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The paper deals with the electrical characterisation of dispersions of pseudo-oriented ellipsoids of
revolution. We are thus dealing with mixtures of inclusions of arbitrary eccentricity and arbitrary non-
random orientational distributions. The analysis ranges from parallel spheroidal inclusions to completely
random oriented inclusions. A unified theory covers all the orientational distributions between the
random and parallel cases. Each ellipsoidal inclusion is made from an isotropic nonlinear dielectric
material described by means of the so-called Kerr nonlinear relation.

The electrical averaging inside the composite material is carried out by means of explicit results. We
obtain closed form expressions for the macroscopic or equivalent dielectric properties of the overall
composite materials. This study affirms that the nonlinear electrical behaviour of such a dispersion of
pseudo-oriented particles is completely defined by two specific order parameters, which depends on the
given angular distribution. The theory may be applied to characterise media with different shapes of the
inclusions (i.e. spheres, cylinders or planar inhomogeneities) yielding a set of procedures describing
several composite materials of great technological interest.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the characterisation of heterogeneous materials
has attracted ever increasing interest. One central problem is the
evaluation of the effective electric properties governing composite
materials behaviour on the macroscopic scale. At present, it is well
known that no universally applicable mixing formula exists that
can give the effective properties of the heterogeneous materials as
an average of the constituent properties. In fact, the details of the
micro-geometry can play a crucial role in determining the overall
properties, particularly when the crystalline grains have highly
anisotropic behaviour. In the latter case there is a large difference in
the properties of the constituent materials and nonlinearities
cannot be neglected. Therefore, the elastic and electrical properties
of composite materials are strongly microstructure dependent. The
relationship between microstructure and properties may be used
for designing and improving materials, or conversely, for inter-
preting experimental data in terms of micro-structural features.
Ideally, the aim is to construct a theory that employs general micro-
structural information to make accurate property predictions.
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Many theoretical formulas have been proposed to describe the
behaviour of composite materials. A disadvantage of some
approximated results is that they do not correspond to a priori
known microstructure; these results may be interpreted and clas-
sified only by means of comparison with numerical or experimental
data. A different class of theories is rigorously based on realistic
microstructures. These are the classical Hashin–Shtrikman varia-
tional bounds [1,2], which provide an upper and lower bound for
composite materials, and the expansions of Brown [3] and Torquato
[4,5] which take into account the spatial correlation function of the
phases.

Dispersions or suspensions of inclusions in a homogeneous
matrix provide one example of heterogeneous materials. One of the
first attempts to characterise electrical dispersions of spheres is
that of Maxwell [6], who determined a famous formula for
a strongly diluted suspension of spheres. A better model has been
provided by the differential scheme, which derives from the
mixture characterisation approach used by Bruggeman [7] and
extensively described by Van Beek [8]. In this case, the relations are
also valid for less diluted suspensions of spheres. To understand the
effect of different shape of the inclusions, ellipsoidal shaped
particles have been considered. The first attempt was made by
Fricke [9,10]. In the current literature, Maxwell’s relation for linear
spheres [6,8], and Fricke’s expressions for linear ellipsoids [9,10]
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belong to the so-called Maxwell–Garnett Effective Medium Theory
[11,12]. Both cases are derived under the hypothesis of very low
concentration of the linear dispersed component. A complete
review of the Bruggeman (differential) theory for ellipsoidal
inclusions can be found in Ref. [13].

In recent developments in material science, considerable
attention has been devoted to electromagnetically nonlinear
composite structures which find applications, for instance, in
integrated optical devices such as optical switching and signal
processing devices [14–16]. Intrinsic optical bistability has been
extensively studied theoretically as well as experimentally with
the help of mixture theory [17,18]. In all of these cases, a linear
medium containing spherical or spheroidal inclusions has been
considered. Recent progress in this field can be ascribed to Gon-
charenko et al. [19], who dealt with dielectrically linear and
nonlinear spheroidal inclusions of geometric factors distributed
probabilistically. Lakhtakia et al. studied size-dependent Brugge-
man theory which considers the effective particle dimension for
non dilute dispersions [20]. A wide survey of mixture theory
applications has been made by Mackay [21] who analyzed the
peculiar properties exhibited by metamaterials. Important results
concerning dispersions of dielectrically nonlinear and graded
parallel cylinders have been achieved by Wei et al. [22]. Our aim in
this context is to extend previous work and to explore the
importance of the orientational distribution and of the inclusion
shape. To do so, we consider a dispersion of dielectrically nonlinear
spheroidal particles (ellipsoids of revolution), pseudo-randomly
oriented in a (dielectrically) linear matrix. We then develop
a mathematical procedure to perform the needed averages of the
electric quantities overall the possible orientations of the inclu-
sions. This analysis leads to a nonlinear anisotropic constitutive
equation connecting the macroscopic electric displacement to
the macroscopic electric field. Particular attention is devoted to
the analysis of the effects of the orientational distribution of the
particles inside the composite material. The limiting cases of the
present theory are represented by all the particles aligned with
a given direction (perfect order) and all the particles randomly
oriented (complete disorder). We take into account all the inter-
mediate configurations between order and disorder with the aim
of characterizing a material having its particles partially aligned.
Fig. 1 shows some orientational distributions between the limiting
cases described. To define the geometry, we consider an ortho-
normal reference frame, and we take the z-axis as the preferential
direction of alignment. Each particle embedded in the matrix is not
completely random in orientation. The orientation is described by
the following statistical rule. The principal axis of each particle
forms an angle w with the z-axis. This angle follows a given
probability density fQðwÞ symmetrically distributed over 0–p. The
symmetry of the density can be written as fQðwÞ ¼ fQðp� wÞ. We
Fig. 1. Structure of a dispersion of pseudo-oriented ellipsoids. One can find some orientation
the electric response of each phase, by the state of order and by the volume fraction of the
assume that the orientation of each particle is statistically inde-
pendent from the orientation of the other particles. If
fQðwÞ ¼ ð1=2ÞðdðwÞ þ dðw� pÞÞ (where d is the Dirac delta func-
tion) we have all the particles with w ¼ 0 (or w ¼ p, which
corresponds to the same orientation) and, therefore all are
oriented along the z-axis. If fQðwÞ ¼ sinðwÞ=2, then all the particles
are in uniform random orientation in the space overall possible
orientations. Any other symmetric statistical distribution fQðwÞ
defines a transversely isotropic (uniaxial) material with principal
axis aligned with the z-axis. For example, if fQðwÞ ¼ dðw� p=2Þ,
then all the particles have their principal axes orthogonal to the z-
axis. In the following sections, we develop a complete analysis of
the combined effects of the shape (aspect ratio or eccentricity) of
the particles and their state of order/disorder. This analysis allows
us to evaluate the overall electric properties of the heterogeneous
material. From the point of view of particle shape, the so-called
depolarization factor L is the parameter that intervenes to char-
acterise the medium. We verify that the state of order acts on the
overall linear and nonlinear dielectric properties by means of two
parameters defined as C2 ¼ Ccos2 wD and C4 ¼ Ccos4 wD. These
parameters correspond to the average values of cos2 w and cos4 w,
respectively, as computed by means of the density probability
fQðwÞ. The results may be applied to describe the physical behav-
iour of heterogeneous materials starting from the knowledge of
the physical properties of each medium composing the mixture, as
well as of the structural properties of the mixture itself [i.e. shape
of the inclusions and state of order of the orientations (L, C2 and
C4)]. The results of this work have been derived under the elec-
trostatic (d/dt ¼ 0) assumption, but they also are valid in the low-
frequency regime, as long as the wavelength parameter c/f is much
larger than the largest dimension of the inclusions. The analysis
performed in this work has immediate application to the field of
liquid crystals. Our microstructure describes a material positionally
disordered, but with partial orientational order which corresponds
to a nematic phase in liquid crystals [23,24]. The level of ordering is
reflected in the macroscopic properties. Some previous works have
been developed in a way similar to this work but only from
a dielectrically linear point of view [25–28]. The present work
can therefore be considered a nonlinear extension of these
previous papers.

2. Field perturbation due to single nonlinear ellipsoidal
inclusions in a uniform field

Here we present a general solution to the problem of
a nonlinear ellipsoidal particle embedded in a linear material. The
theory is based on the following result derived for the linear case,
which describes the behaviour of one electrically linear ellipsoidal
particle of permittivity 32 in a linear homogeneous medium of
al distributions ranging from order to disorder. The two-phase material is described by
inclusions.
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permittivity 31. Let the axes of the ellipsoid be lx, ly and lz (aligned
with axes x, y, z of the ellipsoid reference frame), and let
a uniform electric field E

!
0 ¼ ðE0x; E0y; E0zÞ be applied to the

structure. Then, according to Stratton [29], the electric field E
!

s ¼
ðEsx; Esy; EszÞ inside the ellipsoid is uniform and it can be expressed
as follows:

Esi ¼
E0i

1þ Lið32=31 � 1Þ (1)

Here, and throughout the paper, the index i represents the x, y and z
values. The expressions for the depolarization factors Li in the case
of a generally shaped ellipsoid can be found in the literature [13].
They can be expressed in terms of elliptic integrals. The condition
Lx þ Ly þ Lz ¼ 1 is always fulfilled.

Let’s now generalize Eq. (1) to the case where a dielectrically
nonlinear ellipsoid is embedded in the linear matrix. A nonlinear
isotropic and homogeneous ellipsoid can be described from the
electrical point of view by the constitutive equation D

! ¼ 3ðEÞ E
!

[30]. Here, D
!

is the electric displacement inside the particle, E
!

is
the electric field and the function 3 depends only on the modulus E
of E
!

. This latter property accounts for the fact that the medium
inside the ellipsoid is isotropic and homogeneous. The main result
follows. The electric field inside the inclusion is uniform even in the
nonlinear case and it may be calculated by means of the following
system of equations:

Esi ¼
E0i

1þ Li½3ðEsÞ=31 � 1�;ci (2)

where, as before, E
!

0 is a uniform electric field applied to the
structure and E

!
s, the unknown in the nonlinear system Eq. (2), is

a uniform field as well. This property holds true for the following
reason. If a solution to Eq. (2) exists, due to self-consistency, all the
boundary conditions are fulfilled and the problem is completely
analogous to its linear counterpart, treated by Stratton [29],
provided that 32 ¼ 3(Es).

In order to simplify the following analysis we will adopt ellip-
soids of revolution. Thus we consider lx ¼ ly and we define the
aspect ratio as e ¼ lz/lx ¼ lz/ly. The depolarization factors for ellip-
soids of revolution may be computed in closed form as follows, and
the results depend on the shape of the ellipsoid [13]. It is prolate (of
ovary or elongated form) if e > 1 and oblate (of planetary or flat-
tened form) if e < 1:
8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

Lx ¼ Ly ¼
e
2

ZþN

0

dx

ðxþ 1Þ2
�
xþ e2

�1=2
¼

8>>>><>>>>:
e

4p3



2epþ ln

e� p
eþ p

�
if e > 1

e
4q3



p� 2eq� 2arctan

e
q

�
if e < 1

Lz ¼
e
2

ZþN

0

dx

ðxþ 1Þ
�
xþ e2

�3=2
¼

8>>>>><>>>>>:
1

2p3



eln

eþ p
e� p

� 2p
�

if e > 1

1
2q3



2q� epþ 2earctan

e
q

�
if e < 1

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1
p

and q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

(3)
The relation 2Lxþ Lz¼ 1 holds, and therefore we will consider L¼ Lz

as the main geometric parameter of the system. An interesting,
related aspect shows up when one tries to solve the nonlinear Eq.
(2) iteratively [31]. In order to solve for Es, one starts with a given
initial value Es

0, and one uses the successive approximations
described by the iteration rule:
Enþ1
si ¼ E0i

1þ Li
�
3
��� E
!n

s k
��

31 � 1
� (4)

The following sufficient convergence criterion has been verified
[31]. The iteration rule given by Eq. (4) is convergent to the
exact internal electric field if the nonlinear material of the
ellipsoid fulfils the condition j(E/3)v3/vEj < 1. In general, one can
describe isotropic nonlinear dielectric materials by means of the
so-called Kerr nonlinearity relation, often adopted in meta-
materials study [21]:

3ðEÞ ¼ 32 þ aE2 (5)

which assumes that 32 and a are constant. The Kerr nonlinearity can
be focusing or defocusing, depending on whether a> 0 or a< 0 [32].
The convergence condition j(E/3)v3/vEj < 1 is always verified for
a defocusing Kerr nonlinearity and is verified only if E2

s < 32=a (here
Es is the modulus of the actual electric field inside the inclusion) in
case of a focusing nonlinearity [31].

3. Average electric field inside a single pseudo-random
oriented inclusion

Now, our aim is to find an explicit version of Eq. (2), which is
valid when the nonlinear permittivity is given by Eq. (5). To begin
the analysis, we substitute Eq. (5), for the case of a single ellipsoid,
in Eq. (2):

Esi ¼
31E0i

31 þ Li

h
32 � 31 þ a

�
E2

sx þ E2
sy þ E2

sz

	i (6)

This is an algebraic system of degree nine with three unknowns,
namely Esx, Esy and Esz It might be hard, if not impossible, to
solve analytically, but we are interested in just the first terms of
a series expansion of the solution. To obtain it, we may adopt
the ansatz Esi ¼ kiE0i þ hiE

3
0i and solve for ki and hi. Alternatively,

we may use the iterative scheme given by Eq. (4), in literal form,
adopting only the first iterations. For sake of brevity, we omit
here the simple but long calculation, which leads to the
solution:
Esi ¼
31E0i

ð1� LiÞ31 þ Li32
�

a33
1LiE0i

½ð1� LiÞ31 þ Li32�2
X

j

E2
0j��

1� Lj
�
31 þ Lj32

�2
þO

���� E
!

0

���4
	

ð7Þ
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We observe that the first term represents the classic Lorentz field
appearing in a dielectrically linear ellipsoidal inclusion. The second
term is the first nonlinear contribution, which is directly propor-
tional to the inclusion hyper-susceptibility a. To simplify the
expressions, we henceforth use the notation ai ¼ (1 � Li)31 þ Li32.
To derive the mixture behaviour, we need to calculate the electric
field in a single nonlinear ellipsoidal inclusion that is arbitrarily
oriented in space and embedded in a homogeneous medium
having permittivity 31. In order to do this, we shall express Eq. (7)
in the global framework of reference of the mixture. We define
three unit vectors, indicating the principal directions of each
ellipsoid in space: bnx; bny and bnz. These correspond to the axes
of the ellipsoid. By using Eq. (7), we may compute the electric
field induced by a given external arbitrary uniform electric field
inside the inclusion (henceforth we omit the additional higher-
order terms):

E
!

s ¼
"

31 E
!

0$bni

ai
�

a33
1Li E
!

0$bni

a2
i

�
E
!

0$bnj

	�
E
!

0$bnj

	
a2

j

#bni (8)

We shall now average the above Eq. (8) overall the possible
orientations of the particle. The expression for the internal electric
field in Eq. (8) can be rewritten, component by component, as
follows:

Esk ¼
"

31E0lnil

ai
�

a33
1LiE0lnil

a2
i

E0qnjqE0pnjp

a2
j

#
nik (9)

Here njk is the k-th component of the unit vector bnj, (j¼ x, y, z) and
we have considered the implicit sums of i, j, l, q and p over 1, 2 and 3.
For the following derivation, we are interested in the average value
of the electric field E

!
s overall the possible orientations of the

ellipsoid itself. We must then compute the following:

hEski ¼
31E0lhnilniki

ai
�

a33
1LiE0lE0qE0p


niknilnjqnjp

�
a2

i a2
j

(10)

We may use Euler angles representation ðj;4 and wÞ to write down
the explicit expressions for the components of the unit vectorsbnx; bny and bnz:
8><>:
bnx ¼ ðcos jcos 4� sin jsin 4cos w;�cos jsin 4� sin jcos 4cos w; sin jsin wÞbny ¼ ðsin jcos 4þ cos jsin 4cos w;�sin jsin 4þ cos jcos 4cos w;�cos jsin wÞbnz ¼ ðsin 4sin w; sin wcos 4; cos wÞ

(11)
In order to obtain the average value of the electric field E
!

s, we need
to calculate the average value of the quantities defined in Eq. (10).
This is done by the following integral over the Euler angles:

hEski ¼
1

4p2

Zp

0

Z2p

0

Z2p

0

"
31E0lnilnik

ai
�

a33
1LiE0lE0qE0pniknilnjqnjp

a2
i a2

j

#

� d4djfQðwÞdw ð12Þ

In order to represent the above described orientation of the parti-
cles, the angles 4 and j are uniformly distributed over the entire
range [0 2p] and the angle w follows the given probability density
fQðwÞ over the range [0 p]. So, by performing the integration
described in Eq. (12) and by using Eq. (11), we find that the average
value of Esk depends on the two following parameters, defined by
means of the density probability fQðwÞ:
C ¼
Zp

cos2 wf ðwÞdw (13)
2

0

Q

C4 ¼
Zp

0

cos4 wfQðwÞdw (14)

These two parameters completely characterise the effects of the
pseudo-orientation of the particles inside the medium. Some
particular values follow. For the case of perfect order we have
fQðwÞ ¼ ð1=2ÞðdðwÞ þ dðw� pÞÞ and the corresponding values are
C2¼1 and C4¼1. Alternatively, for the case of complete disorder we
have fQðwÞ ¼ sinðwÞ=2 and we obtain C2 ¼ 1/3 and C4 ¼ 1/5. Finally,
when all the particles have their principal axes orthogonal to the z-
axis, we have fQðwÞ ¼ dðw� p=2Þ and the values of the parameters
are C2 ¼ 0 and C4 ¼ 0.

Because we are dealing with ellipsoids of revolution, in per-
forming the integration of Eq. (12) we use the simplified notation
a1 ¼ a2 and L1 ¼ L2 ¼ (1 � L)/2, L3 ¼ L. The factor L assumes some
characteristic values that correspond to special shapes of the
particles. For spheres L ¼ 1/3; for cylinders L ¼ 0; and for lamellae
or penny shaped inclusions, L ¼ 1. Summing up, we verified, after
a very long but straightforward integration, that the following
simple relation gives the final result of the averaging process:

hEski ¼ gkE0k � amklE0kE2
0l (15)

Here, summation on the index l is implied, and the parameters gk

and mkl can be organized as follows:

g ¼

24g1
g1
g3

35; m ¼

24m11 m11 m13
m11 m11 m13
m31 m31 m33

35 (16)

The explicit results for the parameters gk are:

g1 ¼
1
2

31
a1 þ a3

a1a3
þ 1

2
31

a3 � a1

a1a3
C2 (17)

g3 ¼ 31
1
a1
þ 31

a1 � a3

a1a3
C2 (18)
Moreover, the explicit results for the parameters mkl are:

m11 ¼
33

1

16a4
1a4

3

�
a2

1a2
3ð1þ LÞ þ 3a4

3ð1� LÞ þ 6La4
1

þ C2

h
2a2

1a2
3ð1þ LÞ þ 2a4

3ð1� LÞ � 12La4
1

i
þ C4

h
6La4

1 � 3a2
1a2

3ð1þ LÞ þ 3a4
3ð1� LÞ

i�
ð19Þ

m13 ¼
33

1

16a4
1a4

3

�
8La2

1a2
3þ4a4

3ð1�LÞþC2

h
8a4

3ð1�LÞþ24La4
1

�4a2
1a2

3ð1þ7LÞ
i
þC4

h
12a2

1a2
3ð1þLÞ�12a4

3ð1�LÞ�24La4
1

i�
ð20Þ
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m31 ¼
33

1

4a4
1a4

3

�
a2

1a2
3ð1�LÞþa4

3ð1�LÞþC2

h
2a4

3ð1�LÞþ6La4
1

þ2a2
1a2

3ðL�2Þ
i
þC4

h
3a2

1a2
3ð1þLÞ�3a4

3ð1�LÞ�6La4
1

i�
ð21Þ

m33 ¼
33

1

4a4
1a4

3

�
2a4

3ð1� LÞ þ C2

h
2a2

1a2
3ð1þ LÞ � 4a4

3ð1� LÞ
i

þ C4

h
2a4

3ð1� LÞ � 2a2
1a2

3ð1þ LÞ þ 4La4
1

i�
ð22Þ

This is a first analytical result which will play a crucial role in the
theoretical development that follows. It is interesting to observe
that if a1¼ a3 and L¼ 1/3 (we are dealing with spherical inclusions),
then the terms containing C2 and C4 completely disappear in Eqs.
(17)–(22), as they must, because the orientation is not important for
an isotropic spherical object.
4. Averaging process in a dilute mixture

From this point on, we analyse the dispersion of pseudo-
oriented nonlinear ellipsoids. The permittivity of the inclusions is
described by the isotropic nonlinear relation 3(E)¼ 32þ aE2 [see Eq.
(5)] and the linear matrix has permittivity 31. The overall electrical
behaviour of the dispersion is expected to be anisotropic because of
the pseudo random orientation of the particles. This is true because
the z-axis has a special character induced by the partial alignment
of the particles. Therefore, the equivalent electric constitutive
equation can be expanded in series with respect to the averaged
electric field components: CDkD ¼ 3eq

kj CEjDþ ceq
kjilCEjDCEiDCElDþ.,

where the coefficients 3eq (the subscript eq denoting the equivalent
character of the term) and ceq are tensors that depend on various
parameters of the mixture such as the aspect ratio e of the ellip-
soids, the volume fraction c of the included phase, the density
probability fQðwÞ describing the orientational distribution, the
permittivities 31, 32 and the Kerr susceptibility a of the inclusions.
The homogenisation procedure should provide the structure of the
entries of the tensors 3eq and ceq in terms of the mentioned
parameters. In the technical literature, the coefficients a and ceq

(the first nonlinear terms of the expanded constitutive equations
for inclusions and mixture, respectively) are often called hyper-
susceptibilities [21].

The main achievement of this work is the derivation of a closed
form expression for the hyper-susceptibility ratio ceq/a. These
quantities are of interest inasmuch as they represent the amplifi-
cation of the nonlinear behaviour of the composite material with
respect to that of the inclusions. In particular, we are interested in
the dependence of these parameters on the state of order/disorder
of the system which is well described by the density proba-
bilityfQðwÞ. In other words, we may write our results in terms of the
order parameters C2 and C4. Moreover, we may describe the
dependence of the hyper-susceptibility ratio ceq/a on the aspect
ratio of the embedded particles, i.e. on the parameter e or L. The
final expressions are derived under the assumption that the
constitutive equation of the composite medium is of the form
CDkD ¼ 3eq

kj CEjDþ ceq
kjilCEjDCEiDCElD, which neglects higher-order terms.

All the computations are carried out under the same hypothesis
underlying the linear Maxwell–Garnett theory [12], that is, low
concentration c of the dispersed phase. If we consider a mixture
with a volume fraction c � 1 of pseudo-randomly oriented, die-
lectrically nonlinear ellipsoids embedded in a homogeneous matrix
with permittivity 31, we thus can evaluate the average of the electric
field over the space occupied by the mixture. It can be achieved via
the following relationship:
h E
!i ¼ ch E

!
si þ ð1� cÞ E

!
0 (23)
This means that we do not take into account the interactions among
the inclusions because of the very low concentration, i.e. each
ellipsoid behaves as an isolated one. Once again, to derive Eq. (23),
we assume an approximately uniform average electric field E

!
0 in

the space outside the inclusions. To evaluate the equivalent
constitutive equation, we compute the average value of the
displacement vector inside the random material. The region V is
defined as the space occupied by the mixture, Ve as the region
occupied by the inclusions, and Vo as the remaining space (so that
V ¼ Ve W Vo). The average value of D

!ðrÞ ¼ 3 E
!ð r!Þ is evaluated as

follows ( D
!

and E
!

represent the local fields, C D
!

D and C E
!

D their
macroscopic counterparts):

hD!i¼ 1
jV j

Z
V

3 E
!ð r!Þd r!¼ 1

jV j31

Z
Vo

E
!ð r!Þd r!þ 1

jV j

Z
Ve

3 E
!ð r!Þd r!

¼ 1
jV j31

Z
Vo

E
!ð r!Þd r!þ 1

jV j31

Z
Ve

E
!ð r!Þd r!

þ 1
jV j
jVej
jVej

Z
Ve

ð3�31Þ E
!ð r!Þd r!¼ 31h E

!iþ ch½3ðEsÞ�31� E
!

si ð24Þ

Here jV j is the measure of the region V. We note that the average
value given by C½3ðk E

!
skÞ�31� E

!
sD is not available from the previous

computations. We consider a single ellipsoidal nonlinear inclusion,
and we search for the average value of the quantity ½3ðk E

!
skÞ�31� E

!
s

overall the possible orientations of the particle. From Eq. (2) and Eq.
(7) we obtain:

½3ðk E
!

skÞ� 31�Esi ¼
31

Li
ðE0i�EsiÞ ¼

31

Li

24E0i�
31E0i

ai
þ

a33
1LiE0i

a2
i

X
j

E2
0j

a2
j

35
(25)

therefore, in vector notation:

½3ðk E
!

skÞ � 31� E
!

s ¼
31

Li

"
E
!

0$bni �
31 E
!

0$bni

ai

þ
a33

1Li E
!

0$bni

a2
i

�
E
!

0$bnj

	�
E
!

0$bnj

	
a2

j

#bni ð26Þ

By taking the k-th component in the global reference framework,
we may write:

½3ðk E
!

skÞ � 31�Esk ¼
31

Li

"
E0lnil �

31E0lnil

ai

þ
a33

1LiE0lnil

a2
i

E0qnjqE0pnjp

a2
j

#
nik ð27Þ

and averaging, after some straightforward computation:

hDsk� 31Eski ¼
31ð32� 31Þ

ai
E0lhnilnikiþ

a34
1E0l

a2
i

E0qE0p

a2
j


nilniknjqnjp

�
(28)

At this point, the explicit average value can be found by taking into
consideration the expressions of the unit vectors bnx; bny and bnz,
given in Eq. (11), and performing the integration in a similar way to
that shown in Eq. (12). The effects of the pseudo-orientation of the
particles inside the medium are described, as before, by the order
parameters C2 and C4. In performing the averaging in Eq. (28), we
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have again used the simplified notation a1 ¼ a2 and
L1 ¼ L2 ¼ (1 � L)/2, L3 ¼ L. The final result for the quantity
CDsk� 31EskD is therefore given by the following simple relation:

hDsk � 31Eski ¼ ð32 � 31ÞgkE0k þ alklE0kE2
0l (29)

Here the sum over the index l is implied, and the parameters gk

have been defined in Eqs. (16)–(18). Moreover, the parameters lkl

can be arranged following the matrix notation:

l ¼

24 l11 l11 l13
l11 l11 l13
l13 l13 l33

35 (30)

The explicit values of the relative entries have been calculated as
follows:

l11 ¼
34

1

8a4
1a4

3

�
3a4

1 þ 2a2
1a3

2 þ 3a4
3 þ C2

h
4a2

1a2
3 þ 2a4

3 � 6a4
1

i
þ C4

h
3a4

1 � 6a2
1a2

3 þ 3a4
3

i�
ð31Þ
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l13 ¼
34

1

8a4
1a4
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�
4a2

1a2
3 þ 4a4

3 þ C2

h
8a4

3 þ 12a4
1 � 20a2
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3

i
þ C4

h
24a2

1a2
3 � 12a4

3 � 12a4
1

i�
(32)

l33 ¼
34

1

2a4
1a4

3

�
2a4

3 þ C2

h
4a2

1a2
3 � 4a4

3

i
þ C4

h
2a4

3 þ 2a4
1 � 4a2

1a2
3

i�
(33)

Once again, we observe that if a1 ¼ a3 (we are dealing with
spherical inclusions), then the terms containing C2 and C4

completely disappear in Eqs. (31)–(33), i.e. the orientation is not
relevant for an isotropic spherical object. At this point, we have all
the balance equations needed to describe the overall electrical
behaviour of the pseudo-random dispersion. These relationships
are summarised in Eq. (34). The first relation corresponds to Eq.
(23) and yields the average electric field over the mixture volume in
terms of the applied field and the average internal field (equation
deduced under the hypothesis of low concentration). The second
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Fig. 5. Permittivity 3// versus a and Log10(e) for 31 ¼ 1, 32 ¼ 10 and c ¼ 0.25.
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relation is taken from Eq. (15) and gives the explicit value of the
average electric field inside an inclusion. It accounts for just the first
nonlinear terms. The third relation [see Eq. (24)] furnishes the
average value of the displacement vector over the entire mixture
volume (this formula is exact). Finally, the fourth equation is taken
from Eq. (29) and gives the average value of the quantity
CDsk � 31EskD in terms of the applied electric field (as before, it
accounts just for the first nonlinear terms). The complete set of the
balance equations follows:8>>>>>><>>>>>>:

hEki ¼ chEski þ ð1� cÞE0k

hEski ¼ gkE0k � amklE0kE2
0l

hDki ¼ 31hEki þ chDsk � 31Eski
hDsk � 31Eski ¼ ð32 � 31ÞgkE0k þ alklE0kE2

0l

(34)

We may observe that the nonlinear terms, appearing in the second
and in the fourth relations in Eq. (34), are simply proportional to the
hyper-susceptibility parameter a of the inclusions. By substituting
the second equation into the first, and the fourth relation in the
third, we obtain a simpler system:
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and c ¼ 0.25.
(
hEki ¼ ð1� cþ cgkÞE0k � camklE0kE2

0l
hDki ¼ 31hEki þ cð32 � 31ÞgkE0k þ calklE0kE2

0l

(35)

We have here three vector fields: the average electric field over the
entire mixture, the average electric displacement, and the exter-
nally applied electric field. In order to determine the effective
constitutive equation for the entire composite material, we should
obtain a relationship among the components CDkD and the compo-
nents CEhD. We therefore have to eliminate the external field
E0k in Eq. (35). We thus need to solve the first relation in Eq.
(35) with respect to E0k. For our purposes, it is sufficient to obtain
a series solution with two terms, and therefore we let
E0k ¼ gkCEkDþmklCEkDCElD

2. We substitute the latter into the first
relation in Eq. (35), and we solve for the unknown coefficients gk

and mkl. The result is:

E0k ¼
hEki

1� cþ cgk
þ camklhEkihEli2

ð1� cþ cgkÞ2ð1� cþ cglÞ2
(36)

The final achievement is obtained by substituting Eq. (36) in the
second equation of system (35) and neglecting the powers of CEkD

greater than three:
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Fig. 9. Susceptibility amplification Log10(c//,///a) versus a and Log10 (e) for 31 ¼1, 32 ¼ 10
and c ¼ 0.25.
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hDki ¼



31 þ cð32 � 31Þ
gk

1� cþ cgk

�
hEki

þ
"

a
c2ð32 � 31Þgkmkl þ clklð1� cþ cgkÞ
ð1� cþ cgkÞ2ð1� cþ cglÞ2

#
hEkihEli2 ð37Þ

Eq. (37) provides the first form of the constitutive equation of the
overall dispersion. This result can be further simplified by defining
the following quantities, which better describe the transversely
isotropic (uniaxial) character of the composite material:
E2

t ¼ CE1D

2 þ CE2D

2, E== ¼ CE3D, D2
t ¼ CD1D

2 þ CD2D

2 andD== ¼ CD3D.
The symbol // indicates the components aligned with the principal
axis (the z-axis) and the symbol t indicates the components
orthogonal to the principal axis. With such conventions, Eq. (37)
may be rearranged as follows:8><>:

Dt ¼ Et

h
3t þ ct;tE2

t þ ct;==E2
==

i
D== ¼ E==

h
3== þ c==;tE2

t þ c==;==E2
==

i (38)

The linear permittivities 3t and 3//and the nonlinear hyper-
susceptibilities ct,t,ct,//,c//,t and c//,// can be derived by
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comparing them with Eq. (37), and the relative explicit expressions
are given below:

(
3t ¼ 31þcð32� 31Þ g1

1�cþcg1

3== ¼ 31þcð32� 31Þ g3
1�cþcg3

8>>>>>>>><>>>>>>>>:

ct;t ¼ ac2ð32�31Þg1m11þcl11ð1�cþcg1Þ
ð1�cþcg1Þ

4

ct;== ¼ ac2ð32�31Þg1m13þcl13ð1�cþcg1Þ
ð1�cþcg1Þ

2ð1�cþcg3Þ
2

c==;t ¼ ac2ð32�31Þg3m31þcl13ð1�cþcg3Þ
ð1�cþcg1Þ

2ð1�cþcg3Þ
2

c==;== ¼ ac2ð32�31Þg3m33þcl33ð1�cþcg3Þ
ð1�cþcg3Þ

4

(39)

All these quantities are the main parameters describing the
nonlinear electrical behaviour of the overall dispersion. We may
observe that the nonlinear susceptibilities ct,t,ct,//,c//,t and c//,//

are proportional to the susceptibility a of the inclusions and depend
on the factors gk, mkl and lkl defined in Eqs. (17)–(22) and Eqs. (31)–
(33). Of note, and as expected, the results are explicitly written in
terms of the depolarising factor Lz ¼ L of the inclusions, which
depends directly on the aspect ratio e [see Eq. (3)], and in terms of
the order parameters C2 and C4 that define the state of orientational
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order/disorder. The latter depends on the probability density fQðwÞ
(see Eqs. (13) and (14)). Finally, the particular cases of spherical
inclusions (a1 ¼ a3 and L ¼ 1/3) and of ellipsoidal inclusions with
isotropic distribution (C2¼ 1/3 and C4¼1/5) provide results in near
perfect agreement with previous investigations [31].
5. Application example

In order to show some results of the previous procedure, we
choose a particular probability density fQðwÞ that depends on one
parameter a. This probability density is particularly useful because,
when the parameter a varies from �N to þN, the orientational
distribution of the inclusions assumes many interesting possibili-
ties. More precisely, when a / �N, we have the case of perfect
order, and all the particles are aligned with the z-axis. When a ¼ 0,
we have the case of complete disorder (all the particles uniformly
random oriented in the space), and when a /þN all the inclusions
have their principal axes orthogonal to the z-axis. The expression of
the normalised probability density over the range [0, p] becomes:
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>>>>>1
sinðwÞ

�
a2 þ 1

�
eaw

if 0 � w � p
fQðwÞ ¼

8
<>>>>>:

2 aeap
2 þ 1 2

1
2

sinðwÞ
�
a2 þ 1

�
eaðp�wÞ

aeap
2 þ 1

if
p
2
< w � p

(40)

This function is symmetrical with respect to w ¼ p=2. If a / �N

one can verify that fQðwÞ ¼ ð1=2ÞðdðwÞ þ dðw� pÞÞ, where d is the
Dirac delta function (perfect order). If a ¼ 0, we obtain
fQðwÞ ¼ sinðwÞ=2(complete disorder). Finally, if a / þN, it is
possible to show that fQðwÞ ¼ dðw� p=2Þ, and all the particles have
their principal axes orthogonal to the z-axis. In Fig. 2, one can find
the shape of this probability density corresponding to three
different values of the parameter a (a ¼ �4, a ¼ 0 and a ¼ 4). For
negative values of a, one can observe that we obtain a bimodal
density: for a ¼ 0 we obtain the sinusoidally shaped function
fQðwÞ ¼ sinðwÞ=2, and for positive value of a, we obtain unimodal
behaviour. This probability density is particularly useful, because it
allows calculation of the order parameters C2 and C4 in closed form:

C2ðaÞ ¼
Zp

0

cos2 wfQðwÞdw ¼ 1
2

�
a2 þ 1

�
aeap

2 þ 1

Zp

0

cos2 wsinðwÞeawdw

¼ 2aeap
2 þ a2 þ 3�

a2 þ 9
��

aeap
2 þ 1

� ð41Þ

C4ðaÞ ¼
Zp

cos4wfQðwÞdw ¼ 1
�
a2 þ 1

�
p

Zp

cos4 wsinðwÞeawdw
0
2 aea2 þ 1

0

¼ 24aeap
2 þ a4 þ 22a2 þ 45�

a2 þ 25
��

a2 þ 9
��

aeap
2 þ 1

� ð42Þ

The previous expressions yield the following special values: if
a /�N, we obtain C2¼ C4¼1; if a¼ 0 we get C2¼1/3 and C4¼1/5
and, finally, if a / þN we obtain C2 ¼ C4 ¼ 0 (Fig. 3). We have
written a software code that implements the complete procedure
summed up in Eq. (39) in order to obtain the macroscopic linear
and nonlinear features of the composite material in terms of the
aspect ratio e of the ellipsoids and of the parameter a controlling
the state of order, as described above. A first series of results
concerns the case where 31 ¼ 1, 32 ¼ 10 and c ¼ 0.25. These are
plotted in Figs. 4–9 versus a and Log10(e). Specifically, Fig. 4 shows
the permittivity 3t, Fig. 5 the permittivity 3//, Fig. 6 the suscepti-
bility amplification Log10(ct,t/a), Fig. 7 the susceptibility amplifi-
cation Log10(ct,///a), Fig. 8 the susceptibility amplification
Log10(c//,t/a) and, finally, Fig. 9 shows the susceptibility amplifi-
cation Log10(c//,///a). A second series of results, concerning the case
where 31 ¼ 1, 32 ¼ 0.1 and c ¼ 0.25, can be found in Figs. 10–15. As
before, these cases are represented in terms of a and Log10 (e) and
we have adopted the same order for the plots. We may compare the
results obtained when 32/31 ¼ 10 and the results obtained when
32/31 ¼ 1/10. In both cases, as for the longitudinal and transversal
permittivities, we may observe that the effect of the order/disorder
shows opposite behaviour for prolate and oblate particles. More-
over, the complex behaviour of the susceptibility amplifications is
inverted as we move from the case with 32/31 ¼10 to the case with
32/31 ¼ 1/10. The plots exhibit a very complex scenario for the
macroscopic properties of the nonlinear material, that is strongly
dependent on the state of order and on the geometric features of
the embedded ellipsoids of revolution (prolate or oblate).

6. Conclusions

In this work we have analysed the nonlinear dielectric effects of
the orientational order/disorder of non-spherical particles in
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composite or heterogeneous materials. As result of this analysis, we
have found the correct definition of two order parameters (C2 and
C4) in such a way as to predict the macroscopic electric properties
as function of the state of microscopic order. In particular, we have
found new explicit relationships that allow us to calculate the linear
permittivity tensor and the nonlinear susceptibility tensor in terms
of the shape of the embedded particles and the order parameters.
We have outlined and applied a complete procedure which takes
into account any given orientational distribution of ellipsoids in the
matrix. The theory can find many applications to real physical
situations ranging from technological aspects of composite mate-
rials to optical characterisation of nematic liquid crystals and to
tissue modelling in biophysics.
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