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Nanomaterials composed of a population of particles dispersed in a matrix represent the building

block for the next generation of several technologies: energy storage and conversion, thermal

management, electronics, and photovoltaics. When interfaces between particles and matrix are

imperfect, the size of the particles may strongly influence the effective linear and nonlinear

response of the whole system. Here, we study these scale effects mainly focussing on the nonlinear

transport behavior of composite structures. The theory is developed, in the framework of the

electrical conductivity, for an arbitrary nonlinearity of the constituents; however, explicit results

are discussed for Kerr-like nonlinear responses. Two kinds of imperfect interfaces are considered:

the T-model and the P-model, which represent a generalization of the classical schemes largely

employed in literature, namely the low and the high conducting interface models. The dependence

of the nonlinear effective properties on the size of the dispersed particles is explained through

intrinsic length scales governing some universal scaling laws. VC 2013 AIP Publishing LLC
[http://dx.doi.org/10.1063/1.4801889]

I. INTRODUCTION

In modern materials science, heterogeneous structures

(i.e., nanocomposites or nanoalloys) are widely investigated

because of their remarkable properties of large technological

interest. One of the most important problem concerns their

characterization, i.e., the evaluation of their effective physi-

cal properties, measurable at a large observation scale.1,2

The microstructure of such heterogeneous systems typically

ranges from the microscale to the nanoscale: at this level of

miniaturization the nonlinearity of the constituents and the

properties of their interfaces cannot be neglected and play a

central role.

The first crucial aspect for understanding the behavior of

nanosystems is the nonlinearity of their constitutive equa-

tions. In the context of the electrical conduction it means that

the current density ~J may be nonlinearly related to the local

electric field ~E.3 Considerable attention has been devoted to

homogenization techniques for electromagnetically nonlinear

composite structures.4–6 Such methods find applications, for

instance, in the study of the intrinsic optical bistability7,8 and

of the second and third harmonic generation.9,10 Populations

of nonlinear ellipsoids have been considered both with ran-

dom11 and pseudo-random12,13 orientations. Moreover, dis-

persions of linear and nonlinear spheroidal inclusions with

randomly distributed geometric factors have been studied.14

Also, results concerning dispersions of dielectrically nonlin-

ear and graded structures have been achieved.15

The second important point concerns the complexity of

the interfaces between different phases. As a matter of fact,

scale effects in nanostructured materials are driven by

imperfect interfaces because of the small surface/volume

ratio. The electrical potential V and the normal component of

the current density ~J may be discontinuous across the inter-

face between two components: vVb 6¼ 0 and/or v~J �~nb 6¼ 0

(where vf b represents the jump of f across the interface).3 In

order to consider the effects of the interfaces two simple zero

thickness models have been introduced in pioneering works.

The first model is called low conducting interface: in this case

we have v~J �~nb ¼ 0, while the electrical potential suffers a

jump proportional to the local flux, vVb ¼ �r~J �~n, where r is

the Kapitza-like resistance.16 The second model is called high
conducting interface and concerns the case of an interphase

with vVb ¼ 0 and the jump of the flux is proportional to the

surface Laplacian of the electrical potential, v~J �~nb ¼ gr2
SV,

where g is the interphase conductance. A large number of

investigations on composite materials with low17–27 or

high20,26,28–33 conducting interfaces can be found in literature.

Other models are based on interphases of finite thickness

described by a refined mathematical formalism.34–36

In this paper, we analyze the combined effects of nonlin-

ear phases joined through imperfect interfaces: more specifi-

cally, we determine the scale effects induced by complex

interfaces on the effective nonlinear properties of a nano-

composite material. We take into consideration a paradig-

matic structure composed of nonlinear circular (2D) or

spherical (3D) inhomogeneities embedded in a linear matrix

(see Fig. 1). The theory can be applied to an arbitrary nonli-

nearity of the particles. However, explicit results are dis-

cussed for a Kerr-like nonlinearity described by a field

dependent conductivity of the form r2ðEiÞ ¼ r2 þ v2E2
i . On

the other hand, the interface behavior is taken into account

by means of the T-model and the P-model, which are com-

plex interface structures recently introduced to generalize thea)Electronic mail: Stefano.Giordano@iemn.univ-lille1.fr
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low and high conducting interface models.37 In these gener-

alized schemes both the electrical potential and the normal

component of the current density are discontinuous at the

interface. The versatility of such structures allows us to

effectively describe the behavior of real imperfect/multilay-

ered/structured interfaces of broad technological interest.

At first, we adopted these interfaces to model a single

particle embedded in a different matrix. The most important

technique to study the inclusion/matrix configuration is the

Eshelby methodology, largely employed for the electric,

magnetic, thermal, and elastic case.38–41 Its application

allowed to prove that the field induced in circular or spheri-

cal particles with low or high conducting interfaces is

uniform if the externally applied field is so.27,32,33 For iso-

tropic phases this property is valid also for the T and P
structures.37

Previous results for a single particle are constructive for

determining the nonlinear behavior of dispersions of nonlin-

ear particles with imperfect interfaces. Indeed, we prove that

the effective nonlinear properties depend upon the size of the

inhomogeneities. The complete understanding of these

behaviors is presented here by introducing different intrinsic

length scales governing various universal scaling laws. It is

important to remark that the same length scales are able to

characterize both the linear and nonlinear scaling scenario.

We underline that all the achievements of the present

paper can be also used in quasi-static regime if we consider a

wavelength k much larger than the radius R of the particles.

II. THE T AND P DUAL MODELS FOR IMPERFECT
INTERFACES

In order to generalize the high and low conducting inter-

faces, we proposed in Ref. 37 two more refined models

exploiting the network topologies shown in Fig. 1. The first

model is based on the T-lattice structure and it is defined by

three parameters rþ, g, and r�, whose physical meaning is

widely discussed in Ref. 37. Briefly, rþ and r� [X m2] repre-

sent the longitudinal (along ~n) external and internal resistiv-

ities of the lattice. Moreover, g [X�1] represents the

transversal (perpendicular to ~n) conductivity of the lattice. In

the limit of a continuous zero-thickness interphase layer

(Dh! 0), we easily obtain the relations for the interface in

the form

vVb ¼ �rþð~J �~nÞþ � r�ð~J �~nÞ�; (1)

v~J �~nb ¼ grþ
@2

@s2
ð~J �~nÞþ þ g

@2

@s2
Vþ: (2)

In previous expressions, the partial derivatives are per-

formed with respect to the variable s, which represents the

curvilinear abscissa along the arbitrarily curved interface on

the plane. As usual, in the three-dimensional case the opera-

tor @2=@s2 must be substituted with the surface Laplacian

r2
S, which is briefly discussed in Ref. 37. We can observe

that the present approach reproduces the low conducting

interface model if g¼ 0 (with a Kapitza resistance

r ¼ r� þ rþ) and the high conducting interface model if

r� ¼ rþ ¼ 0.

A dual scheme can be introduced by considering the

second structure depicted in Fig. 1 (P-model). A procedure

similar to the previous one leads to the following interface

equations:

vVb ¼ �rð~J �~nÞþ þ rgþ
@2

@s2
Vþ; (3)

v~J �~nb ¼ gþ
@2

@s2
Vþ þ g�

@2

@s2
V�; (4)

where gþ and g� ½X�1� represent the transversal external and

internal conductivities, while r [X m2] represents the longitu-

dinal resistivity of the lattice. As before, the operator @2=@s2

must be substituted with the surface Laplacian r2
S for the 3D

case. The P-model reproduces the low conducting interface

model if g� ¼ gþ ¼ 0 and the high conducting interface

model if r¼ 0.

As described in Ref. 37, both models can also be inter-

preted through a series of three ideal sheets, each of them

being a low or a high conducting interface. Moreover, the

evident structural and geometrical duality of the models will

be observed also in the linear and nonlinear physical results

described below.

III. BEHAVIOR OF A LINEAR PARTICLE WITH
GENERALIZED INTERFACES

We consider now a single circular (in 2D) or spherical

(in 3D) particle with conductivity r2 (linear) embedded into

FIG. 1. Scheme of a nanostructure com-

posed of nonlinear particles embedded in

a linear matrix: the imperfect interfaces

are modelled either through the T-model

or the P-model. The multiscale approach

leads to evaluate the nonlinear effective

behavior of the overall system.
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a matrix with conductivity r1 (linear): to begin, we suppose

that the interface between the constituents is described by

Eqs. (1) and (2) (T-model) and we determine the effect of an

externally applied field. Here, we are interested in the case

of a uniform field E0, corresponding to a potential

V0 ¼ �q cos#E0. We underline that E0 is aligned to the

x-axis when we consider a 2D geometry (with polar coordi-

nates x ¼ q cos# and y ¼ q sin#) and to the z-axis when

we consider a 3D geometry (with spherical coordinates

x¼ q sin#cosu;y¼ q sin# sinu;and z¼ qcos#): for details

see Fig. 2 of Ref. 37. The perturbation induced by the inho-

mogeneity with imperfect contact has been eventually

found as

for q < R) V ¼ �q cos#E0

dr1

C

� �
; (5)

for q > R) V ¼ �q cos#E0 1þ Rd

qd

B
C

� �
; (6)

where d¼ 2 for the circle and d¼ 3 for the sphere; the pa-

rameters B and C are defined as follows:

B ¼ r1 � r2 þ
rþ þ r�

R
r1r2

�ðd � 1Þ g

R
1� rþ

r1

R

h i
1þ r�

r2

R

h i
; (7)

C ¼ ðd � 1Þr1 þ r2 þ ðd � 1Þ r
þ þ r�

R
r1r2

þðd � 1Þ g

R
1þ ðd � 1Þrþ r1

R

h i
1þ r�

r2

R

h i
: (8)

The electric quantities both inside and outside the particle,

in contrast to the case with perfect interfaces, depend on R.

Indeed, these results were used for analyzing the scale

effects induced by the imperfect contact.37 From Eq. (5)

it is easy to identify the induced internal field as

Ei ¼ dr1E0=C. The linear scaling law for R!1 was

obtained by introducing the classical Lorentz field for a

particle with a perfect interface EL ¼ Eijrþ¼r�¼0;g¼0; we

easily proved that37

Ei

EL
� 1 ¼ � ðd � 1Þr1

ðd � 1Þr1 þ r2

‘� þ ‘þ þ L
R

þ O
1

R2

� �
; (9)

where we introduced the following intrinsic length scales:

‘� ¼ r2r�; ‘þ ¼ r2rþ; L ¼ g

r1

; (10)

which control all the scaling laws (also the nonlinear ones as

described below). This result means that the internal field

approaches the Lorentz one for large radius of the particle

(R� ‘� þ ‘þ þ L), i.e., the effects of the contact imperfec-

tion are vanishingly small for R!1.

Now, we can also consider the P-model described by

Eqs. (3) and (4). The perturbation to the electric potential

generated by the inhomogeneity with imperfect interface is

described again by Eqs. (5) and (6), but with new coefficients

B and C given below

B ¼r1 � r2 þ
r

R
r1r2 � ðd � 1Þ2 g�gþr

R3

�ðd � 1Þ
R

g� 1� r
r1

R

h i
þ gþ 1þ r

r2

R

h in o
; (11)

C ¼ðd� 1Þr1þr2þðd� 1Þ r

R
r1r2þðd� 1Þ2 g�gþr

R3

þðd� 1Þ
R

g� 1þðd� 1Þr r1

R

h i
þ gþ 1þ r

r2

R

h in o
: (12)

As before, they strongly depend on R, showing evident scale

effects. With regards to the scaling law for R!1, we

proved that37

Ei

EL
� 1 ¼ � ðd � 1Þr1

ðd � 1Þr1 þ r2

‘þ Lþ þ L�

R
þ O

1

R2

� �
; (13)

where we introduced the dual intrinsic length scales

‘ ¼ r2r; Lþ ¼ gþ

r1

; L� ¼ g�

r1

: (14)

As expected, also in this case the internal field approaches

the Lorentz one for large radius of the particle (R� ‘þ Lþ
þL�). In the following, we will prove that also the nonlinear

features exhibit scale effects governed by the same length

scales.

IV. HOMOGENIZATION OF DISPERSIONS WITH
NONLINEAR PARTICLES

We take into consideration a random and isotropic dis-

persion of N nonlinear circular or spherical particles embed-

ded in a linear matrix, and we suppose that the interfaces are

modelled either through the T-model or the P-model (see

Fig. 1). The volume fraction of the dispersed particles is

assumed to be small by hypothesis. We can therefore general-

ize the Maxwell approach,42 or equivalently, the Mori-Tanaka

scheme43 by obtaining the effective nonlinear behavior of the

system. We suppose that r2 ¼ r2ðEiÞ, i.e., the particles are

nonlinear with an arbitrary field-dependent conductivity.

Hence, the parameters B and C above defined become func-

tions of the internal field Ei: B ¼ BðEiÞ and C ¼ CðEiÞ.
To begin, we consider each single independent (i.e.,

non-interacting) particle and we can simply write

for q < R) Ei ¼
dr1

CðEiÞ
E0; (15)

for q� <) V ¼ �q cos#E0 1þ N
Rd

qd

BðEiÞ
CðEiÞ

� �
: (16)

The first relation represents an implicit equation for the inter-

nal field Ei induced within each particle (derived from

Eq. (5)). If the value of Ei is determined (numerically or ana-

lytically), the second equation gives the electric potential far

from the heterogeneous system (q� <), as superposition of

the effects of all inhomogeneities. It is important to remark

that this potential is also influenced by the nonlinear behav-

ior of the dispersion. This point will be exploited to perform

the nonlinear homogenization.
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On the other hand, we can take into consideration the

nonlinear homogenized circle or sphere of radius <, repre-

senting the overall heterogeneous system (see Fig. 1). It is

described by a nonlinear constitutive equation ref f ¼ ref f ð �EÞ
(which is unknown for the moment), where �E represents the

average value of the electric field over the composite struc-

ture. Of course, the equivalent circle or sphere is embedded

in a matrix of conductivity r1 with perfect interfaces.

Therefore, we can simply write

for q < < ) �E ¼ dr1

ðd � 1Þr1 þ ref f ð �EÞ
E0; (17)

for q� <)

V ¼ �q cos#E0 1þ<
d

qd

r1 � ref f ð �EÞ
ðd � 1Þr1 þ ref f ð �EÞ

� �
: (18)

While the first equation represents a direct relation between

the applied field and the averaged one, the second equation

furnishes the electric potential in the region far from the

composite system.

We will prove that an ad hoc analysis of the four results

given in Eqs. (15)–(18) is able to yield the effective nonlin-

ear response of the overall heterogeneous structure. To this

aim we can obtain a direct relationship between the internal

field Ei and the average field �E over the whole volume by

combining Eqs. (15) and (17): the result is

�E ¼ EiCðEiÞ
ðd � 1Þr1 þ ref f ð �EÞ

: (19)

Similarly, we can compare Eqs. (16) and (18) and we eventu-

ally obtain a second relation as follows:

BðEiÞ
CðEiÞ

¼ 1

c

r1 � ref f ð �EÞ
ðd � 1Þr1 þ ref f ð �EÞ

; (20)

where we have introduced the volume fraction c defined as

c ¼ NRd=<d , N being the total number of inhomogeneities

within the surface of radius <. Now, we can obtain ref f ð �EÞ
from Eq. (20) and we can substitute it in Eq. (19).

Performing these calculations, we proved that Eqs. (19) and

(20) are equivalent to the following expressions:

�E ¼ CðEiÞ þ cBðEiÞ
dr1

Ei; (21)

ref f ð �EÞ ¼ r1 1� cdBðEiÞ
CðEiÞ þ cBðEiÞ

� �
; (22)

which finally solve the proposed problem. From the first

equation we can determine Ei ¼ Eið �EÞ and we can use

this dependence in the second equation by obtaining

ref f ¼ ref f ð �EÞ, which is the searched nonlinear effective

constitutive equation. This general scheme, as above antici-

pated, is valid for an arbitrary nonlinearity r2 ¼ r2ðEiÞ of

the particles. Nevertheless, its implementation must be per-

formed numerically for complex forms of the function

r2 ¼ r2ðEiÞ. Here, we are interested in analytically applying

this procedure for nonlinear particles described by a quad-

ratic (Kerr-like) response

r2ðEiÞ ¼ r2 þ v2E2
i : (23)

It is worth to note that r2 in the right hand side is a constant

coefficient, while in the left hand side it represents a function

of Ei. The parameter v2 controls the nonlinear hyper-

susceptibility of the particles. As a result, we will determine

the overall nonlinear response of the nanocomposite in the

form

ref f ð �EÞ ¼ reff þ vef f
�E

2 þ def f
�E

4 þ Oð �E6Þ; (24)

where ref f is the effective linear conductivity and vef f and

def f are the effective nonlinear properties of our system. First

of all we can obtain the explicit forms of the parameters

B ¼ BðEiÞ and C ¼ CðEiÞ: to do this, we combine Eq. (23)

with Eqs. (7) and (8) for the T-model and with Eqs. (11) and

(12) for the P-model. In any case, we obtain

BðEiÞ ¼ aB þ bBE2
i ; (25)

CðEiÞ ¼ aC þ bCE2
i ; (26)

where for the T-model, the coefficients are given by the fol-

lowing expressions:

aB ¼r1 � r2 þ
rþ þ r�

R
r1r2

�ðd � 1Þ g

R
1� rþ

r1

R

h i
1þ r�

r2

R

h i
; (27)

aC ¼ðd � 1Þr1 þ r2 þ ðd � 1Þ r
þ þ r�

R
r1r2

þðd � 1Þ g

R
1þ ðd � 1Þrþ r1

R

h i
1þ r�

r2

R

h i
; (28)

bB ¼�v2þ
rþ þ r�

R
r1v2�ðd� 1Þ g

R2
1� rþ

r1

R

h i
r�v2; (29)

bC ¼ v2 þ ðd � 1Þ r
þ þ r�

R
r1v2

þðd � 1Þ g

R2
1þ ðd � 1Þrþ r1

R

h i
r�v2; (30)

and for the P-model by the following ones:

aB ¼r1 � r2 þ
r

R
r1r2 � ðd � 1Þ2 g�gþr

R3

�ðd � 1Þ
R

g� 1� r
r1

R

h i
þ gþ 1þ r

r2

R

h in o
; (31)

aC ¼ðd � 1Þr1 þ r2 þ ðd � 1Þ r

R
r1r2 þ ðd � 1Þ2 g�gþr

R3

þðd � 1Þ
R

g� 1þ ðd � 1Þr r1

R

h i
þ gþ 1þ r

r2

R

h in o
; (32)

bB ¼ �v2 þ
r

R
r1v2 �

ðd � 1Þ
R2

gþrv2; (33)

bC ¼ v2 þ ðd � 1Þ r

R
r1v2 þ

ðd � 1Þ
R2

gþrv2: (34)
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The first point concerns the solution of Eq. (21) with the

assumption given in Eqs. (25) and (26). Hence, we have to

find Ei in terms of �E starting from

�E ¼ ðaC þ bCE2
i Þ þ cðaB þ bBE2

i Þ
dr1

Ei; (35)

which corresponds to

dr1
�E ¼ ðaC þ caBÞEi þ ðbC þ cbBÞE3

i : (36)

This is an algebraic cubic equation of the form axþ bx3 ¼ c.

The solution can be searched in form of series in the parame-

ter c, by obtaining x ¼ c
a� bc3

a4 þ 3 b2c5

a7 þ Oðc7Þ: therefore, the

solution of Eq. (36) can be written as

Ei ¼
dr1

aC þ caB

�E � bC þ cbB

ðaC þ caBÞ4
d3r3

1
�E

3

þ 3
ðbC þ cbBÞ2

ðaC þ caBÞ4
d5r5

1
�E

5 þ Oð �E7Þ: (37)

Now to complete the procedure we have to substitute Eq.

(37) into Eq. (22); the result is given in Eq. (24) where the

linear and nonlinear effective properties can be obtained by

comparison

ref f ¼ r1

1

1þ cdaB

ð1� cÞaC þ c½aC � ðd � 1ÞaB�

; (38)

vef f ¼
aBbC � aCbB

ðaC þ caBÞ4
cd3r3

1; (39)

def f ¼ �3
ðbC þ cbBÞðaBbC � aCbBÞ

ðaC þ caBÞ7
cd5r5

1: (40)

These expressions represent the main achievement of this

section and will be used to analyze some particular cases,

and to investigate the dependence of the nonlinear response

upon the size of dispersed inhomogeneities (scale effects).

We remark that we have developed a nonlinear generaliza-

tion of the Maxwell approach42 or the Mori-Tanaka

scheme43 for obtaining simple results directly applicable to

investigate the scale effects. Of course, other homogeniza-

tion techniques could be applied as well: the differential

method,44–46 the self consistent scheme,47–49 and the strong-

property-fluctuation theory.50

A. Perfect interfaces

If we consider a perfect contact between the constituents

we obtain the celebrated Maxwell formula42 for the linear

response and two expressions for the nonlinear coefficients,

which are in perfect agreement with previous literature4,11

rmax ¼ r1

1

1þ dcðr1 � r2Þ
ð1� cÞ½ðd � 1Þr1 þ r2� þ cdr2

; (41)

vmax ¼
cd4r4

1v2

½ðd � 1þ cÞr1 þ ð1� cÞr2�4
; (42)

dmax ¼ �3
cð1� cÞd6r6

1v
2
2

½ðd � 1þ cÞr1 þ ð1� cÞr2�7
: (43)

It is interesting to notice that the term dmax does not affect the

nonlinear behavior for c¼ 0 nor c¼ 1, as expected. In our

context, these results represent a simple check of the proposed

procedure. Moreover, we also remark that in case of perfect

interfaces the effective response is not influenced by the parti-

cle size and, therefore, no scale effects are observable.

B. Low-conducting interfaces

In order to obtain the linear and nonlinear results for the

low conducting interface, we use the P-model (Eqs.

(31)–(34) combined to Eqs. (38)–(40)) with gþ ¼ g� ¼ 0. In

this way, only the longitudinal resistivity r controls the prop-

erties of the interface. The explicit final results describing

the linear and nonlinear effective parameters follow:

rlow¼r1

1

1þ
dc r1�r2þ

r

R
r1r2

� �

ð1�cÞ ðd�1Þr1þr2þðd�1Þ r

R
r1r2

h i
þcdr2

;

(44)

vlow ¼
cd4r4

1v2

ðd � 1þ cÞr1 1þ r

R
r2

� �
þ ð1� cÞr2

h i4
; (45)

dlow ¼ �3
cd6r6

1v
2
2 ð1� cÞ þ r

R
r1ðd � 1þ cÞ

h i

ðd � 1þ cÞr1 1þ r

R
r2

� �
þ ð1� cÞr2

h i7
: (46)

We note that the expression for rlow is in perfect agreement

with recent investigations.26,27,33 In addition, the analysis of

the scale effects describing the behavior of the linear conduc-

tivity rlow can be found in Ref. 37. However, the expressions

obtained for vlow and dlow are important for understanding the

scale effects induced by the interfaces on the effective nonlin-

ear behavior. It is evident that for a very large radius of the

particles (R!1) we have vlow ! vmax and dlow ! dmax

and, therefore, the scale effects disappear for macroscopic

systems. The scaling laws of the effective nonlinear proper-

ties can be formulated through the following developments:

vlow

vmax

� 1 ¼ �4
1

1þ r2

r1

1� c

d � 1þ c

‘

R
þ O

1

R2

� �
; (47)

dlow

dmax
� 1 ¼

�6þ r1

r2

d � 1þ c

1� c

1þ r2

r1

1� c

d � 1þ c

‘

R
þ O

1

R2

� �
: (48)

It is important to remark that ‘ in Eqs. (47) and (48) is the

length scale defined in Eq. (14), also controlling the scaling

laws of the electric field induced inside each particle and the

scaling laws of the linear effective properties.37 We also

underline that Eqs. (47) and (48) mean that the effective non-

linear properties approach those of the Maxwell assemblage
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for R� ‘, i.e., we quantitatively determined the crossover

between the different length scales. For going towards the

nanoscale we can now introduce the scaling laws describing

the behavior of the system for R! 0. A long but straightfor-

ward analysis leads to

vlow ¼
v2cd4

ðd � 1þ cÞ4
R

‘

� �4

þ OðR5Þ; (49)

dlow ¼
�3

v2
2

r2

cd6

ðd � 1þ cÞ6
R

‘

� �6

þ OðR7Þ: (50)

In both cases, the nonlinear features converge to zero for

very small particles. It is interesting to observe that vlow fol-

lows a scaling law with a power of fourth degree, while dlow

follows a law with a scaling exponent equal to six.

C. High-conducting interfaces

A similar analysis has been conducted to understand the

effects of the high conducting interfaces. This model can be

simply obtained by using the T-structure (Eqs. (27)–(30) sub-

stituted into Eqs. (38)–(40)) with rþ ¼ r� ¼ 0. Therefore,

the only parameter describing the behavior of the resulting

interface is the transversal conductivity g. The linear and non-

linear effective properties have been eventually found as

rhigh

¼r1

1

1þ
dc r1�r2�

d�1

R
g

� �

ð1�cÞ ðd�1Þr1þr2þ
d�1

R
g

� �
þcd r2þ

d�1

R
g

� �
;

(51)

vhigh ¼
cd4r4

1v2

ðd � 1þ cÞr1 þ ð1� cÞr2 þ ð1� cÞðd � 1Þ g

R

h i4
;

(52)

dhigh ¼ �3
cð1� cÞd6r6

1v
2
2

ðd � 1þ cÞr1 þ ð1� cÞr2 þ ð1� cÞðd� 1Þ g

R

h i7
:

(53)

First, we observe that the result for the linear conductivity

rhigh perfectly corresponds to recent achievements.26,32,33 The

scaling laws concerning such a parameter rhigh have been

largely discussed in Ref. 37 and, therefore, we are now inter-

ested in analyzing the nonlinear effective response. As before,

we remark that vhigh and dhigh are strongly size dependent

and, for R!1, they converge to the Maxwell counterparts

given in Eqs. (42) and (43): vhigh ! vmax and dhigh ! dmax.

This convergence is described by the following scaling laws:

vhigh

vmax

� 1 ¼ �4

ðd � 1Þð1� cÞ
d � 1þ c

1þ r2

r1

1� c

d � 1þ c

L
R
þ O

1

R2

� �
; (54)

dhigh

dmax
� 1 ¼ �7

ðd � 1Þð1� cÞ
d � 1þ c

1þ r2

r1

1� c

d � 1þ c

L
R
þ O

1

R2

� �
; (55)

which are completely controlled by the length scale L
defined in Eq. (10). Previous results have been obtained by

developing the quantity on the left hand sides in series of the

variable 1/R. To conclude the present discussion, we can

also determine the behavior of the nonlinear properties for

R! 0. An accurate analysis proves that

vhigh ¼
v2cd4

ðd þ c� cd � 1Þ4
R

L

� �4

þ OðR5Þ; (56)

dhigh ¼
�3

v2
2

r1

cd6

ðd � 1Þðd þ c� cd � 1Þ6
R

L

� �7

þ OðR8Þ: (57)

Interestingly, we note that vhigh and dhigh for R! 0 are con-

trolled by the scaling exponents four and seven, respectively.

These values should be compared with those concerning the

low conducting interface model: indeed, for vlow and dlow we

got the scaling exponents four and six, respectively.

Therefore, we can underline a different scaling behavior of

the effective parameter def f passing from the low to the high

interface model.

D. T-model

We can now take into consideration the complete T-

model described by the interface parameters rþ, g, and r�.

Since the scaling laws concerning the linear conductivity rT
ef f

have been largely discussed in our previous work,37 here we

focus our attention on the nonlinear properties vT
ef f and dT

ef f :

their scaling laws for R!1 have been eventually found as

vT
ef f

vmax

� 1 ¼ �4
1

1þ r2

r1

1� c

d � 1þ c

L
T
v

R
þ O

1

R2

� �
; (58)

L
T
v ¼ ‘þ þ ‘� þ

ðd � 1Þð1� cÞ
d � 1þ c

L; (59)

dT
ef f

dmax
� 1 ¼ 1

1þ r2

r1

1� c

d � 1þ c

L
T
d

R
þ O

1

R2

� �
; (60)

L
T
d ¼ �6þ r1

r2

d � 1þ c

1� c

� �
ð‘þ þ ‘�Þ � 7

ðd � 1Þð1� cÞ
d � 1þ c

L:

(61)

Once again, we remark that the scaling behavior of the effec-

tive nonlinear response is completely controlled by the three

length scales ‘þ; ‘�, and L, defined in Eq. (10) and already

describing the linear scaling.37 In fact, the characteristic

length scales L
T
v and L

T
d are simply linear combinations of

the three length scales above. Also the scaling laws obtained

for R! 0 can be interesting to understand the behavior of

the system at the nanoscale. The obtained results follow:
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vT
ef f ¼

v2cd4

ðd�1Þ4ðd�1þcÞ4
r2

r1

� �4 R3

‘�‘þL

� �4

þOðR13Þ; (62)

dT
ef f ¼

�3
v2

2

r2

cd6

ðd�1Þ6ðd�1þcÞ6
r2

r1

� �6 R3

‘�‘þL

� �6

þOðR19Þ: (63)

In this case, the scaling exponents are exactly three times

those found previously for the low conducting interface

model. This point can be related to the fact that the T-model

may be interpreted through a series of three different layers

(see Ref. 37 for details).

E. P-model

To complete our analysis we finally take into considera-

tion the P-model described by the interface parameters gþ, r,

and g�. As before, we discuss only the nonlinear properties,

since the linear ones have been largely explained in previous

literature.37 We determine vT
ef f and dT

ef f through Eqs. (39) and

(40) and we analyze their scaling laws for R!1: with long

but straightforward calculations we eventually found the

following results:

vP
ef f

vmax

� 1 ¼ �4
1

1þ r2

r1

1� c

d � 1þ c

L
P
v

R
þ O

1

R2

� �
; (64)

L
P
v ¼ ‘þ

ðd � 1Þð1� cÞ
d � 1þ c

ðL� þ LþÞ; (65)

dP
ef f

dmax
� 1 ¼ 1

1þ r2

r1

1� c

d � 1þ c

L
P
d

R
þ O

1

R2

� �
; (66)

L
P
d ¼ �6þ r1

r2

d � 1þ c

1� c

� �
‘�7
ðd � 1Þð1� cÞ

d � 1þ c
ðL� þ LþÞ:

(67)

As before, we observe that the scaling behavior of the effec-

tive nonlinear response is controlled by L
P
v and L

P
d , which

are linear combinations of the three length scales Lþ; L�;
and ‘, defined in Eq. (14) and already describing the linear

scaling.37 The scaling laws obtained for R! 0 can be use-

ful to understand the behavior of the system at the

nanoscale

vP
ef f ¼

v2cd4

ðd � 1Þ8ð1� cÞ4
r2

r1

� �4 R3

‘L�Lþ
� �4

þOðR13Þ; (68)

dP
ef f ¼

�3
v2

2

r2

cd6

ðd � 1Þ13ð1� cÞ6
r2

r1

� �7 R

L�
R3

‘L�Lþ
� �6

þ OðR20Þ:

(69)

As before, we note that the scaling exponent of vP
ef f is identi-

cal to that of vT
ef f . On the contrary, the exponent of dP

ef f is

larger than the exponent of dT
ef f . A similar situation was

described at the end of Sec. IV C.

F. Results and discussion

In Figs. 2 and 3 one can find the results for a three

dimensional dispersion with a fixed volume fraction c¼ 0.3

and a varying radius of the particles. The linear (ref f ) and

nonlinear (vef f and def f ) parameters are shown versus

log10 R. The plots correspond to the case r2 > r1 (Fig. 2)

and r1 > r2 (Fig. 3). In both cases we adopted v2 ¼ 1 and

we considered all possible imperfect interfaces. The parame-

ters r0 and r1 exploited in the first panel of Figs. 2 and 3

represent the conductivity of a dispersion of voids and of

superconducting particles, respectively, (see Ref. 37 for

details). For the linear response we observe that for low and

high conducting interfaces the scale effects are described by

FIG. 2. Results for a material (d¼ 3, c¼ 0.3) composed of two homogene-

ous media with r1 ¼ 1; r2 ¼ 5; and v2 ¼ 1 (a.u.). For the high conducting

interface (green lines with triangles), we used g¼ 1; for the low conducting

interface (red lined with circles), we used r¼ 1; for the T-model (continuous

black lines), we added 1=100 < rþ ¼ r� < 1 (ten values) to the high con-

ducting interface; finally for the P-model (dashed blue lines), we added 1 <
gþ ¼ g� < 100 (ten values) to the low conducting interface. The effective

responses are shown in terms of log10 R.
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monotone scaling law; on the contrary, the T and P models

show non-monotone scale effects with quite large peaks of

the transport properties. This behavior has been recently

observed in a dispersion of SiC particles (with radius

between 5 and 15 Å) embedded in a polymeric (epoxy) ma-

trix.51 These results are in qualitative agreement with our T-

model. However, the linear behavior of the generalized inter-

faces is widely discussed in Ref. 37 and, therefore, we are

here more interested in the nonlinear scaling. The results for

vef f show that we always have monotone scale effects for the

first nonlinear coefficient. In fact, with different interface

behaviors we obtain different crossovers between the scales

(identified by the inflection point of each curve) but in any

case we observe an increasing value of vef f starting from

zero (for infinitesimal particles) and reaching vmax for a large

radius of the particles. Concerning the nonlinear coefficient

def f , we observe a different behavior. For the high conduct-

ing interface we have a monotone scaling in any case; for the

low conducting interface we can observe a non-monotone

behavior if �6þ r1

r2

d�1þc
1�c > 0 (see Eq. (48); this condition is

e.g., satisfied in Fig. 3). For the T-model or the P-model, we

find a non-monotone behavior if LT
d > 0 or LP

d > 0, respec-

tively (see Eqs.(60) and (66)). Examples of peaks corre-

sponding to the latter case are reported in the third panel of

Fig. 3. Finally, for some combinations of parameters and for

particular imperfect interfaces, the nonlinear scaling

response can show pronounced peaks, which can be interest-

ing for designing materials with desired and controlled

strong nonlinear properties.

V. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the scale effects induced

by imperfect interfaces on the effective nonlinear behavior

of nanocomposites. To this aim we considered a paradig-

matic system composed of nonlinear particles embedded in a

linear matrix through imperfect interfaces. At the beginning,

we considered an arbitrary nonlinearity of the particles and

afterwards, to obtain concrete results, we applied the general

procedure to the case of Kerr-like nonlinearities. To join

inclusions and matrix we used two interface schemes,

namely the T and P structures, recently introduced to gener-

alize the classical low and high conducting interfaces. The

obtained results describe the scale effects of the nonlinear

properties of the overall system: it means that we studied

how the size of the particle affects the nonlinear effective

response, especially at the nanoscale, which is pertinent to

many composite of technological interest. The main achieve-

ments can be summarized as follows:

• The scaling laws for R!1 are always described by a

scaling exponent equal to one (dependence 1/R) for both

the linear and nonlinear properties. This value can be

explained in terms of the sole competition between surface

and volume effects. The different models for the imperfect

interfaces can only affect the value of the overall length

scale, which however is in any case the linear combination

of certain intrinsic length scales defined in Sec. III.
• Differently, the scaling laws for R! 0 exhibit some scal-

ing exponents strongly depending on the situation taken

into account. These exponents depend on the parameter

considered (ref f ; vef f , or def f ), and they increase with the

degree of nonlinearity of the effective parameter.

Moreover, they also depend on the kind of imperfect inter-

face considered, being again increasing with the level of

complexity of the model. This point can be explained by

observing that the most complicated models (T or P) can

be obtained by a multilayered structure composed of sim-

pler models (low and high conducting interfaces). Finally,

as before all scaling laws can be described by the same

intrinsic length scales defined in Sec. III.

We remark that throughout the paper we developed the

formalism in the context of the electrical transport, but all

FIG. 3. Results for a material (d¼ 3, c¼ 0.3) composed of two homogene-

ous media with r1 ¼ 1; r2 ¼ 1=5; and v2 ¼ 1 (a.u.). For the high conduct-

ing interface (green lines with triangles), we used g¼ 1; for the low

conducting interface (red lined with circles), we used r¼ 1; for the T-model

(continuous black lines), we added 1 < rþ ¼ r� < 100 (ten values) to the

high conducting interface; finally for the P-model (dashed blue lines), we

added 1=100 < gþ ¼ g� < 1 (ten values) to the low conducting interface.

The effective responses are shown in terms of log10 R.
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results can be applied to the analogous situations of thermal

conduction, antiplane elasticity, magnetic permeability, and

electric permittivity as well.
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