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ABSTRACT

The photoacoustic effect in liquids, generated by metal nanoparticles excited with short laser pulses, offers high contrast imaging and
promising medical treatment techniques. Understanding the role of the thermal boundary resistance (TBR) and the laser pulse duration in
the generation mechanism of acoustic waves is essential to implement efficient photoacoustic nanotransducers. This work theoretically
investigates, for the paradigmatic case of water-immersed gold nanocylinders, the role of the TBR and laser pulse duration in the competition
between the launching mechanisms: the thermophone and the mechanophone. In the thermophone, the nanoparticle acts as a nanoheater
and the wave is launched by water thermal expansion. In the mechanophone, the nanoparticle directly acts as a nanopiston. Specifically, for a
gold–water interface, the thermophone prevails under ns light pulse irradiation, while the mechanophone dominates shortening the pulse to
the 10 ps regime. For a graphene-functionalized gold–water interface, instead, the mechanophone dominates over the entire range of
explored laser pulse durations. The results point to high-TBR, liquid-immersed nanoparticles as potentially efficient photoacoustic nanogen-
erators, with the advantage of keeping the liquid environment temperature unaltered.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0135147

Nanoscale photoacoustics generation in liquids, owing to its poten-
tial in nanoimaging and therapeutic applications, is a flourishing topic
at the cross-road of condensed matter physics, nanomedicine, and
materials science.1–5 In this context, liquid-immersed metal nanopar-
ticles have proven to be efficient photoacoustic generators due to their
tunable optical absorption properties,6–9 high contrast imaging fea-
tures,10,11 and biocompatibility.12,13 Great efforts have been devoted to
optimize the parameters allowing a more efficient photoacoustic conver-
sion, such as size, geometry,9,14–16 and transducer materials.17 Yet,
despite its relevance for applications, the combined effects of the pulse
temporal width, sL,

18–20 and the thermal boundary resistance21–23

(TBR) tunabilities remain relatively unexplored and lack a thorough
rationalization.

In brief, the photoacoustic effect of an individual liquid-
immersed metal nanoparticle consists of three steps: (i) absorption of
the laser pulse by the nanoparticle and its temperature rise, (ii) thermal
interaction between the nanoparticle and the liquid environment, and
(iii) generation of the acoustic wave in liquid. The acoustic wave in liq-
uid is triggered by two launching mechanisms: the mechanophone
and the thermophone effects. The former is due to the thermal expan-
sion of the metal nanoparticle; the latter mechanism is due to the
liquid environment expansion with the nanoparticle acting as a
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nanoheater. The photoacoustic generation in these systems is typically
investigated under ns laser pulse irradiation, in which case the mecha-
nophone contribution is, in most instances, disregarded.18,24–27

Nevertheless, the mechanophone effect cannot be neglected in general,
as recently demonstrated for the case of carbon nanotubes immersed
in water.20 Once the size and composition of the nanoparticles and of
the surrounding liquid are fixed by the specific application constraints,
the relative contributions of the thermophone vs mechanophone
effects may be tuned upon varying the TBR at the nanoparticle/liquid
interface (interface engineering) and sL, their interplay making the
focus of the present work.

We theoretically investigate the role of the thermophone and
mechanophone effects in acoustic wave generation for the paradig-
matic case of a water-immersed gold nanocylinder (GNC) of radius
Rgnc¼ 10nm and of high aspect ratio, because of their relevance in
bio-medical applications.28–34 Formally, the GNC is assumed infinitely
extended along its axis, the problem thus being radially symmetric
with r the radial coordinate. The model, detailed in the supplementary
material, comprises three steps: optics, thermics, and mechanics. As
for the optics, the system, at equilibrium at t¼ 0 s, is excited with a
laser pulse at 530 nm wavelength, i.e., within water transparency win-
dow. The light intensity (W/m2) has a Gaussian intensity profile,

IðtÞ ¼ 2
ffiffiffiffiffiffiffiffi
ln ð2Þ

p

q
U
sL
exp ½�4 ln ð2Þ ðt�t0Þ

2

s2L
�, where U ¼ 10 J/m2 is the pulse

fluence, which is kept constant for all sL values, with sL¼ 1ns, 100 ps,
10 ps its temporal full-width-half-maximum, while the pulse temporal
peak occurs at t0 ¼ 3sL. We then calculate the absorbed power den-
sity, via the GNC absorption cross section, that serves as the source
term for the thermics. The temperature T(r, t) throughout the system
(both GNC and water) is then obtained solving the thermal diffusion
equation while imposing the continuity of the heat flux at the GNC/
water interface, ~q ¼ 1

r
½TðRgnc�; tÞ � TðRgncþ; tÞ�̂r , which is con-

trolled by the TBR, r, with TðRgnc6; tÞ the temperature at the inner
(�) and outer (þ) side of the interface and r̂ its normal vector. T(r, t)
serves as the source terms for the mechanics via the thermal expansion
coefficients of both the GNC and water, ultimately yielding the pres-
sure, p(r, t), and the radial velocity field, vrðr; tÞ in water. With p and
vr at hand, the acoustic Poynting vector, P (W/m2), and from it the
mechanical energy radiated in water, U, are retrieved. The thermo-
phone and mechanophone contributions to the total p(r, t) and U are
calculated forcing to zero the GNC and water thermal expansion coef-
ficients, respectively.

The first conclusion that can be drawn from simulation results
is that the mechanophone effect needs to be accounted for. Figure 1
shows p(t) in water, 5 nm from the GNC/water interface, together
with the thermophone and mechanophone contributions. The results
are for the case of sL ¼ 1 ns and r ¼ 1� 10�7 m2K/W. The latter
is representative of the general cases that might be encountered: its
order of magnitude falls between that of the Au/water, 1� 10�8

m2K/W,18,35–37 and that of the graphene-functionalized Au/water
interface, which has been predicted to be � 2 orders of magnitude
smaller,38 we therefore take 1� 10�6 m2K/W. The thermophone
and the mechanophone contributions have similar amplitudes, thus
both contributing to the total pressure signal.

We now address the role played by the TBR and sL in the relative
contribution between these two launching mechanisms. On the
thermal side, upon absorption of the laser pulse, the GNC raises its

temperature on a timescale sL. It cools down on a timescale sth trans-
ferring heat to the proximal water and raising the temperature of the
latter. Finally, the GNC and the proximal water diffuse heat to distant
water, relaxing to the initial temperature. The timescale sth has contri-
butions from the TBR and heat diffusion effects arising from the GNC
and proximal water thermal impedances.39 We now discuss what
might be intuitively foreseen in the two extreme-case scenarios.

For sth � sL, energy from the laser pulse is delivered to the GNC
on a timescale sL, and, only after a time �sth, the GNC temperature
decreases substantially, while delivering heat to the proximal water.
That is, on a timescale sth we should expect a high-temperature GNC,
thermally isolated from the surrounding water still at its ambient tem-
perature. On the mechanics side, the thermal expansion of the GNC
should be at its maximum. On the contrary, the contribution of water
thermal expansion should be at a minimum and set in on a timescale
exceeding sth. The relevance of the mechanophone effect with respect
to the thermophone should thus be highest for cases in which
sth � sL.

For sth � sL, the situation is the opposite. The laser feeds energy
to the GNC on a timescale sL, whereas the GNC delivers energy to the
proximal water on a much faster timescale, sth: the GNC absorbs
energy from the laser pulse and concomitantly delivers it to the proxi-
mal water. In this scenario, the peak GNC temperature should be at its
minimum, whereas the proximal water temperature should reach its
greatest value. Accordingly, on the mechanics side, the peak thermal
expansion of the GNC should be at its minimum and that of proximal
water at its maximum. The relevance of the mechanophone effect with
respect to the thermophone should thus be lowest for sth � sL.

In first instance, the ratio sth=sL therefore appears as a meaning-
ful metric to inspect the thermophone to mechanophone transition.
The TBR is though the onlymaterial parameter that can be tuned,40–56

the thermal properties of the GNC and water being fixed. Under a
practical stand-point, it is therefore desirable to parameterize the prob-
lem in terms of a thermal decay time linked to the TBR only, rather
than to sth, which comprises also the effect of proximal water and
GNC thermal impedances. To this end, we link the TBR to the thermal
decay time through the expression sTBR ¼ rRgnccpq=2, with cp and q
the Au specific heat and mass density, respectively. This relation is

FIG. 1. Left axis: pressure time evolution in water at r ¼ Rgnc þ 5 nm for sL ¼ 1
ns, r ¼ 1� 10�7 m2K/W. The curves are normalized to the total pressure maxi-
mum. Right axis: I(t) (red dashed curve).
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somewhat approximate;57 nevertheless, it has the merit of providing a
rule-of-thumb estimate. In the following, we therefore parameterize
simulations results in terms of sTBR=sL rather than sth=sL. We now
inspect what happens varying the TBR for a fixed laser pulse duration.

Nanosecond regime. Figure 2 shows the GNC (a) and the proxi-
mal water (b) temperature dynamics. The curves are calculated for a
fixed value of sL ¼ 1ns while varying the TBR, from 10�5 to 10�9

m2K/W, so as to cover the range of sTBR=sL from 10�2 to 102. For
increasing sTBR=sL, the GNC maximum temperature, maxfTgncðtÞg,
increases from 305 to 377K, whereas that of proximal water,
maxfTwðtÞg, decreases from 300 to 293K.

The implications of the thermal problem on the competition
between the thermophone and mechanophone contributions are
shown in panel (c). The histogram shows the mechanical energy radi-
ated in water by the sole thermophone (azure) and sole mechano-
phone (mustard) effects as a function of sTBR=sL (bottom axis) and
TBR (top axis). Energies are normalized to the maximum mechanical
energy observed in water in our simulations (i.e., the thermophone
contribution of the sL ¼ 10 ps, sTBR=sL ¼ 10�11 case that will be
described later). For increasing values of the TBR, acoustic wave gener-
ation in water switches from thermophone-dominated for sTBR=sL
� 1, to mechanophone-dominated for sTBR=sL � 1, sTBR=sL � 1
being a crossover value between the two regimes.

In real case scenarios, the TBR can be tuned engineering the
GNC/water interface, and the acoustic wave launching mechanism
accordingly, switching for instance from the thermophone for the bare
Au/water interface, to the mechanophone for the graphene-
functionalized Au/water interface, which cases are indicated by the
two inset sketches.

So far, we spanned sTBR=sL for a fixed value of sL while varying
the TBR. The question then arises as to whether a similar physics holds
true also for shorter laser pulses, thus eventually allowing for an addi-
tional knob, sL, to select the launching mechanism.

Picosecond regime. Figures 3 and 4 are analogous to Fig. 2 but for
the cases of sL¼ 100 and 10 ps, respectively. For sake of comparison,
the TBR is now varied from 10�6 to 10�10 m2K/W and from 10�7 to
10�11 m2K/W for the case sL¼ 100 and 10 ps, respectively. These
changes allow covering the same range of sTBR=sL as for the case of
the 1 ns laser pulse. On the thermal side, Figs. 3(a) and 3(b) and Figs.
4(a) and 4(b) encompass the general trend observed in Figs. 2(a) and
2(b): for increasing sTBR=sL; maxfTgncðtÞg increases whereas
maxfTwðtÞg decreases. While reducing sL, a relevant parameter for
the following discussion is dTgnc, defined as the difference between the
GNC peak temperatures between the cases of sTBR=sL ¼ 102 and
10�2. dTgnc ranges from 72K for sL¼ 1ns, to 27K for sL¼ 10 ps,
because of the increase in the peak temperature for the case of sTBR=sL
¼ 10�2 while transitioning from Fig. 2(a), across Fig. 3(a) to Fig. 4(a).
Among the physical reasons behind this trend is that reducing sL for a
fixed value of sTBR=sL ¼ 10�2 implies reducing the TBR, eventually to
a point where the interfacial heat transfer is no more the limiting pro-
cess, the GNC and the proximal water thermal impedances remaining
as the only factors controlling the thermal dynamics.58

The implications of the thermal problem on the competition
between the thermophone and mechanophone contributions are
shown in panel (c) of Figs. 3 and 4, for sL¼ 100 and 10 ps, respec-
tively. The striking difference, comparing Figs. 2(c), 3(c), and 4(c),
is that the mechanophone contribution dependence on sth=sL
weakens substantially upon reducing the pulse temporal width; not

FIG. 2. Laser pulse: sL ¼ 1 ns. Panels (a) and (b): temperature time evolution, for increasing values of sTBR=sL and the corresponding TBR values, in the GNC (r¼ 0 nm):
panel (a); in proximal water (r ¼ Rgnc þ 5 nm): panel (b). Right axis: I(t) (red dashed line) maximum at the time t0. dTgnc: difference between the GNC peak temperatures
between the cases of sTBR=sL � 100 and 0.01. Panel (c): normalized mechanical energy generated in water by the thermophone and the mechanophone effects for different
sTBR=sL (bottom axis) and the corresponding TBRs (top axis). The ratios sTBR=sL are rounded to the first significant figure. Values for Au/water and graphene-functionalized
Au/water interface are identified by the two round sketches.
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so for the thermophone contribution. Indeed, for the sL¼ 1 ns
case, the mechanophone contribution changes by more than an
order of magnitude when increasing sTBR=sL from 10�2 to 102,
whereas it changes by a factor of �2 for the sL¼ 10 ps case. The
physical reason stands in the thermal problem. The mechanophone
effect is triggered by the GNC thermal expansion. The shorter the
laser pulse, the smaller is dTgnc, implying that the peak GNC

temperature becomes rather insensitive to the ratio sTBR=sL, and
the GNC thermal expansion accordingly.

When exciting with a 100 ps laser pulse, the mechanophone
contribution to the radiated acoustic energy in water raises to 23%
for the Au GNC/water interface and dominates the graphene-
functionalized GNC/water interface, see Fig. 3(c). Further reducing
the pulse duration to 10 ps, the mechanophone effect becomes the

FIG. 3. Laser pulse: sL ¼ 100 ps. Same caption as for Fig. 2. The TBR values are varied so as to span the same values of sTBR=sL as for the 1 ns pulse case.

FIG. 4. Laser pulse: sL ¼ 10 ps. Same caption as for Fig. 2. The TBR values are varied so as to span the same values of sTBR=sL as for the 1 ns pulse case. In panel (c) the
case of the graphene-functionalized Au/water interface is here dominated by the mechanophone effect and is hence not reported.
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prevailing mechanism also for the Au GNC/water interface, see
Fig. 4(c).59

In conclusion, we showed, for the case of a water-immersed
Au nanocylinder, that the TBR and the laser pulse duration are two
valuable control knobs, allowing us to switch the acoustic wave
launching mechanism in water from the thermophone to the
mechanophone. The Au/water and graphene-functionalized Au/
water interfaces were discussed as realistic show-case scenarios.
Importantly, when the mechanophone is the dominant launching
effect, the surrounding water temperature increase is minimized.
These findings, thus, bear particular importance in situations
requiring high frequency acoustic wave generation in water (i.e.,
short sL) while avoiding heating effects of the latter, as is the case
for in vivo bioimaging and theranostics applications at the nano-
scale. It is noteworthy that these findings may be expanded to
include other nanosystems.60,61

See the supplementary material for the details on the simulations
design.
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