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ON SOME EXPLICIT RESULTS FOR
THE BALANCED GENERALIZED PÓLYA URN
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Abstract

This article describes an explicit approach to urn models of the balanced generalized Pólya
type (with two types of balls). The treatment starts by obtaining the difference equations,
describing the discrete time behavior of the expected value and of the variance of the
selection probability for a given type of ball. The explicit solutions of such difference
equations have been found in terms of gamma and psi (digamma) functions. This unified
approach is useful in didactics in order to present a general method that leads to the final
results without using complicated analytical tools. The more advanced mathematical
procedure utilized is the solution of a first-order difference equation. All the theoretical
results have been confirmed by a series of Monte Carlo simulations in order to clarify
and better explain the behavior of the system.
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1. Introduction

The extended Pólya–Eggenberger models have been recently used for modeling several
stochastic natural and technological systems ranging from computational biology to economic
models or to advanced technology (for example, discrete channel description in communication
theory and image processing).

An example in computational biology is given by the simulation of evolution of the genome
structure: it has been verified that the combination of basic DNA sequence changes, described
by urn models, can represent most of the natural DNA evolution events (i.e. deletion, insertion,
point mutation, tandem repeats and transposition; see, for example, Zhou and Mishra (2004)).

The Pólya urn approach in economics considers increasing populations of entities in which,
at each step in discrete time, one entity is probabilistically added according to an allocation
function. This allows for modeling of complex markets and developing models in evolutionary
economics (see Arthur (1994) and Arthur et al. (1963)).

Recently, the generalized urn schemes have been used byAlajaji and Fuja (1994) in modeling
some discrete channels in communication theory, and have been applied by Banerjee et al.
(1999) to create innovative algorithms for image segmentation and labeling.

The wide diffusion of the generalizations of the Pólya urn creates great interest in the analysis
of the behavior of the general scheme, described below. A 2 × 2 matrix gives the replacement
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rules for the balanced generalized Pólya scheme:

A =
(

α s − α

s − β β

)
.

The composition of the urn at the initial time is fixed and known (n white balls and m black
balls, say). At a generic discrete time k, a ball in the urn is randomly chosen and its color is
inspected (thus, the ball is drawn, looked at, and then placed back in the urn); if it is white
then α white and s − α black balls are subsequently inserted, and if it is black then β black
balls and s − β white balls are inserted. This is represented by the 2 × 2 matrix A above.
The balancing results from the following fact: independent of the color of the ball extracted
at a given discrete time, s balls are added to the urn (the constant row sum is s). This means
that the total number of balls in the urn is not a stochastic variable, but it is deterministically
known. Obviously, the fraction of balls of a given color remains a stochastic variable. The
probabilistic analysis of its behavior, in explicit closed form, is the main purpose of this paper.
The generalized model, described by the matrix A, contains a series of schemes, which can be
summed up as follows.

1. Drawing with replacement: A = (0 0
0 0

)
. As is well known, the problem leads to the

binomial probability law (for an example involving Bernoulli trials see, for example,
Feller (1971)).

2. Drawing without replacement: A = ( −1 0
0 −1

)
. The solution here involves the hypergeo-

metric probability law (see Feller (1971)).

3. The Laplace melancholic model (see Laplace (1819)): A = (−1 1
0 0

)
. The replacement

scheme describes the simple rule: if a ball is drawn, it is repainted black and returned to
the urn no matter what its original color is.

4. The Ehrenfest–Ehrenfest model (see Ehrenfest and Ehrenfest (1907)): A = ( −1 1
1 −1

)
.

This is related to a heat transfer model, which plays a crucial role in the discussion of the
contradiction between irreversibility and ergodicity.

5. The Pólya–Eggenberger model (see Pólya and Eggenberger (1923)): A = (
α 0
0 α

)
. A ball

is drawn at random and then replaced, together with α balls of the same color. It is
a model of positive influence, known as the contagion model. It has been used in the
epidemic modeling study of the spread of contagious diseases.

6. Adverse influence model: A = (0 α
α 0

)
. A ball is drawn at random and then replaced,

together with α balls of the other color. This is also used in epidemiology and is called
the altruistic model because choosing a white ball adds to the number of black balls in
the urn and choosing a black ball adds to the number of white balls in the urn.

In general, the generalized model described by A is a problem with three parameters (α, β,
and s) and two initial conditions (n white balls and m black balls).

The increasing number of applications of the generic urn model and its great importance from
a theoretical point of view are the two main reasons for the consideration of this topic in many
graduate and postgraduate courses. The aim of this paper is to present a mathematical method
for analyzing the arbitrary balanced replacement scheme that is suitable for advanced courses
on the theory of probability and statistical mathematics. The final results can be obtained
with some long but quite elementary calculations. We have applied the methodology of the
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difference equations to both the average values and to the variance of the process. Moreover,
the development of this topic in the present form can be useful to connect the world of random
walks with simple and intuitive urn models.

2. Difference equations for the generalized urn model

To begin the analysis of the behavior of the generalized urn model we first consider an
arbitrary nonbalanced replacement scheme described by the following 2 × 2 matrix:

A =
(

a b

c d

)
.

From a probabilistic point of view, the stochastic dynamics of the system can be viewed as
a two-dimensional random walk over a discrete grid defined on a plane by means of the two
vectors AB = (a, b) and AC = (c, d), which represent the sides of a parallelogram (i.e. cell

(

(

(

(

(

(

(

(

(

(

(

(

(

(

)

)

)

)

)

)

)

)

)

)

)

)

)

)

i,

,

,

,

,

,

,

,

,

,

,

,

,

,

j

+

=

+
+
+

+ +

+ +
++++=

=
=
=
= 1

2

3

3

2

2

2

1

1

1

1

1

2 2

22 →
→
→
→
→
→

→→ →t l

n m

n

n

n

n

n

m

m

m

m

m

a b

c d

a

a

b

bc

c

d

d

A

B

C

D

E

F

i

n

0
0 m j

k = 0

4k =

1k =

2k =

3k =

B E

A
C

F

D = +
=
=

+
+

(

k

i

j

t

n

m

l

) (

−
+
+

−
− ) ((

1

2

1

t

t

a

b

l

l

−
−

)

)

1

1

c

d

Figure 1: Two-dimensional random walk representation of the extended urn process. Each point of the
plane (i, j) describes the occupational state of the urn (i white balls and j black balls). The two vectors
AB and AC represent a geometrical interpretation of the matrix A regulating the stochastic replacement

policy of balls.
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of the grid). For a given point of the plane, the integer coordinates (i, j) represent the number
of white and black balls inside the urn (see Figure 1 for details). Thus, at any point of the plane
(i.e. for any state) an occupation probability Pi,j is associated. This is the probability that the
process passes from this point at some step. The initial condition is Pn,m = 1, if we begin with
exactly n white balls and m black balls. The recursive relation over the grid is given by

Pi,j = Pi−c,j−d

j − d

i + j − c − d
+ Pi−a,j−b

i − a

i + j − a − b
. (1)

For computational reasons, instead of using the variables i and j , it is convenient to introduce
the variables t and l, by means of the relations i = n+(t−1)a+(l−1)c and j = m+(t−1)b+
(l − 1)d. By so doing, the enumeration of the vertices of the grid is very simple, as indicated in
Figure 1. Moreover, it is useful to introduce another index, k, which counts the successive steps
of the process; k = 0 at the beginning, k = 1 after the first drawing, k = 2 after the second
drawing, and so on. It is easy to observe that k = t + l − 2. At step k, we have k + 1 possible
states and, thus, k + 1 different occupation probabilities. When we consider a generic state
identified by the point (i, j) we compute the selection probability for a white ball as i/(i + j).
By taking into account all the states belonging to the kth step, we may compute the mean
value of the selection probabilities (weighted with the corresponding occupation probabilities)
obtaining the average value of the selection probability pk at the kth step. Similarly, the mean
square value (which is always weighted with the corresponding occupation probabilities) of the
differences between the selection probabilities and their average value represents the variance
σ 2

k of the selection probability at the kth step. We are interested in obtaining a recurrence
relation for the variables pk and σ 2

k .
To this purpose, we may define the probabilities as functions of the indices (t, l) (see Figure 1)

by letting Qt,l = Pn+(t−1)a+(l−1)c,m+(t−1)b+(l−1)d , so that (1) may be written in the following
form:

Qt,l = Qt−1,l

n + (t − 2)a + (l − 1)c

n + m + (t − 2)(a + b) + (l − 1)(c + d)

+ Qt,l−1
m + (t − 1)b + (l − 2)d

n + m + (t − 1)(a + b) + (l − 2)(c + d)
. (2)

Equation (2) is initialized with Q1,1 = 1. Recalling that the step index k is defined as k =
t+l−2, we can explicitly define the expected value and the variance of the selection probability
by means of the following weighted sums over the k + 1 states of the kth step:

pk =
k+1∑
t=1

Qt,k+2−t

n + (t − 1)a + (k + 1 − t)c

n + m + (t − 1)(a + b) + (k + 1 − t)(c + d)
,

σ 2
k =

k+1∑
t=1

Qt,k+2−t

[
n + (t − 1)a + (k + 1 − t)c

n + m + (t − 1)(a + b) + (k + 1 − t)(c + d)
− pk

]2

.

(3)

Combining (2) with (3) we note that it is possible to derive difference equations for pk and σ 2
k

only if a + b = c + d , which means balancing of the replacement scheme. So, from now on,
we let a = α, b = s −α, c = s −β, and d = β. So, letting l = k +2− t in (2) and substituting
this into (3), we may build up recursive exact relations for pk and σ 2

k . After some long but
straightforward algebraic computations we may write down these difference equations in their



On some explicit results for the balanced generalized Pólya urn 61

final form as

pk = (α + β − s) + [n + m + (k − 1)s]
n + m + ks

pk−1 + s − β

n + m + ks
,

p0 = n

n + m

(4)

for the average value of the selection probability and

σ 2
k = [n + m + (k − 1)s][2α + 2β + n + m + (k − 3)s]

(n + m + ks)2 σ 2
k−1

+ (α + β − s)2

(n + m + ks)2 pk−1(1 − pk−1),

σ 2
0 = 0

(5)

for its variance.
From a mathematical point of view these are nonhomogeneous first-order linear difference

equations with nonconstant coefficients (depending on k). The main purpose of the paper is to
derive some properties of the stochastic urn system by solving and analyzing (4) and (5).

3. Explicit solutions of the generalized urn model

Both the equations for the selection probability and the variance may be recast in the unified
form

xk = akxk−1 + bk, (6)

where ak and bk represent known sequences of real numbers and the first value x0 is fixed and
given. The general solution to (6), as known, is given by the expression

xk =
( k∏

j=1

aj

)
x0 +

k−1∑
i=1

( k∏
j=i+1

aj

)
bi + bk. (7)

An introduction to recurrence equations and their solutions and applications can be found in
Goldberg (1986), Levy and Lessman (1992), and Agarwal (2000). We apply the methodology
described by (7) to (4) and (5). We study the urn dynamics when s �= 0, which is the more
interesting case; if s = 0 the difference equations for pk and σ 2

k become linear with constant
coefficients and the solutions are trivial (again, see Goldberg (1986), Levy and Lessman (1992),
and Agarwal (2000)).

We start with the recursive relation (4) for the probability pk . In this case, the second
product appearing in (7) may be developed as follows (the first product is immediately obtained
by letting i = 0):

k∏
j=i+1

aj = (n + m + α + β)/s + i − 1

(n + m)/s + i + 1
× · · · × (n + m + α + β)/s + k − 2

(n + m)/s + k

= �((n + m + α + β)/s + k − 1)

�((n + m + α + β)/s + i − 1)

�((n + m)/s + i + 1)

�((n + m)/s + k + 1)

= �(p + k)

�(p + i)

�(q + i)

�(q + k)
.
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Here, we have defined p = (n+m+α+β − s)/s and q = (n+m+ s)/s and we have used the
following property of the gamma function (which holds for any real y and for k and i integers):

(y + i) · · · (y + k) = �(y + k + 1)

�(y + i)
.

Therefore, applying (7) to (4) furnishes, after some simple rearrangements, the following
solution:

pk = �(p + k)

�(p)

�(q)

�(q + k)

n

n + m
+ s − β

s

�(p + k)

�(q + k)

k∑
i=1

�(q + i − 1)

�(p + i)
. (8)

Now, the following additional result for the gamma function may be used to calculate the sum
appearing in (8):

k∑
i=1

�(a + i − 1)

�(b + i)
=

⎧⎨
⎩

�(a + k)�(b) − �(a)�(b + k)

(a − b)�(b)�(b + k)
if a �= b,

�(a + k) − �(a) if a = b.

(9)

Here, the psi function is defined as �(x) = (d/dx) ln �(x). Equation (9) can be easily proved
by means of mathematical induction for a �= b. For a = b the psi function appears and the
property represents the well-known functional relation

�(x + n) = �(x) +
n−1∑
k=0

1

x + k

(see, for example, Abramowitz and Stegun (1970)). By using the sum property (9) in (8) and
identifying a with q and b with p, we may obtain the final solution for the selection probability
of the white balls at the kth step as follows:

pk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s − β

2s − α − β
+

(
n

n + m
− s − β

2s − α − β

)
�(p + k)�(q)

�(q + k)�(p)
if 2s �= α + β,

n

n + m
+ α − β

α + β
[�(p + k) − �(p)] if 2s = α + β.

(10)

Recalling the definitions of

p = n + m + α + β − s

s
and q = n + m + s

s
,

we observe that the condition p = q is equivalent to 2s = α + β, as indicated in (10). This
final relation for the dynamics of the selection probability of white balls is the first result of our
analysis. We have postponed various comments about the limits of validity of this formula and
consequences of it to Section 4. Here, we simply observe that the following property holds. If
the matrix A has nonnegative entries then the asymptotic value of the probability (as k → ∞)
is (s − β)/(2s − α − β) if 2s �= α + β and n/(n + m) if s = α = β. (If 2s = α + β then
we may obtain nonnegative entries only if s = α = β and therefore the selection probability
remains constant at the value n/(n + m).)
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Figure 2: Results of the Monte Carlo simulation performed on the urn described by n = 1, m = 3, s = 5,
α = 4, and β = 3. We have generated 100 instances of the process, each of them with 100 extractions.
The solid lines represent the selection probability of all the instances and the dotted line represents the

corresponding average value.
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Figure 3: Results for the urn described by n = 1, m = 3, s = 5, α = 4, and β = 3. A comparison
between the average value of the selection probability obtained with the Monte Carlo method (dotted line)

and the theoretical prediction given by (10) (solid line) is shown.

We now present some numerical simulations that describe such results. We consider the first
case with n = 1, m = 3, s = 5, α = 4, and β = 3. We simulate the urn process by means of
the Monte Carlo technique performing 100 instances of the process, each of them consisting
of 100 steps (i.e. extractions). All the instances start from the same initial conditions and the
drawing of a ball is mimed by means of a uniform random number generator. The software
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code has been developed using MATLAB®. All the instances evolve independently following
different paths on the grid shown in Figure 1. Therefore, all such independent instances have
been used to obtain the requested average values, which are the selection probability and
the variance. The results concerning the variance will be discussed later on in this section.
In Figure 2, we show the dynamics of the selection probability; the solid lines represent the
actual selection probabilities related to all the instances and the dotted line corresponds to the
average value computed over all these instances. It is interesting to observe that the structure
with many rhombuses generated by the solid lines in Figure 2 corresponds to the different
paths of the random walk shown in Figure 1. Moreover, in Figure 3 we draw a comparison
between the average value of the selection probability obtained with the Monte Carlo simulations
and the theoretical prediction given by (10). We can observe the good agreement between
the numerical and theoretical achievements and the convergence of the selection probability
to the value

s − β

2s − α − β
= 2

3
.

Now, to complete the analytical procedure, we apply (7) to solve the variance relation (5);
the related product can be written as follows (by taking the generic term aj from (5)):

k∏
j=i+1

aj = ((n + m)/s + i)((n + m + 2α + 2β)/s + i − 2)

((n + m)/s + i + 1)2

× · · · × ((n + m)/s + k − 1)((n + m + 2α + 2β)/s + k − 3)

((n + m)/s + k)2

= �((n + m + 2α + 2β)/s + k − 2)

�((n + m + 2α + 2β)/s + i − 2)

�((n + m)/s + k)

�((n + m)/s + i)

× �2((n + m)/s + i + 1)

�2((n + m)/s + k + 1)

= �(2p − q + k + 1)

�(2p − q + i + 1)

�(q + i)

�(q + k)

q + i − 1

q + k − 1
.

(11)

Here, we have maintained the previous definitions of p and q. Substituting (11) into (7) with
x0 = 0, i.e. σ 2

0 = 0, we obtain the following first form for the variance (which is correct for
any value of the characteristic parameters):

σ 2
k = �(2p − q + k + 1)

�(q + k)

(α + β − s)2

s(n + m + ks)

k∑
i=1

�(q + i − 1)

�(2p − q + i + 1)
pi−1(1 − pi−1) (12)

(of course s �= 0 as before). To further simplify this expression, we should substitute (10)
into (12) in order to perform the sum on the right-hand side. This calculation is very long and,
thus, we give here the main results, avoiding some intermediate details. The procedure is very
similar in spirit to the previous one.

If p �= q or, equivalently, 2s �= α + β, we take the first formula in (10), substitute it into
(12), and (again using the addition rule for the gamma function (9)) we obtain two different
results: the first is valid if q − p �= 1

2 and the other one if q − p = 1
2 .
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Summing up, if p �= q and q − p �= 1
2 (i.e. 2s �= α + β and 3s �= 2α + 2β) the variance is

given by

σ 2
k = (α + β − s)2(s − α)(s − β)

(α + β − 2s)2(3s − 2α − 2β)(n + m + ks)

[
1 − �(2p − q + k + 1)�(q)

�(q + k)�(2p − q + 1)

]

+ (s − α − β)(β − α)[n(s − α) − m(s − β)]
(α + β − 2s)2(n + m)(n + m + ks)

×
[
�(p + k)�(q)

�(q + k)�(p)
− �(2p − q + k + 1)�(q)

�(q + k)�(2p − q + 1)

]

+ [n(s − α) − m(s − β)]2

(α + β − 2s)2(n + m)2

×
[

(n + m)

(n + m + ks)

�(2p − q + k + 1)�(q)

�(q + k)�(2p − q + 1)
− �2(p + k)�2(q)

�2(q + k)�2(p)

]
. (13)

As an example of an application of this relation, we may use the urn scheme simulated in the
first part of this section. Therefore, we consider the scheme characterized by the values n = 1,
m = 3, s = 5, α = 4, and β = 3 (the relations 2s �= α + β and 3s �= 2α + 2β are clearly
satisfied). As before, we draw a comparison between the variance dynamics obtained with the
Monte Carlo method (100 instances with 100 steps) with the exact result given in (13). The
results are shown in Figure 4, where a good agreement can be observed. Moreover, we note
that in such a case, the variance σ 2

k approaches zero for large values of k.
However, if p �= q (i.e. 2s �= α + β) and q − p = 1

2 (i.e. 3s = 2α + 2β), we have
s = 2

3 (α + β) and the replacement matrix assumes the form

A =
⎛
⎜⎝ α

2β − α

3
2α − β

3
β

⎞
⎟⎠ .

In this case, we may let (2β − α)/3 = N and (2α − β)/3 = M , so that we obtain

A =
(

2M + N N

M 2N + M

)
,

where N and M are integers. This special replacement policy leads to a specific relationship for
its variance dynamics. For computational convenience, it is better to analyze this urn scheme
in terms of N and M instead of α and β. With these assumptions, the variable p assumes the
value p = (n + m + N + M)/(2N + 2M) (and q = p + 1

2 ). When the matrix A has the form
specified above, the variance is given by the following special expression, written in terms of
N and M:

σ 2
k = 1

2

MN

(N + M)(n + m + 2kN + 2kM)

[
�

(
1

2
+ p + k

)
− �

(
1

2
+ p

)]

+ (N − M)(nN − mM)

(N + M)(n + m)(n + m + 2kN + 2kM)

[
1 − �( 1

2 + p)�(p + k)

�( 1
2 + p + k)�(p)

]

+ (nN − mM)2

(N + M)2(n + m)2

[
n + m

n + m + 2kN + 2kM
− �2( 1

2 + p)�2(p + k)

�2( 1
2 + p + k)�2(p)

]
. (14)
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Figure 4: Comparison between the average value of the variance obtained with the Monte Carlo method
(dotted line) and the theoretical prediction given by (13) (solid line) is shown. The results correspond to

the urn model described by n = 1, m = 3, s = 5, α = 4, and β = 3.

0

p
k

k

10 20 30 40 50 60 70 80 90 100

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

Figure 5: Dynamics of the selection probability for the case with α = 3, β = 3, s = 4, n = 10, and
m = 3 (100 Monte Carlo instances with 100 steps). The solid lines represent the probability evolution of

each instance and the dotted line corresponds to its average value.

We now describe a complete set of simulations pertinent to such a case. We adopt the
following parameters: α = 3, β = 3, s = 4, n = 10, and m = 3. The relations 2s �= α +β and
3s = 2α+2β are clearly satisfied, and therefore we define the alternative quantities N = 1 and
M = 1. The results of the Monte Carlo simulations (100 instances with 100 steps) are shown in
Figures 5, 6, and 7. In Figure 5 the dynamics of the selection probability is shown; as before, the
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Figure 6: Comparison between the average values of the selection probability obtained with the Monte
Carlo simulations (dotted line) and the theoretical prediction given by (10) (solid line).
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(dotted line) and that calculated with (14) (solid line) for the urn with α = 3, β = 3, s = 4, n = 10, and

m = 3 (N = 1 and M = 1).

solid lines represent the probability evolution of each instance and the dotted lines correspond
to its average value. In Figure 6 a comparison between the average value of the selection
probability obtained with the Monte Carlo simulations and the theoretical prediction given by
(10) is drawn. We can observe the slow convergence to the value (s − β)/(2s − α − β) = 1

2 .
Finally, in Figure 7 we show a comparison between the variance numerically obtained (using the
Monte Carlo method) and that calculated with (14). Also in this case we note the convergence
to the value σ 2

k = 0 for large values of k.
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Figure 8: Evolution of the selection probability for a pure contagion urn model described by α = 5 and
n = m = 4. The theoretical results (solid lines) can be compared with the Monte Carlo simulations

(dotted line).
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Figure 9: Evolution of the variance for a pure contagion urn model described by α = 5 and n = m = 4.
The theoretical results (solid line) can be compared with the Monte Carlo simulations (dotted line).

The last case deals with the assumption p = q or, equivalently, 2s = α + β. In this case we
should substitute the second formula of (10) into (12); unfortunately, the sum in (12) cannot
be performed in closed form because it contains a complicated combination of gamma and psi
functions. We may analyze this case only under the additional hypothesis s = α = β, which
corresponds to the contagion model. In this simple case the selection probability remains
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constant at the value pk = n/(n + m) (for any k) and we may write down the explicit solution
for the variance as follows:

σ 2
k = α2nmk

(n + m)2(n + m + α)(n + m + kα)
. (15)

The variance for large values of k approaches the value σ 2
k = αnm/(n+m)2(n+m+α), which

corresponds to the variance of the limiting density probability given by the beta distribution (this
is the famous result of Pólya and Eggenberger (1923)). We performed a series of simulations
with the values s = α = β = 5 and n = m = 4. The selection probability should remain
constant at the value 1

2 and the variance should converge towards the value 5
52 ≈ 0.0961. In

Figure 8 we show the dynamics of the selection probability and in Figure 9 we show the variance.
This is the sole case where the variance approaches a finite value (corresponding to the beta
distribution) for large values of k.

As another example of an application of the previous theory, we may obtain the specific
solutions for the adverse influence model (altruistic model) described by the replacement matrix
A = (0 1

1 0

)
, corresponding to s = 1 and α = β = 0. A ball is drawn at random and then replaced,

together with a ball of the other color. Equations (10) and (13) can be simplified to obtain

pk = 2k(n + m + 1) + 2n(n + m − 1) + k(k − 3)

2(n + m + k)(n + m + k − 1)
(16)

and

σ 2
k = 1

12

1

n + m + k
− 1

12

(n + m − 2)(n + m − 1)(n + m)

(n + m + k)2(n + m + k − 1)(n + m + k − 2)

− 1

4

(n − m)2(n + m − 1)2

(n + m + k)2(n + m + k − 1)2

+ 1

4

(n − m)2(n + m − 1)(n + m − 2)

(n + m + k)2(n + m + k − 1)(n + m + k − 2)
. (17)

In the limiting case of k → ∞, we find that pk → 1
2 (with order two) and σ 2

k → 0 (with
order one). In Figure 10 the behavior of the selection probability and of the variance is shown
drawing a comparison between (16) and (17) and some computer simulations. A general
discussion about the limiting case of k → ∞ follows in Section 4.
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Figure 10: Evolution of the selection probability and of the variance for a pure altruistic urn model
described by A = (0 1

1 0

)
. Results obtained by (16) and (17) (solid lines) can be compared with the Monte

Carlo simulations (dotted lines).
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4. Discussion and conclusions

It must be emphasized that all the solutions given in Section 3 apply only with some
limitations on the index variable k, which counts on the successive steps of the stochastic
process. When all the entries of the replacement matrix are nonnegative, we may consider the
problem with an infinite succession of steps, because balls are never removed from the urn
and, therefore, the process will never stop. On the contrary, when one or more entries of the
replacement matrix are negative, there is a probability of removing some balls from the urn at
each step and consequently the process may reach an end when a type of ball is consumed. In
other words, when some entries are negative in A, the grid shown in Figure 1, which contains
all the possible random walks, will be crossing the frontiers of the first quadrant. This happens
for a given value of k referred to as kend; all the final formulas of Section 3 are no longer valid
for k greater than kend.

Now, we are interested in the asymptotic behavior of the process, when all the entries of A are
nonnegative. There are two cases, which exhibit different dynamics. If α ≥ 0, β ≥ 0, s−β ≥ 0,
s − α ≥ 0, and 2s − α − β > 0, then all the entries are nonnegative and at most one entry
on the secondary diagonal is strictly positive (describing some adverse influence or altruistic
behavior). The sole other possibility to have all the entries nonnegative is α = β = s > 0,
which corresponds to the classical Pólya–Eggenberger contagious urn scheme. The former
case is described by the following property.

If α ≥ 0, β ≥ 0, s − β ≥ 0, s − α ≥ 0, and 2s − α − β > 0, then the following limits are
fulfilled:

lim
k→∞ pk = s − β

2s − α − β
and lim

k→∞ σ 2
k = 0, (18)

and the following asymptotic properties hold:

pk − s − β

2s − α − β

k→∞∼ C1

k(2s−α−β)/s
,

σ 2
k

k→∞∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C2

k2(2s−α−β)/s
if 0 <

2s − α − β

s
<

1

2
,

C3 ln k

k
if

2s − α − β

s
= 1

2
,

C4

k
if

2s − α − β

s
>

1

2
,

(19)

where the Cks are finite constants. The three different velocities of convergence of the variance
are shown in Figure 11 where the following values are taken into consideration. The initial
conditions n = 2 and m = 4 have been fixed for the three cases studied. In the first case
we assumed that s = 5, α = 4, and β = 3 (triangles in Figure 11). This corresponds to
(2s − α − β)/s = 3

5 > 1
2 , i.e. to the faster convergence. The second case considers s = 4,

α = 3, and β = 3, and thus (2s − α − β)/s = 1
2 (circles in Figure 11). Finally, the third

case with slower convergence assumes the values s = 3, α = 2, and β = 3, from which we
obtain (2s − α − β)/s = 1

3 < 1
2 (dots in Figure 11). For each case we have represented the

theoretical prediction for the variance and the results of the Monte Carlo simulations.
In the latter case (α = β = s > 0, i.e. the Pólya urn scheme), the average value of the

selection probability remains constant during the whole process (this is evident by observing
(10) with α = β) at the value n/(n + m); its variance converges to that of the beta distribution
as suggested by the dynamics given by (15) (with rate of convergence of order one).
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Figure 11: Comparison among the different convergence velocities of the variance (n = 2 and m = 4
have been fixed for the three cases). First case: s = 5, α = 4, and β = 3 (triangles). Second case: s = 4,

α = 3, and β = 3 (circles). Third case: s = 3, α = 2, and β = 3 (dots).

The proofs of (18) and (19) follow. These are based on the following properties:

(a) �(n + a)/�(n + b) ∼ na−b,

(b) �(n) ∼ ln n (n approaching infinity)

(see, for example, Abramovitz and Stegun (1970)). Formulas given by (18) can be derived
directly from (10), (13), and (14) performing the limits and assuming that α ≥ 0, β ≥ 0,
s − β ≥ 0, s − α ≥ 0, and 2s − α − β > 0. Similarly, the asymptotic relation for pk (the first
in (19)) immediately follows from (10) and property (a).

To verify the asymptotic property for the variance we firstly assume that α ≥ 0, β ≥ 0,
s−β ≥ 0, s−α ≥ 0, 2s−α−β > 0, and (2s − α − β)/s �= 1

2 (i.e.q − p �= 1
2 or 3s �= 2α+2β);

in this case (13) applies and it contains the following results at infinity (using property (a)):

1

k
,

1

k2x
,

1

kx+1

(where x = q − p = (2s − α − β)/s). It follows that the leading term is 1/k2x if 0 < x < 1
2

and 1/k if x > 1
2 .

Finally, if we assume that α ≥ 0, β ≥ 0, s − β ≥ 0, s − α ≥ 0, 2s − α − β > 0, and
(2s − α − β)/s = 1

2 (i.e. x = q − p = 1
2 or 3s = 2α + 2β), then (14) holds and it exhibits the

following results at infinity (using properties (a) and (b)):

1

k
,

ln k

k
,

1

k3/2 .

Therefore, the leading term is ln k/k if x = 1
2 . This completes the verification.

We now make some concluding remarks. As previously shown, when we are dealing
with a pure contagious scheme, the selection probability for a given type of ball remains
constant during the process evolution, while the fraction of balls reaches the beta distribution
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(see Pólya and Eggenberger (1923)). As soon as we add an altruistic contribution, the probability
evolves in discrete time converging to the fixed value (s − β)/(2s − α − β) (independently of
the contagious coefficients α and β). Moreover, the variance converges to zero (with rate of
convergence given above), assuring that any instance of the process converges deterministically
to the value of probability given by (s −β)/(2s −α−β). In other words, the altruistic behavior
of the urn process is dominant over the contagious one.

Finally, we want to point out that the analysis of the urn systems has been performed in many
introductory texts on probability theory, for example in Feller (1971) and Johnson and Kotz
(1977). Thus, our approach is not new in principle but has been conducted analytically for the
generalized Pólya urn. So, it unifies all the possible cases, typically analyzed separately, and
furnishes closed form solutions to the difference equations describing the dynamics of average
values and variances. The approach of solving the general difference equations in closed form
could be useful for alternative didactic approaches. In particular, the explicit expressions for
the variance behavior may be useful in several applications. The knowledge of the explicit
solutions is also useful to obtain the asymptotic behavior of the system with different values of
the parameters that define the urn scheme under consideration.
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