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a b s t r a c t

In this work we consider a cylindrical structure composed of a nonlinear core (inhomogeneity) sur-
rounded by a different nonlinear shell (matrix). We elaborate a technique for determining its linear elas-
tic moduli (second order elastic constants) and the nonlinear elastic moduli, which are called Landau
coefficients (third order elastic constants). Firstly, we develop a nonlinear perturbation method which
is able to turn the initial nonlinear elastic problem into a couple of linear problems. Then, we prove that
only the solution of the first linear problem is necessary to calculate the linear and nonlinear effective
properties of the heterogeneous structure. The following step consists in the exact solution of such a lin-
ear problem by means of the complex elastic potentials. As result we obtain the exact closed forms for the
linear and nonlinear effective elastic moduli, which are valid for any volume fraction of the core embed-
ded in the external shell.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The linear effective properties of heterogeneous structures and
composite materials have been extensively studied and many
micromechanical models have been proposed for different micro-
structures (Nemat-Nasser and Hori, 1999; Torquato, 2002; Milton,
2002). The Eshelby results (Eshelby, 1957, 1959) and its general-
izations have been found to be useful in the determination of the
effective physical properties. In fact, the homogenization proce-
dures contain at first the exact mathematical analysis of the
mechanical behavior induced by a single inhomogeneity (Mura,
1987; Christensen, 2005; Asaro and Lubarda, 2006), and then pro-
ceed by considering the more general case of interacting particles
(Hill, 1963; Hashin, 1983). This approach has been carried out in
the limit of a low density defect population by Mori and Tanaka
(1973). Such an hypothesis can be partially removed by means of
different methods, such as iterated homogenizations and differen-
tial schemes (McLaughlin, 1977; Giordano, 2003). These tech-
niques have been applied with great accuracy both to the case of
embedded inhomogeneities by Snyder and Garboczi (1992) and
Kachanov and Sevostianov (2005) and to the case of dispersed de-
fects, such as micro-cracks in a matrix (Budiansky and O’Connell,
1976; Kachanov, 1992; Giordano and Colombo, 2007a,b).

Typically, these methods have been developed for determining
the effective linear elastic properties starting from the linear elastic
properties of the components. A methodology based on the

Eshelby heritage has been proposed for analysing the effective
nonlinear properties of dispersions of nonlinear particles embed-
ded in a linear matrix (Giordano et al., 2008, 2009; Colombo and
Giordano, 2011). More general results, based on variational princi-
ples for nonlinear materials, have been obtained by Talbot and Wil-
lis (1985a, 1987b). Variational methods for deriving improved
bounds and estimates for nonlinear media, utilizing linear elastic
comparison materials, were introduced by Ponte Castañeda
(1991a, 1992b,c, 1996) and Suquet (1993). These methodologies
can be found in a complete review by Ponte Castañeda and Suquet
(1998). A variational formulation was also adopted in order to de-
rive explicit nonlocal constitutive equations for a class of random
composite materials (Drugan and Willis, 1996).

In this paper we take into consideration a specific structure
with two different nonlinear phases: a cylinder composed of a
nonlinear core (or inhomogeneity) embedded into a nonlinear shell
(or matrix). The geometry of the system is depicted in Fig. 1. We
introduce a homogenization technique for the linear elastic moduli
(second order elastic constants) and for the nonlinar elastic
moduli, which are called Landau coefficients (third order elastic
constants). The proposed procedure is based on two main steps:
firstly, we develop a nonlinear perturbation method which is able
to turn the initial nonlinear elastic problem into a couple of linear
problems, which are simpler and analytically solvable. Then, we
are able to prove that only the solution of the first linear problem
is needed for determining the linear and nonlinear effective
properties of the heterogeneous structure. The second step
consists in the exact solution of such a linear problem (within
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the two-dimensional elasticity) by means of the Kolossov–Mus-
khelishvili elastic potentials (Muskhelishvili, 1953). As final result
we obtain the exact closed forms for the linear and nonlinear effec-
tive elastic moduli, which are valid for any volume fraction of the
core embedded in the external shell.

Analytical results for coated fibers and composite cylinders are
important for several applications in material science. From the
linear elasticity point of view important results for the multi-shell
cylinder were found by Stucu (1992). Moreover, the elastic behav-
ior of multiply coated fibre-reinforced composites was investigated
by Hervé and Zaoui (1995). Afterwards, this model has been gener-
alized in order to consider the thermal and thermoelastic behavior
of these structures (Hervé, 2002). A complete analysis of the effects
of inhomogeneous inter-phases between fibers and matrix has
been developed by Shen and Li (2003). Recent generalizations take
into account composite cylinders with arbitrary anisotropic consti-
tution (Shokrolahi-Zadeh and Shodja, 2008), with cylindrically
orthotropic layers (Tsukrov and Drach, 2010) and fibrous compos-
ites of piezoelectric and piezomagnetic phases (Kuo, 2011).

In spite of the development of refined techniques for analysing
the linear properties of composite cylinders and fibrous structures,
many applications to real materials need to deal with nonlinear
features and their mixing laws. For example, multi-shell nanowires
are candidates for future electronic and photonic devices. Indeed,
electronic confinement in two and three dimensions have been
realized through quantum wires and quantum dots, respectively
(Johnson and Freund, 2001; Lauhon et al., 2004). The quantitative
knowledge of stress and strain distributions in these nonlinear
structures are essential for characterizing and tailoring their opto-
electronic properties (Johnson and Freund, 2001). A second exam-
ple of great importance in material science concerns the use of
single-walled and multi-walled nanotubes in reinforced compos-
ites, as described, e.g., by Seidel and Lagoudas (2006). The effective
properties of these structures can be analysed through the com-
posite cylinder approach, where the nonlinear features must be ta-
ken into consideration (Qian et al., 2002). Such methods can be also
used for determining the vibrational behavior of nanotube-rein-
forced panels (Aragh et al., 2012) and for analysing the mechanical
buckling of aligned nanotubes (Mehrabadi et al., 2012).

For an accurate evaluation of the physical properties of previous
systems it is necessary to account for the elastic nonlinearity of
their constituents and to understand the corresponding mixing
rules. We underline that nonlinearity can be introduced in the the-
ory of elasticity by means of the exact relation for the Lagrangian
strain (geometrical nonlinearity) and/or through a nonlinear
stress–strain constitutive relation (physical nonlinearity). In this
work, we adopt the physical nonlinearity standpoint, whereas
the geometrical nonlinearity is not considered (hypothesis of small
deformations).

The structure of the paper is the following: in Section 2 we
introduce the nonlinear perturbation method. In Section 3 we de-
fine the details of the system under investigation: the cylindrical
composite system. Then, we analyse the linear problem in Sec-
tion 3.1 and the nonlinear one in Section 3.2. Finally in Section 4
we show some applications and comparisons with earlier theories.

2. Nonlinear perturbation method

We consider a nonlinear elastic problem for an arbitrary region
Xwith boundary @X and unit normal vector ~n (see Fig. 2 for de-
tails). Under the hypothesis of small deformations we can intro-
duce the displacement field ~uð~xÞ, the infinitesimal strain tensor
�̂ð~xÞ and the Cauchy stress tensor T̂ð~xÞ. The standard definition of
the strain tensor follows

�ij ¼
1
2

@ui

@xj
þ @uj

@xi

� �
ð1Þ

and the balance laws for the linear and angular momentum are gi-
ven below (for the static case without body forces)

@Tji

@xi
¼ 0; Tij ¼ Tji ð2Þ

These laws hold for all materials, regardless of their constitution.
However, in order to obtain a complete system of equations we
need to introduce the constitutive equations, which characterize
the actual elastic behaviour of the investigated system. Here, we
are interested in an heterogeneous nonlinear behaviour in X and,
therefore, we assume the following constitutive equation

Tijð~xÞ ¼ Cijkhð~xÞ�khð~xÞ þ kNijkhlmð~xÞ�khð~xÞ�lmð~xÞ ð3Þ

or, equivalently, in compact tensor notation T̂ð~xÞ ¼ Ĉð~xÞ�̂ð~xÞþ
kN̂ð~xÞ�̂ð~xÞ�̂ð~xÞ where Ĉ describes the linear elasticity (the Cijkh are
the second order elastic constants, SOEC) while N̂ describes the
nonlinear elasticity (the Nijkhlm are the third order elastic constants,
TOEC). Both Ĉ and N̂ are heterogeneous tensors over X. The tensor N̂
measures the first deviation from the linearity. It can be noticed
that the tensor Ĉ has 21 independent entries, while the second
order tensor N̂ has 56 independent components. Tables for the
values of Cijkh and Nijkhlm can be found in literature for different
crystal symmetries (Ballabh et al., 1992). Moreover, these values
can be obtained by experimental procedures (Hughes and Kelly,
1953) and by computational techniques, such as molecular dynam-
ics (Cain and Ray, 1988) or first-principles calculations (Zhao et al.,
2007). In order to apply a perturbation method we have introduced
in Eq. (3) a small parameter k. The general nonlinear problem in the

Fig. 1. Schematic representation of the composite cylinder consisting of a nonlinear
core in a nonlinear shell: through a homogenization procedure it is possible to
define an equivalent nonlinear homogeneous cylinder.

Fig. 2. Definition of a nonlinear elastic problem for a region X with prescribed
displacement on the boundary @X. The constitutive relation is controlled by Ĉ,
which describes the linear elasticity (tensor of the second order elastic constants,
SOEC), while N̂ represents the nonlinear response (tensor the third order elastic
constants, TOEC). The unit vector ~n is normal to the external surface @X and it is
associated with the area element dS.
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region X is described by the combination of Eqs. (1)–(3) with the
boundary condition ~u ¼ �̂0~x on @X where �̂0 is a constant strain
tensor (prescribed displacement on @X). The formulated problem
has a series of important properties which are thoroughly discussed
in the following.

Firstly, we observe that if the system is homogeneous (i.e.,
Ĉð~xÞ ¼ Ĉ and N̂ð~xÞ ¼ N̂ 8~x 2 X), then the solution is given by
�̂ð~xÞ ¼ �̂0 8~x 2 X. In fact, the uniform strain �̂0 in Xsatisfies the
boundary conditions and leads to an uniform stress, compatible
with the balance equations stated in Eq. (2).

As second property, we remember that for arbitrarily heteroge-
neous structures, the average value of the strain tensor over the re-
gion X is equal to �̂0, regardless of the constitutive equation. So, we
have

�ij
� �

¼ 1
V

Z
X
�ijð~xÞd~x ¼ �0;ij ð4Þ

where V ¼ mesðXÞ. This property is sometimes called average-
strain theorem (Qu and Cherkaoui, 2006).

We can now define the effective linear and nonlinear elastic
tensors of the heterogeneous structure through the determination
of the average value of the stress tensor over the region X. Since
�̂
� �
¼ �̂0 we can write

T̂
D E

¼ Ĉeff �̂0 þ kN̂eff �̂0�̂0 þ o kð Þ ð5Þ

where we have neglected the terms with the third power of the
strain and higher. Eq. (5) represents an operative definition of the
effective response based on the evaluation of the average stress in
the structure. This result comes from the fact that the stress is a
homogeneous function of degree 1 and 2 of the applied average
strain for the linear and nonlinear part, respectively.

The effective parameters Ĉeff and N̂eff can be alternatively de-
fined through the determination of the average value of the tensor
contraction T̂ : �̂ ¼ Tij�ij. In fact, they can be introduced through the
following relation

T̂ : �̂
D E

¼ �̂0 : Ĉeff �̂0 þ k�̂0 : N̂eff �̂0�̂0 þ o kð Þ ð6Þ

which represents, differently from Eq. (5), an operative definition of
the effective response based on the evaluation of the average value
of T̂ : �̂ in the heterogeneous structure. The definitions of the
effective behavior given in Eqs. (5) and (6) are mathematically
equivalent. This point can be verified by using the following result

Tij�ij
� �

¼ T̂
D E

: �̂0 ð7Þ

It represents the so-called Hill’s lemma (Qu and Cherkaoui, 2006). It
is evident that the substitution of Eq. (5) in Eq. (7) leads to Eq. (6),
proving the equivalence of the different definitions of the effective
properties.

In order to apply a perturbation technique, we consider k as a
small parameter and we search a solution of the general problem
in the form

~u ¼~uL þ k~uNL þ oðkÞ ð8Þ
�̂ ¼ �̂L þ k�̂NL þ oðkÞ ð9Þ
T̂ ¼ T̂L þ kT̂NL þ oðkÞ ð10Þ

By using the constitutive equation (see Eq. (3)) we have

T̂ ¼ Ĉ�̂þ kN̂�̂�̂ ¼ Ĉ�̂L þ k Ĉ�̂NL þ N̂�̂L�̂L
� �

þ oðkÞ ð11Þ

By applying the linear momentum balance equation we simply
obtain

~r � Ĉ�̂L
� �

þ k~r � Ĉ�̂NL þ N̂�̂L�̂L
� �

þ oðkÞ ¼ 0 8k ð12Þ

Therefore, for the arbitrariness of k, we obtain the standard linear
problem of the elasticity theory

~r � Ĉ�̂L
� �

¼ 0

�̂L ¼ 1
2
~r~uL þ ~rT~uL
� �

~uL ¼ �̂0~x on @X

8>>><
>>>:

ð13Þ

and the associated problem which describes the first deviation from
the linearity

~r � Ĉ�̂NL
� �

¼ �~r � N̂�̂L�̂L
� �

�̂NL ¼ 1
2
~r~uNL þ ~rT~uNL
� �

~uNL ¼ 0 on @X

8>>><
>>>:

ð14Þ

The initial nonlinear problem has been split in two simpler linear
problems. The first one is the standard linear elasticity problem
and the second one is a linear problem with a distribution of body
forces, depending on the solution of the first problem. The solution
of these problems allows us to describe the elastic fields within the
heterogeneous structure. This method could be also generalized in
order to consider more terms in the series expansion: it would lead
to a hierarchy of Lamé equations describing the behaviour of the
displacement expansion terms.

In the present work, we attempt an alternative approach useful
to calculate directly the elastic effective properties of the compos-
ite body (at least the SOEC and the TOEC). We consider again the
tensor contraction T̂ : �̂ and we expand it in series of k (by using
Eqs. (8) and (11))

T̂ : �̂
D E

¼ �̂L : Ĉ�̂L
D E

þ k 2�̂L : Ĉ�̂NL þ �̂L : N̂�̂L�̂L
D E

þ oðkÞ ð15Þ

We can now prove that �̂L : Ĉ�̂NL
D E

¼ 0 as follows. To begin we ob-
serve that

�̂L : Ĉ�̂NL
D E

¼ 1
V

Z
X

Cijkl
@uL

i

@xj

@uNL
k

@xl
d~x ð16Þ

because of the symmetries of the linear elastic tensor. Therefore we
have

�̂L : Ĉ�̂NL
D E

¼ 1
V

Z
X

@

@xl
Cijkl

@uL
i

@xj
uNL

k

� �
d~x

� 1
V

Z
X

@

@xl
Cijkl

@uL
i

@xj

� �
uNL

k d~x ð17Þ

The second integral is zero since @TL
kl=@xl ¼ 0 and we obtain

�̂L : Ĉ�̂NL
D E

¼ 1
V

Z
@X

Cijkl
@uL

i

@xj
uNL

k nldS ¼ 0 ð18Þ

since~uNL ¼ 0 on @X. To conclude, starting with Eq. (15) we have ob-
tained the result

T̂ : �̂
D E

¼ �̂L : Ĉ�̂L
D E

þ k �̂L : N̂�̂L�̂L
D E

þ oðkÞ ð19Þ

Drawing a comparison with Eq. (6) we obtain the main achieve-
ments of the present section

�̂0 : Ĉeff �̂0 ¼ �̂L : Ĉ�̂L
D E

ð20Þ

�̂0 : N̂eff �̂0�̂0 ¼ �̂L : N̂�̂L�̂L
D E

ð21Þ

In previous expressions �̂Lð~xÞ is the solution of the linear problem
stated in Eq. (13) with the boundary condition defined by the
constant strain �̂0. Therefore, linear and nonlinear effective
properties (i.e., SOEC and TOEC) depend only on the linear solution
of the proposed problem. We remark that Eqs. (20) and (21) are
exact results, not affected by any kind of approximation. In fact,
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the approximation introduced by the perturbation technique con-
cerns the number of terms retained in the series expansions, being
each term exactly evaluated. Moreover, we remark that the knowl-
edge of the linear solution �̂L is adequate only to obtain the second
order and the third order effective elastic constants, but it is not
sufficient for determining the higher order effective behaviors.
Evidently, in such a case it is necessary to consider also the
nonlinear solution �̂NL and the further terms of the series expansion.
To conclude, our methodology is based on the following idea: by
selecting different suitable homogeneous deformations �̂0 and by
solving the correspondent linear problem given in Eq. (13), we
can efficiently apply Eqs. (20) and (21) and we can find all the
components of the effective tensors Ĉeff and N̂eff . In the following
sections we apply Eqs. (20) and (21) to an isotropic nonlinear
composite cylinder under plane-strain conditions.

3. The cylindrical composite system

We are interested in applying the previous procedure to the
case of a composite cylinder composed by a nonlinear core
embedded in a nonlinear external shell (as in Fig. 1). We suppose
to analyse the plane strain behavior of this heterogeneous
structure on a plane perpendicular to the axis of the cylinder
(see Fig. 3). To begin we define the linear and nonlinear elastic
behavior of both components. We consider each phase (a ¼ 1;2)
described by the Green approach (Atkin and Fox, 2005) and we
formulate the corresponding energy balance (Landau and Lifschitz,
1959): for a given state of deformation, the stress power is
absorbed into a strain energy function Uað�̂Þ, leading to the consti-
tutive equation T̂ ¼ @Uað�̂Þ=@�̂. As well known, the strain energy
function can be identified with the internal energy per unit volume
in an isentropic process, or with the Helmholtz free-energy per
unit volume in an isothermal process. To model core and shell
materials, we adopt the most general isotropic nonlinear constitu-
tive stress–strain relation of the two-dimensional elasticity,
expanded up to the second order in the strain components: it
follows that the function Uað�̂Þ can only depend upon the principal
invariants of the strain tensor, i.e., Uað�̂Þ ¼ Ua Tr �̂

� 	
;Tr �̂2
� 	� 	

.

Therefore, by expanding Uað�̂Þ up to the third order in the strain
components, we obtain

Uað�̂Þ ¼ laTr �̂2
� 	

þ 1
2
ðka � laÞTr2ð�̂Þ þ eaTr �̂

� 	
Tr �̂2
� 	

þ faTr3ð�̂Þ ð22Þ

and deriving the stress, we get

T̂ ¼ 2la�̂þ ðka � laÞTrð�̂Þ̂I þ 2ea Tr �̂
� 	
�̂þ eaTr �̂2� 	̂

I þ 3faTr2 �̂
� 	̂

I

ð23Þ

for the materials corresponding to the shell (a ¼ 1) and to the core
(a ¼ 2). We remark that in Eqs. (22) and (23) tensors �̂ and T̂ are
represented by matrices 2x2 (planar geometry). The parameters ea

and fa are the so-called (two-dimensional) Landau moduli (Landau
and Lifschitz, 1959; Colombo and Giordano, 2011) and they repre-
sent the first deviation from the standard linearity (they are the
TOEC in our system). On the other hand, ka and la represent the lin-
ear elastic moduli or, equivalently, the SOEC. Parameters ka repre-
sent the two-dimensional bulk moduli and therefore they are
related with the standard three-dimensional bulk moduli Ka

through the relations ka ¼ Ka þ ð1=3Þla (a ¼ 1;2). On the other
hand, the shear moduli la assume the same value both in the
two-dimensional and three-dimensional geometries and, therefore,
there is no possible ambiguity. Of course, we assume that the tech-
nological assembling processes are able to generate a quite perfect
core–shell interface. In fact, it is well known that the behavior of
composite materials (in particular at the nanoscale) is deeply af-
fected by interface features occurring at the boundary between dif-
ferent phases (Palla et al., 2008, 2009, 2010; Giordano et al., 2012).
In the following sections we search for the overall behavior of the
cylinder, which is described by the effective constitutive equation
deduced from Eq. (5)

hT̂i ¼ 2leffh�̂i þ ðkeff � leffÞTrðh�̂iÞ̂I þ 2eeff Tr h�̂i
� 	

h�̂i

þ eeff Tr h�̂i2
� �̂

I þ 3feff Tr2 h�̂i
� 	̂

I þ o kh�̂ik2
� �

ð24Þ

where we have defined the effective linear moduli keff and leff and
the effective nonlinear coefficients eeff and feff . The effective consti-
tutive relation given in Eq. (24) has the same form of Eq. (23) which
is valid for each phase, except for the possible higher order terms,
which will be neglected in the following developments. All the lin-
ear (keff and leff ) and nonlinear (eeff and feff ) effective elastic param-
eters will be found as function of the parameters of the two phases
and the volume fraction c ¼ R2

2=R
2
1 of the core (with radius R2)

embedded in the shell (with external radius R1).

3.1. Linear analysis

In order to solve the linear counterpart of our problem, we use
the complex variable method for the two-dimensional elasticity
(Atkin and Fox, 2005; Muskhelishvili, 1953). We assume that the
elastic state of a given homogeneous region Xa (a ¼ 1;2) is exactly
described by two holomorphic functions /aðzÞ and waðzÞ, where
zrepresents the position on the plane (see Fig. 3 for details). The
Kolossov–Muskhelishvili equations allow for the determination
of the elastic fields in each region

ua
1 þ i ua

2 ¼
1

2la
va/aðzÞ � z/0aðzÞ � waðzÞ
h i

ð25Þ

Ta
11 þ Ta

22 ¼ 2 /0aðzÞ þ /0aðzÞ
h i

ð26Þ

Ta
22 � Ta

11 þ 2 iTðaÞ12 ¼ 2 z/00aðzÞ þ w00aðzÞ

 �

ð27Þ

where f is the conjugate of f while f 0 and f 00 indicate the first and the
second derivative of the analytic function f, respectively. Functions
/1ðzÞ and w1ðzÞ are defined for R2 <j z j< R1, while /2ðzÞ and w2ðzÞ

Fig. 3. Schematic representation of the cross-section of the composite cylinder
shown in Fig. 1. The whole planar region X has been subdivided into the shell X1

(with parameters k1, l1, v1, e1 and f1) and the core X2 (with parameters k2, l2, v2, e2

and f2). We will adopt the complex variable method for the two-dimensional
elasticity based on the couple of Kolossov–Muskhelishvili potentials /aðzÞ and waðzÞ
(a ¼ 1;2), where the complex number z ¼ x1 þ ix2 represents the position on the
plane.
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are defined for j z j< R2. Moreover, the parameter va introduced in
Eq. (27) is given by va ¼ 3� 4ma (plane strain conditions) where the
Poisson ratio can be written as ma ¼ ðka � laÞ=ð2kaÞ.

The solution of the elastic problem can be obtained by imposing
the perfect bonding at the interface and the prescribed displace-
ment on the external boundary. These conditions can be expressed
in terms of the elastic potentials

1
2l1

v1/1 � z/01 � w1

h i
¼ 1

2l2
v2/2 � z/02 � w2

h i
ð28Þ

/1 þ z/01 þ w1 ¼ /2 þ z/02 þ w2 ð29Þ

for z ¼ R2eih, and

1
2l1

v1/1 � z/01 � w1

h i
¼
Xþ1

k¼�1
gkeikh ð30Þ

for z ¼ R1eih. Here, we have developed the prescribed displacement
in Fourier series with coefficients gk.

The potentials /2ðzÞ and w2ðzÞ can be represented by Taylor ser-
ies and /1ðzÞ and w1ðzÞ by Laurent series (Atkin and Fox, 2005)

/2ðzÞ ¼
Xþ1
k¼0

akzk; w2ðzÞ ¼
Xþ1
k¼0

bkzk ð31Þ

/1ðzÞ ¼
Xþ1

k¼�1
ckzk; w1ðzÞ ¼

Xþ1
k¼�1

dkzk ð32Þ

By substituting the series expansions in Eq. (28) and by separating
the terms of the same power, we obtain

�1 < k 6 �1)
1

2l1
v1ckR

k
2 � ð2� kÞ�c2�kR

2�k
2 � �d�kR

�k
2

h i
¼ 1

2l2
�ð2� kÞ�a2�kR

2�k
2 � �b�kR

�k
2

h i
8><
>:

ð33Þ

k ¼ 0)
1

2l1
v1c0 � 2�c2R

2
2 � �d0


 �
¼ 1

2l2
v2a0 � 2�a2R

2
2 � �b0


 �
8<
: ð34Þ

k ¼ 1)
1

2l1
v1c1R2 � �c1R2 � �d�1R

�1
2


 �
¼ 1

2l2
v2a1R2 � �a1R2

 �

(
ð35Þ

2 6 k < þ1)
1

2l1
v1ckR

k
2 � ð2� kÞ�c2�kR

2�k
2 � �d�kR

�k
2

h i
¼ 1

2l2
v2akR

k
2

h i
:

8><
>: ð36Þ

The same process can be applied to Eq. (29), by getting

�1 < k 6 �1)
ckR

k
2 þ ð2� kÞ�c2�kR

2�k
2 þ �d�kR

�k
2

¼ ð2� kÞ�a2�kR
2�k
2 þ �b�kR

�k
2

(
ð37Þ

k ¼ 0)
c0 þ 2�c2R

2
2 þ �d0

¼ a0 þ 2�a2R
2
2 þ �b0

(
ð38Þ

k ¼ 1) c1R2 þ �c1R2 þ �d�1R
�1
2

¼ a1R2 þ �a1R2

(
ð39Þ

2 6 k < þ1)
ckR

k
2 þ ð2� kÞ�c2�kR

2�k
2 þ �d�kR

�k
2

¼ akR
k
2

(
ð40Þ

and, finally to Eq. (30), by obtaining

�1< k<þ1) 1
2l1

v1ckR
k
1�ð2�kÞ�c2�kR

2�k
1 � �d�kR

�k
1

h i
¼ gk ð41Þ

Now we determine a property which is valid in the range
2 6 k < þ1; we substitute Eq. (40) in Eq. (36) and we use Eq.
(41) in the result. We eventually obtain

ck Rk
2

v1

l1
� v2

l2

� �
�R2k

1

Rk
2

v1
1
l1
þ v2

l2

� �" #

� ð2� kÞ�c2�k
R2

2 �R2
1

Rk
2

1
l1
þ v2

l2

� �
þ 2

Rk
1

Rk
2

1
l1
þ v2

l2

� �
l1gk ¼ 0

ð42Þ

Similarly, we can get a second property which is valid in the range
�1 < k 6 �1; we substitute Eq. (37) in Eq. (33) and we use Eq. (41)
in the result. After a long but straightforward calculation we have

ck Rk
2

v1

l1
þ 1

l2

� �
�R2k

1

Rk
2

v1
1
l1
� 1

l2

� �" #

� ð2� kÞ�c2�k
R2

2 �R2
1

Rk
2

1
l1
� 1

l2

� �
þ 2

Rk
1

Rk
2

1
l1
� 1

l2

� �
l1gk ¼ 0

ð43Þ

The kth relation in Eq. (42) or (43) depends only on the coefficients
ck; c2�k and gk. Therefore, it is evident that Eq. (42) for k ¼ 3 and Eq.
(43) for k ¼ �1 form a closed system for the two unknowns c�1 and
c3; in addition, Eq. (42) for k ¼ 4 and Eq. (43) for k ¼ �2 form a
closed system for the two unknowns c�2 and c4, and so on. This pro-
cedure determines all the couples of unknowns ðck; c2�kÞ for k P 3.
To complete the evaluation of the ck series we have to determine c2,
c1 and c0. The coefficient c2 (together with a2 and d�2) can be ob-
tained through the system composed by Eqs. (36), (40) and (41)
written for k ¼ 2

1
2l1

v1c2R
2
2 � �d�2R

�2
2


 �
¼ 1

2l2
v2a2R

2
2

1
2l1

v1c2R
2
1 � �d�2R

�2
1


 �
¼ g2

c2R
2
2 þ �d�2R

�2
2 ¼ a2R

2
2

8>>><
>>>:

ð44Þ

We observe that the three unknowns of the previous systems are all
zero if g2 ¼ 0 (as is in our case, see below). The coefficient c1

(together with a1 and d�1) can be obtained through the system
composed by Eqs. (35), (39) and (41) written for k ¼ 1

1
2l1

v1c1R2 � �c1R2 � �d�1R
�1
2


 �
¼ 1

2l2
v2a1R2 � �a1R2

 �

c1R2 þ �c1R2 þ �d�1R
�1
2 ¼ a1R2 þ �a1R2

�d�1 ¼ v1c1R
2
1 � �c1R

2
1 � 2l1R1g1:

8>>><
>>>:

ð45Þ

The coefficients c0, a0, b0 and d0 are governed by Eqs. (34), (38) and
(41) written for k ¼ 0

1
2l1

v1c0 � 2�c2R
2
2 � �d0


 �
¼ 1

2l2
v2a0 � 2�a2R

2
2 � �b0


 �
c0 þ 2�c2R

2
2 þ �d0 ¼ a0 þ 2�a2R

2
2 þ �b0

�d0 ¼ v1c0 � 2�c2R
2
1 � 2l1g0:

8>>><
>>>:

ð46Þ

They can be all imposed to zero since a2 ¼ 0 and c2 ¼ 0 when
g2 ¼ 0. Finally, the remaining unknowns of the sequences ak, bk

and dk can be directly found through Eqs. (40), (37) and (41),
respectively. We have obtained the general solution for the elastic
fields when the arbitrary applied displacement is given on the
external boundary of the composite system.

Now, we impose ~u ¼ �̂0~x on the external boundary. Hence, the
sequence gk is therefore characterized by g1 ¼ R1 �0;11 þ �0;22ð Þ=2
and g�1 ¼ R1 �0;11 þ 2i�0;12 � �0;22ð Þ=2 and the remaining gk are all
zero. The previous analysis of the problem proves that the
following simplified representations are sufficient to solve the
problem
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w1ðzÞ ¼ d�3
1
z3 þ d�1

1
z
þ d1z ð47Þ

/1ðzÞ ¼ c�1
1
z
þ c1zþ c3z3 ð48Þ

w2ðzÞ ¼ b1z ð49Þ
/2ðzÞ ¼ a1zþ a3z3 ð50Þ

First of all we solve the system given in Eq. (45) for obtaining the
coefficients c1, a1 and d�1

a1 ¼
v1 þ 1
� 	

Tr �̂0
� 	

1
l2

2c þ v1 � 1
� 	

v2 � 1
� 	

þ 1
l1

2ð1� cÞ v1 � 1
� 	 ð51Þ

c1 ¼
2þ l1

l2
v2 � 1
� 	h i

Tr �̂0
� 	

1
l2

2c þ v1 � 1
� 	

v2 � 1
� 	

þ 1
l1

2ð1� cÞ v1 � 1
� 	 ð52Þ

d�1 ¼
v1 � 1
� 	

� l1
l2

v2 � 1
� 	h i

2cR2
1Tr �̂0
� 	

1
l2

2c þ v1 � 1
� 	

v2 � 1
� 	

þ 1
l1

2ð1� cÞ v1 � 1
� 	 ð53Þ

As above said, Eq. (42) for k ¼ 3 and Eq. (43) for k ¼ �1 form a
closed system for the two unknowns c�1 and c3: the solutions are

c�1 ¼
� 1

l1
� 1

l2

� �
l1 �0;11 þ 2i�0;12 � �0;22ð ÞR2

2

3
a

1
l1
þ v2

l2

� �
1
l1
� 1

l2

� �
1� 1

c

� 	2 þ b
ð54Þ

c3 ¼ ��c�1
1

aR4
2

1
l1
þ v2

l2

� �
1� 1

c

� �
ð55Þ

where

a ¼ v1

l1
� v2

l2

� �
� 1

c3 v1
1
l1
þ v2

l2

� �
ð56Þ

b ¼ v1

l1
þ 1

l2

� �
� cv1

1
l1
� 1

l2

� �
ð57Þ

The other coefficients can be eventually found as

d�3 ¼ v1�c3R
6
1 þ c�1R

2
1 ð58Þ

d1 ¼ v1�c�1R
�2
1 � 3c3R

2
1 � l1 �0;11 � 2i�0;12 � �0;22ð Þ ð59Þ

a3 ¼ c3 1þ v1
1
c3

� �
� �c�1

1
R4

2

1� 1
c

� �
ð60Þ

b1 ¼ �c�1
1

R2
2

4� 3
c

� �
þ v1

R2
1

" #
� 3c3 R2

1 þ
v1R

2
2

c3

 !

� l1 �0;11 � 2i�0;12 � �0;22ð Þ ð61Þ

We have solved an Eshelby-like problem in a finite region (the circle
of radius R1) and therefore it is possible to prove the perfect equiv-
alence between our development and the two-dimensional Dirich-
let–Eshelby tensor formalism introduced by Li et al. (2005) and Li
and Wang (2008). The method of the complex potentials could be
also used to obtain the two-dimensional Neumann-Eshelby tensor,
useful to describe a set of prescribed forces on a finite region as dis-
cussed by Wang et al. (2005). We omit here this second approach
for sake of brevity. However, the proposed solution is sufficient to
apply the nonlinear homogenization technique. We remark that this
technique can be also applied to the composite sphere model by
using the three-dimensional version of the Eshelby tensor for finite
regions, both under Dirichlet and Neumann boundary conditions (Li
et al., 2007a,b). The final relations Eqs. (51)–(61) with R1 !1 are
in perfect agreement with the classical two-dimensional Eshelby re-
sults (Hardiman, 1954; Eshelby, 1957, 1959). We observe that in the
case of a finite region (i.e., finite radius R1) the elastic strain is not
uniform within the inhomogeneity (the coefficient a3 – 0 generates
a space-varying deformation), contrarily to the standard Eshelby
theory (R1 !1) where the elastic fields are uniform within the
embedded particle.

3.2. Nonlinear analysis

At this point we want to apply the nonlinear perturbation tech-
nique described in Section 2 to the composite cylinder system. To
this aim we take into consideration the following linear isotropic
operator identified through Eqs. (3) and (23) and described by
the space varying linear moduli lð~xÞ and kð~xÞ

Ĉð~xÞ�̂ð~xÞ ¼ 2lð~xÞ�̂ð~xÞ þ ½kð~xÞ � lð~xÞ�Tr½�̂ð~xÞ�̂I ð62Þ

Similarly, we consider the following nonlinear isotropic operator
controlled by the space varying nonlinear coefficients eð~xÞ and fð~xÞ

N̂ð~xÞ�̂ð~xÞ�̂ð~xÞ ¼ 2eð~xÞTr �̂ð~xÞ

 �

�̂ð~xÞ þ eð~xÞTr ½�̂ð~xÞ�2
n o

Î

þ 3fð~xÞTr2 �̂ð~xÞ

 �̂

I ð63Þ

In order to use Eqs. (20) and (21) we determine the following scalar
quantities for an arbitrary strain tensor field �̂ð~xÞ

�̂ð~xÞ : Ĉð~xÞ�̂ð~xÞ¼ ½kð~xÞþlð~xÞ�Tr2½�̂ð~xÞ��4lð~xÞDet½�̂ð~xÞ� ð64Þ
�̂ð~xÞ : N̂ð~xÞ�̂ð~xÞ�̂ð~xÞ¼3½eð~xÞþ fð~xÞ�Tr3 �̂ð~xÞ


 �
�6eð~xÞTr �̂ð~xÞ


 �
Det½�̂ð~xÞ� ð65Þ

In Eqs. (64) and (65) we used the standard relation

Tr ½�̂ð~xÞ�2
n o

¼ Tr2 �̂ð~xÞ

 �

� 2Det½�̂ð~xÞ� for two-dimensional matrices.

Eqs. (64) and (65) must be evaluated with �̂ð~xÞ ¼ �̂0, Ĉð~xÞ ¼ Ĉeff

and N̂ð~xÞ ¼ N̂eff for obtaining the left hand sides of Eqs. (20) and

(21), and with �̂ð~xÞ ¼ �̂L, Ĉð~xÞ ¼ Ĉ1 if ~x 2 X1; Ĉ2 if ~x 2 X2

n o
and

N̂ð~xÞ ¼ N̂1 if ~x 2 X1; N̂2 if ~x 2 X2

n o
for obtaining the right hand

sides of the same equations. The distribution of the linear part of
the strain (�̂L) within our heterogeneous structure is easily deter-
mined with the results of Section 3.1: in fact, it is sufficient to con-
sider the solutions Eqs. (47)–(50) and to substitute them in the
displacement expression given in Eq. (25). By differentiating this
last equation (see Eq. (1)), we easily find the strain tensor �̂L within
the regions X1 and X2, which is the main quantity exploited to ob-
tain the linear and nonlinear effective elastic properties. It is impor-
tant to remark that the �̂L depends only on the strain �̂0 applied on
the boundary of radius R1 (prescribed displacement). For simplify-
ing the formalism, we therefore introduce the scalar quantities

SC ¼
R

X �̂
L : Ĉ�̂Ld~x and SN ¼

R
X �̂

L : N̂�̂L�̂Ld~x, which are functions of
the applied strain

SC �̂0
� 	
¼ðk1þl1Þ

Z
X1

Tr½�̂Lð~xÞ�
� 2

d~x�4l1

Z
X1

Det½�̂Lð~xÞ�d~x

þðk2þl2Þ
Z

X2

Tr½�̂Lð~xÞ�
� 2

d~x�4l2

Z
X2

Det½�̂Lð~xÞ�d~x ð66Þ

SN �̂0
� 	
¼3ðe1þ f1Þ

Z
X1

Tr3 �̂Lð~xÞ

 �

d~x�6e1

Z
X1

Tr �̂Lð~xÞ

 �

Det½�̂Lð~xÞ�d~x

þ3ðe2þ f2Þ
Z

X2

Tr3 �̂Lð~xÞ

 �

d~x�6e2

Z
X2

Tr �̂Lð~xÞ

 �

Det½�̂Lð~xÞ�d~x

ð67Þ

All integrals in previous expressions can be calculated in closed
form through the straightforward introduction of the cylindrical
coordinates. However, we do not report here the complete results
which are rather complicated and do not add relevant information
to our development. Instead, we apply Eqs. (64) and (65) for deter-
mining the effective behavior.

We adopt suitable homogeneous in-plane deformations and we
obtain the effective linear moduli

leff ¼
1

4pR2
1

SC
0 1
1 0

� �� �
ð68Þ

keff ¼
1

pR2
1

SC
1 0
0 0

� �� �
� 1

4
SC

0 1
1 0

� �� �� �
ð69Þ
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and the effective nonlinear coefficients

eeff ¼
1

3pR2
1

2SN
1 0
0 0

� �� �
� 1

4
SN

1 0
0 1

� �� �� �
ð70Þ

feff ¼
1

3pR2
1

1
4

SN
1 0
0 0

� �� �
� SC

1 0
0 1

� �� �� �
ð71Þ

Since the expression for SCð�̂0Þ depends only on the linear elastic
parameters, we observe that the effective linear moduli depend

only on the linear elastic moduli of the components, as expected.
On the other hand, it is evident that the effective nonlinear moduli
depend both on the linear and nonlinear responses of the different
phases composing the structure. It is interesting to observe that
the whole procedure can be implemented both numerically, with
standard software techniques, and analytically in symbolic compu-
tation environments. An explicit code has been developed with the
Maple™ software and it can be found in the Additional Material
Section. Here, all integrations defined above are calculated in

Fig. 4. Nonlinear effective elastic moduli in terms of the volume fraction c of the internal core and the compressibility contrast log10ðk2=k1Þ. We have adopted the parameters
k1 ¼ 1, m1 ¼ 0:33, m2 ¼ 0:3. Four couples of plots for eeff and feff correspond to the nonlinear parameter of the structure (e1 ¼ 1, e2 ¼ 0, f1 ¼ 0, f2 ¼ 0), (e1 ¼ 0, e2 ¼ 1, f1 ¼ 0,
f2 ¼ 0), (e1 ¼ 0, e2 ¼ 0, f1 ¼ 1, f2 ¼ 0) and (e1 ¼ 0, e2 ¼ 0, f1 ¼ 0, f2 ¼ 1). It is therefore possible to observe the effects of any nonlinearity source separately.
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closed form and all corresponding expressions are reported
explicitly.

We show now a numerical application of Eqs. (68)–(71). We are
interested in better understanding the effects of the nonlinear
parameters e1, f1, e2 and f2 on the effective nonlinear properties
of the overall composite cylinder. In Fig. 4 we can observe the
behavior of eeff and feff in terms of the volume fraction c of the
internal core and the compressibility contrast log10ðk2=k1Þ. We
have adopted the parameters k1 ¼ 1, m1 ¼ 0:33, m2 ¼ 0:3. Four cou-
ples of plots for eeff and feff correspond to the following nonlinear
parameter of the structure: (e1 ¼ 1, e2 ¼ 0, f1 ¼ 0, f2 ¼ 0), (e1 ¼ 0,

e2 ¼ 1, f1 ¼ 0, f2 ¼ 0), (e1 ¼ 0, e2 ¼ 0, f1 ¼ 1, f2 ¼ 0) and (e1 ¼ 0,
e2 ¼ 0, f1 ¼ 0, f2 ¼ 1). It means that in each case we have consid-
ered only one source of nonlinearity in order to isolate its effects,
produced on the effective nonlinear behavior. We can notice a very
complex scenario from which we can deduce some general trends:
(i) each of the nonlinearity e1, f1, e2 and f2 generates both eeff and
feff as final effective result; (ii) when the nonlinear behavior is con-
centrated in the matrix we observe a strong intensification of the
effective nonlinearities for a positive contrast log10ðk2=k1Þ (i.e.,
k2 � k1); (iii) conversely, when the nonlinear behavior is concen-
trated in the core we observe a strong intensification of the effec-

Fig. 5. Nonlinear effective elastic moduli in terms of the volume fraction c and the Poisson ratio m2 of the embedded inhomogeneity (or core). We have adopted the
parameters k1 ¼ 1, m1 ¼ 0:33, k2 ¼ 2. Four couples of plots for eeff and feff correspond to the nonlinear parameter of the structure (e1 ¼ 1, e2 ¼ 0, f1 ¼ 0, f2 ¼ 0), (e1 ¼ 0, e2 ¼ 1,
f1 ¼ 0, f2 ¼ 0), (e1 ¼ 0, e2 ¼ 0, f1 ¼ 1, f2 ¼ 0) and (e1 ¼ 0, e2 ¼ 0, f1 ¼ 0, f2 ¼ 1). It is therefore possible to observe the effects of any nonlinearity source separately.
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tive nonlinearities for a negative contrast log10ðk2=k1Þ (i.e.,
k2 � k1).

Moreover, in Fig. 5 we can find the results of a second analysis
conducted to obtain the nonlinear effective elastic moduli in terms
of the volume fraction c and the Poisson ratio m2 of the embedded
inhomogeneity (or core). We have adopted the parameters k1 ¼ 1,
m1 ¼ 0:33, k2 ¼ 2. As before, four couples of plots for eeff and feff cor-
respond to the nonlinear parameter of the structure (e1 ¼ 1, e2 ¼ 0,
f1 ¼ 0, f2 ¼ 0), (e1 ¼ 0, e2 ¼ 1, f1 ¼ 0, f2 ¼ 0), (e1 ¼ 0, e2 ¼ 0, f1 ¼ 1,
f2 ¼ 0) and (e1 ¼ 0, e2 ¼ 0, f1 ¼ 0, f2 ¼ 1). Also in this case we ob-
serve a very intriguing and complex mixing behavior of the nonlin-
ear features. In particular we note that, when the nonlinearity is
confined within the external shell, the nonlinear parameter eeff

exhibits a strong positive amplification effect for a negative Pois-
son ratio m2 of the core and, on the other hand, the nonlinear
parameter feff exhibits a negative amplification effect for a negative
Poisson ratio of the core. Moreover, when e2 ¼ 1 we have a quite
constant eeff for different values of m2 and two intensification ef-
fects of feff (i.e., a negative peak for positive m2 and a positive peak
for negative m2). Finally, when f2 ¼ 1 we have a quite constant feff

for different values of m2 and an intensification effect of eeff (i.e., a
positive peak for negative m2).

4. Applications and comparisons with earlier theories

In this section we show some applications of the general theory
to specific cases of technological interest and we draw some com-
parisons with certain previous approximated theories.

In particular we analyse a nonlinear cylindrical shell with a void
core, we find some simple results concerning the more specific
case of a thin nonlinear tube or nanotube and, finally, we discuss
the relations between the present approach and a previous one
dealing with a homogenization scheme for a dispersion of nonlin-
ear parallel cylinder in a linear matrix.

4.1. Nonlinear cylindrical shells with a void core

As first application of the general theory, we take into consider-
ation the case of a nonlinear shell with a void core. It means that we
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Fig. 6. Results for a void core embedded in the cylindrical structure with nonlinear matrix. We have adopted the parameters k1 ¼ 1, 0 < l1 < 3k1 (or equivalently
�1 < m1 < 1=2) sampled through 10 equispaced values corresponding to lines in figures. In the first line one can find the linear results for leff and meff (dashed lines for
positive matrix Poisson ratio and solid lines for negative matrix Poisson ratio). As for the nonlinear behavior in the second line eeff and feff are represented for e1 ¼ 1, f1 ¼ 0
and, in the third line for e1 ¼ 0, f1 ¼ 1. The perforated matrix exhibits the nonlinear parameter not shown in the bulk material and also displays remarkable nonlinear
intensification effects.
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consider k2 ¼ 0, m2 ¼ 0, e2 ¼ 0 and f2 ¼ 0 throughout this section.
On the other hand, within the shell (or matrix) we consider k1 ¼ 1
and we use ten equispaced values for 0 < l1 < 3k1. When
0 < l1 < k1 we have a positive Poisson ratio m1 and, conversely,
when k1 < l1 < 3k1 we obtain a negative value for the Poisson va-
lue m1 (it is evident by considering the relation m1 ¼ ðk1 � l1Þ=ð2k1Þ).
So, we can explore all the possibilities for the elasticity of the ma-
trix. In Fig. 6 we show the results obtained with the general theory
summarized in Eqs. (68)–(71). In the first line the linear results for
leff (black lines) and meff (blue lines) are represented in terms of the
void volume fraction c. Everywhere we have adopted dashed lines
for results corresponding to the positive values of m1 and solid lines
for the cases with m1 < 0. It is interesting to observe the conver-
gence of meff to 1=4 when the volume fraction c is approaching the
value 1. This phenomenon is consistent with the universal behavior
of the effective Poisson ratio of porous materials for high values of
the porosity (Zimmerman, 1991, 1994; Christensen, 1993; Giord-
ano, 2003). As for the nonlinear effective results, in the second line
of Fig. 6, eeff (red lines) and feff (green lines) are represented for the
case with e1 ¼ 1 and f1 ¼ 0; similarly, in the third line, eeff (red lines)
and feff (green lines) are represented for the case with e1 ¼ 0 and
f1 ¼ 1. We can observe two general interesting properties:

� In both cases we observe a nonlinear effective behavior which
exhibits both nonlinear parameters eeff – 0 and feff – 0 inde-
pendently of the fact that f1 ¼ 0 or e1 ¼ 0. In other words, after
the perforation, we notice the appearance of the nonlinear
parameter not present in the original matrix (i.e., feff – 0 if
f1 ¼ 0, and eeff – 0 if e1 ¼ 0). This property can be exploited to
create composite structures with specific desired nonlinear
response.
� We also observe that for certain values of the volume fraction

there is a remarkable intensification of the nonlinear effects.
This phenomenon is even more pronounced for a negative
Poisson ratio of the shell.

4.2. Thin nonlinear tubes or nanotubes

We consider thin tubes or nanotubes with a nonlinear elastic
behavior. To be concrete we can think of single-walled or
multi-walled nanotubes but the applications are not restricted to
these cases. A typical composite structure is obtained by a
dispersion of parallel nanotubes, embedded in a given matrix in
order to develop reinforcing techniques and/or sensors designing.
With the idea of implementing the multiscale methodology, it is
first important to ideally substitute each embedded nanotube with
an effective uniform cylinder. Then, as second step, we can apply
standard homogenization techniques to obtain the overall
behavior of the whole dispersion (see e.g., the next section for
details). The first step of the above procedure can be performed
by considering a composite cylinder with a void core and a thin
shell: it means that we can perform the developments of the
general equations (68)–(71) with k2 ¼ 0, m2 ¼ 0, e2 ¼ 0, f2 ¼ 0 and
the volume fraction approaching the value c ¼ 1 (thin structure).
A long but straightforward calculation allows us to obtain the
following results, which are valid up to the second order in the
variable 1� c

leff ¼
k1l1

2ðk1 þ l1Þ
ð1� cÞ þ k1l1ðl1 þ 2k1Þ

2ðk1 þ l1Þ
2 ð1� cÞ2 þ o ð1� cÞ2

� �

ð72Þ

keff ¼
k1l1

k1 þ l1
ð1� cÞ þ k2

1l1

ðk1 þ l1Þ
2 ð1� cÞ2 þ o ð1� cÞ2

� �
ð73Þ

eeff ¼
3l1ðl2

1 þ k2
1Þ

2ðk1 þ l1Þ
3 e1ð1� cÞ þ 3l3

1

ðk1 þ l1Þ
3 f1ð1� cÞ

þ 3l1ðl3
1 þ 4k1l2

1 þ 3k3
1Þ

2ðk1 þ l1Þ
4 e1ð1� cÞ2

þ 3l3
1ðl1 þ 4k1Þ
ðk1 þ l1Þ

4 f1ð1� cÞ2 þ o ð1� cÞ2
� �

ð74Þ

feff ¼ �
l3

1

2ðk1 þ l1Þ
3 f1ð1� cÞ � l1ðl2

1 þ k2
1Þ

4ðk1 þ l1Þ
3 e1ð1� cÞ

� l1ð3l3
1 þ 6k1l2

1 þ 5k3
1 þ 2k2

1l1Þ
4ðk1 þ l1Þ

4 e1ð1� cÞ2

� 3l3
1ðl1 þ 2k1Þ

2ðk1 þ l1Þ
4 f1ð1� cÞ2 þ o ð1� cÞ2

� �
ð75Þ

As already observed in the previous section, the nonlinear effective
parameters eeff and feff are influenced by both the nonlinear coeffi-
cients e1 and f1, thus confirming the strong coupling between the
nonlinear properties.

4.3. Homogenization of dispersions of parallel fibres

In this last section we want to study the relations between the
present general theory and previous homogenization schemes. To
this aim, we briefly introduce an earlier result concerning the
two-dimensional homogenization of a dispersion of circular non-
linear inhomogeneities embedded in a linear isotropic plane
(Giordano, 2009; Giordano et al., 2008, 2009; Colombo and Giord-
ano, 2011). The structure of this composite material is depicted in
Fig. 7. The circular inhomogeneities are randomly and isotropically
embedded into a linear matrix with elastic moduli l1 and k1 (k1 is
always the two-dimensional version of the bulk modulus). To be-
gin, we suppose that the volume fraction cof the embedded phase
is small (dilute dispersion). If we identify the linear coefficients of
the inhomogeneities by l2 and k2 and their nonlinear constants by
e2 and f2, then the stress–strain relation is given by Eq. (23) with
a ¼ 2. The constitutive equation of the whole system is expressed
in terms of the effective linear and nonlinear elastic moduli as in
Eq. (24). In this case the effective linear elastic moduli are given by

leff ¼ l1 þ c
l2 � l1

c þ 1� cð Þ 1þ 1
2

l2
l1
� 1

� �
k1þ2l1
k1þl1

h i ð76Þ

keff ¼ k1 þ c
k2 � k1

c þ ð1� cÞ l1þk2
l1þk1

ð77Þ

Fig. 7. Scheme of a dispersion of nonlinear circular inhomogeneities (with linear
moduli l2 and k2 and nonlinear constants e2 and f2) embedded into a linear matrix
with elastic moduli l1 and k1.
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and the effective nonlinear elastic moduli by

eeff ¼
e2c
L2 1� 1� c

L þ 2M
k2 � k1

l1 þ k1

� �
ð78Þ

feff ¼ �
cð1� cÞðk2 � k1Þðe2 þ 2f2Þ

2ðk1 þ l1ÞðL þ 2MÞ3
� e2c

6L2 þ
cðe2 þ 2f2Þ

2ðL þ 2MÞ2

� e2c

3LðL þ 2MÞ

þ
e2cð1� cÞ l1ðk2 � k1Þ þ ðk1 þ 2l1Þðl2 � l1Þ


 �
6l1ðk1 þ l1ÞL

2ðL þ 2MÞ
ð79Þ

where we have defined the coefficients

L ¼ c þ ð1� cÞ 1þ 1
2

k1 þ 2l1

k1 þ l1

l2

l1
� 1

� �� �
ð80Þ

M ¼ ð1� cÞ 1
4 k1 þ l1

� 	 2k2 � k1 1þ l2

l1

� �
� 2 l2 � l1

� 	� �
ð81Þ

It is important also to consider the first order development of pre-
vious expressions with respect to the volume fraction c. We
straightforwardly obtain

leff ¼ l1 þ
2l1ðl2 � l1Þðk1 þ l1Þ
k1l2 þ 2l1l2 þ k1l1

c þ o c2� 	
ð82Þ

keff ¼ k1 þ
ðk2 � k1Þðk1 þ l1Þ

l1 þ k2
c þ o c2� 	

ð83Þ

Similarly, for the effective nonlinear elastic moduli we get

feff ¼
ðk1 þ l1Þ

3ðNee2 þ Nf f2Þ
2ðk1l2 þ 2l1l2 þ k1l1Þ

2ðl1 þ k2Þ3
c þ o c2� 	

ð84Þ

eeff ¼
4ðk1 þ l1Þ

3l2
1

ðk1l2 þ 2l1l2 þ k1l1Þ
2ðl1 þ k2Þ

e2c þ o c2� 	
ð85Þ

where the coefficients Ne and Nf introduced in Eq. (84) are given by

Ne ¼ k1ðl1 þ l2Þ þ 2l1l2


 �2 � 4l2
1 k2 þ l1

� 	2 ð86Þ
Nf ¼ 2ðk1l2 þ 2l1l2 þ k1l1Þ

2 ð87Þ

We draw a first comparison by analysing the first order expansions
(for low values of the volume fraction c) of the general theory ob-
tained in the present paper. The proposed nonlinear homogeniza-
tion scheme yields the following results: from the linear point of

Fig. 8. Results for the composite structure with the linear matrix (inhomogeneity softer than the matrix): comparison of the general theory given in Eqs. (68)–(71) (coloured
lines, dashed for positive matrix Poisson ratio and solid for negative matrix Poisson ratio) with the old theory given in Eqs. (76)–(79) (thin black lines). The first plot represents
the linear result for leff ; the two couples of nonlinear results for eeff and feff correspond to e2 ¼ 1, f2 ¼ 0 and e2 ¼ 0, f2 ¼ 1, respectively. All effective parameters have been
represented versus the volume fraction c. We have adopted the parameters k1 ¼ 1, 0 < l1 < 3k1 (or equivalently �1 < m1 < 1=2) sampled through 10 equispaced values
corresponding to lines in figures, k2 ¼ 0:1, m2 ¼ 0:33.
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view, by using Eqs. (68) and (69) we obtain, for diluted structures
(c� 1), the same expressions given in Eqs. (82) and (83). On the
other hand, for the nonlinear part we can use Eqs. (70) and (71)
and, therefore, we have the possibility to consider the nonlinear
behavior of the matrix, not accounted for in Eqs. (84) and (85). Their
form becomes

feff ¼ f1 þ
1
2 ðAe1 þ Bf1 þ Ce2 þDf2Þc

ðk1l2 þ 2l1l2 þ k1l1Þ
2ðl1 þ k2Þ3

þ o c2� 	
ð88Þ

eeff ¼ e1 þ
ðEe1 þ F f1 þ Ge2Þc

ðk1l2 þ 2l1l2 þ k1l1Þ
2ðl1 þ k2Þ

þ o c2
� 	

ð89Þ

where the coefficientsA, B, C,D, E, F and G are reported in Appendix
A. When the matrix is linear we have the coincidence of Eqs. (84) and
(85) with Eqs. (88) and (89). In fact, in this case we have e1 ¼ f1 ¼ 0
and the following relation are satisfied: C ¼ ðk1 þ l1Þ

3Ne,
D ¼ ðk1 þ l1Þ

3Nf and G ¼ 4l2
1 k1 þ l1

� 	3 (see Appendix A for details).
A first general property can be therefore stated as follows. The

two following results are exactly coincident: (i) the first order
expansions of the effective medium theory for a dispersion of

non linear inhomogeneity in a linear matrix; (ii) the first order
expansions of the exact effective results for a composite cylinder
(with a linear shell). We infer that the results obtained in the pres-
ent paper for a composite cylinder can be also applied to the case of
dispersions (at least for the dilute situation). The important point is
that now we are able to take into consideration both the possible
nonlinearity of the matrix and the nonlinear behavior of the
embedded cylinders. To better explain this issue we show in
Figs. 8–10 a comparison between the new results stated in Eqs.
(68)–(71) (coloured lines) with the old theory given in Eqs. (76)–
(79) (thin black lines). Clearly, in order to draw a coherent compar-
ison we have adopted a linear matrix in our general solution de-
scribed by (68)–(71). We have presented the effective nonlinear
parameter on the complete range 0 < c < 1 of the volume fraction
for three different compressibility contrasts: k2 ¼ 0:1k1 in Fig. 8,
k2 ¼ 10k1 in Fig. 9 and k2 ¼ k1 in Fig. 10. We deduce an overall good
agreement between the theories, except for eeff when e2 ¼ 0. In
fact, in this case with e2 ¼ 0 the old theory provides eeff ¼ 0 (see
Eq. (78)) while the new formalism gives a result different from zero
because of the strong coupling among the different nonlinear prop-
erties. However, we remark that the values of eeff with e2 ¼ 0 are
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Fig. 9. Results for the composite structure with the linear matrix (inhomogeneity harder than the matrix): comparison of the general theory given in Eqs. (68)–(71) (coloured
lines, dashed for positive matrix Poisson ratio and solid for negative matrix Poisson ratio) with the old theory given in Eqs. (76)–(79) (thin black lines). The first plot represents
the linear result for leff ; the two couples of nonlinear results for eeff and feff correspond to e2 ¼ 1, f2 ¼ 0 and e2 ¼ 0, f2 ¼ 1, respectively. All effective parameters have been
represented versus the volume fraction c. We have adopted the parameters k1 ¼ 1, 0 < l1 < 3k1 (or equivalently �1 < m1 < 1=2) sampled through 10 equispaced values
corresponding to lines in figures, k2 ¼ 10, m2 ¼ 0:33.
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quite negligible also when calculated with the complete theory. In
general, the small differences between the new predictions given
in Eqs. (68)–(71) and the former theory resumed in Eqs. (76)–
(79) can be explained as follows. New expressions are exact (up
to the second order of nonlinearity) for the composite cylinder
geometry and, therefore, they can not perfectly represent the ran-
dom and isotropic distribution of fibers. On the other hand, the for-
mer result is an approximation specifically developed for the
random structure. It is rather interesting to observe a good concor-
dance between the different approaches.

To conclude, the procedure proposed in the present paper has
been developed for a single composite cylinder (with two nonlin-
ear phases), but it can be used (at least in approximate sense and
for dilute structures) for dispersions of nonlinear cylinders embed-
ded in a nonlinear matrix. According to the multiscale paradigm,
we can further extend the applicability of the theory to the follow-
ing situations:

� We may take into consideration a multi-shell composite cylin-
der composed of different nonlinear materials. Then, we can
apply the present theory iteratively by starting with the homog-
enization of the core with the first shell. At the end we obtain a
single uniform homogenized cylinder equivalent to the multi-
shell original structure (the linear counterpart of this approach
has been developed by Hervé and Zaoui (1995) and Hervé
(2002)).
� We may also consider a dispersion of parallel cylinders (com-

posed of many different nonlinear shells) embedded in a non-
linear matrix. To analyse this situation we can first use the
previous point, homogenizing each multi-shell cylinder and,
successively, we can obtain the effective behavior of the overall
dispersion through the procedures discussed in the first part of
the present section (a linear version of this idea has been
applied by Stucu (1992)).

5. Conclusions

In this paper we have taken into account the problem of homog-
enizing a composite cylinder formed of a nonlinear elastic core
embedded into a different nonlinear elastic shell. Each material
has been assumed to be isotropic and, therefore, its behavior is rep-
resented by two linear elastic moduli (e.g., bulk and shear moduli)
and two nonlinear coefficients (the so-called Landau coefficients).
This is a minimal description of the SOEC and the TOEC, which is
pertinent to the two-dimensional elasticity under plane strain con-
ditions. We developed a homogenization procedure based on a
nonlinear perturbation technique that allows us to obtain the
effective linear and nonlinear behavior of the composite cylinder.
All the effective properties (linear and nonlinear) can be found
through the solution of a linear elastic problem, which has been
approached by means of the complex variable method. As result
we obtained the exact closed forms for the linear leff and keff

and nonlinear eeff and feff effective elastic moduli, which are valid
for any volume fraction of the core embedded in the external shell.
We presented several applications of the general theory: we ana-
lysed a nonlinear cylindrical shell with a void core, we found some
simple results concerning the case of a thin nonlinear tube or
nanotube and, finally, we discussed the relations between the pres-
ent approach and a previous one dealing with a homogenization
scheme for a dispersion of nonlinear parallel cylinder in a linear
matrix. In particular we have inferred that the exact theory for a
single composite cylinder can be also used (with some approxima-
tions and for dilute structures) also for dispersions of nonlinear
inhomogeneity in a different nonlinear matrix.

Appendix A. First order coefficients

A complete list of the coefficients entering Eqs. (88) and (89) is
given below:
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Fig. 10. Results for the composite structure with the linear matrix (without compressibility contrast between inhomogeneity and matrix): comparison of the general theory
given in Eqs. (68)–(71) (coloured lines, dashed for positive matrix Poisson ratio and solid for negative matrix Poisson ratio) with the old theory given in Eqs. (76)–(79) (thin
black lines). All effective parameters have been represented versus the volume fraction c. We have adopted the parameters k1 ¼ 1, 0 < l1 < 3k1 (or equivalently
�1 < m1 < 1=2) sampled through 10 equispaced values corresponding to lines in figures, k2 ¼ 1, m2 ¼ 0:33, e2 ¼ f2 ¼ 1.
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A ¼ l1 þ k2
� 	
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Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ijsolstr.2013.
08.017.
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