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In this work the electrical response of a mixture composed of dielectrically nonlinear ellipsoids
dispersed in a linear matrix is modeled. The inclusions may be randomly oriented. The aim is both
to set up a methodology apt to deal with this kind of system and to use it to study the effect of
marked nonsphericity of inclusions on the global behavior of a mixture. The results are quite
interesting from both these points of view. The method here developed extends the Maxwell-Garnett
theory [A Treatise on Electricity and Magnetism (Clarendon, Oxford, 1881)], which deals with
dielectrically linear inclusions, and it allows, inter alia, to obtain a closed-form expression for the
hypersusceptibility ratio of the mixture to the dispersed inclusions. These latter can range from
cylinders to spheres, already present in the literature, to “penny-shaped” particles. The theoretical
framework is based on the assumption that the dispersion is very dilute. We were able to show that
in a specific case, when oblate particles such as elliptic lamellae are dispersed in a matrix having
dielectric constant lower than the linear term of inclusion permittivity, a remarkable nonlinear effect
occurs. This theory finds application in fields such as nonlinear optics and, more broadly, in many

branches of material science. © 2005 American Institute of Physics. [DOI: 10.1063/1.2128689]

I. INTRODUCTION

In recent material science development, considerable at-
tention has been devoted to electromagnetically nonlinear
composite structures due to their applications, for instance,
to integrated optical devices (such as optical switching and
signal processing devices).'™ More specifically, intrinsic op-
tical bistability has been extensively studied theoretically as
well as experimentally with the help of mixture theory.4’5 In
all of these cases, a linear medium has been considered con-
taining spherical inclusions randomly located, or at most
spheroidal inclusions having fixed orientation.

Historically, the first studies characterizing mixtures, in
terms of their constituting phase properties and the underly-
ing microstructure, concerned linear inclusions immersed in
linear matrices. In the current literature, Maxwell’s relation
for linear spheresf”7 and Fricke’s expressions for linear
ellipsoids&9 form the so-called Maxwell-Garnett effective-
medium theory:lo’11 both cases are derived under the hypoth-
esis of very low concentration of the linear dispersed com-
ponent. The so-called Bruggeman or differential technique
can be then applied to generalize these results to the case of
larger volume fractions.'>'* A lot of work has also been de-
voted to describing the relationship between microstructure
and subsequent macroscopic properties; for instance, Bianco
and Parodi applied a functional unifying approach to capture
the intrinsic mathematical properties of a general mixing
formula."* A fundamental result is given by the Hashin-
Shtrikman variational analysis,15 which provides upper and
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lower bounds for composite materials, irrespective of their
microstructure. Finally, the relation between the spatial cor-
relation function of the dispersed component and the global
properties of the material was derived via the Brown
expansion.16

Recent progress in this field can be ascribed to Gon-
charenko et al.,17 who dealt with dielectrically linear and
nonlinear spheroidal inclusions of geometric factors probabi-
listically distributed. Then Lakhtakia and Mackay studied the
size-dependent Bruggeman theory, which considers the ef-
fective particle dimension for nondilute dispersions.18 Fur-
thermore, a wide survey of mixture theory applications has
been made by Mackay,19 when he analyzed the peculiar
properties exhibited by metamaterials. Important results con-
cerning a dispersion of dielectrically nonlinear and graded
parallel cylinders have been achieved by Wei and wu.?

Our aim is to extend previous work and to explore the
importance of inclusion shape in this context. This is
achieved by analyzing the effect of either weak or strong
nonsphericity of the particles on the nonlinear behavior of
the whole composite material. To do this, we consider a dis-
persion of dielectrically nonlinear ellipsoidal particles, con-
cisely stated as “nonlinear” throughout the paper, randomly
oriented in a (dielectrically) linear matrix and we then de-
velop a mathematical procedure to perform the needed aver-
ages of the electric quantities over all orientations of the
inclusions.

This analysis leads to the nonlinear constitutive equation
connecting the macroscopic electric displacement to the
macroscopic electric field. It is worth pointing out that, as it
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FIG. 1. Schematic of a dielectrically nonlinear sphere immersed in an ex-
ternal uniform field E,: a uniform field E; appears inside the particle.

is frequent in this field, the results of this work have been
derived under electrostatic assumption, but they hold valid
also in the low-frequency regime, as long as the wavelength
is much larger than the largest dimension of the inclusion.

This work explores a wide range of inclusion shapes and
presents a random orientation of the particles.

Il. METHODOLOGICAL APPROACH

For the sake of clarity in exposition, we will describe
how the approach tackles problems of increasing complexity.

A. Field perturbation due to one single nonlinear
spherical inclusion in a uniform field

A nonlinear isotropic and homogenous sphere can be
described from the electrical point of view by the constitu-
tive equation

D=¢(E)E, (1)

where D is the electric displacement inside the particle, E is
the electric field, and the function & depends only on the
modulus E of E. This latter property accounts for the fact
that the medium inside the ellipsoid is isotropic and homog-
enous. Let us now place this inclusion in a linear matrix
characterized by permittivity &, (see Fig. 1) and let us calcu-
late the field inside the spherical inclusion when a uniform
external field E is applied to the system. If the particle were
linear, in the dielectric sense, with permittivity &,, we would
have, inside the sphere, a uniform Lorentz electric field E|
given by the well-known formula®'

E‘_y = 3E081/(281 + 82). (2)

Conversely, if the sphere were electrically nonlinear, it is
easy to prove that the internal field would satisfy the equa-
tion

E =3Eje /[28, + &(E,)]. (3)

This is true since the electric field E| fulfilling Eq. (3) satis-
fies both Maxwell’s laws and the boundary conditions at the
inclusion surface as its linear counterpart (2) does when &,
=¢&(E,). This very simple observation has, however, several
interesting consequences in the field of nonlinear mixtures.
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B. Field perturbation due to one single nonlinear
ellipsoidal inclusion in a uniform field

Here we present a general solution to the problem of a
nonlinear ellipsoidal particle embedded in a linear material.
The theory is based on the following result derived for the
linear case, which describes the behavior of one electrically
linear ellipsoidal particle of permittivity &, in a linear homo-
geneous medium of permittivity &;. Let the axes of the ellip-
soid be I,, I, and [, (aligned with axes x, y, and z of the
ellipsoid reference frame) and let a uniform electric field
Eo=(E,,Eo,,E,) be applied to the structure. Then, accord-
ing to Stratton,” the electric field E;=(E,,,E,,,E,;) inside
the ellipsoid is uniform and it can be expressed as follows:

Ey;

Ej=——""—"". 4
5t 1+Li(82/8]—1) ( )

Here, and throughout the paper, the index i takes the x, y, and
z values. The expressions for the depolarization factors L; in
the case of generally shaped ellipsoid can be found in the
literature. They can be expressed in terms of elliptic inte-
grals under the assumption that 0</,</,<[,, and having
defined eccentricities as follows: 0<e=1[,//,<1 and 0<g
=1,/1,<1. The condition L,+L,+L_=1 is always fulfilled.
Let us now generalize this result to the case where a
dielectrically nonlinear ellipsoid is embedded in the linear
matrix. The main result follows: the electric field inside the
inclusion is uniform even in the nonlinear case and it may be
calculated by means of the following system of equations:

B = Ey;
U1+ LeE)e -17

Vi, (5)

where, as before, E is a uniform electric field applied to the
structure and E,, the unknown in the nonlinear system (5), is
a uniform field as well. This property holds true due to the
same reasons as in Sec. II A: if a solution of (5) exists, due to
self-consistency, all the boundary conditions are fulfilled and
the problem is completely analogous to its linear counterpart,
treated by Stratton,”’ provided that e,=¢(E,).

C. Algorithm convergence and physical constraints

An interesting aspect related to the problem faced in this
work shows up when one considers, for spherical inclusions,
the nonlinear equation (3) and tries to solve it iteratively.
This means that, in order to solve for E,, one starts with a
given initial value ESO, and one uses the successive approxi-
mations described by the iteration rule,

E/" =3Ee /[26, + (E,")]. (6)

In what follows we provide a sufficient convergence cri-
terion for a more general iterative scheme applicable to di-
electrically nonlinear ellipsoids. It can be derived from the
nonlinear system (5). The system is in the form Ej;
=fiEs.E,,,E,;) and the iteration rule takes the form

n+l _ E()i
¥ L+ Le([E")/e, - 1]

(7
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To investigate the behavior of this convergence process,
we recall a well-known property holding for vector se-
quences: let ES* be a fixed point (or equilibrium point) for
the sequence E /' =f(E_") [so that E_"=f(E,")]; such a point
is said to be locally asymptotically stable if the iterations
lead to E," for a suitable set of starting values E . Then, the
local asymptotic stability is guaranteed if the Jacobian matrix
of f, evaluated at EX=ES*, has all the eigenvalues with an
absolute value strictly less than 1.2 We leave in Appendix A
the details of the calculations that lead to the following suf-
ficient convergence criterion: the iteration rule given by Eq.
(7) is convergent to the exact internal electric field if the
nonlinear material of the ellipsoid fulfills the condition
[(E/€)(9el IE)| < 1.

It is quite intriguing to see how several physical proper-
ties correlate with this convergence condition; in this regard
one can separate this condition in two different statements.
The first one is (E/g)(de/JE)>—1 that can be recast, by
means of Eq. (1), to the form dD/JE>0. This relation ex-
presses a general property of the permittivity function, al-
ways fulfilled in real materials.” The second condition is
(El€)(deldE) < 1. This is surely satisfied whenever de/JE
<0, therefore, for instance, in all materials where the Lange-
vin model of dipole generation and orientation applies, such
as water.”* In a more general context, one can describe non-
linear dielectric materials by means of the so-called Kerr
nonlinearity relation, often adopted in metamaterials study,19

e(E) =&, + aE?, (8)

which assumes that €, and « are constant. The Kerr nonlin-
earity is termed focusing or defocusing according to the fact
that >0 or <0, respectively.25 It is straightforward to
verify that the convergence condition (E/&)(de/dE)<1 is
always verified for defocusing Kerr nonlinearity and is veri-
fied only if E S2<82/ a (we remind the reader that here E; is
the modulus of the actual electric field inside the inclusion)
in the case of focusing nonlinearity.

To test the iteration scheme, we considered a water el-
lipsoidal drop placed in a rigid linear homogeneous matrix
not allowing for droplet deformation. A permittivity function
that describes remarkably well the nonlinear water behavior
and fulfills the above-mentioned conditions is the
following:%’27

8(0)2 _ g(oo)z 172

— | o(00)2
e(E) = | &(®)"+ oy

: )
where £()=6g,£(0)=80g, and y=6.49 X 10718 m?/V? (g,
is the vacuum permittivity). These parameters fit well the
water behavior at an absolute temperature of 298 °K and in
a frequency range going from the static case to approxi-
mately 1 GHz.

In Fig. 2 one can find an example of iterative process
applied to an ellipsoid, with depolarizing factors L,=0.1,
L,=0.3, and L,=0.6, that is immersed in a uniform electric
field with components Egp=-5X10° V/m, Ej =5
X 10° V/m, and E;,=-3X10° V/m. The particle is de-
scribed by the constitutive relation (9) and the linear matrix
has permittivity &,=35g,. The first plot represents the con-
vergence of the iterations described in Eq. (7), while the
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FIG. 2. Example of iterative process applied to an ellipsoid with specified
depolarizing factors to the given uniform electric field. The particle is de-
scribed by the nonlinear constitutive relation given in Eq. (9) (water) and it
is embedded in a linear medium with permittivity ;. The first plot repre-
sents the convergence of the iterations described in Eq. (7), while the second
one represents the behavior of the permittivity vs the iteration number.

second one represents the behavior of the permittivity versus
the iterations number. In all the tests we made, only few
iterative steps were sufficient to reach good convergence.

D. Maxwell-Garnett mixtures of nonlinear
ellipsoids

The aim of this subsection is to extend the results, hold-
ing for a single inclusion, to a mixture of randomly oriented
nonlinear ellipsoids in a linear homogeneous matrix (see Fig.
3).

The permittivity of the inclusions is described by the
isotropic nonlinear relation (8) and the linear matrix has per-
mittivity &;; the overall permittivity function of the disper-
sion is expected to be isotropic because of the random ori-
entation of the particles and therefore it can be expanded in a
series with respect to the field modulus &(E)=g.,+BE*
+8E*+- -+, where the coefficients &eq (the subscript “eq”
points out the equivalent character of the term), B, and &
depend on various parameters of the mixture such as the
eccentricities of the ellipsoids, the volume fraction ¢ of the
included phase, and the permittivities €, €,, and a. The ho-
mogenization procedure should provide the coefficients &g,
B, and ¢ in terms of the mentioned parameters. In the tech-
nical literature, the coefficients @ and B of the first nonlinear
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FIG. 3. (Color online) Structure of a dispersion of randomly oriented ellip-
soids. We used a spherical boundary just as an example of a closed surface
containing the mixture. This refers to the volume V defined in Sec. II D 2.

term of the expanded constitutive equations for inclusions
and mixture, respectively, are often called hyper-
susceptibilities.23

The main achievement of this work is the derivation of a
closed-form expression for the hypersusceptibility ratio 8/ a.
This quantity is of interest inasmuch as it represents the am-
plification of the composite material nonlinear behavior with
respect to that of the inclusions. The expression is derived
under the assumption of a Kerr-like constitutive equation of
the composite medium, is of the form &(E) =&+ BE?, which
neglects higher-order terms. All the computations are carried
out under the same hypothesis underlying the linear
Maxwell-Garnett theory,11 that is, low concentration ¢ of the
dispersed phase.

1. Average electric field inside a single randomly
oriented inclusion

To begin the analysis, we substitute Eq. (8), holding for
a single ellipsoid, in Eq. (5),
& Ey;

E ;= . 10
" e +Le—e +alE+E ] +E7)] (1o

This is an algebraic system of degree nine with three un-
knowns, namely, E,, E,, and E. It might be hard, if not
impossible, to be solved analytically, but we are interested,
for our purposes, in just the first terms of a series expansion
for the solution. To obtain it, we may symbolically use the
iteration scheme defined in Eq. (7) or we may adopt the
ansatz E;=N;Ey;+ ,uiEof and solve for \; and u;. For the sake
of brevity, we omit here the simple but long calculation,
which leads to the solution

e1Ey; ag’LEy;
Esi = - 2
(1-Lye;+Ligy, [(1-L)e;+Ls,]
E,’
x> : + O(|[Eq|[*). (11)
j [(1 —Lj)sl +Lj82]2 0

We observe that the first term represents the classical
Lorentz field appearing in a dielectrically linear ellipsoidal
inclusion. The second term is the first nonlinear contribution,
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which is directly proportional to the inclusion hypersuscep-
tibility a. To simplify the expressions, from now on, we will
use the notation a;=(1-L,)e;+L;&,.

To derive the mixture behavior, we need to calculate the
electric field of a single nonlinear ellipsoidal inclusion arbi-
trarily oriented in space and embedded in a homogeneous
medium with permittivity ;. In order to do this, we shall
express Eq. (11) in the global framework of reference of the
mixture. We define three unit vectors, indicating the principal
directions of each ellipsoid in space: they are referred to as
Ay ﬁy, and 71, and they correspond to the axes /,, Ly, and [, of
the ellipsoid. By using Eq. (11), we may compute the electric
field, induced by a given external arbitrary uniform electric
field, inside the inclusion (from now on we will omit the
additional higher-order terms),

E0~ﬁ,~ ae 3LiE0'ﬁi (Eoﬁ)z .
] - : 2 E 21 n;. (]2)

4i i i i

E=3|"
1
We shall now average it over all the possible orientations of
the particle. The averaging method used is quite interesting
and of general applicability but it is also a bit cumbersome,
so we leave it in Appendix B. The result of the process is

(E,) =Eq(e\M — as*E)’N), (13)

where M and N depend on the linear term of the permittivi-
ties and on the geometry of the inclusions and are defined in
Appendix B, Eq. (B9). We note that the average field inside
the particle is aligned with the external field and thus the
average behavior of the inclusion is isotropic; in contrast,
from Eq. (12) it follows that the electric field inside the el-
lipsoid is not aligned with the external one when a given
orientation is kept fixed for the particle itself.

2. Averaging process in a dilute mixture

If we now consider a mixture with a volume fraction ¢
<1 of randomly oriented, dielectrically nonlinear, ellipsoids
embedded in a homogeneous matrix with permittivity &;, we
can evaluate a different kind of average, the one of the elec-
tric field over all of the space occupied by the mixture. It can
be done via the following relationship:

(E) =c(Ep + (1 - 0)E,. (14)

This means that we do not take into account the interactions
among the inclusions because of the very low concentration:
each ellipsoid behaves as an isolated one. Once more, to
derive Eq. (14), we assume an approximately uniform elec-
tric field E in the space outside the inclusions.

To evaluate the equivalent constitutive equation, we
compute the average value of the displacement vector inside
the random material. V is defined as the total volume occu-
pied by the mixture, V, as the region occupied by the inclu-
sions, and V, as the remaining space (so that V=V,UV,).
The average value of D(r)=¢E(r) is evaluated as follows (D
and E represent the local fields, and (D) and (E) their mac-
roscopic counterparts):
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(D)= | vl eE(r)dr
1
= Msl E(r)a’r +— | vil, sE(r)dr

:ﬁe]f E(r)dr+| | J E(r)dr

|V|f (e —&)E(r)dr =& /(E) + c([e(E,)

_Sl]Es>- (15)

It can be noted that the average value given by ([e(|[E,||)
—g,]E,) is not available from the previous computations and
it must be calculated ex novo, this is done in Appendix C,
leading to the following result:

(D)=81<E>+csl(82—sl)MEo+casl4PE02E0, (16)
where P is defined in Appendix C, Eq. (C6). From Egs. (13),
(14), and (16) it follows that all the averaged vectorial quan-
tities are aligned with E, therefore, we can continue our
computations with scalar quantities; moreover, from now on,
we will leave out the average symbols (-).

Equations (13), (14), and (16) may then be rewritten as

E ;=8 MEy— ag,’E,'N, (17)

E=cE;+ (1 -0)E,

D=gE+ce(ey—e;)MEy+ ca814PE03.

These are the main equations describing the overall mix-
ture behavior. We shall recall the approximations introduced
to obtain them: the second equation, dealing with the average
value of the electric field, has been deduced under the hy-
pothesis of low concentration. The first and third equations
are exact from the volume fraction point of view, but they are
approximated from the nonlinearity point of view: in fact,
they account just for the first nonlinear terms. By solving
system (17), we search for a relation between D and E char-
acterizing the nonlinear mixture. By eliminating E from the
first two relationships, we obtain

E=(1 —c+cslM)E0—ca813NE03. (18)
We now need to solve the previous equation with respect to
E,: for our purposes it is sufficient to obtain a series solution
with two terms and thus we let Eg=\E+uE>, we substitute it
in Eq. (18), and we solve for the unknown coefficients; the
result is

E ccvslSNE3
+ .
(1-c+ce;M)  (1-c+ceM)*

Ey= (19)

The final result is obtained by substituting Eq. (19) in the
third equation of system (17) and neglecting the powers of E
greater than 3,
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D=¢,E+cs( | —E
TaETeEe e (1-c+ce M)

NE? E?
L4}+casl4P—3. (20)
(1-c+ce M) (1=c+ce M)

lll. RESULTS

Our technique was applied to a dispersion of ellipsoids
described by Eq. (8), with volume fraction ¢ and embedded
in a homogeneous matrix with permittivity &;; this has led to
the nonlinear constitutive Eq. (20) for the composite medium
in the form D=¢(E)E=(g, +,8E2)E, where

C81(82 )M 1 —c+ce,M

, 21
Feg =1 (1—c+cs1M) 811—c+c<91M @)

B 4 Prcl(e;—8)MN+P(eM—1)]
a_csl (1-c+ce,M)* ’ 22)

The already mentioned quantities M, N, and P, defined
in Appendixes B and C, depend only on geometrical factors
(ellipsoid eccentricities) and on the linear terms of the per-
mittivities.

Equation (21), giving the linear approximation for the
permittivity, coincides with the Maxwell-Garnett formula for
a dispersion of ellipsoids.13 Equation (22) represents the
mixture to inclusion hypersusceptibility ratio. The first-order
expansion with respect to the volume fraction [from Eq.
(20)] is

e(E)=¢,+[e;(ey— )M+ (1814PE2]C. (23)

The methodology was applied to examine the actual ef-
fects of particle nonsphericity on mixtures. In Figs. 4 and 5
we show plots of the properties of the overall mixture as a
function of the eccentricities of the ellipsoids composing the
mixture itself. In Fig. 4 one can see the plots of the quantities
€e/€1 and B/ a versus the eccentricities, which define the
shape of the particles, derived from Egs. (21) and (22) with
g,=1, &,=10, and c¢=1/5. In Fig. 5 the same plots are de-
rived with the following parameter values: e,=10, g,=1, and
c=1/5. In both cases we may observe that the amplification
of the hypersusceptibility assumes the greatest values when
dealing with planar nonlinear particles (elliptic lamellae).
More surprisingly, hypersusceptibility ratio tends to assume
its highest values (greater than 50) when &, > ¢,.

In order to better capture the behavior of the system, the
analysis of the simplified expression (23) can be quite useful,
indeed. For instance, one can see that mixture electric behav-
ior versus inclusion shape is mostly based on the parameters
M and P. More precisely, the dependence of &, on the in-
clusion shape acts through the M parameter, while the de-
pendence of the ratio B/a on the inclusion shape acts
through the P parameter.

Thus, peculiarities exhibited in correspondence of a
given pair of eccentricities must follow the complex math-
ematical structure of P and M, which, in turn, depend only
on geometrical factors and the linear permittivities €, and &,.

In particular, we observe that the difference e.q—¢; is pro-
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FIG. 4. (Color online) Plots of the surfaces ../, and B/« [Eqs. (21) and
(22)] vs the eccentricities which define the shape of the particles with g,
=1, &,=10, and c=1/5.

portional to &,—¢&;: this fact explains the different behaviors
shown by &, in Figs. 4(a) and 5(a). In agreement with this,
in Fig. 4(a), where ¢, is greater than &, the penny-shaped
particles lead to the highest value for g.4; consistently, in Fig.
4(b), where &, is less than g, the penny-shaped particles
exhibit the lowest equivalent, e.g., effective, linear permittiv-
ity.

In a similar manner, we may observe that the ratio B/«
is proportional to the fourth power of &;: this explains why
the B/ a behavior is so loosely dependent on &,/¢&; [see Figs.
4(b) and 5(b)]; nonetheless, the amplification is very sensi-
tive to large values of €, as it is shown in Fig. 5(b).

Using Egs. (21) and (22) we derived the electrostatic
behavior in the following specific and meaningful cases.

A. Dispersion of spheres

If we use the depolarization factors for spherical objects
(L,=Ly=L,=1/3) we obtain the simplified expression

Seq

2e;+&,—2c(e; —&,)

E)=¢
s(E) =& 2e;+ey+cle —gy)

BE?
81c314aE2

¥ [2e) + &, + c(e) — £2)] (24)
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FIG. 5. (Color online) As for Fig. 4 but with £,=10, &,=1, and ¢=1/5. The
amplification of the hypersusceptibility assumes the greatest values when
&1>¢g, and we are dealing with elliptic lamellae.

which corresponds to the following hypersusceptibility ratio,
already derived by Yu et al.:!

B 81cs14 <Seq+281>4

- = =C
a [2&e,+ey+c(e;—g)] £y + 28

(25)

It is interesting to observe that Egs. (24) and (25) are
also true for c=1; in this case (very high volume fraction of
inclusions) the procedure is not expected to be valid but
nonetheless the result appears to be exact, at least for
spheres. It follows that the first-order expansion of Eq. (21)
for low values of the volume fraction, c, is

81cs]4aE2
+ .
(281 + 82)4

€1—&

e(E) =g, - 3cg, (26)

281 +&

When dealing with spherical inclusions, the issue of par-

ticle orientation does not occur; we then have derived the

following more accurate expression, via a long but straight-
forward calculation here omitted for the sake of brevity:

281 +&— 2C(81 - 82)

eq(E)=¢
eq( ) 1281+82+C(81—82)

816‘814(1’E2
+
[2e,+ey+c(e,—&)]*
2187¢(1 — c)sl6a2E4
[2e,+e,+c(e;—&)]

(27)

The first two right-hand-side terms are in perfect agreement
with those appearing in Eq. (24). It is interesting to notice
that the third term, a nonlinear perturbation of degree four,
does not affect the exact results for c=0 nor c=1.
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B. Dispersion of cylinders

We adopt the depolarization factors for strongly prolate
particles (L,=L,=1/2, L.=0) and we obtain the expression
&1[3(e; +85) —3c(e — &) —ceyle — &) 9

E)= +—cakE?
8( ) 3(81+82)+2C(81—82) Sca

9¢," +368,°e; + 1028,%e,* + 1328,¢,° + 441g,*
[3(e) + &) +2c(g) - 82)]4
18 2(3822+ 1088, + 238,)(s, — £,)?

-—c’a ) 28
SC E [3(g) + &) +2c(g; — &, ]* (28)

The corresponding expansion to first order in the volume
fraction c is

J. Appl. Phys. 98, 104101 (2005)

(5e1+8)(e;—gy) 1

e(E)=¢g,—-c —caFE?
( ) ! 3(81+82) 45
y 9¢," +368,°e, + 102,78 ,” + 13285, + 441g,*
(g, +&y)* '

(29)

C. Dispersion of strongly oblate (planar)
particles

We consider the depolarization factors for “penny-
shaped” or strongly oblate particles (L,=1, L,=L,=0) and
we obtain the expression

3e,-2c(e;—gy) 9
—+-c

E)=
o(E) 82382+C(81—82) 5

The corresponding expansion to first order in c is

6(81 +2g))(g) — &)

e(E)=g,— 36
2

N LcaE29814 + 12822812 + 24824

31
45 g, (1)

D. Nonlinear ellipsoids having linear permittivity term
coincident with matrix dielectric constant

When &,=¢,, we have M=1/¢g, P=1/814, and N
=1/ (3814) and we obtain from Egs. (21) and (22) the follow-
ing very simple relation:

e(E) =&, + caF’. (32)

In this particular case the relation provides exact results also
for c=1.

IV. CONCLUSIONS AND COMMENTS

In this work we developed the theoretical machinery
which enables us to infer the electrical behavior of a mixture
containing dielectrically nonlinear ellipsoidal inclusions,
provided that the dielectric constant of the linear matrix, the
concentration, and the eccentricities of the ellipsoidal inclu-
sions are known. Our results are based on the assumption of
randomly oriented inclusions. The results for specific cases
of spheres, cylinders, and lamellae have been derived and
placed in the context of the present literature. Besides, the
broader applicability of the method gave us a more complete
view over the influence that inclusion shape has on the glo-
bal behavior. In particular, hypersusceptibility amplification
was taken as a measure of this effect.

29814 + 128,78, + 248, — 2c(4e,” + 2e,8,+ 38,7) (85— £/)?

[Be,+c(e - 82)]4

(30)

Our present activity is focused on extending the method-
ology to deal with higher-concentration values for the inclu-
sions.

APPENDIX A: SUFFICIENT CONDITION FOR THE
CONVERGENCE OF THE ITERATIVE PROCESS

We want to study the convergence behavior of system
(7). We start by computing the derivatives df;/JE,;, which
appear in the Jacobian matrix; a straightforward calculation
provides

&fi SIESjEOiLi de

OE; Ele,+Lie(E) -]} OE

(A1)

where, for the sake of brevity, we have used the notation £
=[|E,.

All the derivatives, will, from now on, be evaluated at
ES:ES* and this fact will be indicated with the symbol *
Therefore, recalling Eq. (5), we may write

. df|" L1oe E
Jij = i =——t—— 5/ aat (A2)
&EVJ 81 E (?E EO[
The Jacobian J may be written in an explicit form as follows:
% - aft :
o7ESj
3 2 2
E E
1 1 1
Ll ES LIES2ES LlEs3ES
01 01 01
110 E,’ . E,’
=———— | LE,; =% L% LEg—*
81 E (?E E02 E()2 E()2
E’ E;’ E}
LiEg =% LiE,—- L2
i Ep3 Ep3 Eps |

(A3)
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It is easy to observe that the second and the third row in
the Jacobian matrix are simply proportional to the first one.
This implies that the rank of the matrix is one. Therefore,
two eigenvalues assume the value zero, which is compatible
with the convergence condition, while the third one is not yet
known. This latter can be derived by subtraction from the
trace of the matrix, remembering that the trace is the sum of
the eigenvalues irrespective of the basis in which the matrix
is expressed.28 Thus, the sole eigenvalue different from zero
has the absolute value given by the expression

110e( E,* E,° Ej
I Ll L2 L3_ .
g EJE\ ~ Ey Ep, Eos

A=

(Ad)

The convergence or stability condition is given by |\|<1
and we search for sufficient conditions to assure this state-
ment. From Eq. (5) we derive the expression

g1Ey—(1-L)g,E;
LiEsi

e(E) = (A5)

We may multiply and divide Eq. (A4) by &(E) obtaining,
with the help of Eq. (A5),

117 1( Esf)
—— =YL=
&

g EJEe\T TEy
— l@l EEOI_(I_L)E”EAZ
EJE ¢ i EOi 5
loel S Ey—(1 - L)E; E2 (A6)
EJE ¢ i EQi s

Once again, from Eq. (5) we have E =g Ey/[(1
—L)e,+L;e(E)] where 1-L;>0 and L;>0; it follows that
E; and E; have the same sign and we may write

Esi €]

€1 1
= <
Ey (1-L)e, +Lie(E)

(1-L)e, 1-L

L

(A7)

0=

s

from which we derive the property (1-L,)E;/Ey<1 or 1
—(1-L)E,/Ey;=0. Then, the absolute value appearing in
the last sum of Eq. (A6) can be evaluated as follows:

EOi - (1 - Li)Esi _ EO[ - (1 - Li)Esi
Ey; - Ey;
Ey| — (1 - L)|E;
— | 01| ( z)| 51| <1. (AS)
|Eoil

Summarizing, the convergence condition simplifies as fol-
lows:

NE 1de1 Epi—(1-L)E;|
EJEe Ey;
1oe1l E os
———|>YEf=|——|<1. (A9)
EJEe|< & JE

J. Appl. Phys. 98, 104101 (2005)

APPENDIX B: ELECTRIC FIELD AVERAGING OVER
ALL ORIENTATIONS

The expression for the internal electric field in (12) can
be rewritten component by component, as follows:

qun

3
E,=S e Eyny  ag; LiEyn; jeEoplip
sk = - 2 2

a; i j aj

Mg,
i

(B1)

where nj is the kth component of the unit vector 7, (j
=x,y,z) and we have considered the implicit sums of [, g,
and p over 1, 2, and 3. For the following derivation, we are
interested in the average value of the electric field E, over all
the possible orientations of the ellipsoid itself and then we
have to compute the following:

(E)= E g1 Eo(nyny)

i

ag, LEOIEO EO <7’l ik >
_E ‘12172 ikl jg" jp (BZ)

j aa]

We are interested in the average values of the quantities
nyng and nyngn;n;,. Performing the integration over the
unit sphere (by means of spherical coordinates) we obtain,
after some straightforward computations, the first result

1
(nynyy = 55”( (i=x,y, and z, not summed). (B3)
The determination of the average value of nyn;n;n;, is
a more complicated task. If i=; we are dealing with a single
unit vector, say, i=(n;,n,,n3), and a long but straightfor-
ward integration leads to the result

1
<nk}’llnq}’lp> = E(ﬁkﬁpq + 5pk5ql + 5pl5qk) . (B4)
If i # j we are dealing with two orthogonal unit vectors,
say, 7 and m=(m,,m,,ms); as before the integration provides

(mymnn,,) = 5k1 ( 1+ OO - (B5)

The results shown in Egs. (B4) and (B5) may be used to
obtain the requested average value of the quantity
AT igh ! in fact, it is equals to Eq. (B4) if i=j and it is
given by Eq. (B3) if i #.
In the end, we may write the final formula

1 1
<nik”11",q jp> = (25k15 55pk5qz - E5pl5qk)

1
—

3 3
- 15 ij _5pk5 5 l5

2 pl%qk

( 81Byq
(B6)

So, Egs. (B3) and (B6) can be used to simplify Eq. (B2),
which gives the average of the electric field inside the ellip-
soid over all its possible orientations. The implicit sums that
appear into this expression can be calculated as follows:
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1 1
Eongngy) = 5E0151k = §E0k9

EgEo Eopnynngn;,)

1 1 1
= EEOIEOqEOP(zgkI(Spq - 55pk5ql - E‘Spl‘sqk)

3 3
- _5;7](6(]1_ _5 5

1
—_E01E0qE0p5y(5kz5pq B B 1 Ogk

15

1 2
= EEOkEO(l + 2511) . (B7)
Finally, after some straightforward calculation we obtain

e 1 ae’E,’
(Esk>=E0k|:§12 ;—A<

1

ij 44

+22 %)} (BS8)

By letting
w1
M==> —,
3% g

l

N——(EE 3 2+2§‘, 4>, (B9)

]

we get the final formula for the average value of the internal
electric field,

(E;) =Eo(e;M — ag’E,°N). (B10)

APPENDIX C: [£(||Eg||)-£,]Es AVERAGING OVER
ALL ORIENTATIONS

We consider a single ellipsoidal nonlinear inclusion and
we search for the average value of the quantity [e(|[E,|)
—&,]E, over all the possible orientations of the particle. From
Egs. (5) and (11) we obtain

[e([E,]) - &, ]E,;
€1
=—(E,—E..
L,‘( 0i sz)
E LE
=ﬂ<E0,»— E1%o0i | & 012 ) 1)
L; a; a; a;

therefore, in vector notation,

& . & E .n"l_
[e([E) - &,]E; = E ZI{EO A - %

+a81LE0 nz(Eo 7))

a,- J j

] (C2)

By taking the kth component in the global reference
framework, we may write

J. Appl. Phys. 98, 104101 (2005)

e1Egn;

€]
[e(|E|) - &1]Eq = > —| Eomi -
i Li a;
3
asl LiEOZnil qunquopnjp>
2 2 R

a; j a;
(C3)
and averaging

(e(E,) - &1)Eu)
= 2 z_liEOI|:<nilnik> -

g {nyny)

i

3
s ag"LiEy,Eonynn;n;,)
= a’a’
J i

3ai

2 81[ e1Ey;
= Eo—

+2 2 2
; 15a;a;

(323
i il

3 i L

as,"LiEgE, (1 + 25,‘;)}

4 2
g EOkE(] 1
* 15 ( i ?%2 z* ;

a;

1
— | C4
ai4) (4
The first term can be simplified observing that

1 1 1
SlEOk_<E — 812 E)

1 a'—Sl
=& Eq> > —

37 aily
Lie,— &)
= 81E0k32 # =g Eqle,— €)M, (CS)
[t}

i

where M is defined in Eq. (B9).
The second term in Eq. (C4) may be simplified by de-
fining the following parameter P:

P——(EE 2+22 ) (C6)

Summing up, the balance equation for the displacement
vector given in Eq. (15) may be recast in the form

(D) =& (E) + c([e([E ) - &,]E,)
=g(E)+ce (g, - sl)ME0+ca£14PE02EO. (C7)
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