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Abstract. We prove a generic theorem stating the equivalence between a graded dielectric ellipsoid (with
gradation along a family of internal confocal ellipsoids) and an anisotropic homogeneous ellipsoid. We
then describe a procedure to obtain the three principal permittivities of the effective ellipsoid for any given
dielectric gradation profile. Finally, we apply a multiscale approach to homogenize dispersions of ellipsoidal
graded particles.

PACS. 77.22.Ch Permittivity (dielectric function) – 77.84.Lf Composite materials – 85.50.-n Dielectric,
ferroelectric, and piezoelectric devices

1 Introduction

Functionally graded composite materials are characterized
by internal gradients of composition or structure. Their
physical properties are directly affected by the design of
such gradients and they are matter of considerable interest
in disciplines as diverse as tribology, geology, microelec-
tronics, optoelectronics, biomechanics, fracture mechan-
ics, and nanotechnology. In particular, within the large
class of dielectric structures and metamaterials, graded
systems have attracted much attention because they offer
advantages over traditional composite materials [1–3]. For
instance, a graded composition across an interface (either
continuous or by discrete steps) can be used to redistribute
thermal stresses or electric fields and to reduce stress con-
centrations at the intersection between an interface and a
free surface [4].

The prediction of the effective macroscopic properties
of graded media is typically based on the so-called homog-
enization procedures: a graded structure is ideally substi-
tuted by a homogeneous equivalent one, effectively de-
scribing the physical response of the overall system [5,6].
There have been a number of attempts in the above direc-
tion. A first-principles approach has been developed in or-
der to obtain the electric potential and the electric field for
spherical particles having a radially varying dielectric con-
stant [7]. Moreover, a nonlinear differential effective dipole
approximation has been developed to analyze the third-
order nonlinear susceptibility of graded spherical parti-
cles [8]. As a further generalization, a model for second-
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and third-harmonic generation in random composites of
graded spherical particles has been developed [9,10]. Fur-
thermore, the optical properties of compositionally graded
films have been obtained with analytical and numerical
calculations [11]. Also the conductivity of heterogeneous
media with graded anisotropic spherical inhomogeneities
has been investigated by means of an energy equivalence
principle [12]. A recent application of the transformation
field method allows to calculate the effective properties
of graded composites having arbitrary periodical struc-
ture [13]. The same method has been applied to esti-
mate the effective permittivity of an anisotropic graded
granular composite having inclusions of arbitrary shape
and arbitrary anisotropic grading profile [14]. Finally, the
effective property has been investigated theoretically in
graded elliptical cylindrical composites consisting of inho-
mogeneous graded elliptical cylinders and an isotropic ma-
trix by means of the elliptical cylindrical coordinates [15].
From the experimental point of view we remember that
many different ceramic dielectric systems (typically for
microwave applications) have been produced and ana-
lyzed [16–18].

So far theoretical models have been successfully devel-
oped only for specific geometries (i.e. typically for spher-
ical or cylindrical particles), while general results for ar-
bitrarily shaped inclusions are still lacking. In this work
we present a thorough theory for graded ellipsoidal parti-
cles: in particular, we prove a generic theorem stating the
equivalence between a graded dielectric ellipsoidal inclu-
sion and an anisotropic homogeneous ellipsoid with effec-
tive dielectric permettivities. We then develop a procedure



30 The European Physical Journal B

m

s
c

coated particle

Fig. 1. Coated dielectric ellipsoidal particle with isotropic
external shell (s) and internal anisotropic core (c) embedded
into a given isotropic matrix (m).

to obtain the three principal permittivities of the effective
ellipsoid when the dielectric gradation function is given.

The ellipsoidal shape does represent the most gen-
eral geometry suitable for many practical applications: in
particular, it allows us to analyze two important limit-
ing cases, namely the spherical and the cylindrical ones.
Under this respect, the present investigation provides a
very general conceptual framework, including those spe-
cific cases previously investigated. Our development pro-
ceeds through a two-step procedure: firstly, we homogenize
a simple coated ellipsoidal particle made of an anisotropic
core and of an isotropic external shell; then, we adopt a
limiting process to investigate the properties of the graded
ellipsoidal inclusion. Once this problem is solved, the ho-
mogenization proceeds by averaging over the volume of a
dispersion of graded particles [19–21]. This generates an
effective mean field theory: such an approach, in previ-
ous works, has been successfully introduced both in the
linear case [22–24] and in the nonlinear one [25,26]. The
two-step procedure is commonly referred to as multiscale
approach. In our case the multiscale homogenization first
solves the problem inside each graded particle and then
it copes with the overall dispersion of inclusions. A simi-
lar approach has been applied to the elastic properties of
composite or cracked materials [27–30].

The structure of the paper is the following: in Section 2
we analyze the properties of a single coated ellipsoidal par-
ticle, in Section 3 we obtain the results describing a graded
ellipsoidal inclusion and in Section 4 we present some ap-
plications to dispersions of graded inhomogeneities.

2 Coated dielectric ellipsoidal particle

We consider the structure represented in Figure 1 where
a dielectric coated particle is embedded into a homoge-
neous matrix. The core is made of an anisotropic material
with principal directions of the permittivity tensor aligned
with the geometrical principal directions of the internal
ellipsoid (semi-axes ac1 , ac2 , ac3). The core principal per-
mittivities are ε3k for k = 1, 2, 3. The shell is formed by
an isotropic material with permittivity ε2 (semi-axes as1 ,
as2 , as3). Finally, the embedding homogeneous matrix is

isotropic with permittivity ε1. The two ellipsoids have the
same foci and, therefore, they are both described by the
following family of confocal ellipsoids

x2
1

a2
s1

+ ξ
+

x2
2

a2
s2

+ ξ
+

x2
3

a2
s3

+ ξ
= 1. (1)

If ξ = 0 equation (1) describes the external shell (semi-
axes as1 , as2 , as3) while if ξ = ξc it describes the surface
of the internal core (semi-axes ac1 , ac2 , ac3). Therefore,
we have a2

si
+ ξc = a2

ci
. We assume that the external semi-

axes are ordered as follows: 0 < as3 < as2 < as1 . So,
inside the particle we always have −a2

s3
< ξ < 0. A given

value of ξ in this range represents an ellipsoid placed inside
the composite particle. It is also useful to introduce the
volume fraction c = (ac1ac2ac3)/(as1as2as3) of the core
into the whole inclusion.

We prove the following property: under the effect of
a uniform electric field, the inclusion composed by an
anisotropic core of permittivities ε3k (for k=1,2,3) with
volume fraction c and by an isotropic confocal shell of per-
mittivity ε2 (see Fig.1 for details) is exactly equivalent to
an anisotropic homogeneous ellipsoid with principal per-
mittivities

ε̃k = ε2
[(ε3k − ε2)Lck + ε2] + c (ε3k − ε2) (1 − Lsk)

[(ε3k − ε2)Lck + ε2] − c (ε3k − ε2)Lsk
(2)

where Lck and Lsk are the depolarization factors of the
core and of the shell, respectively

Lck =
ac1ac2ac3

2

+∞∫
0

dt

(
a2

ck
+ t

) √
3∏

i=1

(a2
ci

+ t)

Lsk =
as1as2as3

2

+∞∫
0

dt

(
a2

sk
+ t

) √
3∏

i=1

(a2
si

+ t)

. (3)

We also remark that Lck and Lsk can be written in terms
of elliptic integrals as discussed in Appendix A.

To prove this property we consider the structure repre-
sented in Figure 1 under the effect of an externally applied
uniform electric field E0 = (E01, E02, E03). The potentials
φc in the core, φs in the shell and φm in the matrix can
be expressed by [31]

φc = Ckxk (4)

φs = Skxk + Tkxk

+∞∫
ξ

dt

R
(
a2

sk
+ t

) (5)

φm = −E0kxk + Qkxk

+∞∫
ξ

dt

R
(
a2

sk
+ t

) (6)

where the summation over k has been implicitely assumed,
R(t) =

√
(a2

s1
+ t)(a2

s2
+ t)(a2

s3
+ t) and the variable ξ is
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defined by equation (1). The unknown coefficients Ck, Sk,
Tk and Qk can be found by forcing the continuity of the
electric potential

φc = φs at ξ = ξc

φs = φm at ξ = 0 (7)

and of the normal component of the electric displacement

ε3k
∂φc

∂xk
nk = ε2

∂φs

∂n
at ξ = ξc

ε2
∂φs

∂n
= ε1

∂φm

∂n
at ξ = 0 (8)

where nk are the components of the normal unit vector of
the surface ξ = ξc and ∂/∂n is the directional derivative
taken in the direction normal to the surface ξ = ξc or
ξ = 0. Equations (7) and (8) drive to

Ck =
ε1ε2
Zk

E0k

Sk =
ε1 [(ε3k − ε2)Lck + ε2]

Zk
E0k

Tk = −1
2

ε1ac1ac2ac3 (ε3k − ε2)
Zk

E0k

Qk =
as1as2as3

2Zk
{c (ε3k − ε2) [(ε2 − ε1)Lsk − ε2]

− (ε2 − ε1) [(ε3k − ε2)Lck + ε2]}E0k (9)

where

Zk = c (ε3k − ε2) (ε2 − ε1)Lsk (Lsk − 1) (10)
− [(ε2 − ε1)Lsk + ε1] [(ε3k − ε2)Lck + ε2] .

It is important to remark that the external field is com-
pletely controlled by the coefficients Qk, representing the
effect of the inhomogeneity on the electric potential in the
surrounding matrix.

Our aim is to work out a procedure to define an ef-
fective homogeneous inclusion having the same dielectric
properties of a coated particle. We therefore consider the
following substitutions in equation (9) for Qk: ε3k → ε̃k

(effective permettivities), ack
= ask

and Lck = Lsk (for
k = 1, 2, 3), thus obtaining

Qk =
as1as2as3

2
ε̃k − ε1

(ε̃k − ε1)Lsk + ε1
E0k. (11)

These coefficients describe the behavior of the external
field for an anisotropic ellipsoid of semi-axes ask

and per-
mittivities ε̃k placed in a matrix with dielectric constant ε1
(without shell). By drawing a comparison between equa-
tion (9) and equation (11) we obtain an equation for the
effective permittivities of the composite inclusion

1
Zk

{c (ε3k − ε2) [(ε2 − ε1)Lsk − ε2]

− (ε2 − ε1) [(ε3k − ε2)Lck + ε2]}
=

ε̃k − ε1
(ε̃k − ε1)Lsk + ε1

(12)

m

graded particle

Fig. 2. Functionally graded inclusion with arbitrary permit-
tivity profile ε(ξ) for −a2

s3 < ξ < 0.

Finally, by solving the above equation for ε̃k we obtain
the expression shown in equation (2). We remark that the
result given in equation (2) does not depend on ε1 and
depends only on the internal properties of the particle.

This theorem plays a crucial role in the following de-
velopment of the theory.

3 Graded ellipsoidal inclusion

The property given in equation (2) allows us to extend our
formalism to the case of functionally graded particles with
arbitrary permittivity profile ε(ξ) for −a2

s3
< ξ < 0 (see

Fig. 2). The following result holds for graded dielectric
inclusions: under the effect of a uniform electric field, the
graded ellipsoidal particle with permittivity profile ε(ξ)
(in the entire range −a2

s3
< ξ < 0) is exactly equivalent to

an homogeneous anisotropic ellipsoid with principal per-
mittivities given by εk(0) where the functions εk(ξ) are
solutions of the following differential Riccati equations

dεk (ξ)
dξ

= − [εk (ξ) − ε (ξ)]2

2ε (ξ)
(
a2

sk
+ ξ

) − 1
R

dR

dξ
[εk (ξ) − ε (ξ)]

εk

(−a2
s3

)
= ε

(−a2
s3

)
(13)

where R(ξ) =
√

(a2
s1

+ ξ)(a2
s2

+ ξ)(a2
s3

+ ξ). The values
εk(s) (for a given s in the entire range −a2

s3
< s < 0) rep-

resent the effective principal permittivities of the ellipsoid
defined by the bounds −a2

s3
< ξ < s.

To prove this property we take into consideration an
infinitesimal ellipsoidal layer (ξ, ξ + dξ) in the function-
ally graded inclusion. The idea consists in applying the
property derived in Section 2 to the composite particle
made of the core (−a2

s3
, ξ) and of the coating (ξ, ξ + dξ).

We suppose that the region (−a2
s3

, ξ) has been homog-
enized by obtaining the effective principal permittivities
εk(ξ) (anisotropic core in this conceptual scheme). The in-
finitesimal ellipsoidal layer (ξ, ξ + dξ) is characterized by
the value ε(ξ) of the profile permittivity (isotropic shell
in this conceptual scheme). Since the effective principal
permittivities εk(ξ +dξ) of the larger region (−a2

s3
, ξ+dξ)

is straightforwardly obtained by equation (2), we get

εk(ξ + dξ) = ε(ξ)
Nξ

Dξ
(14)
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where

Nξ = [εk(ξ) − ε(ξ)] Lk(ξ)
+ε(ξ) + c [εk(ξ) − ε(ξ)] [1 − Lk(ξ + dξ)] (15)

Dξ = [εk(ξ) − ε(ξ)] Lk(ξ)
+ε(ξ) − c [εk(ξ) − ε(ξ)] Lk(ξ + dξ). (16)

In this case the volume fraction c is given (up to the first
order in dξ) by the relationship

c =
R(ξ)

R(ξ + dξ)
=

R(ξ)

R(ξ) + dR(ξ)
dξ dξ

=
1

1 + 1
R(ξ)

dR(ξ)
dξ dξ

= 1 − 1
R (ξ)

dR (ξ)
dξ

dξ. (17)

In order to obtain equation (17) we made use of the quan-
tity R(ξ) =

√
(a2

s1
+ ξ)(a2

s2
+ ξ)(a2

s3
+ ξ), which repre-

sents the product of the three semi-axes of the ellipsoid
with a given ξ: c is the ratio between the volumes or,
equivalently, the ratio betwen the corresponding values of
R. Moreover, the depolarization factors Lk (ξ) of the el-
lipsoid defined by ξ are given by

Lk (ξ) =
R (ξ)

2

+∞∫
0

ds

R(ξ + s)
(
a2

sk
+ ξ + s

) . (18)

From equation (14) we may build the difference quotient
for the variable εk(ξ)

εk(ξ + dξ) − εk(ξ)
dξ

=
ε(ξ)
dξ

Nξ

Dξ
− εk(ξ)

dξ
. (19)

By performing the limit dξ → 0 and by using equation (17)
for the volume fraction c, we obtain the first form of the
differential equation

dεk

dξ
=

(εk − ε)
{
(εk − ε) dLk

dξ − 1
R

dR
dξ [(εk − ε)Lk + ε]

}
ε

.

(20)
Now, the derivative of the depolarization factors Lk (ξ)
can be found as described in Appendix B

dLk (ξ)
dξ

=
1

R (ξ)
dR (ξ)

dξ
Lk (ξ) − 1

2
(
a2

sk
+ ξ

) . (21)

Finally, the substitution of equation (21) in equation (20)
allows us to obtain the final result shown in equation (13).

This property, proved for an arbitrarily shaped ellip-
soid, can be applied to any geometry, including spheres or
cylinders. If we consider a sphere (as1 = as2 = as3 = R)
we have for symmetry reasons ε1 = ε2 = ε3 = εeq; more-
over, we may use the change of variable R2 + ξ = r2 in
equation (13) obtaining the following differential equation
for the effective permettivity in terms of the radius r

d

dr
[rεeq (r)] = 2ε (r) − εeq (r)2

ε (r)
; εeq (0) = ε (0) (22)

Such a result agrees with the so-called Tartar formula,
obtained in earlier literature [8]. Similarly, for a circular
cylinder we have as1 → +∞ and as2 = as3 = R; the effec-
tive permittivities are ε1 = ε‖ (longitudinal permittivity)
and ε2 = ε3 = ε⊥ (transversal permittivity). Once again,
we may use the change of variable R2 + ξ = r2 in equa-
tion (13) obtaining the following results for the effective
permettivities in terms of the radius r

d

dr
[rε⊥ (r)] = ε⊥ (r) + ε (r) − ε⊥ (r)2

ε (r)
; ε⊥ (0) = ε (0)

ε‖ (r) =
2
r2

∫ r

0

ηε (η) dη. (23)

We remark that the transversal permittivity is the solution
of a Riccati differential equation, while the longitudinal
permittivity is equal to the average value of the permit-
tivity function ε (r) over a section of the circular cylinder.

4 Dispersions of ellipsoidal graded inclusions

In this Section we apply the formal results derived in Sec-
tion 3 to a dispersion of functionally graded ellipsoidal
particles, i.e. to the most common situation found in ma-
terial science.

According to the standard homogenization approach,
we begin by considering a single functionally graded par-
ticle with a given permittivity profile and by solving
the differential equations for the principal permittivi-
ties of the effective homogeneous inclusion. To this aim,
the fourth-order Runge Kutta algorithm [32] was im-
plemented to integrate the differential problem given in
equation (13) with step size 1/1000. It was verified that
this step size guarantees accurate numerical results. We
have taken into consideration a functionally graded el-
lipsoid (as1 = 3, as2 = 2.3, as3 = 2) with a power law
ε(ξ) = εA + (εB − εA)(1 + ξ/a2

s3
)n where the exponent n

can assume different values. Such a dielectric profile has
been considered for different reasons: firstly, it is generic
enough to fit many composition gradients used in real
applications; secondly, in recent literature several exact
solutions have been proposed for spheres and cylinders,
having a similar dielectric profile varying along the ra-
dius of the particles: these solutions have been adopted
for validating some homogenization procedures [7,8]. We
remark that the quantity 1 + ξ/a2

s3
has the role of a sort

of dimensionless radius ranging from 0 (center of the par-
ticle) to 1 (external surface of the particle). In Figure 3
we report our results for an increasing power law with
εA = 1, εB = 10 and in Figure 4 for a decreasing power
law with εA = 10, εB = 1. In both cases we have computed
the solution for n = 1/4, 1/2, 1, 2, 4.

In Figure 5 we show the results for a periodic profile of
the dielectric constant ε(ξ) = ε0 + ∆ε cos[2πν(1 + ξ/a2

s3
)]

with ε0 = 1, ∆ε = 0.9 and spatial frequency ν = 2 or
ν = 8. This kind of periodicity is useful to model com-
posite materials of smooth multishell inclusions [4]. We
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Fig. 3. (Color online) Solutions for a functionally graded
ellipsoid (as1 = 3, as2 = 2.3, as3 = 2) with a increasing power
law ε(ξ) = εA+(εB−εA)(1+ξ/a2

s3)n where εA = 1, εB = 10 and
n = 1/4, 1/2, 1, 2, 4. The black lines correspond to the profiles
ε(ξ) and the colored lines correspond to ε1(ξ) (blu), ε2(ξ) (red)
and ε3(ξ) (green).

Fig. 4. (Color online) Solutions for a functionally graded
ellipsoid (as1 = 3, as2 = 2.3, as3 = 2) with a decreasing power
law ε(ξ) = εA+(εB−εA)(1+ξ/a2

s3)n where εA = 10, εB = 1 and
n = 1/4, 1/2, 1, 2, 4. The black lines correspond to the profiles
ε(ξ) and the colored lines correspond to ε1(ξ) (blu), ε2(ξ) (red)
and ε3(ξ) (green).

Fig. 5. (Color online) Solutions for a functionally graded
ellipsoid (as1 = 3, as2 = 2.3, as3 = 2) with a periodic law
ε(ξ) = ε0 + ∆ε cos[2πν(1 + ξ/a2

s3)] where ε0 = 1, ∆ε = 0.9,
ν = 2 (dashed lines) and ν = 8 (continuous lines). The curves
correspond to ε1(ξ) (blu), ε2(ξ) (red) and ε3(ξ) (green).

observe that, although the electric behavior of the parti-
cle is isotropic at any point (graded but scalar permettiv-
ity), the effective electric behavior of the whole inclusion
is anisotropic because of the geometrical anisotropy in the
spatial gradation of the dielectric constant. This means
that the graded ellipsoidal geometry generates effective
dielectric anisotropy, independently of the isotropy of the
local electric behavior of the material. This is a remark-
able feature of the system under investigation which can
actually be proved for any kind of dielectric profile and
any ratio among the axis length of the graded ellipsoid.

We move now to the case of a population of function-
ally graded ellipsoidal particles. We assume that each par-
ticle has semi-axes as1 , as2 and as3 and a given permit-
tivity profile ε(ξ) for −a2

s3
< ξ < 0. We consider that all

the particles are randomly oriented in a given matrix with
scalar permittivity ε1 and with a given volume fraction f .
Each of these particles can be substituted by an homoge-
neous anisotropic inclusion with principal permittivities
ε1(0), ε2(0) and ε3(0). These values can be obtained with
the first part of the homogenization procedure, i.e. with
the integration of equation (13). The second part of the
homogenizing theory consists in evaluating the effective
dielectric constant εeff of the entire dispersion. A gener-
alization of the Maxwell-Garnett theory may be used in
order to take into account the anisotropic character of the
embedded particles [23–25]

εeff = ε1 +

1
3f

3∑
k=1

ε1[εk(0)−ε1]
ε1+Lsk[εk(0)−ε1]

1 − f + 1
3f

3∑
k=1

ε1
ε1+Lsk[εk(0)−ε1]

(24)

= ε1 +
1
3
f

3∑
k=1

ε1 [εk(0) − ε1]
ε1 + Lsk [εk(0) − ε1]

+ O
(
c2

)

where the depolarization factors Lsk of the ellipsoids are
defined in equation (3). Typically, the Maxwell-Garnett
approximation only works for strongly dilute dispersions.
Therefore, a further generalization is given by the Brugge-
man differential scheme [21,23], which leads to the differ-
ential equation

dεeff

df
=

1
1 − f

εeff
1
3

3∑
k=1

εk(0) − εeff

εeff + Lsk [εk(0) − εeff ]
(25)

with the intial condition εeff (f = 0) = ε1 (permettivity of
the matrix). The solution of this equation represents the
second step in the multiscale homogenization procedure.

We take in consideration a graded ellipsoid (as1 =
3, as2 = 2.3, as3 = 2) with a power law ε(ξ) = εA + (εB −
εA)(1+ ξ/a2

s3
)n where εA = 10, εB = 1. In Figures 6 and 7

we have shown the effective permittivity εeff (for ε1 = 1
and ε1 = 10) in terms of the volume fraction f and the gra-
dation exponent n. We can observe the effects of the gra-
dation on the effective properties of the overall mixture. In
our simulations we have considered only static permittiv-
ities, but we point out that our methodology can be also
applied to the case of frequency dependent permittivities.
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Fig. 6. (Color online) Application of the Bruggeman scheme,
equation (25), to a disperion of functionally graded ellipsoids
(as1 = 3, as2 = 2.3, as3 = 2) with profile ε(ξ) = εA + (εB −
εA)(1 + ξ/a2

s3)n where εA = 10, εB = 1 embedded in a matrix
of permittivity ε1 = 1. The solution εeff has been shown in
terms of the volume fraction 0 < f < 1 and of the exponent
log10 n.

Fig. 7. (Color online) Application of the Bruggeman scheme,
equation (25), to a disperion of functionally graded ellipsoids
(as1 = 3, as2 = 2.3, as3 = 2) with profile ε(ξ) = εA + (εB −
εA)(1 + ξ/a2

s3)n where εA = 10, εB = 1 embedded in a matrix
of permittivity ε1 = 10. The solution εeff has been shown in
terms of the volume fraction 0 < f < 1 and of the exponent
log10 n.

For example, it is possible to consider Drude-like dielec-
tric constant with ξ-dependent plasma frequency and/or
ξ-dependent damping coefficient. The graded Drude di-
electric function is very useful to analyze the properties of
metal-dielectric composites [8].

5 Conclusion

In this work we have developed a theory for homogeniz-
ing a graded dielectric ellipsoid with arbitrary shape and
arbitrary dielectric profile. To obtain the results we have
firstly analyzed the simple case of a coated ellipsoidal par-
ticle and then we have approached the problem of the gra-
dation by means of a limiting process. Such a procedure
leads to a system of three Riccati differential equations,
which can be solved with standard numerical methods.

Moreover, we have described a multiscale procedure to
obtain the effective permittivity of a dispersion of ran-
domly oriented graded ellipsoidal particles, embedded in
a given matrix. The proved equivalence between a graded
particle and an effective anisotropic homogeneous one al-
lows us to apply the classical mixture theories to the case
of functionally graded inclusions.

We acknowledge financial support by MiUR under project
PON “CyberSar” (OR 7).

Appendix A: Depolarization factors

We consider the core ellipsoid with semi-axes ac1 > ac2 >
ac3 > 0 and the shell ellipsoid with semi-axes as1 >
as2 > as3 > 0, both aligned to the reference frame un-
der consideration. For the core we define two aspect ra-
tios as 0 < ec = ac3/ac2 < 1 e 0 < gc = ac2/ac1 < 1.
Similarly, for the shell we define two aspect ratios as
0 < es = as3/as2 < 1 e 0 < gs = as2/as1 < 1. The de-
polarization factors Lck and Lsk, defined in equation (3),
depend on such aspect ratios as follows [23]

Lα1 =
eαg2

α

(1 − g2
α)

√
1 − e2

αg2
α

[F (vα, qα) − E (vα, qα)]

Lα2 =
eα

(
1 − e2

αg2
α

)
(1 − e2

α) (1 − g2
α)

√
1 − e2

αg2
α

E (vα, qα)

− eαg2
α

(1 − g2
α)

√
1 − e2

αg2
α

F (vα, qα) − e2
α

1 − e2
α

Lα3 =
1

1 − e2
α

− eα

(1 − e2
α)

√
1 − e2

αg2
α

E (vα, qα) (26)

where α = c or s (core or shell) and the quantities vα e qα

are defined as follows

vα = arcsin
√

1 − e2
αg2

α

qα =
√

(1 − g2
α)/(1 − e2

αg2
α). (27)

The functions F(v, q) and E(v, q) are incomplete elliptic
integrals of the first and second kind, respectively [33,34]

F(v, q) =

v∫
0

dα√
1 − q2 sin2 α

=

sin v∫
0

dx√
(1 − x2) (1 − q2x2)

E(v, q) =

v∫
0

√
1 − q2 sin2 αdα =

sin v∫
0

√
1 − q2x2

√
1 − x2

dx. (28)

Appendix B: Derivative of Lk (ξ)

We start with the definition of the depolarization factors
Lk (ξ) given in equation (18) and we develop the differen-
tiation with respect to ξ. The application of the product
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rule leads to the first form

dLk (ξ)
dξ

=
R′ (ξ)

2

+∞∫
0

ds

R(ξ + s)
(
a2

sk
+ ξ + s

)

−R (ξ)
2

+∞∫
0

[
R′(ξ + s)

R2(ξ + s)
(
a2

sk
+ ξ + s

)

+
1

R(ξ + s)
(
a2

sk
+ ξ + s

)
]

ds (29)

where R′(ξ) = dR(ξ)
dξ and R′(ξ + s) = dR(ξ+s)

dξ = dR(ξ+s)
ds .

Now we define the integral I(ξ) as follows (it is the first
part of the second integral in Eq. (29))

I(ξ) =

+∞∫
0

dR(ξ + s)
ds

1
R2(ξ + s)

(
a2

sk
+ ξ + s

)ds. (30)

It can be rearranged by means of an integration by parts
obtaining the equality

I(ξ) +

+∞∫
0

ds

R(ξ + s)
(
a2

sk
+ ξ + s

) =
1

R(ξ)
(
a2

sk
+ ξ

) .(31)

Finally, by using the above equation (31) in equation (29)
we obtain the final result as reported in equation (21). It
is interesting to note that equation (21) with the Cauchy
initial conditions Lk (0) = Lsk is a linear differential equa-
tion (with variable coefficients) equivalent to the definition
of Lk (ξ) given in equation (18).
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