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CHAPTER 1

Brittle Fracture: From Elasticity Theory
to Atomistic Simulations

Stefano Giordano, Alessandro Mattoni,
and Luciano Colombo

Department of Physics of the University of Cagliari and
CNR-IOM (SLACS Unit), Cittadella Universitaria, I-09042
Monserrato (Ca), Italy

INTRODUCTION

Understanding the mechanical properties of materials with theory tradi-
tionally has been done by using continuum methods, ranging from elastic theory
(in both linear and nonlinear regimes), to plastic theory, and to fracture me-
chanics. The computational counterpart of continuum modeling is represented
by finite element analysis. Continuum theories have been extremely success-
ful, as proved by the tremendous achievements reached in structural design of
buildings, ships, bridges, air-/space crafts, nuclear reactors, and so on. Overall
this represents the core of theoretical and computational solid mechanics.

In the last 20 years or so, the technological rush toward nano-sized systems
has forced researchers to investigate mechanical phenomena at a length scale
in which matter no longer can be considered as a continuum. This is the case,
for instance, of investigating the crack-related features in a material displaying
elastic or structural complexity (or, equivalently, inhomogeneity or disorder)
at the nanoscale. This problem of atomic-scale granularity immediately seems
to be prohibitive for (standard) solid mechanics. To better elaborate on this
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2 Brittle Fracture: From Elasticity Theory to Atomistic Simulations

concept, let us focus on the case of a crack propagating into a nano-composite
material, where occasionally it faces phase boundaries between the matrix and
the fiber. There are serious conceptual limitations in applying solid mechanics
in such situations because continuum stress and strain fields are mathematically
singular at vanishing distances from the crack tip. This, of course, prevents any
meaningful application of continuum mechanics over a region in the near vicin-
ity of the crack tip (i.e., at the length scale where a direct interaction between the
crack and the phase boundary indeed occurs). Computational limitations exist
as well for the same problem. As a matter of fact, the total numerical workload
of the continuum analysis based on finite elements could become prohibitively
large because of the extreme refinement of the numerical mesh that is required
to take into account the inhomogeneity displayed at the nanoscale. Such a
mesh refinement, therefore, would be stopped at a larger length scale, repre-
senting a (possibly bad) coarse grain picture of the actual elastic or structural
disorder.

A new feeling within the computational materials science community is
that a completely different approach (other than continuum modeling) really
is needed for predicting mechanical properties at the nanoscale. Such a novel
approach is based on a direct atomistic description of relevant phenomena,
and therefore, it has been named atomistic (or atomic-scale) modeling. The
key idea of atomistic modeling is to look at a solid body under mechanical
load as being an assembly of atoms interacting through direct coupling; their
collective response to loading eventually will drive the overall mechanical re-
sponse (for the above discussed case, such a collective response will drive the
propagation of the crack). Because the material is now resolved atomistically,
there is no ambiguity in representing its actual nanostructure, displaying in
principle any combination (at any possible relative distance) of cracks, phase
boundaries, or whatever kind of elastic inclusion. In other words, atomistic
modeling naturally operates at the length scale, which falls out-of-reach of
continuum theories. Furthermore, because the response is represented by the
collective displacement of atoms, the mechanical behavior is governed by the
selected interatomic potentials, which in turn, are derived from a fundamen-
tal analysis of chemical bonding between atoms. In other words, no guess is
needed any longer about the constitutive equations for the mechanical behavior
(i.e., the actual stress–strain relation for the investigated material). To clarify
this conceptual breakthrough, it is useful to turn back to the crack-inclusion
interaction problem; the mathematical singularity of stress and strain fields at
the crack tip is removed naturally when mapping the problem onto a discrete
atom-resolved lattice. The elementary step for crack advancement, in fact, is
represented by a bond breaking event, whereas the corresponding strain field
simply is computed by the prediction of the new atomic coordinates (just after
the bond snaps). Similarly, the local stress is computed on each displaced atom
so that no singular behavior ever is reached. In this respect, atomistic modeling
could be viewed at as a first-principles mechanical theory.
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The present chapter mainly is intended as a tutorial introduction to brittle
fracture. Although the emphasis is on atomistic simulations, a detailed (but,
hopefully, gentle) introduction to the continuum elasticity theory and to fracture
mechanics is offered as well. We believe that basic mechanical concepts like
strain, stress, and border conditions—which are central to this topic—more
effectively are introduced and discussed within a continuum framework. This
allows us to develop such concepts at the needed degree of rigorous formalism,
as is actually done in the “Essential Continuum Elasticity Theory” Section.

In the “Microscopic Theory of Elasticity” Section, we introduce the micro-
scopic theory of elasticity, in which the atomic (discrete) structure of materials
explicitly is taken into account as the main underlying constitutive hypothesis.
By making use of simple two-dimensional model systems, we develop the most
fundamental features of the microscopic description of elasticity. This will deter-
mine the minimal degree of complexity that any interatomic force model must
display to describe correctly essential elasticity. We then will describe modern
interaction potentials and outline their most recent applications. Another very
important topic discussed in this section is the atomic-scale formulation of the
stress; here we develop the formalism under the most general assumptions, and
provide practical recipes for any two-body or many-body potential. Establish-
ing a clean and complete theory for atomic-level stress tensor, which today is
still a matter of investigation, is a crucial part of this section.

The “Linear Elastic Fracture Mechanics” Section is devoted to presenting
the basics of brittle fracture, starting from the energy balance criterion devel-
oped by Griffith. Here, we also discuss the typical border conditions reflecting
the kind of loading that can be applied to a cracked solid. The importance of
this issue often is underestimated in typical atomistic simulations, which there-
fore, sometimes do not correspond—even if technically correct—to any realistic
situation. We also present some of our recent continuum results obtained for
multicracked systems. Finally, the section is completed with a qualitative intro-
duction to the atomistic view of fracture.

This review concludes with a section titled “Atomistic Investigation on
Brittle Fracture” in which we discuss extensively our investigations on brittle
fracture in silicon carbide. Several topics are developed, all of them being un-
derpinned by the same concept: Atomistic simulations are both consistent with
standard fracture mechanics (when referred to a situation that can be treated
equally well by two different approaches), and they provide a valuable source
of hints for developing improved continuum models. Our main message is that
by means of molecular dynamics simulations, it is indeed possible to develop
atomically informed mesoscopic models that enlarge the range of validity of
continuum theory down to the nanoscale.

Fracture mechanics is a beautiful example of how a natural science has
developed over the years. It is, therefore, instructive to consider its historical
evolution. The attempt to formulate a microscopic (i.e., atomistic or molecular)
theory of elasticity has been addressed largely in the scientific literature since
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the first approaches to model the mechanical behavior of elastic bodies. During
the nineteenth century, different approaches have been followed. Fresnel1 and
Navier2 published in 1820 and 1821, respectively, very similar results based on
the so-called corpuscular approach. They systematically adopted the Lagrange
“Mécanique analytique,” describing the motion of an elastic solid decomposed
into a given collection of point masses interacting by means of distance-varying
elastic forces. This approach did not consider the modern concept of stress
because the forces were transmitted at the molecular level only. Although this
microscopic description of fundamental interactions is qualitatively consistent
with modern solid state physics,3–5 the model by Fresnel and Navier (as well as
their actual understanding of microscopic material physics) was too rudimental
and, therefore, resulted in being insufficient for developing either a consistent
or a predictive theory. An alternative methodology was followed by assuming
the mass distribution within a solid body to be continuous throughout its vol-
ume; in 1822, Cauchy6 introduced the continuum approach to study the elastic
properties of solid bodies. Cauchy obtained the equilibrium equations exactly
in the same form in which they appear in modern textbooks; in particular, he
defined a tensorial pressure (stress), and he proved that the stress tensor di-
vergence is zero (at equilibrium and in absence of volumetric external forces).
Moreover, in 1828, Cauchy7 introduced the linear constitutive relations (the
Hooke law established in 1678) defining two different elastic constants needed
to model isotropic media.

Despite several efforts, the problem of reconciling the opposing cor-
puscular and continuum approaches remained an intriguing challenge for
many years.8 The simplest atomistic models—including only central two-body
interactions—describe the mechanical behavior of any material by means of
a single elastic constant, a sort of scalar stiffness. At variance, the continuum
approach predicts, in the isotropic case, the need for two independent and
material-specific parameters. So, the basic question is as follows: Do we need
just one modulus or actually two elastic moduli to describe elastic isotropic
media properly?

The first robust attempt to address this problem was given by Voigt.9

According to his model, the regular structure of a crystal suggests that, when
a molecule (or atom) is added to the lattice, an ad hoc couple of forces act
on the molecule to set its correct orientation within the crystal. In modern
terminology, we can say that such a molecular torque corresponds to an effective
many-body interaction that is at work among the elementary constituents of the
lattice (either atoms or molecules). By considering both the central forces and
the three-body interactions (i.e., the simplest effective molecular torques), Voigt
obtained the general equations of elasticity theory for isotropic solids containing
two independent constants, as predicted by the continuum approach and as is
consistent with experimental knowledge. In conclusion, three-body forces and
angle-dependent forces must be considered to reproduce the correct behavior
of a solid elastic body.
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The modern theory of elasticity is concerned with the mechanics of de-
formable media, which completely recover their original shape and give up all
work expended in the deformation after the applied deforming forces are re-
moved. The development of the theory of elasticity was based on the concept of
a continuous medium, which enables one to ignore its atomic structure and to
describe macroscopic phenomena by the methods of continuum mechanics.10

Within the framework of elasticity theory, the so-called fracture mechanics has
been introduced, which deals with the failure of a given body or structure due
as a result of the propagation of cracks or fractures.11

The fundamental science underlying fracture is rich, spanning from
physics and chemistry at the atomic scale to micromechanics of materials and
to continuum mechanics of structures on the large scale. Most real materials,
when loaded with some stresses, can exhibit internal cuts in their microstruc-
ture, called cracks or fractures, which cause degradation of the mechanical
properties or complete breaking (failure). Thus, it is observed that fracture is
a significant problem in the industrialized world and that a theoretical and
practical basis for design against fracture is needed. Fracture mechanics deals
essentially with the following problems. Given a structure with a preexisting
crack or crack-like flaw, we must determine what loads can be tolerated by
the structure for any given crack size or configuration. Similarly, considering
a structure in a given state of load, it is important to predict the creation or
the growth of a crack. Moreover, for a given number of cycles of loading in a
system, we are interested in determining when a crack propagates catastroph-
ically. Finally, we might ask what size crack can be allowed to exist in a given
component of a device or engineering structure for it to operate safely.

From a historical point of view, the first experiments on fracture mechan-
ics were performed by Leonardo da Vinci, who measured the strength of iron
wires in terms of their length. He found that the strength varied inversely with
wire length. This result implied that flaws in materials govern the strength. In
fact, for a longer wire, we have a larger volume of material, and therefore, there
is a higher probability of encountering many flaws. Of course, it is a qualita-
tive result only. The first quantitative result connecting mechanical stress and
crack size was found by Griffith in 1920,12 and fracture mechanics became a
science-based engineering discipline during World War II. For a brief review of
the history and development of fracture mechanics, see Ref. 13.

ESSENTIAL CONTINUUM ELASTICITY THEORY

Conceptual Layout

The classical theory of elasticity is based on the approximation of con-
tinuum medium, which consists of replacing the full set of pointlike atomic
masses distributed within a solid body by a continuum distribution of mass.
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This approximation is valid when the spatial wavelength of the displacement
field (describing the imposed deformation) is much greater than the interatomic
distance. In this case, the crystalline structure is not relevant for determining
the variation of the shape of the solid body; the continuum macroscopic de-
scription is, in fact, sufficient to study its mechanical response. The next most
important ideas of elasticity theory are the concepts of strain and the stress,
both of which are described easily by means of specific mathematical objects
called tensors.14–16

A deformation relates two configurations (or states) of the material. The
initial state is called the reference configuration and usually refers to the initial
time; the other is called the current configuration and refers to a following
time (which may be regarded conveniently as the present moment).17,18 In
linear elasticity, the strains (typically extensions and shears) and the angles of
rotation are considered small.19 In this case, we use the infinitesimal strain
tensor (or small strain tensor), which is the main object introduced to describe
all deformation features.20,21

To calculate the force of interaction between volume elements situated in
an arbitrary closed region (imagined to be isolated within the body) and volume
elements situated outside this region, it was advantageous to introduce the con-
cept of the average force of interaction between them. This approach provides
us with the definition of the stress tensor, which takes into consideration all
interaction forces among the volume elements of the continuum body.22,23

The strain in a given body can be considered the effect of the applied
stress. The relationship between the strain tensor and the stress tensor depends
on the material under consideration, and therefore, it is called the constitu-
tive equation.22 The empirical Hooke law establishes a linear relation between
stresses (forces inside the body) and strains (deformations of the body itself).
In its general form, Hooke’s law can describe an arbitrary inhomogeneous and
anisotropic behavior of the material under consideration.20 However, the most
simple and important constitutive equation used in elasticity theory applies to
materials that are homogeneous (the elastic behavior is the same at any point
of the body) and isotropic (the direction of application of the stress is not rele-
vant). The linear, homogeneous, and isotropic constitutive equation is obtained
and discussed in the following sections.

The Concept of Strain

Let �x be the position vector of a volume element within a body in its
reference (equilibrium) configuration, and let �X be the position of the same
volume element in the current configuration. Both configurations are framed
within the same cartesian coordinate system (see Figure 1). Because �X is a
function of �x, we can write the following:

�X = �f (�x) = (
f1 (�x) , f2 (�x) , f3 (�x)

)
[1]
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Figure 1 Reference configuration and current configuration after a deformation.

We observe that the function �f , connecting the vector �X to the vector �x, is
a vector field. Of course, the relation �f (�x) /= �f (�y) is verified for any pair of
volume elements with �x /= �y in the reference configuration. This means that �f
is a biunivocal vector function, and therefore, the inverse function �f−1 always
exists. We also assume that �f and �f−1 are differentiable functions. Basically,
the vector field �f (�x) contains all the information about the deformation driving
the solid body from the reference to the current configuration. In the theory of
elasticity, the deformation gradient F̂ = {

Fij, i, j = 1,2,3
}

, and

Fij = ∂fi

∂xj
[2]

is introduced. The matrix F̂ also is referred to as the Jacobian matrix of the
transformation and has two important properties: (1) It is not singular because
of the invertibility of �f (∃ F̂−1 such that F̂F̂−1 = F̂−1F̂ = Î); and (2) its determi-
nant is always strictly positive (det F > 0).17 We can better exploit the concept
of deformation by introducing the displacement field �u(�x) as:

�X = �f (�x) = �x+ �u(�x) [3]

The Jacobian matrix of the displacement Ĵ = {Jij, i, j = 1,2,3} (i.e., the displace-
ment gradient), therefore, is calculated as:

Jij = ∂ui

∂xj
[4]

From the definitions of F̂ and Ĵ, we have F̂ = Î + Ĵ or Ĵ = F̂ − Î.
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In linear elasticity, the extent of the deformations is assumed small. Al-
though this notion is intuitive, it can be formalized by imposing that, for small
deformations, F̂ is very similar to Î or, equivalently, that Ĵ is very small. There-
fore, we adopt as an operative definition of small deformation the following
relation:

Tr(ĴĴT ) � 1 [5]

That is, a deformation hereafter will be regarded as small, provided that the
trace of the product ĴĴT is negligible. We observe that Ĵ can be written as the
sum of a symmetric and a skew-symmetric (antisymmetric) part as follows:

Jij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
︸ ︷︷ ︸

symmetric

+ 1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
︸ ︷︷ ︸

skew−symmetric

= �ij +�ij [6]

Accordingly, we define the (symmetric) infinitesimal strain tensor (or small
strain tensor) as:

�ij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
[7]

and the (antisymmetric) local rotation tensor as:

�ij = 1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
[8]

Such a decomposition20 is useful to obtain the following very important prop-
erties of the small strain tensor, which is the key quantity to determine the state
of deformation of an elastic body:

� For a pure local rotation (a volume element is rotated but not changed
in shape and size), we have Ĵ = �̂ and, therefore, �̂ = 0. This means that
the small strain tensor does not take into account any local rotation but
only the changes of shape and size (dilatations or compression) of that
element of volume.22

Let us clarify this fundamental result with point �x inside a volume ele-
ment that is transformed to �x+ �u(�x) in the current configuration. Un-
der a pure local rotation, we have �x+ �u(�x) = R̂�x, where R̂ is a given
orthogonal rotation matrix (satisfying R̂R̂T = Î). We simply obtain
�u(�x) = (R̂− Î)�x or, equivalently, Ĵ = R̂− Î. Because the applied defor-
mation (i.e., the local rotation) is small by hypothesis, we observe that
the difference R̂− Î is small too. The product ĴĴT , therefore, will be
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negligible, leading to the following expression:

0 ∼= ĴĴT = (R̂− Î)(R̂T − Î) = R̂R̂T − R̂− R̂T + Î

= Î − R̂− R̂T + Î = −Ĵ − ĴT [9]

Therefore, Ĵ = −ĴT or, equivalently, Ĵ is a skew-symmetric tensor. It
follows that Ĵ = �̂ and �̂ = 0. We have verified that a pure rotation cor-
responds to zero strain. In addition, we remark that the local rotation
of a volume element within a body cannot be correlated with any arbi-
trary force exerted in that region (the forces are correlated with �̂ and
not with �̂); for this reason, the infinitesimal strain tensor is the only
relevant object for the analysis of the deformation because of applied
loads in elasticity theory.

� The infinitesimal strain tensor allows for the determination of the length
variation of any vector from the reference to the current configuration.
By defining ��n as the relative length variation in direction �n, it is possible
to prove that:22

��n = �n× (�̂ �n) [10]

If �n is actually any unit vector of the reference frame, then it is straight-
forward to attribute a geometrical meaning to the components �11, �22,
and �33 of the strain tensor. Because ��ei = �ei × (�̂ �ei) = �ii, they describe
the relative length variations along the three axes of the reference frame.

� The infinitesimal strain tensor allows for the determination of the angle
variation between any two vectors from the reference to the current
configuration. The variation of the angle defined by the two orthogonal
directions �n1 and �n2 is given by:22

�˛ �n1,�n2 = 2�n1 × (�̂ �n2) [11]

The present result is also useful for giving a direct geometrical in-
terpretation of the components �12, �23, and �13 of the infinitesimal
strain tensor. As an example, we take into consideration the com-
ponent �12, and we assume that �n1 = �e1 and �n2 = �e2. The quantity
�˛�n1,�n2 represents the variation of a right angle lying on the plane
(x1, x2). Because �12 = �e1 × (�̂ �e2), we easily obtain the relationship
�˛ �n1,�n2 = 2�12 = ∂u1

∂x2
+ ∂u2

∂x1
. In other words, �12 is half the variation

of the right angle formed by the axis x1 and x2. Of course, the same
interpretation is valid for the other components �23 and �13.
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Knowing the �̂ tensor field within a strained (i.e., deformed) elastic body
allows us to calculate the volume change �V of a given region. We get �V =∫
V Tr(�̂)d�x, where V is the volume of the unstrained region.17

This discussion states that, given a displacement field �u(�x), the compo-
nents of the infinitesimal strain tensor are easily calculated by direct differenti-
ation. The inverse problem is much more complicated.17,22 Given an arbitrary
infinitesimal strain tensor �̂(�x), we could search for that displacement field �u(�x)
generating the imposed deformation. In general, such a displacement field may
not exist. There are, however, suitable conditions under which the solution
of this inverse problem is actually found. These conditions are written in the
following compact form:

�qki�phj
∂2�ij

∂xk∂xh
= 0 [12]

where �’s are the Levi–Civita permutation symbols (see Appendix). Equa-
tion [12] is known as an infinitesimal strain compatibility equation or a Beltrami
Saint-Venant equation.18

The Concept of Stress

In continuum mechanics, we must consider two kinds of forces act-
ing on a given region of a material body, namely body forces and surface
forces.

Body forces depend on the external fields acting on the elastic body. They
are described by the vector field �b(�x), representing their volume density. The
total force d�FV applied to a small volume dV centered on the point �x is given by
d�FV = �b(�x)dV . A typical example is given by the gravitational forces, propor-
tional to the mass of the volume under consideration. In this case, we can write
d�FV = �gdm, where �g is the gravitational acceleration and dm is the mass of
the volume dV . If we define � = dm

dV as the density of the body, then we simply

obtain �b(�x) = ��g.
Surface forces are concerned with the interaction between neighboring

internal portions of deformable bodies. Although such an interaction results
from the full set of interatomic forces, we can make the simplifying assumption
that its overall effect can be represented adequately by a single vector field
defined across the surface.

In principle, it is possible to introduce more complicated forces, such
as volume and surface distributions of couples. However, the elastic behavior
of most materials is adequately described by body and surface forces only.
More advanced formulations, based on nonclassical or multipolar continuum
theories, can be found elsewhere.24
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It is useful to introduce the following notation for the surface force d�FS
applied to the area element dS:

d�FS = �fdS [13]

where �f assumes the meaning of a surface density of forces. The Cauchy
theorem17 states that a tensor T̂ exists such that:

�f = T̂�n [14]

where �n is the external normal unit vector to the surface delimiting the portion
of body subjected to the force field �f . The quantity T̂ has been called the Cauchy
stress tensor or simply the stress tensor. The proof of this theorem is not trivial
and can be found in any standard book on continuum mechanics.20,22 The
forces applied to the area element, therefore, can be written in the following
form:

d�FS = T̂�ndS [15]

or, equivalently as dFS,i
dS = Tijnj. We identify the stress tensor T̂ with a

vector pressure. Typical stress values in solid mechanics range from MPa
to GPa.

To better understand the physical meaning of the stress tensor, we consider
the cubic element of volume shown in Figure 2, corresponding to an infinites-
imal portion dV = (dl)3 taken in an arbitrary solid body. The six faces of the

Figure 2 Geometrical representation of the stress tensor T̂; theTij component represents
the pressure applied on the jth face of the cubic volume along the ith direction.
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cube have been numbered as shown in Figure 2. We suppose that a stress T̂ is
applied to that region; the Tij component represents the pressure applied on the
jth face along the ith direction.

The Formal Structure of Elasticity Theory

The relationships among the mathematical objects introduced in the pre-
vious sections represent the formal structure of the theory of elasticity (for small
deformations).

The first two equations can be derived from the balance equations holding
for the linear and angular momentum.16,17,21 In solid mechanics, the two key
quantities are the linear and angular momentum densities for a continuum
material system. We consider a portion V within a material body limited by the
close surface S, and we define �P as its total linear momentum, �F as the resultant
of the applied forces, �L as the total angular momentum, and �M as the resultant
torque. The momentum balance equation of Newtonian dynamics d�P

dt = �F for
a portion V is written in the form:

d
dt

∫
V
�
∂uj

∂t
d�x =

∫
S
TjinidS +

∫
V
bjd�x [16]

where we made use of body and surface forces as described in the previous
section. The density of mass � is assumed to be constant and uniform under the
small deformation assumption. By means of the Gauss divergence theorem, we
get:

d
dt

∫
V
�
∂uj

∂t
d�x =

∫
V

∂Tji

∂xi
d�x+

∫
V
bjd�x [17]

Because the volume V is arbitrary, we easily obtain the following:

∂Tji

∂xi
+ bj = �

∂2uj

∂t2
[18]

which represents a first important relation. We turn now to the angular mo-
mentum balance equation d�L

dt = �M, which can be written in the following form:

d
dt

∫
V

�x× ∂�u
∂t
�d�x =

∫
S
�x×

(
T̂�n
)

dS +
∫
V

�x× �b d�x [19]
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As before, the surface integral can be simplified with the application of the
Gauss divergence theorem as follows:

∫
S
�x×

(
T̂�n
)

dS =
∫
V

[
Tkh + xh

∂Tkp

∂xp

]
�hkj�ejd�x [20]

and we get:

∫
V

{
xh

[
∂2uk
∂t2

� − ∂Tkp

∂xp
− bk

]
− Tkh

}
�hkj�ejd�x = 0 [21]

Because of Eq. [18] we obtain
∫
V Tkh�hkj�ejd�x = 0 or, equivalently, Tkh�hkj = 0.

This leads to:

Tij = Tji [22]

This second fundamental equation states that the stress tensor is symmetric.
Equations [7], [12], [18], and [22] hold for most materials regardless

of their constitution and microstructure. To complete the formal structure of
the theory of elasticity, we need to introduce the specific constitutive equations,
characterizing the elastic behavior of the material under investigation.10,25 They
are written as follows:

Tij = f ({�ij}) [23]

defining, at any point of the solid, a biunivocal correspondance between stress
and strain. When a perfect elastic behavior is observed, the body relaxes back to
its equilibrium configuration when applied forces are removed. In other words
T̂ = 0 if and only if �̂ = 0. For most materials Eq. [23] is linear for small defor-
mations. The following section is devoted to the study of the linear constitutive
equations for both isotropic and anisotropic materials. The actual form of the
constitutive equations cannot be determined within continuum mechanics; it is
an input information of elasticity theory. Typically, it is determined experimen-
tally25 and formalized a posteriori.17 Once more, we remark that in this chapter
we only concern ourselves with fully recoverable small deformations and point
out that possible variations from a purely elastic behavior (e.g., plasticity) are
treated elsewhere.26

Constitutive Equations

Because of the symmetry of T̂, the elastic stress–strain relation is defined
by six relations of the form Tij = f ({�ij}), which are uniquely solvable for each
different component of the strain. A thermoelastic material is one whose state
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of stress depends on the present strain and on the temperature (or entropy). In
what follows, we always assume that the temperature (or entropy) is constant
so that, effectively, we have a pure stress–strain relationship.10

For most materials, Eq. [23] is linear if the strain is small.17,19 This corre-
sponds to the generalized Hooke’s law, which has the following general form:

Tij = Cijkh�kh [24]

where Cijkh are constants (for homogeneous materials). Equation [24] is of gen-
eral validity, including all possible crystalline symmetries or, in other words,
any kind of anisotropy. The fourth-rank tensor (with 81 components) of the
elastic constants satisfies the following symmetry rules:

� Symmetry in the first pair of indices; because Tij = Tji, we have

Cijkh = Cjikh [25]

� Symmetry in the last pair of indices; because �kh = �hk, we have

Cijkh = Cijhk [26]

� Symmetry between the first pair and the last pair of indices:

Cijkh = Ckhij [27]

This result is easily proved if we suppose that an elastic energy density
U = U(�̂) exists as dependent only on the state of strain. From the energy
density, we derive the constitutive relation Tij = ∂U(�̂)

∂�ij
(just think about

the case of the one-dimensional harmonic spring, where U = 1
2kx

2 and
F = kx). Drawing a comparison between the energy-based constitutive
relation, Tij = ∂U(�̂)

∂�ij
and Eq. [24] we simply obtain:

Cijkh = ∂Tij

∂�kh
= ∂2U(�̂)
∂�kh∂�ij

[28]

The symmetry of the second-order derivative directly leads to Eq. [27].

According to these universal symmetry properties, Cijkh has at most 21 inde-
pendent components. Further reductions of the number of independent elas-
tic constants depend on the possible crystalline symmetry of the material
body.4,10
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The linear relation can be written in tensor compact form T̂ = Ĉ�̂, where
the elastic tensor Ĉ is called the stiffness tensor. We also introduce the inverse

relation �̂ = D̂ T̂ with D̂ = Ĉ−1
. The new tensor D̂ is called the compliance

tensor.

The Isotropic and Homogeneous Elastic Body

The paradigmatic system investigated by elasticity theory is the linear,
isotropic, and homogeneous medium. The homogeneity property implies that
the elastic behavior of the medium is the same in all its points; the stiffness and
the compliance tensors are constant everywhere in the medium. The isotropy
property implies that the mechanical response does not depend on the direction
considered; stiffness or compliance tensors are invariant under arbitrary rota-
tions. For a linear, isotropic, and homogeneous body, we will prove that only
two elastic moduli are independent. They typically are called Lamé coefficients,
and they are referred to as � (shear modulus) and 	, respectively. Alternatively,
we may use the Young modulus E and the Poisson ratio 
. A bulk modulus K
can be used as well.

Let us now derive the constitutive equation for a linear, isotropic, and
homogeneous elastic body. Because the stress tensor T̂ is symmetric, we can
select a suitable reference frame in which T̂ is diagonal.14 In this reference
frame, we refer to T̂∗ as the diagonal representation of T̂, where the only
components different from zero are T∗

11, T∗
22, and T∗

33. To begin, we consider
the case of a uniaxial traction (i.e., an elongation) along the x1 axis, which
means T∗

11 /= 0, T∗
22 = 0, and T∗

33 = 0. For most materials, the experimental
observation15,22 shows that the body will be elongated along the direction x1
while it shrinks in the plane (x2, x3). We can formalize this response by writing
the linear relations:

�∗11 = + 1
E
T∗

11

�∗22 = − 


E
T∗

11

�∗33 = − 


E
T∗

11

�∗12 = �∗23 = �∗31 = 0 [29]

The Young modulus E describes the length variation along the direction x1,
whereas the Poisson ratio 
 describes the contractions in the two perpendicular
directions. Of course, in these conditions, we cannot observe shear deforma-
tions.
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When the diagonal stress T̂∗ assumes triaxial character, Eq. [29] easily
can be generalized as:

�∗11 = 1
E

[
T∗

11 − 

(
T∗

22 + T∗
33
)]

�∗22 = 1
E

[
T∗

22 − 

(
T∗

11 + T∗
33
)]

�∗33 = 1
E

[
T∗

33 − 

(
T∗

22 + T∗
11
)]

�∗12 = �∗23 = �∗31 = 0 [30]

The constitutive relations given in Eq. [30] are valid only in the reference frame
where the stress tensor is diagonal. We remark that Eq. [30] can be written in
the following, more compact, form:

�̂∗ = 1
E

[(1 + 
)T̂∗ − 
Î Tr(T̂∗)] [31]

If we make an arbitrary change of reference frame by means of a rotation
matrix R̂, then the stress tensor T̂∗ is transformed into T̂, and the strain tensor
�̂∗ is transformed into �̂ (�̂ = R̂T �̂∗R̂ and T̂ = R̂TT̂∗R̂).14 By means of such
transformations, we obtain the isotropic constitutive equation in an arbitrary
reference frame in the form:

�̂ = 1
E

[(1 + 
)T̂ − 
Î Tr(T̂)] [32]

This is in fact the constitutive equation of a linear, isotropic, and homogeneous
elastic material. Eq. [32] can be inverted, thus obtaining the stress tensor in
terms of the strain tensor:

T̂ = E

1 + 

�̂+ 
E

(1 + 
)(1 − 2
)
Î Tr (�̂) [33]

We now introduce the Lamé coefficients, � and 	, defined by the following
relations:

� = E

2(1 + 
)
	 = 
E

(1 + 
)(1 − 2
)
[34]

which, inserted into Eq. [33], provide the constitutive equation in its most
popular form:

T̂ = 2��̂+ 	ÎTr(�̂) [35]
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Similarly, Eq. [32] also can be written in terms of the Lamé coefficients:

�̂ = 1
2�
T̂ − 	

2�(2�+ 3	)
ÎTr(T̂) [36]

To introduce the bulk modulus K, we consider an hydrostatic stress de-
scribed by the tensor:

T̂ =

⎡
⎢⎣� 0 0

0 � 0

0 0 �

⎤
⎥⎦ [37]

By means of Eq. [36], we easily obtain the corresponding state of strain:

�̂ = 1
3

1

	+ 2
3�
�Î [38]

This simple result allows us to define the bulk modulus K as follows:

K = 	+ 2
3
� [39]

Therefore, the stress–strain relation in hydrostatic condition can be summarized
as �̂ = 1

3K�Î, where � represents the (scalar) pressure applied to the system. The
further relation Tr(�̂) = �

K has an important physical interpretation; it describes
the local volumetric variation under the assumption of hydrostatic stress.

To conclude, we observe that the stress–strain relation (Hooke’s law) for
an isotropic elastic medium can be written in terms of any two independent
material constants, chosen in the set 	,�,K,E, 
. In Table 1 one can find all
possible conversions among the defined elastic moduli. The elastic moduli E,

Table 1 Relations Among the Different Elastic Moduli

(	,�) (K,�) (�, 
) (E, 
) (E,�)

	 K − 2
3
�

2�

1 − 2



E

(1 + 
)(1 − 2
)
�(E− 2�)

3�− E

�
E

2(1 + 
)

K
3	+ 2�

3
2�(1 + 
)
3(1 − 2
)

E

3(1 − 2
)
E�

3(3�− E)

E
�(3	+ 2�)
	+ �

9K�
3K + �

2(1 + 
)�



	

2(	+ �)
3K − 2�

2(3K + �)
E− 2�

2�
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	, �, and K are measured in Pa, whereas the Poisson ratio 
 is dimensionless
being defined as a ratio between deformations.

Governing Equations of Elasticity and Border
Conditions

When dealing with a linear, isotropic, and homogeneous material, the
governing equations of the elasticity theory can be summarized by Eqs. [7],
[18], and [35]. From these laws, we can obtain a new equation describing
the time behavior of the displacement field during the deformation process as
follows:

(	+ �) �∇( �∇ × �u) + � �∇2�u+ �b = �
∂2�u
∂t2

[40]

which has been called the Lamé or Navier equation.17,22,27 To find a solution
of Eq. [40], we must impose suitable boundary conditions, depending on the
physical problem under consideration.21,28,29 In general, for three-dimensional
problems we can fix either the displacement field at the surface of the elastic
body (Dirichlet boundary conditions) or the stress applied on the same surface
(Neumann boundary conditions). Mixed boundary conditions are possible as
well.22 However, for the specific applications discussed later, we focus on those
boundary conditions that convert a three-dimensional problem into an effective
(and more simple) two-dimensional one.

We first introduce the plane strain border condition, which is consid-
ered to be a displacement field described by u1 (x1, x2, x3), u2 (x1, x2, x3), and
u3 (x1, x2, x3). A state of plane strain is said to exist in a body if the displace-
ment components take the form u1 = u1 (x1, x2), u2 = u2 (x1, x2), and u3 = 0.
In other words, these conditions are fulfilled if the displacement vector belongs
to the plane x1, and x2, and if it does not depend on the coordinate x3. Of
course, the definition of the plane strain conditions can be generalized to any
arbitrarily oriented plane. It is easy to prove that the plane strain conditions im-
pose the following relations on the strain tensor: �33 = 0, �13 = 0, and �23 = 0.
The constitutive equations given in Eq. [33] take the following simplified form:⎡

⎢⎣T11

T22

T12

⎤
⎥⎦ = E

(1 + 
)(1 − 2
)

⎡
⎢⎣1 − 
 
 0


 1 − 
 0

0 0 1 − 2


⎤
⎥⎦
⎡
⎢⎣ �11

�22

�12

⎤
⎥⎦ [41]

The inverse constitutive equation is therefore given by:⎡
⎢⎣ �11

�22

�12

⎤
⎥⎦ = 1

E

⎡
⎢⎣ 1 − 
2 − 
(1 + 
) 0

−
(1 + 
) 1 − 
2 0

0 0 1 + 


⎤
⎥⎦
⎡
⎢⎣T11

T22

T12

⎤
⎥⎦ [42]
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The relation T33 = E
1+




1−2
 (�11 + �22) is not included in the previous sets, but

it is still valid, and it can be useful for some applications.
We now introduce the plane stress border condition. A state of plane

stress is said to exist when the stress tensor satisfies the property T̂�n = 0 for a
given unit vector �n in any point of the material. We consider �n parallel to the
x3 axis. It follows that T33 = 0, T13 = 0, and T23 = 0. Moreover we suppose
that T11 = T11 (x1, x2), T22 = T22 (x1, x2), and T12 = T12 (x1, x2). With these
assumptions, the constitutive relation given in Eq. [32] can be simplified as
follows: ⎡

⎢⎣ �11

�22

�12

⎤
⎥⎦ = 1

E

⎡
⎢⎣ 1 − 
 0

−
 1 0

0 0 1 + 


⎤
⎥⎦
⎡
⎢⎣T11

T22

T12

⎤
⎥⎦ [43]

They can also be inverted as follows:

⎡
⎢⎣T11

T22

T12

⎤
⎥⎦ = E

1 − 
2

⎡
⎢⎣1 
 0


 1 0

0 0 1 − 


⎤
⎥⎦
⎡
⎢⎣ �11

�22

�12

⎤
⎥⎦ [44]

As shown, the relation �33 = − 

E (T22 + T11) is not included in the previous

sets, but it too is still valid, and it can be useful for some applications.
It is important to observe that a simple formal substitution transforms

Eqs. [43] and [44] for plane stress conditions into the corresponding Eqs. [41]
and [42] for plane strain condition. In fact, if we consider in Eqs. [43] and [44]
the change of variables E → E

1−
2 and 
 → 

1−
 , we obtain Eqs. [41] and [42]

exactly. This property is very useful in many practical applications.

Elastic Energy

In general, the constitutive equation of an elastic material can be derived
by the strain energy function by means of the relation:22

Tij = ∂U(�̂)
∂�ij

[45]

We consider a linear elastic body described by the constitutive relation given
in Eq. [24]. It is possible to obtain the explicit form of its energy density U in
terms of the strain tensor. From the following relation:

dU
dt

= ∂U

∂�ij

d�ij
dt

= Tij
d�ij
dt

[46]
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giving the rate of change of the energy density during a time-dependent defor-
mation, we obtain:

dU
dt

= Cijkh�kh
d
dt
�ij [47]

which, by using the symmetry given in Eq. [27], can be written as follow:

dU
dt

= 1
2
Cijkh

d
dt

(
�ij�kh

)
[48]

It follows that the energy density can be placed in the very general form:

U = 1
2
Cijkh�ij�kh [49]

This expression can be simplified further when the material is linear, isotropic,
and homogeneous. Indeed, it assumes the very compact form:10

U(�̂] = 1
2
Tij�ij = ��ij�ij + 1

2
	�kk�ii [50]

where we have made use of the Lamé coefficients defined in a previous section.
Because �kk = �ii = Tr(�̂) and �ij�ij = Tr(�̂2), we obtain the following final tensor
form:

U(�̂] = �Tr(�̂2) + 1
2
	 [Tr(�̂]]2 [51]

which represents the elastic energy density for an isotropic material.
For an elastic solid body at equilibrium (i.e., for �ij = 0 ∀ i, j) the function

U(�̂) must exhibit a minimum (i.e., the equilibrium configuration is stable). Be-
cause U(�̂ = 0) = 0, we conclude that the quadratic form defined in Eqs. [49]
or [51] is positive definite. In other words, we have proved that the stiffness
and the compliance tensors are always positive definite for real materials. We
search for the specific conditions assuring a positive definite energy density for
an isotropic material. To this aim, we apply a deformation satisfying the re-
lation �ii = 0, leading to U = ��ij�ij > 0 or, equivalently, � > 0. Moreover, if
we apply a hydrostatic deformation �ij = sıij, where s is a constant, we obtain
U = 3s2 (3	/2 + �) > 0 or, equivalently, 3	+ 2� > 0. By means of Table 1 we
obtain the additional relations K > 0 and E > 0. Finally, by means of the ex-
pression 
 = 3K−2�

2(3K+�) , we easily can prove that −1 < 
 < 1
2 . It is interesting to

observe that the last result admits negative values for the Poisson ratio. This
point was considered controversial for a long time. In fact, standard natural
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materials exhibit a nonnegative Poisson ratio, meaning that all traditional ma-
terials, when elongated in a given direction, always display a shrinking in the
transverse (perpendicular) directions. However, during the last decades, many
composite and complex materials have been realized with negative values of
the Poisson ratio.30–32 Hence, when elongated in a given direction, these mate-
rials show an unconventional extension in the transverse directions. Although
intriguing, this phenomenon, as proved, does not violate thermodynamics.

MICROSCOPIC THEORY OF ELASTICITY

Conceptual Layout

This section represents a tutorial introduction to the atomistic theory of
elasticity in which the macroscopic elastic properties of a material are obtained
by explicitly taking into account its atomic-scale structure and the fundamen-
tal interactions among its constituents. Although this subject has been widely
investigated in the past,8 the connection between the continuum and the atom-
istic approach still remains a topic of crucial importance in modern materials
science.

We develop an atomistic version of the elasticity theory for an isotropic
and homogeneous material, and we establish the minimum level of complexity
that any microscopic model of atomic interactions must exploit to obtain re-
sults consistent with the continuum theory. In particular, we will examine two
situations: a two-dimensional triangular lattice with two-body interactions and
a two-dimensional triangular lattice with both two-body and three-body inter-
actions. Such a case study is paradigmatic under two remarkably important
standpoints. On the one hand, the two-dimensional (perfect) triangular lattice
is the only (homogeneous) isotropic crystal structure; therefore, it represents
the simplest crystalline counterpart of the continuum medium discussed in the
previous section. On the other hand, by considering either a two-body or a
more sophisticated force field, we can understand the role of the microscopic
interaction model in predicting elastic features. Either way, we remark that our
conclusions will be of general validity, although our arguments are developed
for two-dimensional crystals only. We will prove that two-body force fields pro-
vide an elastic picture that is not consistent with continuum mechanics because
they describe the elastic behavior of the material with only one elastic modulus.
On the contrary, force fields including both two-body and three-body interac-
tions provide results in formal agreement with continuum elasticity theory (i.e.,
they predict the existence of two independent elastic constants.)

In the second part of this section, we introduce some typical interaction
potentials used in molecular dynamics simulations. In particular, we will elab-
orate a general conceptual framework that can be used to generate improved
force fields for applications in the realm of solid mechanics.



22 Brittle Fracture: From Elasticity Theory to Atomistic Simulations

Finally, we work out the complete theory for the calculation of the stress
tensor at the atomic scale. We will discuss finite temperature effects extensively,
and we will address some important conceptual and technical issues, which are
tricky and often cause incorrect implementations of stress calculations.

Triangular Lattice with Central Forces Only

We begin by considering an arbitrary lattice of point masses that interact
through simple central forces (two-body interaction), acting between nearest
neighbors only. We focus on a pair of particles placed in positions �r(0)

1 and �r(0)
2

at equilibrium or, equivalently, in a configuration of minimum energy. If a small
deformation is applied, then the new positions will be given by:

�ri = �r(0)
i + �u

(
�r(0)
i

)
[52]

where, according to Eq. [3] we have introduced the displacement vector field
�u(�r(0)

i ) for any equilibrium lattice site. We further assume that the two-body
interaction may be represented by a harmonic spring of constant ks. If the
particles in �r1 and �r2 are nearest neighbors, then the force on the first particle
resulting from the second one is:

�F2B
1 = ks�n

(|�r2 − �r1| − l
)

[53]

where l =
∣∣∣�r(0)

2 − �r(0)
1

∣∣∣ is the equilibrium distance and �n is the unit vector in the

direction of the central force (see Figure 3 for details). This force corresponds
to a two-body interaction potential energy U2B = (1/2)ks

(|�r2 − �r1| − l
)2. By

Figure 3 Displacement (�u) and distance (�r) vectors for a pair of atoms before (this
configuration is labelled by suffix(0)) and after deformation. The unit vector �n along the
direction of the central force acting between atoms 1 and 2 is shown as well.
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assuming slow variations of the displacement over the atomic scale (this is
actually the case of deformations as a result of applied loads at the macroscale),
we can expand this force up to the first order in the difference �u(�r(0)

2 ) − �u(�r(0)
1 ).

Then, writing:

�u
(
�r(0)
2

)
= �u

(
�r(0)
1

)
+
[
∂�u
∂�r
] (

�r(0)
2 − �r(0)

1

)
[54]

we obtain:

�F2B
1 = ks l �n

(
�n×

[
∂�u
∂�r
]

�n
)

[55]

Finally, defining the strain tensor as in Eq. [7] we find:

�F2B
1 = ks l �n (�n× �̂ �n) [56]

This is the force acting on a given particle caused by a neighboring atom, placed
at distance l and aligned in direction �n, when the local deformation is charac-
terized by the strain tensor �̂. In this derivation, we have implicitly assumed
the Cauchy–Born rule3 stating that, within a body under a small strain, the
positions of the atoms follow the overall deformation of the material. This ap-
proximation generally holds for face-centered cubic and body-centered cubic
crystals (in general for Bravais lattices), whereas for lattices with a basis of two
(or more) atoms in the unit cell, the rule has to be modified to allow for internal
degrees of freedom between the sublattices.

We now apply the result given in Eq. [56] to the specific case of the two-
dimensional triangular lattice shown in Figure 4 and representing the only case

Figure 4 Planar (two-dimensional) triangular crystal with lattice constant l. One easily
can find the area S of the unit cell and the six first-next-neighbors A, B, C, D, E, and F
of atom 1.
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of isotropic crystal. Any particle has six nearest neighbors placed at distance
l (corresponding to the edge of the triangular mesh). By computing the force
caused by the opposite neighbors A and B of atom 1, we find �F 2B

1,AB = ks l �n×
(�̂A − �̂B) �n where we indicated the unit vector connecting A to B with �n. The
total force on atom 1 is given by the sum of three terms calculated along the
three directions A-B, C-D, and E-F (see Figure 4). To match the continuum
formalism, we must divide the total force by S = l2

√
3/2, namely by the area

occupied by each atom. The resulting force density is:

�f 2B
1,AB = 2

√
3

3
ks �n× (�̂A − �̂B)

l
�n [57]

The ratio 1
l

(�̂A − �̂B) in Eq. [57] is identified with the projection
(�n× ∂

/
∂�r) �̂

of the gradient of the strain tensor. Therefore, the total force from the couple
AB is written as:

�f 2B
1,AB = 2

√
3

3
ks �n× (�n× ∂

/
∂�r) �̂�n [58]

Finally, the Newtonian law describing the motion of atom 1 is obtained as
�f 2B
1,AB + �f 2B

1,CD + �f 2B
1,EF + �b = � �̈u, where �b is the density of external forces applied

to the system, � is the mass density and �̈u is the acceleration. Each force term
can be developed through the Eq. [58], leading to the final elasticity equation:

√
3

4
ks [∇2�u+ 2∇ (∇ × �u)] + �b = � �̈u [59]

By comparing Eq. [59] to Eq. [40], we obtain the effective elastic moduli of the
triangular lattice:

	 = � =
√

3
4
ks [60]

or, equivalently, the Young modulus and the Poisson ratio:

E = 5
√

3
8
ks and 
 = 1

4
[61]

Eqs. [60] and [61] prove that an atomistic model for the triangular lattice with
first next-neighbors central forces only, cannot take into account all the elastic
features predicted by the continuum elastic theory (and confirmed experimen-
tally). In particular, Eq. [60] indicates that, according to this model, the material
should have only one characteristic elastic constant, whereas Eq. [61] implies
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that a universal value of the Poisson ratio should exist independent of the actual
physical properties of the material.

Triangular Lattice with Two-Body and Three-Body
Interactions

We now consider a more refined force field, including three-body inter-
actions among nearest neighbors. In this case, we begin by defining a potential
function involving three atomic positions �r1, �r2, and �r3. We assume that the
three angles ϑ1, ϑ2, and ϑ3 (see Figure 5 are equal to ˛1, ˛2, and ˛3, respec-
tively, at equilibrium.

Therefore, we can choose a potential energy of the form:

U3B = 1
2

{
H1 [cosϑ1 − cos˛1]2 +H2 [cosϑ2 − cos˛2]2

+H3 [cosϑ3 − cos˛3]2
}

[62]

where H1,H2, and H3 are suitable constants. For a triangular lattice, we have
˛1 = ˛2 = ˛3 = /3 and, therefore:

U3B = 1
2
hl2

{[
cosϑ1 − 1

2

]2

+
[
cosϑ2 − 1

2

]2

+
[
cosϑ3 − 1

2

]2
}

[63]

where, for simplicity, we setH1 = H2 = H3 = hl2, with l being the interatomic
distance in the unstrained lattice. In such a way, the constant ks (describing the
two-body interactions) and the constant h (describing the three-body interac-
tions) usefully assume the same physical units.

Figure 5 Distances and angles for a three-atom cluster. The unit vector �n ( �m) in the
direction of the central force acting between atoms 1 and 2 (1 and 3) is shown as well.
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By applying the same approximations used to derive Eq. [56], we find the
following net force on atom 1:

�F3B
1 = 3

2
h l

{(
�m× �̂ �n+ 1

2
�m× �̂ �m− �n× �̂ �n

)
�m

+
(

�m× �̂ �n+ 1
2

�n× �̂ �n− �m× �̂ �m
)

�n
}

[64]

where �m and �n are the unit vectors defined in Figure 5. We remark that the
bilinear form �m× �̂ �n is directly connected to the variation of the angle between
�m and �n, induced by the deformation described by �̂. As expected, the force term
given in Eq. [64] depends on the angular distortion of the triangle represented
in Figure 5. Moreover, if ϑ2 and ϑ3 are equal, then the force is oriented along
the bisector of the angle ϑ1 in such a way to increase ϑ1 if ϑ1 < /3 and to
decrease ϑ1 if ϑ1 > /3.

By adopting the angular-dependent force defined in Eq. [64], we can item-
ize the full set of forces at work as follows: (1) two-body interaction forces, as
given in Eq. [57]; (2) three-body interaction forces: six angular terms are work-
ing on atom 1 of Figure 4, as calculated in Eq. [64] (they correspond to the
angles A1C, C1F, F1B, B1D, D1E, and E1A); (3) the external forces applied to
the lattice. Following the same procedure outlined in the previous section, we
get:

3
4

(√
3

3
ks + 9

4
h

)
∇2�u+

√
3

2
ks ∇ (∇ × �u) + �b = � �̈u [65]

By comparing Eq. [65] to Eq. [40] we easily find the effective elastic moduli
of the lattice:

	 = 3
4

(√
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3
ks − 9

4
h

)
and � = 3

4

(√
3

3
ks + 9

4
h

)
[66]

or, equivalently, the Young modulus and the Poisson ratio:

E = 3
√

3
8
ks

(√
3

3
+ 9

4
h

ks

)(
5
√

3
3

− 9
4
h

ks

)
and 
 = 1

4
− 9

√
3

16
h

ks

[67]

In conclusion, only this improved lattice model can correctly describe the elastic
behavior of any isotropic media because it provides the atomistic expression for
both independent elastic constants. In other words, we can state that at least
three-body interactions are mandatory to reproduce the complex mechanical
behavior of real isotropic materials accurately.
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Finally, we introduce some energetic considerations. The Lamé constants
must obey the inequalities � > 0 and 2�+ 3	 > 0. Consequently, the interac-
tion parameters ks and hmust be as follows: ks > 0 and −4

√
3

27 ks < h < 20
√

3
27 ks.

When h approaches the value −4
√

3
27 ks, the Poisson ratio becomes equal to 1/2

(a situation found in rubbery materials); the system is volume (area) preserving
because the three-body interactions are working contrarily (h < 0) to what is
expected. On the other hand, when h approaches the value 20

√
3

27 ks, the Pois-
son ratio has the value of −1 (a situation common in some reentrant polymer
foams):30 in this case, the structure is shape preserving, allowing only defor-
mations described by isotropic rescaling of the body.

In our approach, we considered some hypotheses to simplify the mathe-
matical complexity of the interaction models. The main assumptions are sum-
marized as follow: (1) we described only two-dimensional systems; (2) the in-
teraction potentials are linear (springs); (3) their action is limited to between
nearest neighbors only; (4) we have analyzed simple Bravais lattices where inter-
nal strains do not occur. Nevertheless, the final conclusions about the primary
importance of the three-body interactions for obtaining the correct number
of independent elastic constants can be applied to arbitrary crystals (in three
dimensions) with arbitrarily nonlinear and long-range interaction potentials.

In many earlier publications, the method of homogeneous deformations
was used to derive expressions analytically for the elastic constants of a crys-
talline solid in which the energy density can be separated into contributions
from many-body interactions of a different order.33,34 For example, the exact
explicit expressions for the body-centered cubic lattice35 and for hexagonal
closed packing lattice36,37 have been derived for an arbitrary many-body inter-
atomic potential. In these complicated expressions, if we reset the three-body
interaction (and higher order multibody terms) to zero, we then obtain a reduc-
tion in the number of independent elastic constants, confirming our predictions.
We remark, however, that this result is valid only if we determine the elastic
constants of the crystalline structure in the reference equilibrium configuration
(i.e., when the external pressure applied to the body is exactly reset to zero). In
a recent publication,38 the two-dimensional triangular lattice with two-body
(arbitrarily nonlinear and long-range) interactions was studied under an exter-
nal pressure P, and it was proven that the lattice can show a negative Poisson
ratio behavior, as long as certain conditions involving the two-body interaction
potential are satisfied. The result is given by the relation:38


(P) = 1 + 2PKT
4

[68]

where P = −dU
dV is the applied pressure and KT = − 1

V
dV
dP is the compressibility

(U is the total energy andV is the volume of the body). If we let P = 0 in Eq. [68]
we obtain the value of the Poisson ratio given in Eq. [61]. Therefore, Eq. [61]
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is exact also with nonlinear and long-range interaction potentials. Moreover,
Eq. [68] shows that with P < 0 we can obtain a negative Poisson ratio.

Interatomic Potentials for Solid Mechanics

In computational atomic-scale solid mechanics, it is important to use in-
teratomic interaction potentials that can correctly describe arbitrary configura-
tions (which may significantly differ from the perfect crystalline one) or systems
possibly subjected to large deformations. The development of accurate and pre-
dictive representations of the interaction forces is an open and active research
field.

An accurate description of interatomic forces can be achieved by ab initio
quantum mechanical methods. They are more fundamental and often superior
with respect to empirical force fields. Such methods are nevertheless compu-
tationally very demanding, so their use is limited to a relatively small number
of atoms (typically < 1000), which is not large enough to investigate many
important problems in the physics of brittle solids (e.g., crack initiation, crack
propagation, and fiber toughening). Rather, ab initio methods have been ap-
plied successfully to study specific aspects of brittle fracture (including surface
energies, surface reconstructions, and quasi-static separation of semi-bulks),
relegating the development of the more general picture to empirical methods.
Alternatively, ab initio schemes have been used in combination with less com-
putationally demanding models according to the multiscale paradigm.

In this review, we focus on empirical potentials, thus allowing a direct
approach to brittle fracture; we are motivated in this choice by the observation
that, so far, most molecular dynamics applications to fracture have relied on
empirical potentials. It has been shown recently that most of the problems
found when using model potentials are a result of an unsuitable choice of the
interaction range.39 Several possible solutions to bypass this bottleneck have
been proposed in the literature to extend the use of model potentials. This
critical issue is discussed extensively below.

The simplest interatomic potential is obtained by taking into account only
two-body interactions:

U =
∑
˛<ˇ

U2B(x˛ˇ) [69]

As explained earlier, such a two-body interaction is not sound enough for sim-
ulations in the realm of solid mechanics. However, it can be used in this field
when simple, qualitative, and paradigmatic computations must be performed
on very large systems. This is the case of the renowned Lennard—Jones poten-
tial, originally developed for describing the properties of gases. In this model,
two distinct forces are considered in the interaction between two atoms: in the
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limit of a large separation an attractive force (van der Waals force, or dispersion
force) and a repulsive force at short ranges (the result of overlapping electron
orbitals). The Lennard-Jones potential (also referred to as the L-J potential or
6-12 potential) was proposed in 1924 by John Lennard-Jones.40 It assumes the
form:

U2B(r) = 4�
[(�
r

)12 −
(�
r

)6
]

[70]

where � is the depth of the potential well, � is the distance at which the inter-
particle potential is zero, and r is the distance between the particles. The (1/r)12

term describes repulsion and the (1/r)6 term describes attraction.
The L-J potential is particularly accurate for describing a noble gas. Con-

cerning condensed matter, the L-J can describe, at a qualitative level, the physics
of metals with a close-packed crystalline structure. As a matter of fact, the
lowest energy arrangement of an infinite number of atoms is the hexagonal
close-packing. Upon raising the temperature, the lowest free energy arrange-
ment becomes cubic close packing and then liquid. Under pressure, the low-
est energy structure switches between cubic and hexagonal close packing.41

Accordingly the applicability of the L-J model for brittle solids is limited; nev-
ertheless, it has been applied successfully to study the brittle-to-ductile tran-
sition in simple metals42 and the dynamics of brittle fracture43 among other
uses.

To achieve more realistic interatomic force models, it is necessary to go
beyond the two-body approximation. An important example is the Stillinger–
Weber (SW) potential, which was developed to describe covalently bonded sil-
icon.44 The SW potential takes into account both two-body and three-body
terms:

U =
∑
˛<ˇ

U2B(x˛ˇ) +
∑
˛<ˇ<�

U3B(�x˛, �xˇ, �x� ) [71]

where �x˛ is the position of the ˛-th atom and x˛ˇ = |�x˛ − �xˇ|. The potential
terms for two-body interactions can be written as U2B(x˛ˇ) = �f2(x˛ˇ/�) and
U3B(�x˛, �xˇ, �x� ) = �f3(�x˛/�, �xˇ/�, �x�/�). The function f2 is given by:

f2(r) = A
(
Br−p − r−q

)
exp

[
(r− a)−1

]
[72]

if r < a and f2 = 0 if r > a, where A,B, p, q and a are positive constants. The
three-body term is expressed can follow:

f3(�x˛, �xˇ, �x� ) = h(xˇ˛, xˇ� , �˛ˇ� ) + h(x˛ˇ, x˛�, �ˇ˛� ) + h(x�˛, x�ˇ, �˛�ˇ) [73]



30 Brittle Fracture: From Elasticity Theory to Atomistic Simulations

where �˛ˇ� is the angle between �x˛ and �x� subtended at vertex ˇ and

h(xˇ˛, xˇ� , �˛ˇ� ) = 	 exp
[
�
(
xˇ˛ − a

)−1 + �
(
xˇ� − a

)−1
]

×
(

cos �˛ˇ� + 1
3

)2

[74]

where 	 and � are constants. The object of the three-body component of the
potential is to enforce the tetrahedral bond angle (109.47◦) among triplets of
bonded atoms. This model has been developed for describing interactions in
solid and liquid forms of Si, but it seems only moderately accurate to describe
the amorphous phase.45 Deficiencies of the SW force model, furthermore, are
found when studying the brittle cleavage of silicon.46

To improve the reliability of the models and to extend their applicability
to configurations far from equilibrium, it is possible to use higher order (up to
five-body) expansion terms.47 Despite the increased complexity, similar mod-
els improve only selectively the description of the solid system and often at a
considerable increase of the computational cost.

A computationally more convenient approach is to use an environment
dependent interatomic potential (EDIP).48,49 The interaction model includes
only two-body and three-body terms as is the case of the SW model, but in
addition, it has an explicit dependence on the local atomic environment through
an effective coordination number

Z˛ =
∑
� /= ˛

f (x˛� ) [75]

where f (x˛� ) is a cut-off function that measures the contribution of neigh-
bor � to the coordination of atom ˛ in terms of the separation x˛� . For
silicon,48,49 the environment-dependent formulation can successfully capture
(1) the energetics and elastic properties of the ground-state diamond lattice,
(2) the covalent rehybridization of undercoordinated atoms, and (3) a smooth
transition to metallic bonding for overcoordinated atoms. Unfortunately, the
EDIP potential cannot reproduce the brittle cleavage in silicon.46

The primary importance of the local coordination Z˛ to describe bonding
in solids properly first was pointed out by Abell.50 In fact, it can be shown by
quantum-mechanic arguments that the more neighbors an atom has, the weaker
the bond to each neighbor will be. Abell proposed an interatomic potential
formed by a sum over nearest neighbors two body terms in the form:

U = 1
2

∑
˛ /= ˇ

[
fr(x˛ˇ) + b˛ˇfa(x˛ˇ)

]
[76]



Microscopic Theory of Elasticity 31

where fr(r˛ˇ) and fa(r˛ˇ) are pair-additive repulsive and attractive interactions,
respectively. The bond strength b˛ˇ(Z˛) (also named bond order) is a monoton-

ically decreasing function of the coordination number b˛ˇ ∼ Z
− 1

2
˛ . With Morse-

type repulsive and attractive pair interactions:

fr(r) = A exp (−	1r) [77]

fa(r) = −B exp (−	2r) [78]

Eq. [76] yields an energy versus volume relationship similar to the universal
binding energy curve for solids51 (see “Universal Energy Relation” on page 33).
Furthermore, at variance with a simple two-body potential, by using the bond
order bij environment dependence, it is possible to reproduce both the open
(e.g., diamond) or close-packed crystalline structures, depending on the actual
choice of the parameters. This point is crucial for determining the equilibrium
state of a crystal structure.

Recognizing the utility of the Abell’s approach, Tersoff proposed a model
for Si, Ge, C, and SiC by taking into account the environmentally dependent
bond strength.52 In Tersoff formulation, the total energy is:

U = 1
2

∑
˛ /= ˇ

fc(x˛ˇ)
[
fr(x˛ˇ) + b˛ˇfa(x˛ˇ]

]
[79]

where a cut-off function is introduced to limit the sum over nearest neighbors:

fc(r) =

⎧⎪⎨
⎪⎩

1 r < R−D
1
2 − 1

2 sin [(r− R)/D] R−D < r < R+D

0 r > R+D

[80]

The bond-order parameter b˛ˇ is given by:

b˛ˇ = (1 + ˇ�n˛ˇ)−1/(2n) [81]

with

�˛ˇ =
∑

� /= ˛,ˇ

fc(x˛� )g(�˛ˇ� ) exp [	3
3(x˛ˇ − x˛� )3] [82]

g(�) = 1 + c2

d2 − c2

d2 + (h− cos �)2
[83]

The function b˛ˇ is a measure of the bond order, and it is assumed to be a
monotonically decreasing function of the coordination of atoms ˛ and ˇ. In
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addition, terms that act to limit the range of interaction to the first neighbor shell
are included in b˛ˇ. This model can be modified to describe multicomponent
mixtures and, more specifically, SiC and SiGe mixtures.

In 1990,53 Brenner extended the analytic form of the Tersoff potential
by introducing two additional ad hoc terms into the bond order to counter the
overbinding of radicals. A second-generation Brenner potential54 leads to a sig-
nificantly better description of bond energies, lengths, and force constants for
hydrocarbon molecules, as well as elastic properties of diamond. This promi-
nent model has been applied successfully in several atomic scale studies of com-
plex processes involving hydrocarbon molecules, graphite, graphene, and dia-
mond lattice.

Improved bond order model potentials for hydrocarbons, that can be de-
rived from quantum-mechanical treatment of bond order, are possible.55 Such
refinements are not necessary when describing the brittle behavior of solid sys-
tems. From this perspective, it has been proved39,56 that a central issue is the
choice of the interaction range (i.e., the cut-off function) employed in the model
potentials. The use of an environmentally dependent interaction range has been
proposed recently to cure substantially the deficiencies of the Brenner-type
model potentials. An extensive discussion of the interaction range necessary
to study brittle materials is reported in the next section.

Interatomic Potentials and Brittle Materials
In this section, we discuss some very basic and important features relevant to
developing improved potentials for applications in nanomechanics. We will fo-
cus on the atomistic simulation of brittle materials (Si, Ge, C, and SiC), which
turned out to be a very challenging problem; as a matter of fact, most available
potentials for elemental as well as compound group-IV materials cannot repro-
duce the brittle nature of crack propagation.46 In the case of silicon, this holds
for the Tersoff potential,57 the SW potential,58 and for the EDIP potential.59

All of them predict nonphysical behavior during fracture. Only a few force field
models can predict the brittle fracture in covalent materials.51,60,61

The origin of the deficiencies of most potentials in describing brittleness
first was analyzed by Holland and Marder.46 They concluded that none of
the available models for silicon describes the force-separation curve accurately.
This conclusion was obtained by comparing the atomic force provided by SW
and EDIP potentials with the universal energy relation (UER) obtained by ab
initio calculations.51 Here, we extend the analysis of Holland and Marder,
and we identify the minimal conditions that a model potential must satisfy to
describe brittle solids. In particular, we focus on the role of the interaction range.
By following the general conclusions outlined in the previous section (namely,
the need of many-body interactions and relatively long-ranged forces), here
it is investigated how a valid and efficient potential indeed can be generated.
The argument is illustrated by using the bond order Tersoff potential as the
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prototype for interaction models for group-IV materials and by comparing its
predictions with the UER obtained by ab initio calculations.51

Universal Energy Relation
The UER51 is a two-parameter equation of state describing the variation of the
internal energyU(s) of a solid upon the scaled interatomic separation (hereafter
referred to as s):

U(s) = −E0 (1 + s) e−s [84]

where E0 is the the cohesive energy per atom (absolute value) and s is:

s =
(
r

r0
− 1

)
1
�

[85]

where r and r0 are the interatomic distances in the strained and in the equilib-
rium configuration, respectively. The quantity � is a dimensionless parameter
measuring the material anharmonicity.

This parameter can be fitted to experiments or to ab initio calculations,
and it can be easily cast in the form:

� = 1
3

(
E0

Kω

) 1
2

[86]

where ω is the (average) atomic volume and K is the bulk modulus of the
material.62 For the zincblend structure, we have ω = (2/

√
3)3r30. For silicon

carbide, diamond, silicon, and germanium, we calculated � = 0.221, 0.230,
0.205, and 0.198, respectively. As shown later, these relatively large values
are not compatible with the (oversimplified) assumption of first-next-neighbor
interactions only; this is consistent with the conclusions of the previous section.

The workW(s) necessary to stretch a perfect crystal hydrostatically up to
a scaled interatomic distance s is calculated from Eq. [84] as:

W(s) = E0 +U(s) [87]

The work W(s) is completely controlled by the three constants E0, �, and r0
that, in turn, depend on the actual material. For example, the inflection point
rI of the curve W(s) corresponds to rI = r0(1 + �), occurring at s = 1. Such
an interatomic separation is obtained by spending a workW(rI) = (1 − 2/e)E0
as large as 26% of the total work of separation (per atom)E0. In Figure 6
(bottom) the work function W(s) (full line) is represented for the choice � =
0.22, corresponding to the SiC case.
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Figure 6 Work (bottom) and force (top) for hydrostatic separation in silicon carbide. r
and r0 are the interatomic distances in the strained and in the equilibrium configuration,
respectively. The second and third next-neighbor distance is indicated by r2nn and r3nn,
whereas rI = r0(1 + �) and � is given in Eq. [86]. R and S represent the switch-on and
switch-off distance for the cut-off function in the Tersoff potential, respectively and
Sc = r0[1 + (e+ 0.5/e)�]. Finally, rc is fixed by the intersection between the linear and
constant force regime. Details are reported elsewhere.39

The force f (s) necessary to separate atoms at the interatomic distance s is
obtained straightforwardly from W(s):

f (s) = dW

ds
= E0

s

�r0
e−s [88]

This force is positive for tensile strain (r > r0, i.e., s > 0). f is represented
in Figure 6 (top panel) by a full line. The maximum separation force fmax =
E0(e�r0)−1 is rI = r0(1 + �) = 1.44r0, falling within the first r1nn = r0 and the
second r2nn = 1.633r0. At distances r > rI (s > 1) the force f decreases as the
separation increases. A 90% force reduction (i.e., f = fmax/10) is observed
when r ∼ 2.0r0 > r3nn = 1.91r0. It is important to clarify that the hydrostatic
separation energy described by the UER does not correspond to any realistic
fracture event. Nevertheless, we guess that any force model suitable for fracture
must be able to reproduce the UER curve correctly.
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Determining the Minimum Range for the Model Potential
The development of a force field with a not-too-short range of action is worked
out from the corresponding UER by imposing a few fundamental requirements:

1. The force must be a continuous function of strain;
2. The maximum separation force must be reproduced correctly (i.e.,
f srmax = fmax);

3. The bulk modulus at equilibrium must fit the experimental (or ab initio)
value;

4. At tensile strains (up to rI), the bulk modulus must not increase;
5. The work of separation E0 must be reproduced correctly.

Condition (2) is related to the fracture toughness of the perfect material.
For instance, if the maximum force is overestimated, then the fracture toughness
of the material is overestimated as well. Similarly, conditions (3) and (4) are
needed to reproduce the elastic properties of the material. Finally, condition (5)
imposes a simple physical requirement: the atomic bonds cannot stiffen during
tensile deformation up to the maximum force.

Results from the simplest force model fulfilling these conditions are pre-
sented in Figure 6 (top panel) as a dotted line. We refer to such a model as
the minimum range model (MRM). It consists of a linear elastic force across
the interval r0 ≤ r ≤ rc (where the bulk modulus is given by the constant value
K), whereas for rc ≤ r ≤ Sc, the force is constant and equal to the fmax value
provided by UER. Finally, for any interatomic distance larger than Sc, the force
is zero. The actual value of rc is fixed by the intersection between the linear
force with slope K, occurring in the region [r0, rc], and the constant fmax. The
parameter Sc, in turn, is fixed by the cohesive energy E0:39

Sc = r0 + r0

(
e+ 1

2e

)
� [89]

and sets the minimum range, below which it is not possible to find a force field
satisfying conditions 1–5; in other words, a model with force extension below
Sc is unlikely to describe brittle fracture.

The value Sc/r0 depends only on the parameter � characterizing the ma-
terial. It can be proved that, in the case of covalent group-IV materials, such
a minimum value Sc is close to the second nearest neighbor (2nn) distance at
equilibrium. In particular, for silicon carbide, Sc ≈ 1.64r0 that is slightly larger
than the second nearest neighbor distance r2nn ≈ 1.15r0, whereas for silicon
and germanium, we get Sc ∼ 0.9r2nn. These values suggest that only by tak-
ing into account interactions beyond the first neighbor (∼ r2nn), is it possible
to describe correctly the maximum separation force and, in turn, the fracture
toughness of a material. This conclusion, although derived by different argu-
ments, is consistent with the discussion in the previous section.
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The minimum range model is indeed a very rough model, its only value
being explicatory. In particular, this force model hardly can be used in atomistic
simulations. A better device is obtained by multiplying the energy functionU(s)
by a cut-off function h(s), so as to obtain a new force model T(s):

T(s) = U(s)h(s) [90]

The corresponding work separation Wsr(s) is modified accordingly as follows:

Wsr(s) = E0 + T(s) [91]

and it is (relatively) short-ranged as well. An example of the results of such a
model is represented as a dot-dashed line in the bottom panel of Figure 6 where
[R, S] is the range in which the cut-off h(s) operates. We remark that the cut-off
function does not modify the total work of separation, so that condition (v) is
satisfied. Furthermore, it does not modify the force field close to the equilib-
rium distance. Accordingly, conditions 3–5 are still satisfied by construction.
Condition (2), instead, is satisfied only if the range S of the force model is larger
than Sc, according to the previous analysis.

These remarks are valid, in general, regardless of the actual form of the
potential. In particular, they apply to the original Tersoff potential63 in which
S = 1.33r0, a value much shorter than the 2nn distance. This model is repre-
sented in Figure 6 as a dot-dashed line. As expected, the force is overestimated
in the range [R, S], and a nonphysical peak is observed in the separation force,
which is four times larger than the correct maximum value fmax (Figure 6, top
panel).

Although the present analysis suggests to extend the interactions range
beyond the second nearest neighbors distance, this solution is unfortunately de-
manding in terms of the development of the new model potential. In particular,
this approach would imply refitting existing force fields, possibly generating in-
consistency with previous results. This is an unpleasant feature because a huge
body of valuable knowledge has been produced so far by using the original
short-range potentials. Alternatively, it is possible to cure the major deficien-
cies of the original model potentials by using modified cut-off functions (such
as environmentally dependent cut-off functions,56 as well as nonconservative
force fields).39

Atomic-Scale Stress

Identifying the stress tensor by means of atomistic quantities is important
because it allows for the comparison of the results obtained through molecu-
lar dynamics simulations with those achieved within the continuum elasticity
theory.
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To obtain the atomic-scale counterpart of the Cauchy stress tensor (see
Eqs. [14] and [15]), we consider a small portion of a given elastic body with
volume V and surface S. We suppose that, in this region, there are N atoms
described by positions �x˛ for ˛ = 1, . . . ,N. The number of the atoms is large
enough to allow the definition of the macroscopic elastic fields (stress and strain)
in that region, but it is also small enough to identify the local stress with its
average on the volume. To get the continuum-to-molecular equivalence, it is
useful to introduce the so-called virial form

∑N
˛=1 �x˛ ⊗ �F˛ where the symbol ⊗

represents the tensor product of vectors (see the Appendix). The quantity �F˛ is
the total force acting on the ˛-th atom, and therefore, the equation of motion
�F˛ = m˛�a˛ (m˛ is the mass of the ˛-th atom) leads to the balance:

N∑
˛=1

�x˛ ⊗ �F˛ =
N∑
˛=1

m˛�x˛ ⊗ �a˛ [92]

Now, the total force �F˛ can be written as the sum of two contributions: �Fint
˛ ,

which is the internal force on the ˛th atom caused by the atoms contained in
the volume V ; and �Fext˛ , which is the external force on the ˛th atom caused by
the atoms falling outside the V and by any external action. By exploiting this
contributions we get:

N∑
˛=1

�x˛ ⊗ �Fint
˛ +

N∑
˛=1

�x˛ ⊗ �Fext
˛ =

N∑
˛=1

m˛�x˛ ⊗ �a˛ [93]

The external force �Fext
˛ , in turn, is given by the surface force �Fext

˛ (S) (caused by
atoms nearby the surface S) and by the body force �Fext

˛ (V) (caused by external
fields). Therefore, Eq. [93] can be cast in the form:

N∑
˛=1

�x˛ ⊗ �Fint
˛ +

N∑
˛=1

�x˛ ⊗ �Fext
˛ (V) +

N∑
˛=1

�x˛ ⊗ �Fext
˛ (S) =

N∑
˛=1

m˛�x˛ ⊗ d�v˛
dt

[94]

where �v˛ is the velocity of the ˛th atom. We observe that the velocity �v˛ of each
atom is the sum �v˛ = �v d˛ + �v th˛ of a macroscopic drift �v d˛ and a thermal fluctu-
ation �v th˛ . The macroscopic drift velocities �v d˛ of the ˛th atom is defined as the
mean value of the velocities �vˇ of the atoms belonging to a given neighborhood
of the ˛th site. Evidently, this mean value removes the statistical fluctuations,
resulting in a macroscopic quantity. Therefore, we get the following:

N∑
˛=1

�x˛ ⊗ �Fint
˛ +

N∑
˛=1

�x˛ ⊗ �Fext
˛ (V) +

N∑
˛=1

�x˛ ⊗ �Fext
˛ (S) [95]
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=
N∑
˛=1

m˛�x˛ ⊗ d�v d˛
dt

+
N∑
˛=1

m˛�x˛ ⊗ d�v th˛
dt

Any quantity appearing in Eq. [95] must be understood as instantaneous. To
obtain the corresponding average values, we introduce the time average 〈·〉 =
lim
�→∞

1
�

∫ �
0 (·) dt. As for the last term of the right-hand side of Eq. [95] we get:

〈
N∑
˛=1

m˛�x˛ ⊗ d�v th˛
dt

〉
=
〈

N∑
˛=1

m˛

[
d
dt

(
�x˛ ⊗ �v th˛

)
− �v˛ ⊗ �v th˛

]〉
[96]

= lim
�→∞

1
�

∫ �

0

N∑
˛=1

m˛
d
dt

(
�x˛ ⊗ �v th˛

)
dt

−
〈

N∑
˛=1

m˛�v˛ ⊗ �v th˛
〉

= lim
�→∞

1
�

N∑
˛=1

m˛�x˛ ⊗ �v th˛
∣∣∣∣∣
t=�

t=0

−
〈

N∑
˛=1

m˛�v˛ ⊗ �v th˛
〉

We are dealing with an elastic solid body, which is a stable bound system (i.e.,
a system that hangs together forever). In other words, coordinates and veloc-
ities for all particles are expressed by finite quantities forever. In this case, the
functionG(t) = ∑N

˛=1m˛�x˛ ⊗ �v th˛ is bounded between two extremes,Gmin and
Gmax, and the first term in Eq. [96] is, therefore, zero in the limit of very long
times �

lim
�→∞

1
�

N∑
˛=1

m˛�x˛ ⊗ �v th˛
∣∣∣∣∣
t=�

t=0

= lim
�→∞

G(�) −G(0)
�

[97]

≤ lim
�→∞

Gmax −Gmin

�
= 0

On the other hand, the last term in Eq. [96] can be computed easily as follows:

〈
N∑
˛=1

m˛�v˛ ⊗ �v th˛
〉

=
〈

N∑
˛=1

m˛�v d˛ ⊗ �v th˛
〉

+
〈

N∑
˛=1

m˛�v th˛ ⊗ �v th˛
〉

[98]

The first term is zero because
〈
�v th˛

〉
= 0 (we also have used the statistical in-

dependence of �v d˛ and �v th˛ ). Conversely, the second term is quadratic in the
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fluctuation �v th˛ , and it is not negligible. So far, we have proved the following
important result:

〈
N∑
˛=1

m˛�x˛ ⊗ d�v th˛
dt

〉
= −

〈
N∑
˛=1

m˛�v th˛ ⊗ �v th˛
〉

[99]

and, therefore, the virial balance given in Eq. [95] can be written as:

〈
N∑
˛=1

�x˛ ⊗ �Fint
˛

〉
+
〈

N∑
˛=1

�x˛ ⊗ �Fext
˛ (V)

〉
+
〈

N∑
˛=1

�x˛ ⊗ �Fext
˛ (S)

〉
[100]

=
〈

N∑
˛=1

m˛�x˛ ⊗ d�v d˛
dt

〉
−
〈

N∑
˛=1

m˛�v th˛ ⊗ �v th˛
〉

To proceed further, we must link some atomic terms with their continuum
counterparts. In fact, we have that the term depending on body forces corre-
sponds to a volume integral; the term depending on surface forces corresponds
to a surface integral; the first term in the right-hand side can be converted to a
volume integral by observing that d�v d˛ /dt is the macroscopic acceleration field
�a. Accordingly:

〈
N∑
˛=1

�x˛ ⊗ �Fint
˛

〉
+
〈∫

V
�x⊗ �Fext(V)d�x

〉
+
〈∫

S
�x⊗ �Fext(S)dS

〉
[101]

=
〈∫

V
��x⊗ �ad�x

〉
−
〈

N∑
i=1

m˛�v th˛ ⊗ �v th˛
〉

As described in “The Concept of Stress” on page 10, in continuum elasticity
we have �Fext(V) = �b and �Fext(S) = T̂�n. Therefore, the balance equation given
in Eq. [100] becomes:

〈
N∑
˛=1

�x˛ ⊗ �Fint
˛

〉
+
〈∫

V
�x⊗ �bd�x

〉
+
〈∫

S
�x⊗

(
T̂�n
)

dS
〉

[102]

=
〈∫

V
��x⊗ �ad�x

〉
−
〈

N∑
˛=1

m˛�v th˛ ⊗ �v th˛
〉
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or, equivalently:

〈
N∑
˛=1

x˛,kF
int
˛,h

〉
+
〈∫

V
xkbhd�x

〉
+
〈∫

S
xkThpnpdS

〉
[103]

=
〈∫

V
�xkahd�x

〉
−
〈

N∑
˛=1

m˛v
th
˛,kv

th
˛,h

〉

By applying the divergence theorem to the surface integral, we get the following:

〈
N∑
˛=1

x˛,kF
int
˛,h

〉
+
〈∫

V
xkbhd�x

〉
+
〈∫

V

∂

∂xp

(
xkThp

)
d�x
〉

[104]

=
〈∫

V
�xkahd�x

〉
−
〈

N∑
˛=1

m˛v
th
˛,kv

th
˛,h

〉

We now can develop the derivative:

〈
N∑
˛=1

x˛,kF
int
˛,h

〉
+
〈∫

V
xkbhd�x

〉
+
〈∫

V

(
ıkpThp + xk

∂Thp

∂xp

)
d�x
〉

[105]

=
〈∫

V
�xkahd�x

〉
−
〈

N∑
˛=1

m˛v
th
˛,kv

th
˛,h

〉

so that:

〈
N∑
˛=1

x˛,kF
int
˛,h

〉
+
〈∫

V
Thkd�x

〉
[106]

+
〈∫

V
xk

(
∂Thp

∂xp
+ bh − �ah

)
d�x
〉

+
〈

N∑
˛=1

m˛v
th
˛,kv

th
˛,h

〉
= 0

The third term is zero because of Eq. [18]. Moreover, we can define the local
average value:

Thk = 1
V

∫
V
Thkd�x [107]
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of the stress tensor over the V . In conclusion, the balance equation for the virial
sum leads to the following definition of stress:

〈
Thk

〉 = − 1
V

〈
N∑
˛=1

m˛v
th
˛,kv

th
˛,h

〉
− 1
V

〈
N∑
˛=1

x˛,kF
int
˛,h

〉
[108]

where only atomic-scale quantities are used, namely: particle positions and
velocities and interatomic forces. This very important relation links atomistic
to continuum elasticity; it can be written in tensor form as follows:

〈
T̂
〉

= − 1
V

〈
N∑
˛=1

m˛�v th˛ ⊗ �v th˛
〉

− 1
V

〈
N∑
˛=1

�x˛ ⊗ �Fint
˛

〉
[109]

This result has innumerable applications in molecular dynamics simulations of
mechanical properties. In fact, it enables us to evaluate the macroscopic Cauchy
stress in an elastic solid system defined at the atomic or molecular level. We re-
mark that we have identified a macroscopic field (the stress tensor introduced in
“The Concept of Stress” section) with a combination of microscopic quantities
by means of two average procedures: the first one performed over the V (de-
noted by T̂ ) and the second one over the time (denoted by the angle brackets).
It is also important to observe that the first kinetic term depends on the velocity
contribution resulting from thermal fluctuations only, although it does not de-
pend on drift velocities. This contribution plays a key role in finite-temperature
thermoelasticity.64 We point out that Eq. [109] is exactly correct for systems
undergoing arbitrary time-dependent deformations.

It is possible to reformulate the result given in Eq. [109] by writing:

〈
T̂
〉

= − 1
Nω

〈
N∑
˛=1

m˛�v th˛ ⊗ �v th˛
〉

− 1
Nω

〈
N∑
˛=1

�x˛ ⊗ �Fint
˛

〉
[110]

where we have attributed to any atom the same average volume ω = V/N.
Although this assumption is widely used in atomistic simulations on mechanical
behavior of materials, it nevertheless should be noted that it is, in principle,
correct for atomic-scale homogeneous systems only. Actually, many interesting
problems in modern nanomechanics (including fracture) refer to systems that
do not fulfill such an assumption. We, therefore, need to better refine the volume
concept by introducing a suitable criterion for dividing the space into locally
proper subdomains that we will refer to as atomic volumes ω˛:

〈
T̂
〉

= − 1
N

〈
N∑
˛=1

m˛

ω˛
�v th˛ ⊗ �v th˛

〉
− 1
N

〈
N∑
˛=1

1
ω˛

�x˛ ⊗ �Fint
˛

〉
[111]
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A possible solution is offered by the following discretization procedure. We can
work out a partitioning of the total available space into elementary volumes
(much smaller than ω˛). Then, each elementary volume is uniquely assigned to
its next-neighbor atom site.65 The atomic volume of any given lattice site is
finally defined as the sum of the elementary volumes attributed to that atom
site. It can be proved that such a discretization procedure is basically equivalent
to the Voronoi tessellation; it is unique, and unambiguously attributes to each
atom a proper value of the volume.

Finally, it is possible to find a direct conceptual relation between the
atomic stress defined in Eq. [109] and the Cauchy stress tensor derived by
the strain energy function, as in Eq. [45]. To reconcile these two points of
view, we observe that, at thermodynamic equilibrium, the first tensor term in
Eq. [109] is directly proportional to the temperature because it contains the
average values of the kinetic quantities m˛�v th˛ ⊗ �v th˛ . Therefore, in the thermal
linear approximation, we can write the following:

− 1
V

〈
N∑
˛=1

m˛�v th˛ ⊗ �v th˛
〉

= −Ĉ ˆ̨T [112]

where Ĉ is the (fourth-order) stiffness tensor, ˆ̨ is the (second-order) thermal
expansion coefficient tensor (satisfying the symmetry relation ˛ij = ˛ji), and T
is the temperature. The second term in Eq. [109] can be handled by observing
that �Fint

˛ = −V ∂U
∂�x˛ , where U is the strain energy function defined in Eq. [45].

So, Eq. [109] assumes the form:

〈
T̂
〉

= −Ĉ ˆ̨T +
〈

N∑
˛=1

�x˛ ⊗ ∂U

∂�x˛

〉
[113]

Now, we observe that ∂U∂�̂ = ∑N
˛=1 �x˛ ⊗ ∂U

∂�x˛ and, therefore:

〈
T̂
〉

= −Ĉ ˆ̨T +
〈
∂U

∂�̂

〉
[114]

When we are working at T = 0, Eq. [114] is perfectly consistent with Eq. [45]
as expected. Moreover, for a linear elastic material, we have 〈 ∂U∂�̂ 〉 = Ĉ�̂, and
therefore, Eq. [114] is simplified as follows:

〈
T̂
〉

= −Ĉ ˆ̨T + Ĉ�̂ = Ĉ (�̂− ˆ̨T) [115]
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When the stress tensor is zero, we must have �̂ = ˆ̨T, obtaining the physical
meaning of the thermal expansion coefficient tensor ˆ̨ ; it represents the thermal-
induced strain for any degree of temperature.

A Different Form of the Virial Stress
We add some comments so the reader can avoid possible misunderstandings,
which often are encountered in the literature when discussing the stress concept.

As a matter of fact, the virial stress
〈
�̂
〉

is one of the most commonly used

stress-like quantities in discrete particle systems (it is also called the pressure
tensor), and it is sometimes defined as follow:66,67

〈
�̂
〉

= − 1
V

〈
N∑
˛=1

m˛
d�x˛
dt

⊗ d�x˛
dt

〉
− 1
V

〈
N∑
˛=1

�x˛ ⊗ �Fint
˛

〉
[116]

Such a virial stress concept is typically obtained by generalizing the Clausius
and Maxwell theories for pressure.68,69 The first term depends on the mass and
on the absolute velocity of atomic particles, reflecting that mass transfer gen-
erates a pressure on stationary spatial surfaces external to an atomic-particle
system. The second term depends on interatomic forces and atomic positions,
providing a continuum measure for the internal mechanical interactions be-
tween particles. However, the virial stress defined in Eq. [116] is not a measure
of the Cauchy mechanical stress within an elastic body undergoing an arbi-
trary deformation.70 As shown in the previous section, it can be proved that
the absolute velocities �v˛ = d�x˛/dt in Eq. [116] must be replaced with thermal
velocities �v th˛ to properly obtain the Cauchy stress.71

We also remark that the virial approach or virial theorem (Clausius 1870),
as applied to gas systems for the evaluation of external pressure, captures this
effect correctly. The key concept is that the pressure represents external forces
between an atomic system and a container (where the pressure is generated by
the collisions of the atoms on the inner surface of the container). In contrast,
stress represents internal forces between particles inside a body (and it is not
generated by collisions against a wall). Indeed, Eq. [116] describes the macro-
scopic pressure of a gas system correctly under the three following conditions:
(1) the system is in statistical equilibrium, (2) the pressure is to be interpreted
in a time- and volume-averaged sense (i.e., fluctuations at the molecular level
are assumed to average out over time and space) and (3) the pressure must be
recognized as the average force per unit area on the wall of a physical container
holding the gas system. The virial stress given in Eq. [116] must be applied in
molecular dynamics simulations when one is analyzing the pressure (or pres-
sure tensor) of a gas or a fluid at thermodynamic equilibrium onto the inner
surface of its container.
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We recall that, in continuum mechanics, the Lagrangian reference frame
is a way of looking at the motion in which the observer follows individual body
particles as they move through space and time. Therefore, in this picture, the
key quantity is the trajectory of a given volume element identified by its initial
conditions. On the other hand, the Eulerian reference frame is a way of looking
at the motion that focuses on specific locations in the space through which
the body particles pass. In this case, the physical observables are described
by scalar or vector fields, defined in a given point of the space. Eq. [109]
represents the atomic counterpart of the Cauchy stress when it is considered
in an Eulerian (spatial) reference frame. Andia, Costanzo, and Gray72,73 have
taken a Lagrangian (material) frame of reference to show that the stress in the
atomic system does not contain a velocity term at all by obtaining the further
relation:

〈
T̂L
〉

= − 1
V

〈
N∑
˛=1

�x˛ ⊗ �Fint
˛

〉
[117]

Gao and Weiner74 clearly show that the dynamic term is included only
in an Eulerian (spatial) reference frame and not in a Lagrangian frame of
reference. They also show the equivalence between the Eulerian (spatial) and
the Lagrangian (material) definitions of virial stress.74 Either way, in molecular
dynamics simulations, the Eulerian point of view always must be consid-
ered to draw meaningful comparisons between numerical and continuum
results.64

Atomic Stress for Arbitrary Two-Body Interactions
In this section, we specialize the general result given in Eq. [109] to the case
of two-body interactions between the atoms within a solid elastic body. The
quantity �Fint

˛ can be written as the sum
∑N
ˇ /= ˛

�f˛ˇ, where �f˛ˇ is the force applied
on atom ˛ by atom ˇ. Eq. [109] can be converted to:

〈
T̂
〉

= − 1
V

〈
N∑
˛=1

m˛�v th˛ ⊗ �v th˛
〉

− 1
V

〈
N∑
˛=1

�x˛ ⊗
N∑

ˇ /= ˛

�f˛ˇ
〉

[118]

The last term can be split into two identical terms as follows:

〈
T̂
〉

= − 1
V

〈
N∑
˛=1

m˛�v th˛ ⊗ �v th˛
〉

[119]

− 1
2V

〈
N∑
˛=1

�x˛ ⊗
N∑

ˇ /= ˛

�f˛ˇ
〉

+ 1
2V

〈
N∑
˛=1

�x˛ ⊗
N∑

ˇ /= ˛

�fˇ˛
〉
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because �fˇ˛ = −�f˛ˇ. After some algebra we get the following:

〈
T̂
〉

= − 1
V

〈
N∑
˛=1

m˛�v th˛ ⊗ �v th˛
〉

+ 1
2V

〈
N∑
˛=1

N∑
ˇ /= ˛

�x˛ˇ ⊗ �f˛ˇ
〉

[120]

where �x˛ˇ = �xˇ − �x˛. This form is particularly useful for molecular dynamics
simulations because the force term �f˛ˇ is linked directly with the interaction
potential energy U2B (r)

�f˛ˇ = dU2B (r)
dr

∣∣∣∣∣
r=|�x˛ˇ|

�x˛ˇ
|�x˛ˇ| [121]

By substituting Eq. [121] into Eq. [120], we obtain:

〈
T̂
〉

= − 1
V

〈
N∑
˛=1

m˛�v th˛ ⊗ �v th˛
〉

[122]

+ 1
2V

〈
N∑
˛=1

N∑
ˇ /= ˛

�x˛ˇ ⊗ �x˛ˇ
(

1
r

dU2B (r)
dr

)∣∣∣∣∣
r=|�x˛ˇ|

〉

This form is useful because it depends only on quantities available during any
simulations, and it is well suited for being used under the typical assumption
of periodic boundary conditions.

Atomic Stress for Arbitrary Many-Body Interactions
In this section, we derive a formulation of Eq. [109] that can be used for
any many-body force field. We observe that many-body interactions such as
Stillinger–Weber, Tersoff, Brenner, and EDIP, as well as tight-binding ones, have
a total potential energyU that can be written in terms of all the possible (scalar)
distances between each couple of atoms. If we define x˛ˇ = |�x˛ˇ| = |�xˇ − �x˛|,
then we get U = U({x˛ˇ}).

For a system ofN atoms, we haveN(N − 1) / 2 independent distances x˛ˇ
that define the positions of the particles up to a nonessential roto-translation
(the total energy U must be invariant under roto-translation of the particle
system). From Eq. [108] we obtain:

〈
Thk

〉 = − 1
V

〈
N∑
˛=1

m˛v
th
˛,kv

th
˛,h

〉
− 1
V

〈
�hk

〉
[123]
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where

�hk =
N∑
˛=1

x˛,kF
int
˛,h = −

N∑
˛=1

x˛,k
∂U

∂x˛,h

= −
N∑
˛=1

x˛,k
1
2

N∑
ı=1

N∑
�=1

∂U

∂xı�

∂xı�

∂x˛,h
[124]

where ∂U/∂x�� is zero by definition (U does not depend on x�� because x�� = 0
for any atom �). We simply obtain the following:

∂xı�

∂x˛,h
= ∂|�x� − �xı|

∂x˛,h
=
(
ıı˛ − ı�˛

) (
xı,h − x�,h

)
xı�

[125]

We also define x˛ˇ,s = �x˛ˇ × �es and therefore:

�hk =
N∑
˛=1

x˛,k
1
2

N∑
ı=1

N∑
�=1

∂U

∂xı�

(
ıı˛ − ı�˛

)
xı�,h

xı�
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2

∂U
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∂U
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x˛�

= −
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2

1
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∂U
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By substituting Eq. [126] in Eq. [123], we get the following:

〈
Thk

〉 = − 1
V

〈
N∑
˛=1

m˛v
th
˛,kv

th
˛,h

〉
+ 1
V

〈
N∑
˛=1

N∑
ˇ=1

x˛ˇ,hx˛ˇ,k

2
1
x˛ˇ

∂U

∂x˛ˇ

〉
[127]

or, equivalently, in tensor form:

〈
T̂
〉

= − 1
V

〈
N∑
˛=1

m˛�v th˛ ⊗ �v th˛
〉

+ 1
2V

〈
N∑
˛=1

N∑
ˇ /= ˛

�x˛ˇ ⊗ �x˛ˇ 1
x˛ˇ

∂U

∂x˛ˇ

〉
[128]
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Note that when the total energyU represents a system of two-body interactions,
Eq. [128] reduces to Eq. [122], as expected. Once again, Eq. [128] is useful
because it depends only on physical quantities available during any standard
simulation.

LINEAR ELASTIC FRACTURE MECHANICS

Conceptual Layout

We now discuss the fundamental principles of fracture mechanics within
the elasticity theory framework presented in “Essential Continuum Elasticity
Theory”. The resulting theory has been named linear elastic fracture mechanics
(LEFM). This implies that we will study fracture in linear elastic (brittle) solids.
We remark that, although LEFM is an important task for many applications, it
nevertheless has severe limitations because many real materials are ductile (i.e.,
they are not perfectly elastic and they undergo significant plastic deformation
under large applied strains). The investigation of the fracture in a plastic or
ductile material is called elastic-plastic fracture mechanics; it falls beyond the
scope of the present review.

To better define the limits of validity for the theory to be developed here,
we report in Figure 7 the paradigmatic stress–strain curves for brittle and plas-
tic materials, showing how some mechanical properties of a material can be
determined. Experiments measure the displacement caused by an applied load,
and these two quantities then are converted into strain and stress, respectively,
via simple relations. Brittle materials (like ceramics) fail at a given value of
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Figure 7 Schematic stress–strain curves for a brittle material (left) and a plastic material
(right).
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stress called the failure (ultimate) strength. Before failure, they follow a perfect
linear constitutive relation defined by the elastic moduli. Plastic materials (such
as metals) are described by a linear stress–strain relation for small deformations
and start to deform (in the plastic regime, i.e., permanently) at the yield point
before eventually failing at higher values of stress (failure strength).

These behaviors are valid for perfect homogeneous bodies, and therefore,
the theoretical failure strength �f is a quantity that depends only on intrinsic ma-
terial properties and not on possible defects of its microstructure. To introduce
the main principles of fracture mechanics, we must admit (it has been verified
experimentally) that any real material is not a perfectly homogeneous elastic
body. Therefore, we suppose that it is a complex microstructured object; for
example, it can contain possible inhomogeneities (small regions with different
elastic properties) or cracks (void cuts). The existence of such a microstructure
modifies the elastic or mechanical response of the overall body. We will prove
that the flaws lower the failure strength by magnifying the local stress.

Stress Concentration

The first quantitative evidence for the stress concentration effect of flaws
was provided by Inglis in 191375 by considering elliptical holes in flat plates
(a plate is a specimen in which the thickness is much smaller than the other
two dimensions), as in Figure 8. From the methodological point of view, this
problem can be solved by using the complex variable method.75,76 The detailed
solution also can be found in Refs. 77, 78. In particular, let us suppose that a
plate containing a crack of length 2L (major axis) and thickness 2B (minor
axis) is subjected to a remote uniaxial load � along the y direction, as shown
in Figure 8. Then, it is found that the actual stress occurring at the crack tips is
as follows:

T
tip
yy = �

(
1 + 2L

B

)
= �

(
1 + 2

√
L

�

)
[129]

Figure 8 Elliptic hole in a flat (i.e., two-dimensional) plate under applied stress per-
pendicular to its major axis.
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where � = B2/L is the radius of curvature at the crack tips. The stress enhance-
ment, therefore, depends on the aspect ratio of the elliptic hole. We note thatTyy
is the stress component that opens the crack (therefore, it is mainly responsible
for failure). Moreover, the stress at the hole boundary where it is intersected
by the minor axis is Txx = −�, independent of the aspect ratio. When L = B,
the stress T tip

yy reduces to the solution for a circular hole, for which the stress
concentration factor is as large as 3. Interestingly, Eq. [129] predicts an infinite
enhancement of the stress at the tips of the crack with vanishingly small thick-
ness (slit crack). We remark that this nonphysical result is only because of the
here adopted continuum hypothesis, whereas it is not relevant for the atomic
architectures forming real materials. It is easy to figure out that, in atomic lat-
tices, the minimum radius of curvature of a crack is approximately of the order
of the interatomic distance. Nevertheless, in real materials the stress at the crack
tips can assume very large values, as compared with the loads.

The conceptual importance of the Inglis result can be summed up as fol-
lows: in a real material, the failure can occur for an applied stress that is much
lower than the theoretical failure stress �f because the crack works as a stress
concentrator. Therefore, it is possible that an applied stress � < �f could be
amplified locally and exceed the theoretical failure stress �f , thereby generating
the crack propagation (failure of the system). As mentioned, a material that
contains a slit crack theoretically should fail on the application of an infinites-
imally small load. This paradox has motivated other researchers to develop a
fracture theory based on a detailed energy balance rather than on local stress.

The Griffith Energy Criterion

The energy balance criterion developed by Griffith12 relies on the elemen-
tary observation that the system must release energy upon cracking. In other
words, a crack only can propagate under loading if there is a net decrease in
the total energy. We consider the system shown in Figure 9 where a slit crack
with half-length L can grow (L → L+ dL) under the effect of the applied load
�. This occurs only if the variation of the total energy dEt for a length variation
dL is negative:

dEt
dL

≤ 0 [130]

The growth process of the crack generates the formation of a new internal
surface dA for any length variation dL of the crack itself. We now observe that
the total energy Et of the system with a crack subject to traction can be written
as the sum of two contributions, namely: a surface energy term Es and an elastic
energy term Wi (elastic energy of the body under load):

Et = Es +Wi [131]
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Figure 9 A slit crack with half-length L undergoes a growth of length 2dL under the
applied stress �.

The first contribution describes the work needed to create a new surface, and
the second one takes into account the variation of elastic energy in the sys-
tem resulting from the crack growth. From Eqs. [130] and [131] we get the
following:

−dWi

dL
≥ dEs

dL
[132]

The above energy balance can be developed further only if we can calculate
explicitely Wi and Es.

The surface energy Es is given by:

Es = 4LH�s [133]

where H is the thickness of the plate under consideration and �s is the surface
energy, considered here as a characteristic parameter of the material measuring
the work needed to break the chemical bonds along the surface of the crack.
It is important to remark that, in principle, the determination of �s is a typical
materials physics problem. However, within LEFM, it is customary to identify
�s with the ideal surface cleavage energy. This choice will be adopted here, but
it will be readdressed critically in the next section.

By considering a linear elastic material with Young modulusE and Poisson
ratio 
, Griffith used the stress analysis of Inglis to prove that:75

Wi = −HL
2�2

E′ [134]

where E′ is the effective Young modulus defined as follows:

E′ =
{
E in plane stress conditions
E

1−
2 in plane strain conditions [135]
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By substituting Eqs. [133] and [134] in Eq. [132], we obtain the physical
condition under which the slit crack (with initial half-length 2L) can propagate
within a brittle material under applied load �:

� ≥
√

2�sE′

L
[136]

The result given in Eq. [136] allows us to state that for a slit crack, a thresh-
old value exists for the applied load generating the growth of the crack and,

therefore, the failure of the system. When � =
√

2�sE′
L , we are in a situation of

unstable equilibrium.

Opening Modes and Stress Intensity Factors

The geometric configuration described for introducing the Inglis stress
enhancement (see Figure 8) and the Griffith stability criterion (see Figure 9) is,
within the framework of LEFM, named the in-plane opening mode or Mode I
(a tensile stress normal to the plane of the crack). There are at least two other
important geometric configurations to be considered, namely: a crack can be
stimulated by means of the in-plane shearing mode or Mode II (a shear stress
acting parallel to the plane containing the crack and perpendicular to the crack
front) or through the anti-plane shearing opening or Mode III (a shear stress
acting parallel to the plane containing the crack and parallel to the crack front).
The three opening modes are shown in Figure 10, where the corresponding
loading is indicated as well.

All atomistic investigations on fracture-related phenomena described in
the next section are performed in the Mode I configuration. It is therefore useful
to thoroughly characterize the behavior of the stress field T̂ (I) near a crack
tip in the Mode I configuration. To this aim, we introduce a system of polar
coordinates (r, �) centered at the tip of the slit crack, as shown in Figure 11. In

Figure 10 Typical modes of opening for a crack: Mode I is the in-plane opening mode,
Mode II is the in-plane shearing mode, and Mode III is the anti-plane shearing opening.
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Figure 11 Components Txx, Tyy, and Txy = Tyx of the stress tensor at the point P near
the crack tip. The polar coordinates (r, �) are centered at the crack tip itself.

particular, we want to determine the components Txx, Tyy, and Txy = Tyx of
the stress tensor near the crack tip.

It has been proved11,77 that the stress components contain a leading term
proportional to 1/

√
r. As r → 0, the leading term approaches infinity, account-

ing for the stress singularity and intensification. It also can be shown that the
displacement near the crack tip varies with

√
r. The asymptotic form of stress

near the crack tip is given by the following relation:

lim
r→0

T
(I)
ij = KI√

2r
f

(I)
ij (�) [137]

where i, j = x, y. The function f (I)
ij (�) represents a geometric dimensionless func-

tion of the angle �,11,77 and the quantity KI is called the stress intensity factor
in Mode I.

The most important component of the stress tensor is Tyy, (i.e., the stress
along the applied load). It is possible to prove that the behavior of such a
quantity, as a function of the variable x, is given by:11,77,79

Tyy(x,0) = |x|�√
x2 − L2

[138]

as shown in Figure 12. This result is valid for both plane strain and plane stress
border conditions. For any value of �, the stress component Tyy is singular
at the crack tips (i.e., for x → ±L), as one can observe both in Eq. [138]
and in Figure 12. Moreover, when we are far away from the crack (i.e.,
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Figure 12 Behavior of the Tyy component of the stress field as a function of the variable
x. The asymptotic value � corresponds to the remotely applied load.

for x → ±∞) the stress Tyy approaches the value � of the remotely applied
load. Eq. [138] allows us to identify the stress intensity factor in Mode I as
follows:

KI = lim
x→L

Tyy(x,0)
√

2(x− L) = �
√
L [139]

This explicit expression shows that the intensity factor KI is independent of
the elastic moduli of the cracked material, and, therefore it represents a very
general concept.

An additionally important quantity in fracture mechanics is introduced

by calculating Eq. [139] at the Griffith critical value � =
√

2�sE′
L for the applied

stress. We simply obtain the following:

KI,c =
√

2E′�s [140]

which is called fracture toughness. Its value depends only on material param-
eters and its meaning is the following: failure or fracture growth only occurs
when KI > KI,c. The stress intensity factor and the fracture toughness can be
expressed in units of Pa (m)1/2.

Some Three-Dimensional Configurations

In the previous sections, we have discussed the properties of a crack under
the assumption of plane stress or plane strain. Therefore, we have discussed the



54 Brittle Fracture: From Elasticity Theory to Atomistic Simulations

results only taking into account two-dimensional geometries. In this section,
we describe some results concerning the behavior of the elastic fields around a
crack in two three-dimensional configurations: the slit and the circular (penny-
shaped) crack. These canonical problems contain almost all features related to
the stress and strain fields of interest in linear elastic fracture mechanics.77

We start with the slit crack (see Figure 13] in a three-dimensional envi-
ronment under the applied stress T22 = �, where � represents the tensile stress
applied in Mode I along the x2 direction, as represented in Figure 13 on the
right. The corresponding displacement field recently has been calculated80 by
means of a methodology based on the Eshelby theory,29,81,82 not discussed here.
We get the following:

u1 = −�x1 (1 + 
)
E

[
1 − 2
2

1 + 

− ˇ

˛

√
�

L2 + �

]
[141]

u2 = �x2 (1 + 
)
E

⎡
⎣
 (1 + 2
)

1 + 

+ ˇ

˛

√
L2 + �

�

⎤
⎦ [142]

u3 = −�
x3

E
[143]

Recall that the slit-crack is aligned along the x3 axis, and the two surfaces
of the crack lie on the plane (x1, x3); it follows that the component u3 is not
affected by the presence of the slit crack. The parameters ˛, ˇ, and � are listed as

Figure 13 Left panel: geometry of a slit crack lying in the (x1, x3) plane. Right panel:
elastic medium (with Young modulus E and Poisson ration 
) containing a slit crack
(with length 2L) under uniaxial stress � (along x2).
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follows:

˛ = x2
1�

2 + x2
2(L2 + �)2

ˇ = (1 − 2
)
(
x2

1 + x2
2

)
�2 + 2 (1 − 
)x2

2L
4 + (3 − 4
)x2

2L
2� [144]

� = 1
2

(
x2

1 + x2
2 − L2

)
+ 1

2

√(
x2

1 + x2
2 + L2

)2 − 4L2x2
1

Eqs. [141], [142] and [143] are important because they describe in a very com-
pact form the displacement field in the whole space, and they contain, as par-
ticular cases, all standard LEFM results, including those described previously.

Eqs. [141], [142] and [143] can be used in several ways to analyze the
behavior of a crack. For example, it is easy to calculate the strain or the stress
tensor just in some regions of interest by using the constitutive relation of the
matrix. Here, we do not report the expressions for strain and stress because they
are very complicated and do not add any conceptual content to the present dis-
cussion. Rather, we focus on the T22 component of the stress, which is reported
in Figure 14. It is interesting to note the two singularities appearing at the crack
tips, showing the typical intensification of the stress. When x2 = 0, we obtain
the well-known result T22 = |x1|�√

x2
1−L2

if x2 → 0, |x1| > L, as described in a

previous section. This result is important because it naturally drives to the con-
cept of stress intensity factor (previously introduced in Eq. [139]) by obtaining
KI = �

√
L.

We now can consider the circular or penny-shaped crack shown in
Figure 15. In this case, we assume that the external forces are characterized by a

Figure 14 Tensile stress field T22 along x2 in a slit crack. We have assumed the values:
E = 1, � = 1, 
 = 0.33, and L = 0.5 in arbitrary units. The region under consideration
is described by −3 < x1 < 3 and 0 < x2 < 3. The results are represented for plane stress
conditions. The intensity of T22 in arbitrary units is given in the vertical direction.



56 Brittle Fracture: From Elasticity Theory to Atomistic Simulations

Figure 15 Left panel: geometry of a circular crack lying in the (x1, x2) plane. Right
panel: elastic medium (with Young modulus E and Poisson ratio 
) containing a circular
crack (with radius R) under uniaxial stress � (along x3).

tensile stress T33 = �. To describe the resulting three-dimensional displacement
field, it is useful to introduce a system of polar cylindrical coordinates (�, �, x3),
where x1 = � cos(�) and x2 = � sin(�). For the symmetry of our system, the final
results will not depend on the angle �. The explicit result describing the total
displacement u� and u3 is given as follows:

u� = −�� (1 + 
)
2E

[
(1 − 2
)

(
(1 + 2
) (1 − 
)
(1 − 2
) (1 + 
)

[145]

− 2


arctan
√
�

R

)
− 2


ˇ

˛

R
√
�

R2 + �

]

u3 = �x3 (1 + 
)
E

[
(1 − 2
)

(

 (1 + 2
)

(1 + 
) (1 − 2
)
[146]

+ 2


arctan
√
�

R

)
+ 2


ˇ − x3
2R2(R2 + �)
˛

R√
�

]

where the variable u� represents the radial displacement and u2
� = u2

1 + u2
2 is

the radius � =
√
x2

1 + x2
2. We also have introduced the axial displacement u3

and the following definitions:

˛ = �2�2 + x2
3(R2 + �)2



Linear Elastic Fracture Mechanics 57

ˇ = (1 − 2
) (x2
3 + �2)�2 + 4 (1 − 
) �x2

3R
2 + (3 − 2
)x2

3R
4 [147]

� = 1
2

(
x2

3 + �2 − R2
)

+ 1
2

√(
x2

3 + �2 + R2
)2 − 4R2�2

The stress T33 along the direction of the Mode I loading is reported in
Figure 16. It interesting to observe that for � = R, x3 = 0 (i.e., on the circumfer-
ence of the crack), we have a singularity describing the stress intensification on
the circular crack front. The quantity T33 can be specialized on the plane of the
circular crack x3 = 0 and for external radius � > R, obtaining the following:

T33(�) = 2�


[
R√

�2 − R2
+ arctan

√
�2 − R2

R

]
[148]

This relation represents the analog of the slit-crack formula (see Eq. [138]), for
a circular crack. Similarly, we can evaluate the stress intensity factor. For the
circular crack, the distance from the border of the crack is given by � − R, and
the stress intensity factor is calculated as follows:

KI = lim
� → R, x3 → 0

√
2(� − R)T33 = 2

√
R√

� [149]

Figure 16 Tensile stress field T33 along x3 in a circular crack. We have assumed the
values: E = 1, � = 1, 
 = 0.33, and R = 1 in arbitrary units. The region under consider-
ation is described by −3 < x3 < 3 and 0 < � < 3. The results are represented for plane
stress conditions. The intensity of T33 in arbitrary units is given in the vertical direction.



58 Brittle Fracture: From Elasticity Theory to Atomistic Simulations

To conclude, we point out that the stress intensity factor depends on the geom-
etry of the system under consideration.

Elastic Behavior of Multi Fractured Solids

We described the stability and the stress behavior of a single crack in
a given brittle material in the previous section. Here, we discuss the effects
of a given population of cracks on the mechanical or elastic behavior of an
elastic body (degradation). Although linear elastic fracture mechanics, as
stated above, provide the basic understanding of the failure instability for a
single crack, the overall mechanical behavior of a multicracked body actually
depends on the positional and orientational distribution of an assembly
of cracks. When considering the overall behavior of materials,83,84 a key
conceptual issue involves the effective elastic properties that determine the
mechanical performance of the system containing a given distribution of
cracks.85,86

We consider a region of the plane z − y having area A and containing N
slit-cracks having half-length a and uniform angular distribution on the plane
(see Figure 17). We can define the characteristic quantity ˛ = a2

A N; it is di-
mensionless, and it effectively represents the crack density over the area A. To
define the effective stiffness tensor of the microcracked system, it is important
to compute the average values of the strain tensor 〈�̂〉 and of the stress tensor
〈T̂〉 throughout the whole region of interest (i.e., area A). Therefore, we de-
fine the effective stiffness tensor Ĉeff of the cracked body through the relation

〈T̂〉 = Ĉeff〈�̂〉.
We review the results under the conditions of plane stress or plane strain.

The material will be described by the effective moduli Eeff and 
eff . Under the
hypothesis of low crack density, we obtain the effective elastic moduli in the
plane stress case and their first order expansions in the density parameter ˛,

Figure 17 Structure of a multicracked solid with randomly oriented slit-cracks aligned
along the x-axis.
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which are expressed as follows:

Eeff = E

1 + ˛
(
1 − 
2

) ∼= E[1 − ˛(1 − 
2)]


eff = 


1 + ˛
(
1 − 
2

) ∼= 
[1 − ˛(1 − 
2)] [150]

We observe that Eq. [150] holds true only for low values of the crack
densityN/A that appear in the parameter ˛. We describe the differential method
to extend the applicability of the theory to higher values of the crack density.
Let us suppose that the effective moduli of a microcracked medium are known
to be Eeff and 
eff . Now, if a small additional number of cracks �N is created
in the matrix, the change in the elastic moduli is approximated to be that which
develop if the same infinitesimal number of cracks were added to a uniform,
homogeneous matrix with moduli Eeff and 
eff . This leads, when applied to
Eq. [150], to the following final results for isotropic two-dimensional elasticity
in plane stress conditions:

Eeff = E√

2 + (

1 − 
2
)
e2˛


eff = 
√

2 + (

1 − 
2
)
e2˛

[151]

Moreover, again under the hypothesis of low crack density, we obtain the
equivalent elastic moduli under the plane strain condition and their first-order
expansions in the parameter ˛ as follows:

Eeff = E
[1 + 
 + ˛ (1 − 
)]

[1 + ˛ (1 − 
)]2 (1 + 
)
∼= E

[
1 − ˛

(1 − 
) (1 + 2
)
1 + 


]


eff = 


1 + ˛ (1 − 
)
∼= 
 [1 − ˛ (1 − 
)] [152]

As before, knowing the first-order expansions is useful for applying the differ-
ential method, which leads to the following solutions:

Eeff = E
2
 + (1 − 
) e˛

[
 + (1 − 
) e˛] r (1 + 
)


eff = 



 + (1 − 
) e˛
[153]
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Figure 18 Effective Young modulus and Poisson ratio for a multicracked solid under
plane stress and plane strain conditions. The plots have been derived for two different
homogeneous matrices having 
 = 0.35 and 
 = −0.7.

It is important to observe that the solutions given by Eq. [151] for plane stress
and by Eq. [153] for plane strain depend, exponentially, on the crack density;
in particular, the effective Young modulus of a multicracked solid decreases
exponentially with increasing density of cracks.

In Figure 18, these results have been represented versus the parameter ˛. A
comparison between the plane stress and the plane strain cases has been drawn
both for the positive and negative Poisson ratio. An interesting and unexpected
behavior in a multicracked solid has been found under plane strain condition
when its Poisson ratio is negative. As a matter of fact, when ˛ is small enough
and −1 < 
 < −1/2, we obtain an effective Young modulus greater than the
Young modulus of the original elastic matrix. This effect is shown in Figure 18
where a value 
 = −0.7 is assumed. This effect is not present under plane stress
conditions. The unusual behavior observed in plane strain conditions can be
attributed to the specific meaning of the Young modulus in such a case; the
elastically loaded plain strain system has fewer degrees of freedom than the
system in plane stress because of the peculiar boundary conditions needed to
avoid the appearance of out-of-plane strain in the solid.

Atomistic View of Fracture

The first molecular simulation of fracture dynamics probably was carried
out by Weiner and Pear.87 They used a square lattice of atoms, inserted a crack in
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its middle, and solved the equation of motion for the atoms. They also assumed
that if the distance between two atoms becomes too large then those atoms
can be considered as being disconnected. Simulations were performed both at
zero and nonzero temperatures. Weiner and Pear found that, except at very
high applied stresses, the velocity of the crack reaches a steady subsonic and
stress-dependent value, which is in agreement with the prediction of continuum
fracture mechanics.

Another molecular-like simulation of fracture was carried out by Ashurst
and Hoover.88 They used a triangular lattice in which the atoms interacted
with each other by a truncated Hooke-like force. The most important finding
of this study was that the velocity of the crack never reaches the Rayleigh
wave speed, consistent with the difficulties that linear continuum mechanics
of fracture dynamics previously had for explaining the experimental data of
fracture propagation speed.

Thomson, Hsieh, and Rana89 presented evidence for lattice trapping, a
phenomenon in which a crack neither propagates nor heals; rather, it remains
stable until external loads somewhat larger than the Griffith threshold are im-
posed on the system. The magnitude of the trapping range depends strongly on
the characteristics of atomic bonding of materials. Lattice trapping also may
depend on the direction in which the crack tip bonds are broken and, therefore,
may be different for fracture propagation along different crystallographic direc-
tions. This model consists of a quasi-one-dimensional chain model comprised
of two semi-infinite chains of point atoms bonded longitudinally by linear elas-
tic elements and transversely ahead of the crack tip by stretchable elements
(n = 1,2 . . .). An opening load � is applied to the system. When a transversal
bond is stretched beyond the cut-off displacement un = ı, it is considered to be
broken. The mathematical solution of this model allows us to define a crack tip
force function Fn: for Fn > 0, the bond opens, and for Fn < 0, it closes. This
force takes into account the interaction between the lattice and the applied load.
The function Fn(un) (force-separation function) is represented in Figure 19. The
load �+ is the force needed to obtain un = ı (crack extension), and the load �−
corresponds to un−1 = ı (crack healing).

The function Fn(un) has three equilibrium or stationary points I, II, and III
where Fn(un) = 0. The points I and III are stable; at I the bond remains intact,
and at III the bond is broken. The state II is unstable; within the load range
�− < � < �+, the crack is mechanically trapped by the lattice. In this condition,
it cannot move either forward or backward under the action of the load alone.
This phenomenon persists also for cracks at macroscopic dimensions.

The first truly molecular dynamics (MD) simulations90 of crack propaga-
tion were carried out by Paskin, Som, and Dienes.91,92 We call their computa-
tions true MD simulations because, unlike Ashurst and Hoover,88 they used the
LJ potential for representing the interactions between the atoms in a triangular
lattice. In their simulations, a crack was inserted into the middle of the lat-
tice to initiate fracture propagation. An external force then was applied to the
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Figure 19 Graphical representation of the crack tip force function (lattice bond rupture
force) Fn versus cut-off displacement un for different loads �−, �, and �+. The equilibrium
points I and III are stable, whereas point II is unstable.

lattice, and Newton’s equations of motion were solved to calculate the atomic
positions, velocities, and forces. The cut-off for the LJ potential was assumed
to be slightly smaller than two lattice bonds at equilibrium. This investigation
showed that the Griffith energy criterion is incorrect for large cracks. The MD
simulations also indicated that lattice trapping is a negligible effect, which was
attributed to the long range of the interaction potentials. However, in general,
one should expect lattice trappings to disappear at temperatures larger than
room temperature, and therefore, to observe this phenomenon, experiments
and MD simulations must be carried out at very low temperatures. The neces-
sity of a low temperature explains why no lattice trapping has yet been observed
experimentally in either crystalline or amorphous materials.

In addition to the work by Paskin, Som, and Dienes, interesting MD
computations were carried out by Soules and Busbey93 to study the fracture of
sodium silicate fiber glass. Instead of using interatomic forces that result from LJ
potentials, these authors used a modified semi-empirical equation. Simulations
done by Soules and Busbey93 indicated that the glass breaks when it is suddenly
subjected to a large biaxial expansion. Moreover, when the temperature of the
system is raised by about one order of magnitude, the strength of the material
decreases by a factor of about two, a result that was claimed to be in agreement
with experimental data.

To our knowledge, Ray and Chakrabarti94,95 and Chakrabarti,
Chowdhurry, and Stauffer96 were the first to carry out MD simulations of
fracture involving a model of materials with quenched disorder. A percolation-
type disorder was used (i.e., the heterogeneity was generated by breaking some
of the bonds between the atoms randomly before the simulations commenced).
A LJ potential was used, for which the cut-off distance was set to 1.6 times
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the bond length. During deformation of the lattice, a bond was considered to
be broken if the distance between its end atoms was larger than the cut-off
distance. Chakrabarti and coworkers found that the stress needed for fracture
vanishes, and the time to complete fracture diverges both at the bond percola-
tion threshold of the lattice.

Cheung and Yip,97 employing the embedded-atom potential, studied the
response of a crystal containing a sharp fracture to varying stress and temper-
ature. Over a limited range of temperature, a transition from brittle to ductile
fracture was observed, caused by dislocation emission from the tip of the frac-
ture. This result indicated the existence of an energy barrier for nucleation of
the dislocation.

Model potential MD has been used extensively to study various crack-
related phenomena, including the brittle-to-ductile transition42 and the dy-
namic brittle fracture.43 Furthermore, fracture mechanics was studied in perfect
crystals,98 as well as in nanostructured systems like, for example, nanocrys-
talline nickel.99 Finally, although a quantitative agreement between atomistics
and the continuum was discussed in Ref. 98 as for the Griffith criterion, multi-
million atom MD simulations clarified several complementary aspects of crack
propagation in brittle materials.100

Despite the successful applications of model potential MD, the deficien-
cies of the available empirical force fields (see “Interatomic Potentials for Solid
Mechanics”) stimulated the search for improved models based on a better de-
scription of the chemical bonding (possibly at a quantum mechanical level).
Two paths have been explored in particular. The first was to study the whole
atomistic system by the same quantum mechanical interaction scheme using ab
initio101–103 or tight-binding104 methods. However, because of their high com-
putational workload, ab initio methods were focussed successfully just on a spe-
cific issues like, for example, the calculation of the surface energy101 appearing
in Eq. [136] or the characterization of the quasi-static crack opening.105

A second pathway to go beyond the limits of model potentials is to use a
multiscale approach.106,107 The idea is that the different length scales, involved
in the fracture phenomena, are described by using different methods.106 In
this theoretical framework, the classic force model is used far from the crack
tip, whereas the chemical bonding nearby the crack tip is described by semi-
empirical tight binding58 or by ab initio density functional calculations.108

Alternatively, the model potential is modified locally through a learn-on-the-fly
procedure.109 More recently, a multiparadigm approach has been proposed110

in which a reactive force field is applied at the crack tip. Such a method has
been applied to the case of silicon as well as to biological materials such as
proteins.111 The multiscale approach is probably the most promising method
to achieve an accurate modeling of fracture at the atomic scale. A detailed
discussion about the historic development of molecular dynamics simulations
of fracture propagation and the comparison with continuum theories can be
found in Refs. 112, 113.
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ATOMISTIC INVESTIGATIONS ON BRITTLE
FRACTURE

Conceptual Layout

We focus on cubic silicon carbide (ˇ-SiC) because it is the prototype of an
ideally brittle material up to extreme values of strain, strain rate, and tempera-
ture as well as because of its technologic relevance as a structural and nuclear
material. All examples discussed in this section will refer to SiC for the sake of
consistency; in this way, it will be possible to work out a complete and thorough
picture about the many aspects of brittle fracture on a common basis. More
specifically, all results presented in the following sections have been obtained
with the same interaction potential, simulation protocol, and computational
device. So, these results can provide an illuminating perspective about the role
of atomistic simulations in this field.

We will make extensive use of the continuum concepts developed in
the “Essential Continuum Elasticity Theory” and in “Linear Elastic Fracture
Mechanics” sections and whereas the atomistic analysis of the stress-related
quantity is based on the virial formulation presented in “Linear Elastic Frac-
ture Mechanics”. In any case, atomic forces were calculated according to the
Tersoff model. Such an empirical interatomic potential already has been applied
extensively to the study of mechanic properties in ˇ-SiC and it can describe the
experimentally observed brittle behavior of cubic ˇ-SiC.57,114 Furthermore, this
force field nicely fits the requirements specifically described in the “Interatomic
Potentials for Solid Mechanics” section.

Griffith Criterion for Failure

Continuum Versus Atomistics
The Griffith criterion for a bulk specimen given in Eq. [136] is readdressed
here by simulating mode-I loading on the sample represented in Figure 20.115

The crack arrangement is selected as illustrated because the lowest unrelaxed
surface energy of ˇ-SiC is found on the (111) shuffle plane,114 and therefore, the
(111)-plane cracks are the most likely to form under experimental conditions.
The simulation cell has the x, y, and z cartesian axes parallel to the [112̄],
[1̄10], and [111] crystallographic directions, respectively. Therefore, the crack
front lies parallel to the112 direction. In other words, the crack arrangement is
(111).112

The typical macroscopic conditions of a quasi-static (or adiabatic) crack
loading process at T = 0 K are reproduced by applying external surface forces
to the nonperiodic borders of the simulation cell. This is performed by using
the constant traction method by Cleri.116 Atomic positions were relaxed, at
any applied load condition, by constantly damping velocities to zero, until the
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Figure 20 Geometry and orientation of the simulation cell. In the present simulations,
22 nm < L < 88 nm. The shaded area represents the crack position.

maximum force was less than 0.0001 eV/Å. We took special care to avoid
finite-size effects, by setting the size of the simulation cell so as to achieve a
ratio of L/c > 10 (see Figure 20). The resulting number of atoms contained in
our simulation cell ranged from 3 × 104 to 2.5 × 105.

The loading procedure involved four steps: (1) the three-dimensional peri-
odic simulation box initially was deformed along the z direction, corresponding
to a given strain value � = �[111]ızz while keeping �xx = 0 and �yy = 0 (we re-
mark that this configuration corresponds to a plane-strain border condition,
as discussed in the “Governing Equations of Elasticity and Border Conditions”
section); (2) periodicity then was removed along z and surface tractions were
calculated to preserve the state of deformation; (3) a microcrack of given length
was introduced by cutting the interatomic bonds across a segment of a central
(111) plane (or, equivalently, by setting to zero the pair interactions across that
plane); (4) the actual minimum-energy atomistic configuration was obtained by
damped-dynamics. After crack opening, interatomic forces are fully restored,
and the microcrack reaches its equilibrium shape after stress relaxation.

A series of atomistic simulations was performed with microcracks
of length 2c0 < 2c < 50c0, where c0 = 2.644 Å is the interbond distance
along the112 direction (see Figure 20). According to Eq. [136], the critical
load increases with decreasing microcrack length. This implies that, for the
Griffith theory to be valid, the limits of applicability of linear elasticity must be
respected. Such a requirement defines implicitly the minimum length at which
a finite-size microcrack still can be considered a “Griffith crack” this length
corresponds to c = 2c0 in our investigation.
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Figure 21 Critical strain, �f , as a function of the crack size, 2c, in units of the [112̄]
interbond distance c0. Symbols are the data from atomistic simulations; the continuous
line is Griffith’s theory with constant material parameters, and the dashed line is the
modified Griffith’s theory, see text. The horizontal error bars in the figure are a result
of the lattice spacing orthogonal to the crack front, whereas the vertical error bars are
a result of the steps chosen to vary the strain, �� = 0.001.

We report the values of the calculated critical strain �f of SiC as a func-
tion of microcrack length and the corresponding prediction of the continuum
Griffith theory in Figure 21. The Young modulus and the Poisson ratio values
are provided in both cases by the Tersoff potential. Consistent with the expected
brittle behavior, we found that the microcrack extends in a perfectly brittle way
at loads above the critical strain (i.e., by preserving atomically smooth (111)
cleavage surfaces). On the other hand, no rehealing of the microcrack edges
ever was observed in our simulations at subcritical values of the load (i.e., the
microcrack does not revert back to the perfect crystal). This latter observation
is a result of the relaxation of the free surface created by the microcrack, which
entails both a slight energy decrease and a variation of the optimum bond angles
from the perfect tetrahedral arrangement.

Although the overall agreement between continuum and atomistic models
shown in Figure 21 is remarkable, it is interesting to note that for microcracks
longer than ∼10c0, the calculated critical strain is systematically higher than
the Griffith theory prediction. To explain this result, it must be understood that
the basic assumptions of the linear elastic fracture mechanics model underlying
the Griffith data are not truly fulfilled by atomistic simulations, which indeed are
based on an anharmonic force model. Two corrections to the standard Griffith
model for SiC crack resistance, in fact, can be applied. These are: (1) the surface
energy � entering in Eq. [136] depends on the state of strain; (2) the stress–strain
curve is not strictly linear across the range of explored loads (which amounts
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to stating that the Young modulus is not constant). As for (1), it is easy to
understand that the strain dependence of the surface energy can be computed
straightforwardly by an atomistic model; simply, the surface energy must be
computed for several ideal (i.e., noncracked) deformed samples, corresponding
to each value of strain investigated in the Griffith problem. Similarly, the strain
dependence of the Young modulus can be introduced straightforwardly into
the continuum curve (interesting enough, this dependence is nonlinear for the
range of investigated strains and crack lengths). The result of such a modified
Griffith theory is reported in Figure 21 as a dashed line. The agreement between
atomistic data and the modified Griffith theory is now much better, within the
reported error bars. This demonstrates that identifying the crack resistance
with the unstrained cleavage energy provides only a lower bound to the energy
release rate (see “The Griffith Energy Criterion”).

Improving the Griffith Model
The previous conclusion is intriguing; according to standard Griffith’s theory,
the surface energy—hereafter indicated as � and representing the intrinsic crack
resistance—does not depend on the crack length. Instead, it is a material con-
stant. On the other hand, the corresponding atomistic quantity—hereafter indi-
cated as �s—is actually affected by both loading (i.e., applied strain) and crack
dimension. In Figure 22 we represent this concept by reporting the Griffith data
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Figure 22 Crack resistance �s as a function of the microcrack length 2c. Symbols are
atomistic simulation data; the horizontal continuous line is the original Griffith theory;
the long-dashed line is the modified Griffith theory, with strain-dependent surface energy
and Young modulus; the continuous line is the fit to the DBCS elasto-plastic model.
The horizontal short-dashed line at �s/� = 1.25 represents the asymptotic value for the
infinite crack intrinsic resistance estimated from atomistic simulations.



68 Brittle Fracture: From Elasticity Theory to Atomistic Simulations

as a full line and the atomistic simulations by a long-dashed line. Let us, for
the moment, focus on long cracks, corresponding to 2c/c0 ≥ 10; although the
modified Griffith theory grossly agrees with the atomistic data, a sizeable dis-
crepancy is still evident, with a 25% departure from the classic Griffith theory
(horizontal full line at �s = �). However, a substantial part of this discrepancy
is a result of the lack of an explicit strain dependence of the material param-
eters. In the modified Griffith theory, these strain dependences are included
and provide a �s = 1.10� as the asymptotic limit, corresponding to the short-
dashed line reported in Figure 22. The remaining discrepancy, therefore, must
be attributed to a new feature, not yet discussed.

For very short microcracks of length of a few c0, the critical stress is
so high that it becomes difficult to discriminate between bond breaking and
incipient plasticity. A description of this regime can be attempted by a fit to
an empirical elasto-plastic law, such as the Dugdale–Bilby–Cottrell–Swinden
model (DBCS).117 In this case, the model fracture stress can be deduced by
inverting the expression for the (unknown) crack tip displacement ı, as:

�Df = 2�M


cos−1
[
exp

(
− �

4(1 − 
)
1
c

)]
[154]

The lumped length parameter � should be equal to � = �ı/�M, with � the
shear elastic modulus, and �M the ideal cohesive strength, in the original DBCS
model. The best fit of the DBCS model to the atomistic data is represented
in Figure 22 by a continuous curve, merging with the atomistically corrected
Griffith theory result at longer crack lengths. It is worth noting that, with the
fitted values of the parameters, �M = 53 GPa and � = 2.3c0, we obtain an
estimate of the crack tip opening ı ∼ 0.7c0. This means that, for an ideally
brittle material, the extent of a “plastic” zone in the incipient microcrack (a
“flaw”) is, indeed, vanishingly small.

Failure in Complex Systems

A given material could be defined as “complex” if either its morphology
or its mechanical behavior is considered. In the first case, we cope with its
nanostructure, which in turn, makes it possible to classify the material itself as
being a composite, fiber-reinforced, or defective material. In this respect, a com-
plex material is a different mechanical object than the homogeneous medium
found in elementary continuum mechanics. In the second case, we look at the
complex response of a material to an arbitrary mechanical load, which could
be elastic versus plastic or, when specifically addressing the failure behavior,
could be brittle versus ductile. The actual response is a result of a complex
hierarchy of phenomena, notably including the occurrence of nanodefects and
their mutual interactions.
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In both scenarios, complexity means the superposition of a rich variety of
phenomena, possibly falling beyond the linear response regime. Among them,
fracture phenomena play a key role in modern nanoscience. The theoretical and
computational investigation of the such phenomena represents the core activity
of present-day nanomechanics. In this section, we review some investigations
on complex SiC-based systems.

Fracture Toughness in Fiber-Reinforced SiC
Ceramic materials are used widely for structural applications because of their
low density, chemical inertness, high strength, high hardness, and stability at
high temperature. Unfortunately, they also have a very low fracture toughness,
a feature severely limiting their use for the most demanding applications.118

Ceramic matrix composites (CMC), consisting of a ceramic matrix reinforced
with inclusions (e.g., particles, whiskers, or fibers), therefore, have been de-
veloped to overcome their intrinsic brittleness. This process is known as fiber
reinforcing.

Within the large class of possible CMC structures, composites made of
a carbon fiber distribution in a SiC matrix are mostly investigated.119 Carbon
is, in fact, the optimal choice for the fiber in terms of stiffness, failure strength,
and density. Also, a SiC matrix avoids compatibility problems with the carbon
fiber, and it increases the oxidation resistance in oxidizing atmospheres.120

Despite a considerable body of theoretical work (and, importantly
enough, because of the unavoidable arbitrary assumptions of continuum mod-
eling), the most fundamental features of fiber toughening in CMCs are still a
matter of debate. In particular, it is not obvious if LEFM results can be extended
(and, if so, to what extent) to the case of nanosized cracks and inclusions, as
found in advanced CMC materials. We address here a key issue (among many
others), namely: the stress intensification at a crack tip facing a nanosized fiber
within a monocrystalline zincblend silicon-carbide matrix.121

The geometry of the simulated system (containing as many as 60,480 par-
ticles) is represented schematically in Figure 23. The crack is elliptically shaped
(left) and aligned along the (111) shuffle plane for the reasons discussed in
“Continuum Versus Atomistics”, whereas the x, y, and z cartesian axes (which
also define the edges of our simulation cell) are parallel to the [112̄], [1̄10], and
[111] crystallographic directions, respectively. A 1 nm large cylindrical fiber,
which is softer (harder) than the matrix, was created by replacing a suitable
number of carbon (silicon) atoms with the same number of silicon (carbon)
atoms (see Figure 23). We remark that, because of the lattice mismatch be-
tween the inclusion (fiber) and the host matrix, a residual stress field results in
the matrix even at T = 0K. The applied strain along the [111] direction was
obtained by surface tractions116 and varied in the 3–8% range. The geometry
of Figure 23 corresponds to the plane strain condition.

For an isolated crack, LEFM predicts that the stress varies along the dis-
tance from the crack tip as �(r) = K0/

√
2r. Notably, for the present plane
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Figure 23 Geometry, orientation, and dimension of the simulation cell. Both the crack
(left) and the cylindrical inclusion (right) are shown as well.

strain and mode-I configuration, K0 coincides with the fracture toughness.122

The results of atomistic simulations show that such a square-root law is still
valid even in the presence of the inclusion once K0 is replaced with a renor-
malized expression K0 +�Ktip. To further develop this issue, we compare the
stress �CI(x) of a crack facing an inclusion with the corresponding value �C(x)
for an isolated crack, and we calculate (at vanishing distance ı from the crack
tip) the ratio as follows:

�Ktip

K0
= lim
ı→0

�CI(xC + ı) − �C(xC + ı)
�C(xC + ı)

[155]

which corresponds to the relative variation of the stress intensity factor. Such a
quantity depends on the relative crack-inclusion distance d and is reported in
Figure 24 for the Si-inclusion/SiC-matrix case (top panel) and C-inclusion/SiC-
matrix case (bottom panel), respectively. For C/SiC, the excess stress concentra-
tion resulting from the hard inclusion is purely tensile, and it effectively lowers
the crack-tip toughness (�Ktip < 0), thus giving rise to an overall mechani-
cal stabilization of the system. This is an important result that illustrates the
atomic-scale origin of fiber toughening.

To fully understand the usefulness of atomistic investigations, it is worth
comparing the present results with conflicting continuum solutions by Li and
Chen123 and by Helsing.124 In Ref. 123, the following expression was derived
for �Ktip close to the crack tip and was induced by an inclusion of known
shape:

�Ktip

K0
= 1


∫
A

r−2
(
C1 cos

�

2
cos

3�
2

+ C2 sin2 � cos �
)
rdrd� [156]
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Figure 24 Stress intensity factor at the crack tip as a function of the crack-inclusion
distance d. Top and bottom panels refer to silicon and carbon inclusion, respectively.
Symbols are atomistic data and the dotted line is their best fit; the dashed line is based
on the theory of Li and Chen;123 the continous line is the best fit based on Helsing
theory.124

where 2A is the area of the inclusion and (r, �) is the polar coordinate for a
point within the inclusion with respect of the crack tip, whereas C1 and C2
are constants depending on the Young modulus and Poisson ratio, respectively.
We can use Eq. [156] to fit the value of R, by keeping the value for the elastic
constants as provided by the Tersoff model. The results are shown in Figure 24
as dashed lines. The agreement is very good for d ≥ 10 nm, although at very
short distances, the atomistic-continuum comparison is less satisfactory. We
remark that the fitted value for R is about twice as large as the actual radius of
the fiber.

By using the Helsing model,124 we derive the following expression:

�Ktip

K0
=
[
q1

(
d − R

a

)(0.5−	)

− 1

]
[157]

where a is the crack semi-length; 	 is a nondimensional parameter depending
only on the elastic constants; q1 approaches a constant as (d − R)/a goes to
zero. Once again, we can fit the atomistic data by using q1, R, and 	 as ad-
justable parameters. As in the case of Li and Chen theory, the best fit provides
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an increased radius, but in this case, the fitted value is just 30% larger than
the actual one. The best values of 	 are 0.61 and 0.38 for silicon and carbon
inclusion, respectively. These numbers are in good agreement with the expected
values 	Si = 0.62 and 	C = 0.40, as obtained from the elastic constants of Si,
C, and SiC corresponding to the Tersoff potential. Overall, we can conclude
that atomistic simulations show a better agreement with the continuum theory
for the Helsing model at small crack-inclusion distances.

In a more general perspective, this investigation shows that the best avail-
able continuum models are not guaranteed to describe the stress intensifica-
tion phenomena properly at arbitrary values of distance between the crack tip
and the inclusion and for different matrix inclusion elastic mismatches. The
atomistic results, instead, provided the following simple law for the effective
variation of the crack toughness:

�Ktip

K0
= c1

(d + c2)2
[158]

where c1 and c2 are constants fitted directly on numeric results. For a Si (C)
inclusion, we get c1 = 5.31 (–0.87) and c2 = 1.85 (0.15) nm, respectively. This
equation is notably valid in both the silicon and carbon case (i.e., for very differ-
ent matrix-inclusion mismatches) and provides a simple yet robust constitutive
equation for stress intensification phenomena at any crack-inclusion distance
in a ceramic composite.

Failure Strength in SiC-Containing Nanovoids
Voids affect the mechanical behavior of brittle solids because they modify the
overall strength of the material. Sometimes such defects are unavoidable be-
cause they form during synthesis; alternatively, voids may be introduced into
the material by design, to obtain specific properties as found, for example, in
porous materials.125

The strength of materials containing voids is described according to stress
intensification or stress concentration arguments, as outlined in “Opening
Modes and Stress Intensity Factors” it is common practice to assume that the
failure takes place when the stress intensity factor K is equal to the material
fracture toughness Kc.77,122 Once again, this criterion relies on the energy bal-
ance of the Griffith theory. In contrast, elasticity theory predicts that the failure
from a void (as in the case of cylindrical or spherical holes) takes place when
the maximum local stress equals the ideal material strength �th. Here, the key
point is that both alternative continuum approaches are unlikely to work at
the nanoscale. Their weaknesses, in principle, could be a result of the failure
of at least one of the three underlying (constitutive) hypotheses upon which
they rely—either continuum mechanics, or elasticity or linearity. It is, there-
fore, useful to address this problem by atomistic simulations in which none of
the constitutive hypotheses is assumed a priori.126
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Figure 25 Geometry of a system containing a cylindrical hole and strained along the
z-direction. A similar geometry is assumed for a straight crack and a spherical hole.

In Figure 25, we represent the geometry of the adopted simulation cell,
consisting in a ˇ-SiC monocrystal under tensile load, embedding either a cylin-
drical or a spherical hole. Our goal is to evaluate the failure strength of the
defected specimen as a function of the defect size and shape. In the x-y plane,
the simulation cell was kept fixed both in size and shape and repeated period-
ically. In this plane, the lattice parameter was 4.318 Å, corresponding to the
equilibrium length for ˇ-SiC. The tensile load �A was applied along the z direc-
tion by means of the constant traction method.116 Throughout the simulation,
the internal degrees of freedom (i.e., atomic positions) were completely free
to relax in all directions. This simulation protocol reproduces the plane strain
border conditions of continuum mechanics.

The cylindrical and the spherical holes were obtained by removing Nh
atoms in a selected region of radius r at the center of the simulation cell. The
hole size was r+ ır, where ır is the maximum variation of the radius that
does not modify the number Nh of removed atoms (we remark ır � c0). The
cylindrical voids were oriented along the y axis, perpendicularly to the applied
stress. We observe that a simulated hole of given size can have a different surface
structure depending on its position in the lattice. The simulation cell width
was set with dimensions Lx = Lz = L and Ly � L (typically Ly � 12 Å) for
cylindrical voids, and we used a cubic shape Lx = Lz = Ly = L for spherical
holes. This corresponds to 2.5 × 105 and to 8 × 105 particles, respectively.

The ideal strength of ˇ-SiC was calculated by simulating a perfect bulk
loaded along the [111] crystallographic axis up to the failure: the calculated
critical strain and stress are εzz � 0.20 and �th = 58 ± 1 GPa, respectively. The
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Figure 26 Failure strength for a system containing a cylindrical hole. Diamond (cross)
symbols: atomistic data in plane strain (stress); horizontal dashed line: standard linear
elasticity result; full and dot-dashed lines: two improved continuum models, as explained
in the text.

value of �th is about E/10, where the Young modulus was estimated to be E =
556 ± 1 GPa. This result is in qualitative agreement with a standard ansatz of
continuum mechanics.122 On the other hand, the calculated failure strength for
a system with an infinitely long cylindrical hole is represented in Figure 26 (open
diamonds). For hole radii r ≤ 20 Å, a strong dependence of �f on the hole size
is observed, whereas the prediction �f /�th = 1/3 of continuum elasticity theory
only represents the asymptotic limit for large radii. However, it is interesting to
note that the full and dot-dashed curves nicely reproduce the atomistic results;
they represent improved continuum models formulated so as to incorporate a
suitable material length scale 	, aimed at describing a process zone close to the
void in which at least one of these constitutive hypotheses fails.126 Although
the continuum model does not provide any hint for estimating 	, it is indeed
possible to use atomistic data to determine it. A value ranging from 2.2 to 6.6
Å is found, thus proving that the deviation from standard continuum elasticity
is a real nanoscale feature.

The results for the strength reduction resulting from a spherical hole are
reported in Figure 27. Even in this case, �f depends strongly on the hole size,
contrary to what is predicted by elasticity (i.e., �f /�th = 1/2). Introducing the
parameter 	 in the continuum theory as described allows us to improve the
agreement with atomistics, as indicated by the full and dot-dashed line. In
particular, we have calculated for a single vacancy a 4% strength reduction;
this result is reproduced reasonably well by the improved elastic models.

Overall, this investigation proves that atomistic simulations are not only
(as expected) more accurate at the nanoscale than are continuum fracture me-
chanics, but they also provide useful insight for the development (as well as
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Figure 27 Failure strength for a spherical hole. Symbols: atomistic data; horizontal
dashed line: standard linear elasticy result; full and dot-dashed lines: two improved
continuum models, as reported in the text.

reliable data for the calibration) of improved elasticity theory models. In con-
clusion, we can state that atomistic simulations are valuable in developing atom-
ically informed mesoscopic models.

Stress Shielding at Crack-Tip

In the previous sections, we considered separately the case of a crack and
of an inclusion embedded into a SiC bulk matrix. We now investigate their
mutual interaction, which represents the most fundamental issue in the physics
of fiber reinforcing.127

We adopted the geometry described in Figure 28 and the computational
setup is the same as reported in the previous sections. In particular, several cal-
culations were performed by varying the relative distance between the crack tip
and the inclusion. The total number of atoms simulated here was as large as
60,840. The simulation protocol involved several steps: (1) a ˇ-SiC monocrys-
tal containing the carbon inclusion was relaxed at zero load; (2) the system
then was strained at 8% by the application of constant tractions and again
fully relaxed; (3) at this stage, the crack was inserted into the system along
two different alignments, namely with horizontal (H-) and vertical (V-) relative
orientation. The energy of a system containing both the inclusion and the mi-
crocrack is reported in Figure 29 where our result is expressed as energy per
unit length of fiber as an inclusion in infinite fiber.

As the distance between the microcrack and inclusion decreases, the en-
ergy of the system lowers for the H alignment, as shown in Figure 29. This
result indicates that an attraction basin exists between the two objects. Because
no bond rearrangement occurs (the defects are spatially separated at all the
distances considered) we can conclude further that such an energy basin must
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Figure 29 Top panel: energy of strained ˇ-SiC (�zz = 8%) containing a stable crack and
a diamond inclusion as a function of the relative distance for a vertical crack-inclusion
alignment; bottom panel: the same for horizontal alignement.
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Figure 30 Top panel: stress map �zz(x, y) of ˇ-SiC containing both a diamond inclusion
(R = 10 Å) and a stable crack (a = 18 Å) at the distance of 5.5 nm. Bottom panel: iso-
stress contour plot (units of eV Å−3) for the same system. Note that only a small portion
of the simulation cell is represented for the sake of clarity. Such a portion corresponds
to a length of 18 nm and 10 nm in the x and z directions, respectively.

be attributed to the interaction between the stress fields of the microcrack and
of the hard inclusion. The total stress field, generated by the defect pair and cal-
culated according to the virial formulation reported in “Atomic-Scale Stress”,
is reported in Figure 30. The region corresponding to the highest tensile stress
(delimited by the the iso-stress contour �zz = 0.27 eVÅ−3) at the right crack
tip is made smaller by the compressive stress lobe generated by the inclusion;
at the same time, the iso-stress contour �zz = 0.25 eVÅ−3 (corresponding to a
lower value of tensile stress) turns out to be extended all around the inclusion.

Another interesting feature is observed when the relative distance of the
two defects is about 5.5 nm; in this situation, the opposite stress lobes interact
with a net energy gain�E ∼ 1.5 eVÅ−1. The maximum depth of the attraction
basin is reached when the crack tip and the inclusion are separated by just a
few Ångström and the defects are nearly in contact (�E ∼ 12 eVÅ−1). For V
alignment, we find a similar attraction basin; however, the interaction is now
stronger (although more short-ranged), and the calculated energy basin has the
depth �E ∼ 18 eVÅ−1.

Although the present results are obtained just for an especially clean con-
figuration, they, nevertheless, prove a qualitatively important feature about
the interaction between a microcrack and a hard diamond inclusion in ˇ-SiC,
namely the stress field annhilation at the crack tip caused by the inclusion.
Basically, this corresponds to the observed reduced brittle failure of fiber-
reinforced ceramics. Furthermore, atomistic simulations provide a topologically
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complex potential energy landscape, proving that at small crack-inclusion dis-
tances, the system is energetically more stable.
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APPENDIX: NOTATION

In this chapter, we adopt the following notation: the cartesian axis are
indicated by (x1, x2, x3) and the corresponding unit vectors are indicated
by {�e1, �e2, �e3}; the vectors appear as arrowed symbols (e.g., �x) with compo-
nents {xi}i=1,2,3; the second-order tensors will be indicated as T̂ with compo-
nents {Tij}i,j=1,2,3; the fourth-order tensor will appear as Ĉ with components

{Cijhk}i,j,h,k=1,2,3; the scalar product between vectors �a and �b is �a · �b; the cross

product between �a and �b is �a× �b; the Einstein notation on repeated indexes
is adopted: ahkbk = ∑

k ahkbk; the product matrix-matrix or matrix-vector are
written as ÂB̂ or Â�v; the Kronecker symbol is ıij (ıij = 1 if i = j and ıij = 0
if i /= j); the identity tensor Î has components ıij; the trace of a tensor is
Tr(T̂) = Tkk (with sum over k); finally, the Levi–Civita permutation symbol is
indicated as �nmj; it assumes the value 1 if (n,m, j) is an even permutation of (1,
2, 3), it assumes the value–1 if (n,m, j) is an odd permutation of (1, 2, 3), and it
assumes the value 0 if there is a repetition in the numbers (n,m, j); such a symbol
is useful to write the cross-product: (�a× �b)j = anbm�nmj or �a× �b = anbm�nmj�ej;
the properties �nmj = �jnm = �mjn and �ijk�pqk = ıipıjq − ıiqıjp are useful; the

tensor product of two vector �a and �b is given by the tensor �a⊗ �b whose com-
ponents are (�a⊗ �b)kh = akbh; it follows that (�a⊗ �b)�v = �a(�b · �v].
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(1822). Mémoire sur les Lois de l’Équilibre et du Mouvement des Corps Solides Élastiques.
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