fk(v) is not
necessarily ful�lled. Hence, we may have fk(−v) �=−fk(v) with fk(0)=0. Because of the
randomness, in average sense, this network will have components with concentration vk=2 for
each polarity and consequently the terms, in the relationship (45) or (46), are split as follows.
In the two-dimensional case

I =F(V )= (M + 1)
∫ V=Q

0
g(y) dy (50)
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where

1
2g(y)

=
N∑
k=1

[
vk=2

f′
k (y) + g(y)

+
vk=2

f′
k (−y) + g(y)

]
(51)

and in the three-dimensional case

I =F(V )= (M + 1)(L+ 1)
∫ V=Q

0
g(y) dy (52)

where

1
3g(y)

=
N∑
k=1

[
vk=2

f′
k (y) + 2g(y)

+
vk=2

f′
k (−y) + 2g(y)

]
(53)

We may observe that the whole characteristic of the network is, in an average sense, symmetric
in spite of the asymmetries of the components: the e�ect of the constitutive asymmetries is
overcome by the randomness of the interconnections of the lumped components, leading at
a macroscopic level to a symmetric equivalent characteristic. As already said, all the results
obtained for the non-linear case are valid under the following assumptions on the statistics of
the random networks (or mixtures): each component of the network (or piece of medium) has
a given non-linearity extracted with a �xed probability among a set of functions f1; f2; : : : ; fn;
moreover, the extractions for components or pieces of material are statistically independent.
Finally, the further limit of validity is given by the large dimension of the network, which
represents the mixture.

7. EXAMPLES OF NON-LINEAR RANDOM NETWORKS

From the numerical point of view we may analyse a random non-linear network by means of
the Monte-Carlo method applied as follows: one generates several di�erent realizations of the
network with the speci�ed non-linear component having their appropriate given concentrations
(or probabilities). For each network obtained in such a way we have to �nd out the whole
voltage–current relationship: this means that, one must solve the network for many values of
the applied voltage. Fixed a given value of this voltage we can solve the network by means
of the non-linear relaxation method. Repeating this procedure for all the interesting values of
the potential we obtain the characteristic of the given realization of the network. Averaging
over the results corresponding to many realizations we may �nd the mean or average voltage–
current relationship of the whole network. At this point one can draw a comparison with the
theoretical result described in the previous sections. Here two particular examples have been
considered:
First example.

We consider a planar network (size MxQ) with two kinds of components having symmetrical
characteristics described by algebraic expressions of degree three:

f1(v)= �v+ �v3; f2(v)= �v+ �v3 (54)

Moreover we consider equal fractions of the two components. One can see Figure 4 where a
realization of the network is shown. In such a case Equation (48) gives the theoretical solution
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of the problem. The integral, which appears in Equation (48), can be solved in closed form
obtaining the following result:

I =3(M + 1)
√
��

{
a
3
[2b2F(p; q)− (a2 + b2)E(p; q)]

+
u
3
(u2 + a2 + 2b2)

√
a2 + u2

b2 + u2


 (55)

where

u=
V
Q
; a2 =

�
3�
; b2 =

�
3�
; p=arctg

u
b
; q=

√
a2 − b2
a

; a¿b (56)

F(p; q) and E(p; q) represent the �rst and second kind elliptic integrals [11], de�ned as
follows:

F(p; q) =
∫ p

0

d�√
1− q2 sin2 �

=
∫ sen p

0

dx√
(1− x2)(1− q2x2)

E(p; q) =
∫ p

0

√
1− q2 sin2 � d�=

∫ sen p

0

√
1− q2x2√
1− x2 dx

(57)

In actual computer simulation the following values for the parameters, which appear in the
description of the network, have been used: Q=6; M =5; �=2; �=1; �=1; �=2; the
results are shown in Figure 5.
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Figure 5. Voltage (V )–current (I) relationship for a two-dimensional random network with dimensions
Q=6; M =5 composed by equal fractions non-linear resistors described by i=2v+ v3 and i= v+2v3

(continuous line: theoretical relationship given by Equation (55); circles: results of computer simulations
obtained by means of the non-linear relaxation method over 40 di�erent realizations of the network).
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G2

G1

vn

i n

Figure 6. Piecewise linear non-symmetric voltage (vn)–current (in) characteristic of the
lumped element considered in the three-dimensional cubic lattice described in the main
text. G1 and G2 are the conductances for negative and positive voltage, respectively. The

orientation of each component in the whole network is randomly obtained.

1/G2

1/G1

in in

vnvn

Figure 7. Schematics of the lumped elements used in the network of Figure 8. Their
characteristic is shown in Figure 6.

Second example.
Now, we consider a three-dimensional mesh formed by only one type of non-symmetric
component having piecewise linear characteristic given by

in=f(vn)=

{
G1vn if vn¡0
G2vn if vn¿0

(58)

One can �nd the simple plot of this characteristic in Figure 6; moreover, this component
corresponds to the one-port shown in Figure 7. The diodes shown in the equivalent circuit of
Figure 7 are ideal, i.e. they act as short circuits if the current is positive and as open circuits
if the voltage is negative. We may observe that if G1 = 0 the characteristic reduces to the
model of an ideal diode in series to a resistor 1=G2. The goal is the evaluation of the overall
average electrical characteristic related to the three-dimensional network of Figure 8, made of
the randomly interconnected non-linear asymmetric components of Figure 7.
A one-port can be associated with the whole network by means of two arbitrary electrodes

parallel to the planes of the cubic lattice. Their potential di�erence is V and their associated
current is I .
The analytical solution of the problem for a network MxLxQ is given by Equations (52)

and (53) with N =1 and v1 = 1. After some straightforward calculations we easily obtain, as
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Figure 8. Schematic of the three-dimensional cubic network of identical asymmetric lumped elements
described in Figures 6 and 7. As one can see the orientation of each element is a random variable.
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Figure 9. Example of computer simulation for the voltage (V )–current (I) relationship (performed using
the non-linear relaxation method) of the cubic network of Figure 8 where G1 = 1; G2 = 4; Q=6; M =5
and L=5 (continuous line: theoretical relationship given by Equation (59); circles: results of the

Monte-Carlo simulation performed over 50 di�erent realizations of the network).

result, a linear characteristic given by

I =
(M + 1)(L+ 1)

Q


G1 +G2

8
+
1
4

√(
G1 +G2
2

)2
+ 8G1G2


V (59)

In Figure 9 one can �nd the results of computer simulations performed using the follow-
ing values of the parameters: Q=6; M =5; L=5; G1 = 1; G2 = 4. This result proves that
the network performs as a linear constant conductance as expected by the heuristic theory.
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Moreover, this result, if extrapolated to biological media, suggests a new hint for explaining
why there is not any inconsistency between the typical electric characterization of biologi-
cal tissues as almost linear macroscopic media, by means of their e�ective conductivity and
permittivity, and the non-linearities of the biochemical processes occurring in the tissue cells
[12,13]. In fact the non-linearities may be not observable by means of macroscopic electric
measurement because of the randomised spatial orientation and location of the processes.

8. CONCLUSIONS

The present work describes the derivation of a heuristic theory, which characterizes linear
and non-linear random mixtures and networks. Such a theory, both in linear and in non-linear
case has been veri�ed with a high satisfactory degree of accuracy by means of a series of
computer simulations. All results are derived starting from a circuit-theoretic approach: in
fact, the conclusions are based on the similarity between a random mixture and a proper
electrical network. The generalization from the linear case to the non-linear one is obtained
using the standard small signal technique, which leads to a general solution of the non-linear
random network with symmetric and non symmetric lumped components. We wish to point
out that most of the heuristic considerations described in the main text generates correct results
(veri�ed only by computer simulations) because of the randomness of the system and of the
large dimensions of the network which smear out the re�ned e�ects of the non-linearities and
of the complicated interconnections.
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