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Abstract

A material composed of a mixture of distinct homogeneous media can be considered as a

homogeneous one at a sufficiently large observation scale. In literature, a widely dealt topic is

that of calculating the overall permittivity of a dispersion of dielectric spheres in a

homogeneous matrix: the well-known Maxwell formula solves the problem in the case of very

diluted suspensions. Moreover, this relationship has been adapted, to yield correct results even

if the dispersion in not strongly diluted, by means of the so-called Bruggeman’s procedure. In

this paper, we apply this technique to perform a complete study on the equivalent permittivity

of a dispersion of ellipsoids. The obtained solutions allow us to evaluate the effects of the

shape of the inclusions on the overall electric behaviour of the mixture. In particular we find

explicit expressions, which give the equivalent permittivity of the medium in terms of the

eccentricities of the embedded ellipsoids and of some stoichiometric parameters. The

treatment is carried out both for aligned ellipsoidal inclusions and for randomly oriented

ellipsoids. In particular, new explicit relationships have been derived for dispersions of

generally shaped randomly oriented ellipsoids.

r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A widely dealt topic concerning the physical behaviour of heterogeneous materials
(mixtures) is that of calculating their permittivity starting from the knowledge of the
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permittivity of each medium composing the mixture as well as of the structural
properties of the mixture itself (percentage of each medium, shapes and relative
positions of the single parts of the various media). Clearly, it concerns with isotropic
linear media, which combine to form linear mixtures. We find in literature a large
number of approximate analytical expressions for the effective permittivity of
composed media as a function of the permittivity of its homogeneous constituents
and some stoichiometric parameter [1]. Each of these relationships should yield
correct results for a particular kind of microstructure or, in other words, for a well
defined morphology of the composite material.
From the historical point of view we review some formulas describing a mixture

composed by two linear isotropic components; one of the most famous is the
Maxwell formula for a strongly diluted suspension of spheres (three-dimensional
case) [1,2]

c
e1 � e2
2e1 þ e2

¼
e1 � %e
2e1 þ %e

; ð1Þ

where e1 is the permittivity of the suspending medium, e2 is the permittivity of the
embedded spheres, c the volume fraction of the medium 2 and %e is the equivalent
permittivity of the mixture. A similar equation holds true for a mixture of parallel
circular cylinders (two-dimensional case) [1]

c
e1 � e2
e1 þ e2

¼
e1 � %e
e1 þ %e

: ð2Þ

An alternative model is provided by the differential method, which derives from
the mixture characterisation approach used by Bruggeman [3]. In this case, the
relations should maintain the validity also for less diluted suspensions; the three-
dimensional case (not diluted dispersions of spheres) leads to the formula

1� c ¼
e2 � %e
e2 � e1

e1
%e

� �1=3
ð3Þ

and the two-dimensional case (parallel cylindrical inclusions) to the following:

1� c ¼
e2 � %e
e2 � e1

e1
%e

� �1=2
: ð4Þ

This procedure is based on the following considerations: suppose that the effective
permittivity of a composite medium is known to be %e: Now, if a small additional
volume of inclusions is embedded in the matrix, the change in the permittivity is
approximated to be that which would arise if an infinitesimal volume of inclusions
were added to a uniform, homogeneous matrix with permittivity %e: This leads, in the
simpler and most studied case, to a differential equation with solution given by
Eq. (3) (in the 3D case) or Eq. (4) (in the 2D case) [3].
As we have already pointed out, Eqs. (1)–(4) represent approximations obtained

working on mixtures of spheres (3D) or cylinders (2D) and thus they should be
corrected and extended to be able to describe dispersions of ellipsoids.
The first papers dealing with mixtures of ellipsoids were written by Fricke

[4,5] dealing with the electrical characterisation of inhomogeneous biological
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tissues containing spheroidal particles: he found out some explicit relationships that
simply were an extension of the Maxwell formula to the case with ellipsoidal
inclusions.
In current literature Maxwell’s relation for spheres and Fricke’s expressions for

ellipsoids are the so-called Maxwell–Garnett Effective Medium Theory results [6,7]:
both theories hold on under the hypothesis of the very low concentration of the
dispersed component. Once more, we observe that the classical approximation for
spheres, given by Eq. (1), has been derived in different contexts by Maxwell [2],
Maxwell-Garnett [8], Wagner [9] and Bottcher [10] as a generalised Clausius–
Mossotti–Lorentz–Lorenz relation.
In recent literature some applications of the Bruggeman procedure to mixtures of

ellipsoids have been shown [11–13] in connection with the problem of characterising
the dielectric response of water-saturated rocks. In their works the authors have
shown that the Bruggeman method applied to this specific problem leads to results in
good agreement with the empirical Archie’s law [14], which describes the dependence
of the d.c. conductivity of brine-saturated sedimentary rocks on porosity.
In general, the electrical (thermal, elastic and so on) properties of composite

materials are strongly microstructure dependent. The relationships between
microstructure and properties may be used for designing and improving materials,
or conversely, for interpreting experimental data in terms of microstructural
features. Ideally, the aim is to construct a theory that employs general
microstructural information to make some accurate property predictions. A simpler
goal is the provision of property for different class of microstructures. A great
number of works have been devoted to describe the relationship between
microstructure and properties: in [15] a functional unifying approach has been
applied to better understand the intrinsic mathematical properties of a general
mixing formula. A fundamental result is given by the Hashin–Shtrikman’s
variational analysis [16], which provides an upper and lower bound for composite
materials, irrespective of the microstructure. In particular, for a two-phase material,
these bounds are given by two expressions of the Maxwell–Fricke type. Finally, a
method to find the relation between the spatial correlation function of the dispersed
component and the final properties of the material is derived from the Brown
expansion [17].
In this work, we briefly review the Bruggeman procedure to analyse the behaviour

of a dispersion of dielectric ellipsoids obtaining a complete set of explicit results,
which should be correct for any volume fraction of the inclusions. Dealing with
embedding of ellipsoids we may consider two particular case: in the first one all the
ellipsoids are aligned and thus they generate an anisotropic overall behaviour of the
composite medium. This kind of mixture is discussed for example in [11]. In the other
case all the embedded ellipsoids are randomly oriented and then the whole
heterogeneous medium will be isotropic. This case is considered in [12] only when the
embedded inclusions are ellipsoids of rotation. The major achievement of the present
work is given by the explicit theory concerning the case of dispersions of generally
shaped (three different axes) randomly oriented ellipsoids: some new mixing
formulas have been derived for such kind of dispersion.
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It must be underlined that from a merely mathematical standpoint, the problem of
calculating the mixture permittivity is identical to a number of others, for instance to
that regarding permeability (in a magnetostatic situation), conductivity (in d.c.
condition), thermal conductivity (in a steady-state thermal regime) and so on.
Therefore, each theoretical formula predicts the effective value of any thermal,
magnetic or electrical specific quantities.

2. Characterisation of dispersions of aligned ellipsoids

The theory is based on the following result, which describes the behaviour of an
ellipsoidal particle (e2) embedded in a homogeneous medium (e1). Let the axes of the
ellipsoid be ax; ay and az (aligned with axes x; y; z of the reference frame) and let a
uniform electrical field %E0 ¼ E0x;E0y;E0z

� �
applied to the structure. Then, according

to Stratton [18] a uniform electrical field appears inside the ellipsoid and it can be
computed as follows. We define the function

R sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s þ a2x
� �

s þ a2y

� �
s þ a2z
� �r

ð5Þ

and the depolarisation factors along each axes

Lx ¼
axayaz

2

Z þN

0

ds

s þ a2x
� �

R sð Þ
; Ly ¼

axayaz

2

Z þN

0

ds

s þ a2y

� �
R sð Þ

;

Lz ¼
axayaz

2

Z þN

0

ds

s þ a2z
� �

R sð Þ
: ð6Þ

We may observe that Lx þ Ly þ Lz ¼ 1: Therefore, the electrical field inside the
ellipsoid is given, in components, by [18]

Eix ¼
E0x

1þ Lxðe2 � e1Þ=e1
; Eiy ¼

E0y

1þ Lyðe2 � e1Þ=e1
;

Eiz ¼
E0z

1þ Lzðe2 � e1Þ=e1
: ð7Þ

This is the main result that plays an essential role in the further development of the
theory. Now, we are ready to consider a dispersion of aligned ellipsoids (e2)
embedded in a homogeneous medium (e1): each inclusion has the axes ax; ay and az

aligned with the axes x; y; and z of the reference frame, respectively (see Fig. 1).
Moreover, let c be the volume fraction of the embedded ellipsoids. To begin, we
consider a diluted dispersion (c51) and thus we may evaluate the average value of
the electrical field over the mixture volume by means of the following relationships:

Exh i ¼ cEix þ 1� cð ÞE0x; Ey

� 	
¼ cEiy þ 1� cð ÞE0y;

Ezh i ¼ cEiz þ 1� cð ÞE0z: ð8Þ

This means that we do not take into account the interactions among the inclusions
because of the very low concentration: each little ellipsoid behaves as a single one in
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the whole space. Once more, to derive Eq. (8), we approximately take into account a
uniform electrical field %E0 ¼ E0x;E0y;E0z

� �
in the space outside the inclusions. To

define the mixture we are going to characterise, we consider a greater ellipsoid, which
contains all the other ones. This ellipsoid represents the external surface of the
composite materials. This ellipsoid has, by definition, the same shape of the
inclusions and then the axes are given by bax; bay and baz; where b is a positive
constant (it is aligned to the embedded ellipsoids, see Fig. 1). As one can simply
verify, the depolarisation factors of this ellipsoid are the very same of each inclusion
contained in the mixture. Moreover, we may observe that the overall behaviour of
the mixture is anisotropic because of the alignment of the ellipsoidal particles. So, if
we define the equivalent principal permittivity of the mixture along the axes x; y and
z as ex; ey and ez; we may write down these expressions for the average value of the
components of the electrical field inside the whole mixture

Exh i ¼
E0x

1þ Lxðex � e1Þ=e1
; Ey

� 	
¼

E0y

1þ Lyðey � e1Þ=e1
;

Ezh i ¼
E0z

1þ Lzðez � e1Þ=e1
: ð9Þ

These expressions are derived considering the whole mixture as a single inclusion
in the whole space and then we have used the basic result given by Eq. (7). Now, by
substituting Eq. (7) into Eq. (8) and by drawing a comparison with Eq. (9) we may
find expressions for ex; ey and ez; which are the equivalent principal permittivities of

z 

x 

y 

Axes

Axes

�ax , �ay and �az

ax , ay and az

 �1
�2

Fig. 1. Structure of a dispersion of aligned ellipsoids. The external surface of the mixture is a great

ellipsoid with the same shape of the inclusions.
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the whole composite material

ej ¼ e1 þ c e2 � e1ð Þ
1

1þ 1� cð ÞLjðe2 � e1Þ=e1

¼ e1 þ c e2 � e1ð Þ
1

1þ Ljðe2 � e1Þ=e1
þ Oðc2Þ; ð10Þ

where j ¼ x, y, z. This result holds true only for very diluted dispersions of aligned
ellipsoids. Eq. (10) has the same degree of approximation of Eqs. (1) and (2) (spheres
and cylinders) and plays the same role in the development of the theory. Each of the
three independent relations, which appears in Eq. (10), may be recast in the unified
form e ¼ F ðe1; e2; cÞ where e represents ex; ey or ez: We use this very simple form to
review Bruggeman’s procedure that is the method to find a second mixture relationship
considering a first theory describing the composite material (actually function F ). This
second theory is usually more efficient than the first one even if the mixture is not
strongly diluted. In Bruggeman’s scheme the initial low concentration is gradually
increased by infinitesimal additions of the dispersed component [3]. We start from
e ¼ F ðe1; e2; cÞ for a mixture where c is the volume fraction of ellipsoids: we consider a
unit volume of the mixture (1m3) and we add a little volume dc0 of inclusions.
Therefore, we consider another mixture between a medium with permittivity e (volume
equals to 1m3) and a second medium (e2) with volume dc0: In these conditions the
volume fraction of the second medium will be dc0=ð1þ dc0ÞEdc0: So, using the
original relation for the mixture we can write: eþ de ¼ F ðe; e2; dc0Þ: In the final
composite material, with the little added volume dc0; the matrix (e1) will have effective
volume 1�c and the dispersed medium (e2) will have effective volume c þ dc0.

The original volume fraction of the second medium is c=1 and the final one is
ðc þ dc0Þ=ð1þ dc0Þ; so, it follows that the variation of the volume fraction of
inclusions obtained by adding the little volume dc0 is simply given by dc ¼
ðc þ dc0Þ=ð1þ dc0Þ � c=1 ¼ dc0ð1� cÞ=ð1þ dc0ÞEdc0ð1� cÞ:
Therefore, we have eþ de ¼ F ðe; e2; dc=ð1� cÞÞ: With a first-order expansion we

simply obtain

eþ de ¼ F ðe; e2; 0Þ þ
qF e; e2; cð Þ

qc






c¼0

dc

1� c

and taking into account the obvious relation e ¼ F ðe; e2; 0Þ we obtain the differential
equation

de
dc

¼
1

1� c

qF e; e2; cð Þ
qc






c¼0

:

This equation, when the function F is given, defines a new function, which should
better describe the mixture when it is not strongly diluted. We may apply the method
to the three expressions given in Eq. (10) obtaining the following differential
equations (j ¼ x; y; z):

dej

dc
¼

1

1� c
ðe2 � ejÞ

1

1þ Ljðe2 � ejÞ=ej

: ð11Þ
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These equations may be easily solved with the auxiliary conditions ej(c ¼ 0)=
e1(j ¼ x; y; z) obtaining the results

1� c ¼
e2 � ej

e2 � e1

e1
ej

� �Lj

ðj ¼ x; y; zÞ: ð12Þ

These are the final expressions, which characterise a dispersion of aligned
ellipsoids, obtained by means of Bruggeman’s approach. The depolarisation factors
are given by Eq. (6). We may derive some simplified version of this result in some
limiting cases. First, we consider a case with az-N: the ellipsoids degenerate to
parallel elliptic cylinders. We may define the eccentricity of the elliptic base of these
cylinders as e ¼ ay=ax: So, the expressions for the depolarisation factors can be
evaluated as follows:

Lx ¼
e

2

Z þN

0

dx

ðxþ 1Þ3=2ðxþ e2Þ1=2
¼

e

e þ 1
;

Ly ¼
e

2

Z þN

0

dx

ðxþ e2Þ3=2ðxþ 1Þ1=2
¼

1

e þ 1
;

Lz ¼ 0 ð13Þ

and therefore, Eq. (12) yields the simplified results

1� c ¼
e2 � ex

e2 � e1

e1
ex

� �e=ðeþ1Þ

; 1� c ¼
e2 � ey

e2 � e1

e1
ey

� �1=ðeþ1Þ

;

ez ¼ ce2 þ 1� cð Þe1: ð14Þ

The first two equations describe the principal permittivities in the directions (axes
x and y) orthogonal to the cylinders and the third one defines the principal
permittivity along the axes of the cylinders (z-axis). If e ¼ 1 the first two equations
reduce, as expected, to Eq. (4). The third relation, as we expect, is an exact result
describing a parallel connection of capacitors (the interfaces are aligned with the
electrical field).
A second case deals with a mixture of inclusions shaped as ellipsoids of rotation;

we consider ax ¼ ay and thus we define the eccentricity as e ¼ az=ax ¼ az=ay: The
depolarisation factors may be computed in closed form as follows and the results
depend on the shape of the ellipsoid; it is prolate (of ovary or elongated form) if e > 1
and oblate (of planetary or flattened form) if eo1:

Lx ¼ Ly ¼
e

2

Z þN

0

dx

ðxþ 1Þ2ðxþ e2Þ1=2

¼

e

4p3
2ep þ ln

e � p

e þ p


 �
if e > 1;

e

4q3
p� 2eq � 2 arctg

e

q


 �
if eo1;

8>>><
>>>:

S. Giordano / Journal of Electrostatics 58 (2003) 59–76 65



Lz ¼
e

2

Z þN

0

dx

ðxþ 1Þðxþ e2Þ3=2

¼

1

2p3
e ln

e þ p

e � p
� 2p


 �
if e > 1;

1

2q3
2q � epþ 2e arctg

e

q


 �
if eo1;

8>>><
>>>:

ð15Þ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p
and q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
:

We may verify that 2Lx þ Lz ¼ 1 for any value of e: Eq. (12) combined with
Eq. (15) describes the complete behaviour of a dispersion of aligned ellipsoids of
rotation (oblate or prolate).
For the sake of completeness, we show the complete expressions for the

depolarisation factors in the case of generally shaped ellipsoids. The results have
been expressed in terms of the elliptic integrals and have been derived under the
assumptions: 0oaxoayoaz; 0oe ¼ ax=ayo1 and 0og ¼ ay=azo1: The final
expressions follow:

Lx ¼
1

1� e2
�

e

ð1� e2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2g2

p Eðv; qÞ;

Ly ¼
eð1� e2g2Þ

ð1� e2Þð1� g2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2g2

p Eðv; qÞ �
eg2

ð1� g2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2g2

p F ðv; qÞ �
e2

1� e2
;

Lz ¼
eg2

ð1� g2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2g2

p F ðv; qÞ � Eðv; qÞ½ 	: ð16Þ

Here the quantities v and q are defined by

v ¼ arcsen
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2g2

p
; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

1� e2g2

s
ð17Þ

and the elliptic integrals are defined below [19]

F ðv; qÞ ¼
Z v

0

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2 sin2 a

q ¼
Z sen v

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þð1� q2x2Þ

p ;

Eðv; qÞ ¼
Z v

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2 sin2 a

q
da ¼

Z sen v

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2x2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx: ð18Þ

Once again, we have Lx þ Ly þ Lz ¼ 1: In Fig. 2 one can find the three plots of the
depolarising factors versus the eccentricities e and g: it can be noted that for a sphere
(e ¼ 1 and g ¼ 1) the relation Lx ¼ Ly ¼ Lz ¼ 1=3 holds true. As one can see in
Fig. 2, when eE1 and gE1; i.e. when we deal with spheroidal particles, the
behaviour of the depolarising factors is quite linear and so it can be described by the
following approximate relationships: LxDð11� 4e � 2gÞ=15; LyDð2e þ 5� 2gÞ=15
and LzDð2e þ 4g � 1Þ=15: These expressions represent the equations of the tangent
planes to the surfaces Lxðe; gÞ; Lyðe; gÞ and Lzðe; gÞ at the point e ¼ 1; g ¼ 1: They are
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Fig. 2. Plots of the depolarisation factors as function of the eccentricities e and g: The three plots have
been parameterised by the eccentricity e (we have used 25 uniformly spaced values for e ranging from

0 to 1).
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useful to evaluate the depolarisation factors of spheroidal particles (with high degree
of accuracy for e; g > 0:8) without using elliptic integrals. Finally, we observe that
Eq. (12) combined with Eq. (16) allows the characterisation of a mixture of aligned
generally shaped ellipsoids. In Fig. 3 the behaviours of the three principal
permittivities as function of the eccentricities e and g are shown. The plot concerns
the case with e2=e1 ¼ 10 and c ¼ 1=2 and describes the three relative permittivities
ex=e1; ey=e1 and ez=e1: In the point A the values of the eccentricities are e ¼ 1 and
g ¼ 1 and thus it corresponds to a mixture of spheres: in such case the values of the
depolarisation factors are Lx ¼ Ly ¼ Lz ¼ 1=3 and the three principal permittivities
are obviously given by Eq. (3). In the point B we have e ¼ 1 and g ¼ 0 and then it
corresponds to a mixture of parallel circular cylinders: the values of the
depolarisation factors are Lx ¼ Ly ¼ 1=2 and Lz ¼ 0; the two permittivities along
the axes x and y are given by Eq. (4) and the permittivity along the axes z is given by
ez ¼ ce2 þ ð1� cÞe1 (parallel of capacitors).

3. Characterisation of dispersions of randomly oriented ellipsoids

To begin, we are interested in the electrical behaviour of a single ellipsoidal
inclusion (e2) arbitrarily oriented in the space and embedded in a homogeneous
medium (e1). We define three unit vectors, which indicate the principal directions of

 

x /ε ε 1

 z / 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 3. Principal permittivities of a mixture of aligned ellipsoids (x-axis: continuous lines, y-axis:

continuous dotted lines, z-axis: dotted lines). The three families of curves have been plotted versus the

eccentricity e and parameterised by g. The values correspond to Eq. (12) and they have been computed

with the assumptions e2=e1 ¼ 10 and c ¼ 1=2:
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the ellipsoids in the space: they are referred to as %nx; %ny and %nz and they are aligned
with the axes ax; ay and az of the ellipsoid, respectively. By using Eq. (7), we may
compute the electrical field inside the inclusion, induced by a given external uniform
electric field

%Ei ¼
ð %E0 
 %nxÞ %nx

1þ Lxðe2 � e1Þ=e1
þ

ð %E0 
 %nyÞ %ny

1þ Lyðe2 � e1Þ=e1
þ

ð %E0 
 %nzÞ %nz

1þ Lzðe2 � e1Þ=e1
: ð19Þ

This result simply derives from the sum of the three contributes to the electrical
field along each axes. This expression may be written in explicit form, as follows:

Ei;q ¼
Xx;y;z

k

E0;k

Xx;y;z
j

nj;knj;q

1þ Ljðe2 � e1Þ=e1
; ð20Þ

where nj;k is the kth component of the unit vector %njðj ¼ x; y; zÞ:
For the following derivation, we are interested in the average value of the electrical

field inside the ellipsoid over all the possible orientations of the ellipsoid itself and
then we have to compute the average value of the quantity nj;k nj;q: Performing the
integration over the unit sphere (by means of spherical coordinates) we obtain, after
some straightforward computations

nj;knj;q

� 	
¼ 1

3dk;q 8j: ð21Þ

Therefore, the average value of the electrical field (inside the randomly oriented
inclusion), given by Eq. (20), may be written as

Ei;q

� 	
¼

E0;q

3

Xx;y;z
j

1

1þ Ljðe2 � e1Þ=e1
: ð22Þ

Now, we are ready to consider a mixture of randomly oriented ellipsoids. In Fig. 4
one can find the structure of the composite material: we consider a given number of
randomly oriented ellipsoids (e2) embedded in a homogeneous matrix (e1). We may
define, for example, the volume of the mixture by means of a sphere which contains
all the ellipsoidal inclusions and which represents the external surface of the
heterogeneous material. Once more, let c be the volume fraction of the embedded
ellipsoids. The average value of the electrical field over the mixture (inside the
sphere) is approximately computed by using Eq. (22)

%E
� 	

¼ ð1� cÞ %E þ c
%E0

3

Xx;y;z
j

1

1þ Ljðe2 � e1Þ=e1
: ð23Þ

Then, we define e as the equivalent permittivity of the whole mixture (which is
isotropic because of the randomness of the orientations) by means of the relation
langle %D

	
¼ e %E

� 	
; to evaluate e we may compute the average value of the

displacement vector inside the random material. We also define V as the total
volume of the mixture, Ve as the total volume of the embedded ellipsoids and Vo as
the volume of the remaining space among the inclusions (so that V ¼ Ve,Vo). The
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average value of %Dð%rÞ ¼ eð%rÞ %Eð%rÞ is evaluated as follows:

%D
� 	

¼
1

V

Z
V

eð%rÞ %Eð%rÞ d%r ¼
1

V
e1

Z
Vo

%Eð%rÞ d%r þ
1

V
e2

Z
Ve

%Eð%rÞ d%r

¼
1

V
e1

Z
Vo

%Eð%rÞ d%r þ
1

V
e1

Z
Ve

%Eð%rÞ d%r þ
1

V
e2

Z
Ve

%Eð%rÞ d%r �
1

V
e1

Z
Ve

%Eð%rÞ d%r

¼ e1 %E
� 	

þ cðe2 � e1Þ %Ei

� 	
: ð24Þ

Drawing a comparison between Eqs. (22) and (24) we may find a complete
expression, which allows us to estimate the equivalent permittivity e and its first
order expansion with respect to the volume fraction c:

e ¼ e1 þ
1
3cðe2 � e1Þ

Px;y;z
j e1=ðe1 þ Ljðe2 � e1ÞÞ

1þ c 1
3

Px;y;z
j e1=ðe1 þ Ljðe2 � e1ÞÞ � 1

h i;
¼ e1 þ

1

3
ce1ðe2 � e1Þ

Xx;y;z
j

e1
e1 þ Ljðe2 � e1Þ

þOðc2Þ: ð25Þ

This result concerns the characterisation of a very diluted dispersion of randomly
oriented ellipsoids with given shape (i.e. with fixed depolarisation factors Lj or
eccentricities e and g). As before, to adapt this relationship to arbitrarily diluted
composite materials we use Bruggeman’s procedure, which leads to the following
differential equation:

de
dc

¼
1

1� c
eðe2 � eÞ

1

3

Xx;y;z
j

1

eþ Ljðe2 � eÞ
: ð26Þ

The solution of this equation depends on the values of the depolarisation factors
showing the relationship between the overall permittivity and the shape of the

z 

x 

y 

Sphere 

 1 

2 ε
ε

Fig. 4. Structure of a dispersion of randomly oriented ellipsoids. The external surface of the mixture is a sphere.
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ellipsoidal inclusions. We search for the solution in two particular cases: a dispersion
of ellipsoids of rotation and a dispersion of generally shaped ellipsoids. In the first
case we have Lx ¼ Ly and 2Lx þ Lz ¼ 1 and thus only one factor completely defines
the shape of the inclusions. If we use Lx as parameter, Eq. (26) reduces, after some
straightforward computations, to the following one:

dc

1� c
¼

1

e2 � e
þ
3Lxð1� 2LxÞ
ð2� 3LxÞe

þ
2ð3Lx � 1Þ2

½ð1þ 3LxÞeþ ð2� 3LxÞe2	ð2� 3LxÞ


 �
de: ð27Þ

The integration of the above partial fraction expansion, with the condition eðc ¼
0Þ ¼ e1; yields the final result

1� c ¼
e2 � e
e2 � e1

e1
e

� �3Lð1�2LÞ=ð2�3LÞ

�
ð1þ 3LÞe1 þ ð2� 3LÞe2
ð1þ 3LÞeþ ð2� 3LÞe2


 �2ð3L�1Þ2=ð2�3LÞð1þ3LÞ

; ð28Þ

where L ¼ Lx is given by Eq. (15) and represents the depolarisation factor along the
directions orthogonal to the principal axes of each inclusion. For convenience, we
report here the complete expressions of L for prolate and oblate ellipsoidal particles

L ¼

e

4p3
2ep þ ln

e � p

e þ p


 �
if e > 1 ðprolate ellipsoidsÞ;

e

4q3
p� 2eq � 2 arctg

e

q


 �
if eo1 ðoblate ellipsoidsÞ;

8>>><
>>>:

ð29Þ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p
and q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
:

Eqs. (28) and (29) completely solve the electrical characterisation of a dispersion
of randomly oriented ellipsoids of rotation. We may observe that, if e ¼ 1 (spherical
inclusions) we have L ¼ 1=3 and thus Eq. (28) reduce to Eq. (3), which characterises
dispersions of dielectric spheres. If e-0 we deal with a mixture of random oriented
strongly oblate (lamellae or penny shaped) inclusions (in this case L ¼ 0) and
Eq. (28) degenerates to the following one:

e ¼ e2
3e1 þ 2cðe2 � e1Þ
3e2 � cðe2 � e1Þ

ðLamellaeÞ: ð30Þ

Finally, if e-N (L-1=2) the inclusions become strongly prolate ellipsoids
(circular cylinders or rods) randomly distributed in the space and Eq. (28) reduces to
Eq. (31) below

1� c ¼
e2 � e
e2 � e1

e2 þ 5e1
e2 þ 5e

� �2=5

ðRodsÞ: ð31Þ

In Figs. 5 and 6 results obtained by using Eq. (28) are shown. In Fig. 5 a three
dimensional plot of e=e1 is represented (for e2=e1 ¼ 10) showing the dependence on c

and on Log10(e). In Fig. 6 the ratio e=e1 is plotted versus the logarithm of the
eccentricity for e2=e1 ¼ 10 and for different values of the volume fraction c (ranging
from 0 to 1). The result concerning the case with c ¼ 1=2 is evidenced and a
comparison with corresponding classical Maxwell (Eq. (1)) and Bruggeman
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(Eq. (31)) formulas is drawn. Furthermore, the three particular limiting cases are
evidenced: strongly oblate ellipsoids (lamellae or penny shaped inclusions), spheres
and strongly prolate ellipsoids (circular cylinders or rods).
To complete our study we analyse a mixture of ellipsoids with three independent

axes. This analysis represents the main result of the work and generalises the
previous mixing formulas to the case of a dispersion of randomly oriented general
ellipsoids. For such generally shaped ellipsoids the relation Lx þ Ly þ Lz ¼ 1 holds
true and therefore we may use two factors (Lx and Ly) as parameters which
completely define the shape of the inclusions (they are given by Eq. (16)). To simply
integrate Eq. (26) we define the following quantities depending on these depolarisa-
tion factors:

A ¼ 3L2
xLy þ 3LxL2

y � 3LxLy;

B ¼ Lx þ Ly � 6L2
xL2

y � 8LxLy � 4L3
xLy � 4LxL3

y

þ 11L2
xLy þ 11L2

yLx � 3L2
x � 3L2

y þ 4L3
x þ 4L3

y � 2L4
x � 2L4

y;

C ¼ 4L3
xLy þ 4LxL3

y � 2LxLy � 2L2
xLy � 2L2

yLx þ 6L2
xL2

y

þ 2L2
x þ 2L2

y � 4L3
x � 4L3

y þ 2L4
x þ 2L4

y;

D ¼ LxLy � Lx � Ly þ L2
x þ L2

y: ð32Þ

Therefore, the differential equation (Eq. (26)) may be recast, after some
straightforward calculations, in the following simplified form, which represents a
partial fractions expansion:

dc

1� c
¼

1

e2 � e
þ

A

De
þ

Beþ Ce2
D½ðD � 1Þe2 � 2ðD þ 1Þee2 þ De22	


 �
de: ð33Þ

Fig. 5. Results obtained for a mixture of randomly oriented ellipsoids of rotation (Eq. (28)). The surface

e=e1 versus the volume fraction c and Log10(e) is shown. It corresponds to e2=e1 ¼ 10:
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By means of a lengthy but straightforward integration we have found the solution
as follows:

1� c ¼
e2 � e
e2 � e1

e1
e

� �A=D ðD � 1Þe21 � 2ðD þ 1Þe1e2 þ De22
ðD � 1Þe2 � 2ðD þ 1Þee2 þ De22


 � B
2DðD�1Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3D

p
e2 þ ðD � 1Þe� ðD þ 1Þe2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3D
p

e2 þ ðD � 1Þe1 � ðD þ 1Þe2

"

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3D

p
e2 � ðD � 1Þe1 þ ðD þ 1Þe2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3D
p

e2 � ðD � 1Þeþ ðD þ 1Þe2

#BðDþ1ÞþCðD�1Þ

2DðD�1Þ
ffiffiffiffiffiffiffiffiffi
1þ3D

p
: ð34Þ

We may note that all the parameters A; B; C; and D depend on the depolarisation
factors and thus, recalling Eq. (16) we deduce that they depend only on the two
eccentricities e and g: So, the complete model describes the equivalent permittivity as
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Fig. 6. Same as Fig. 5. The family of curves is parameterised by the volume fraction c. The three limiting

cases of strongly oblate ellipsoids (penny shaped), spheres and strongly prolate ellipsoids (rods) are shown.

The line concerning the case c ¼ 1=2 is evidenced (dotted) to draw a comparison with classical results given

by Eq. (1) (Maxwell) and Eq. (3) (Bruggeman).
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function of the following parameters: the permittivities of the two involved materials
e2 and e1; the volume fraction c of the embedded ellipsoids and the characteristic
eccentricities e and g: Finally, e ¼ e(e1; e2; c; e; g).
Some particular cases may be taken into consideration: if we deal with a mixture

of elliptic lamellae the depolarisation factors assume the values Lx ¼ 1; Ly ¼ 0;
Lz ¼ 0 and Eq. (34) reduces to Eq. (30) for any value of the eccentricity of the
elliptical base of the inclusions (and for any shape of the contour of the lamellae).
Another interesting limiting case is that concerning a mixture of elliptic cylinders
randomly oriented in the space: for such inclusion the depolarisation factors are
given by Eq. (13). If we use these values in Eqs. (32) and (34) we obtain the following
mixing formula:

1� c ¼
e2 � e
e2 � e1

ðe2 þ 3e þ 1Þe21 þ 2ðe2 þ e þ 1Þe1e2 þ ee22
ðe2 þ 3e þ 1Þe2 þ 2ðe2 þ e þ 1Þee2 þ ee22


 � ð1þe2Þ
ð2ðe2þ3eþ1ÞÞ

�
ð1þ eÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � e þ 1

p
e2 þ ðe2 þ e þ 1Þe2 þ ðe2 þ 3e þ 1Þe1

ð1þ eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � e þ 1

p
e2 þ ðe2 þ e þ 1Þe2 þ ðe2 þ 3e þ 1Þe

"

�
ð1þ eÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � e þ 1

p
e2 � ðe2 þ e þ 1Þe2 � ðe2 þ 3e þ 1Þe

ð1þ eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � e þ 1

p
e2 � ðe2 þ e þ 1Þe2 � ðe2 þ 3e þ 1Þe1

# ðe2�3eþ1Þð1þeÞ

2ðe2þ3eþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
e2�eþ1

p
;

ð35Þ

where e represents the eccentricity of the base of the elliptic cylinders (e2) randomly
embedded in the homogeneous matrix (e1). Two particular sub-cases can be
shown for this latter relationship: if e ¼ 1 we are describing a mixture of circular
cylinders and then Eq. (35) degenerates to Eq. (31); if e ¼ 0 the elliptic cylinders
degenerate to sheets and thus Eq. (35) reduces to Eq. (30) describing dispersions of
lamellae.
The irrational equation (Eq. (34)) has been numerically solved and a typical result

is shown in Fig. 7 where one can deduce the effects of the shape of the inclusions on
the effective macroscopic dielectric constant of the material. We have considered
e2=e1 ¼ 10; c ¼ 1=2 and we have plotted the values of e=e1 in terms of the
eccentricities e and g of the embedded ellipsoids. The limiting cases of interest have
been clearly indicated.
In our models the fraction volume ranges from 0 to 1 and this fact needs some

explications: obviously, if one requires that the inclusions (actually ellipsoids) are not
overlapping, the volume fraction can not reaches the unit value. By means of simple
computer simulations we may verify that, placing inclusions at random in a given
volume, they become overlapping when the volume fraction is greater than a given
threshold. Nevertheless, we may think that Bruggeman’s procedure continues to
yield good results even for higher values of the volume fraction, when the inclusions
become strongly overlapped. This fact derives from several comparisons between
theoretical results for mixtures of spheres and experimental measurements, which
can be found in literature [1]. The typical application of the Bruggeman procedure
has given results in agreement with experimental measurements in various fields
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ranging from characterisation of dielectric mixtures of spheres [1,3,11]
to characterisation of micro-mechanical dispersions from the elastic point of
view (in this case the results are very satisfactory over the complete range 0oco1
[20,21]).

4. Conclusions

We have applied Bruggeman’s procedure to a dispersion of ellipsoids and
we have studied the resulting relationships for the equivalent permittivity. When
the above procedure is implemented for evaluating the aforesaid permittivity,
a sensible dependence of the results on the shape of the inclusions (actually
on the eccentricities) is shown. The closed form analysis of a dispersion of
ellipsoids offers a simple but clear example of the dependence of the macroscopic
behaviour of composite materials on the microstructure or microscopic morphology.
The results may suggest a hint for explaining why sometimes there are some
inconsistencies between the standard mixture formulae and corresponding experi-
ments: typically, standard formulae are based on the Maxwell relation for a mixture
of spheres and do not take into account any different shapes of the inclusions, which
may be present in actual heterogeneous media. Once more, our results show a
dependence of the effective property on the eccentricities of the inclusions that is
absolutely not negligible and thus they should be always taken into account when
not spherical inclusions are embedded in a matrix. Finally, an explicit new
relationship has been derived for the case of a dispersion of randomly oriented
generally shaped ellipsoids.

Fig. 7. Results for a mixture of randomly oriented and generally shaped ellipsoids (Eq. (32)). The surface

e=e1 versus the eccentricities e and g is shown with the assumptions e2=e1 ¼ 10 and c ¼ 1=2:
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