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Thermal effects on fracture and the brittle-to-ductile transition
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The fracture behavior of brittle and ductile materials can be strongly influenced by thermal fluctuations,
especially in micro- and nanodevices as well as in rubberlike and biological materials. However, temperature
effects, in particular on the brittle-to-ductile transition, still require a deeper theoretical investigation. As a
step in this direction we propose a theory, based on equilibrium statistical mechanics, able to describe the
temperature-dependent brittle fracture and brittle-to-ductile transition in prototypical discrete systems consisting
in a lattice with breakable elements. Concerning the brittle behavior, we obtain closed form expressions for
the temperature-dependent fracture stress and strain, representing a generalized Griffith criterion, ultimately
describing the fracture as a genuine phase transition. With regard to the brittle-to-ductile transition, we obtain
a complex critical scenario characterized by a threshold temperature between the two fracture regimes (brittle
and ductile), an upper and a lower yield strength, and a critical temperature corresponding to the complete
breakdown. To show the effectiveness of the proposed models in describing thermal fracture behaviors at small
scales, we successfully compare our theoretical results with molecular dynamics simulations of Si and GaN
nanowires.
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I. INTRODUCTION

The mechanical degradation of a material typically results
from the insurgence of cracks, from their geometric arrange-
ment and interactions and, finally, from temperature. The
classical Griffith energetic approach in fracture mechanics
deduces that, under a homogeneous stress σ , a single slit
crack with half-length L grows if σ >

√
2γsE ′/(πL), while

if σ <
√

2γsE ′/(πL), it remains stable [1,2]. Here E ′ is the
equivalent elastic modulus, equal to the Young modulus E
in plane stress condition, and equal to E/(1 − ν2) in plane
strain condition, where ν is the Poisson ratio of the material.
Moreover, γs is the surface energy density, that is, the en-
ergy expended to debond a unit length crack. This stability
criterion measures an energy competition between the free
surface energy created by the fracture and the elastic energy
stored in the deformable solid. The latter has been evaluated
within the linear elasticity theory by Inglis [3] and Kolosoff
[4] and used by Griffith to develop his criterion. The ingenious
approach proposed by Griffith in his celebrated criterion has
been largely and successfully tested in glass and other brittle
materials containing cracks of controlled length [5,6], and
also validated by atomistic simulations in ideal monocrys-
talline systems [7,8]. Its main limiting hypothesis is that the
overall fracture energy coincides with the surface energy, i.e.,
with the energy needed to break the bonds between the two
crack faces. Since Griffith’s theory fails to apply to ductile
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materials (where fracture energy is much higher than the
only surface energy [9,10]) it was generalized by Irwin to
include plastic dissipation [11,12]. More advanced models for
ductile fracture, taking into account an explicit description
of the “cohesive zone” where the plastic processes localize,
have then been proposed by Dugdale and Barenblatt [13,14].
The theoretical relationship between the Griffith’s theory, its
Irwin modification, and the Dugdale-Barenblatt models was
initially studied by Willis [15] and further investigated by
Rice through the concept of J integral [16]. In addition to
the single fracture study, an important topic in linear elastic
fracture mechanics is represented by the collective degrada-
tion mechanism induced by populations of cracks that interact
depending on their geometric arrangement [17–27]. Due to
the wide scientific and technological interest, the theoretical
and experimental studies of fracture phenomena have been
extremely extensive. Therefore, its history is long and com-
plicated, and we refer the reader to the relevant literature
[28–32]. We simply mention that current advanced researches
concern the traction-separation relation in cohesive models
[33,34], the instability in dynamic fracture [35,36], and the
variational approach to fracture [37,38]. Computational tech-
niques for cracks propagation include the phase field method
and the dual-horizon peridynamics formulation [39–42].

Previously described investigations are predominantly
based on deterministic assumptions and theories. Of course,
also statistical approaches have been widely applied to rup-
ture phenomena [43–48], and among others those based on
the so-called fiber bundle model are particularly significant
[49–52]. Importantly, the statistical analysis plays a cru-
cial role for understanding the effect of disorder in failure
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processes [53–60]. Despite the wide diffusion of statistical
techniques, the approaches that allow to study the effects of
thermal fluctuations on the fracture are rather limited [61–69].
In particular, the temperature dependence of crack stabil-
ity criteria has not been studied explicitly. For this reason,
we propose here two paradigmatic models able to evaluate
the effects of thermal fluctuations on the quasistatic brittle
fracture and on the brittle-to-ductile transition. These ap-
proaches make it possible to study how fracture stability is
influenced by temperature changes and to determine the tran-
sition temperature between brittle and ductile behaviors. The
proposed fracture models are based on equilibrium statistical
mechanics and they are implemented by means of the spin
variable approach, useful to deal with arbitrarily nonconvex
potential energies [70]. This method has been largely ap-
plied to several situations including the physics of muscles
[71,72], the folding of macromolecules [73–77], the adhesion
or peeling processes [78,79], the phase transformations in
solids [80,81], and the stick-slip on rigid substrate [82]. This
technique complements the more classical methods used to
study the behavior of physical systems with multiple stable
and metastable states [83–86]. In the context of fracture, the
prototypical models here proposed are discrete and based on
quasi-one-dimensional lattices composed of breakable and
unbreakable bonds. While the unbreakable springs serve to
distribute the forces in the system, thus describing material
elastic energy, the breakable springs are useful in mimicking
the fracture propagation. It is important to note in this context
that the role of discreteness in fracture models has already
been highlighted in different studies [87–90].

In the first model proposed here (elasto-fragile model),
developed to describe temperature effects in brittle fracture,
each breakable spring can be in one of two states, intact
or broken, depending on its extension. Conversely, in the
second proposed model (softening-fracture model), useful to
describe temperature effects in brittle-to-ductile transitions,
each breakable spring can be in one of three states, intact, soft-
ened or broken, depending again from the spring extension. In
our model, the softened state represents an intermediate con-
figuration where the elastic constant of the spring is smaller
than that of the intact spring, but it is still not zero as instead
assumed for the broken configuration. This intermediate state
represents here the counterpart of the material behavior of the
cohesive zone introduced in the Dugdale-Barenblatt model,
having also the role of introducing an internal length scale.
Both proposed models are approached by calculating the exact
partition function, by an approximation obtained for large
values of the number N of breakable springs, and, finally by
the analysis of the thermodynamic limit. This multifaceted
treatment allows us to state that both models exhibit a critical
behavior with an associated phase transition, whose mechan-
ical implications are thoroughly discussed. In our opinion
the results are particularly useful for the interpretation of
failure processes in micro- and nanosystems, where the ef-
fect of temperature is typically studied experimentally and
through molecular dynamics simulations [91–102]. We want
to emphasize that our models, being discrete and addressed
to the study of thermal fluctuations, neglect important aspects
related to the distribution of elastic fields around the fracture.
This is consistent with the fact that they are not developed to

replace classical models of continuum mechanics but rather to
provide new elements to improve and complement them.

The paper is structured as follows. In Sec. II we introduce
the first model for the brittle fracture and we apply the tools of
statistical mechanics to eventually obtain exact results. Then,
in Sec. III, we obtain an approximate analytic solution for
systems with a large number N of breakable springs, and in
Sec. IV we study the thermodynamic limit with N → ∞.
This allows for a generalization of Griffith’s criterion that
takes temperature into account by means of a critical be-
havior. Concerning the model with the softening mechanism,
we introduce its structure and we elaborate its formalism
in Sec. V. Further, we obtain its asymptotic behavior for
large values of N in Sec. VI, and we study the thermody-
namic limit with N → ∞ in Sec. VII. Here we obtain the
closed form expression for the brittle-to-ductile transition
temperature and describe the corresponding complex critical
scenario.

II. ELASTO-FRAGILE MODEL

We introduce here a discrete model that helps us to better
understand the effect of thermal fluctuations on the brittle
fracture processes in solid materials. As shown in Fig. 1, the
model consists in a network of springs with different elastic
constants arranged in a quasi-one-dimensional lattice, aimed
at reproducing a mode I fracture geometry [24]. Based on
symmetry assumptions, we reduce the scheme in Fig. 1(a)
to the one in Fig. 1(b). The structure in Fig. 1(b) connects
a fixed substrate, at y = 0, with a rigid top layer that can be
placed at different heights y = Y (isometric conditions within
the Helmholtz ensemble). More in detail [see Fig. 1(b)], this
structure is composed of a series of N + 1 springs, with elastic
constant k, linked together to form an horizontal chain (col-
ored in black). The left end side of the chain, at i = 0, is
attached to the bottom fixed substrate at y = 0 while the other
end, located at i = N + 1, is attached to the top layer at y = Y .
The inner points of the chain, identified by i = 1, . . . , N , are
individually linked to the top layer through N vertical springs
with elastic constant l (colored in yellow or light gray), mim-
icking the elasticity of the upper half plane. Moreover, the first
ones (i = 1, . . . , η), are linked to the bottom layer through
η breakable springs (intact in blue or dark gray; broken in
orange or intermediate gray). We assume that it exists an
elongation threshold YM after which the potential energy for
a breakable spring is constant and the resulting elastic force
is zero (broken state); see Fig. 2. The behavior of a single
breakable spring corresponds to an elastic constant h when its
elongation yi does not exceed the threshold YM (see Fig. 2).
When |yi| > YM the potential energy is constant and then the
resulting force is zero (see Fig. 2).

We remark that we adopted here simple piecewise linear
constitutive equations for the springs of the system. We wish
to mention that several important results have been obtained
for the crack propagation in nonlinear materials described by
power-law stress-strain behavior [103–105]. However, from
one side it is difficult to combine the thermal analysis with
nonlinear materials, and from the other side the nonlinear
phenomena are rather limited in nanoscopic systems [93,94].
It is also worth mentioning that due to the discrete quasi-one-
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(a)

(b)

FIG. 1. (a) Scheme of a crack propagating within an arbitrary
crystal lattice. (b) Reduced scheme of the elasto-fragile model, based
on symmetry assumption. The central horizontal chain (colored in
black) is composed of N + 1 linear elastic springs of elastic constant
k. The nodes of this chain are connected to the top layer of the system
(at y = Y ) with N vertical linear elastic springs of elastic constant l
(colored in yellow or light gray). Moreover, the first η nodes (i =
1, . . . , η) are also linked to the bottom layer (at y = 0) through η

vertical breakable springs of elastic constant h (intact in blue or dark
gray; broken in orange or intermediate gray). We underline that the
first node (i = 0) and the last one (i = N + 1) are anchored to the
bottom and the top layer, respectively. Hence, the first and the last
shear springs fix the direction of the crack propagation from the right
to the left of the system.

dimensional structure of our model, it is not possible to find
here the results concerning the stress singularities at the crack
tip and the calculation of the corresponding stress intensity
factor (this is true for both the elasto-fragile model and the
softening-fracture model) [21,24].

We analyze the fracture behavior of the proposed model
in the framework of equilibrium statistical mechanics, intro-
ducing a temperature T of an embedding thermal bath. As
previously anticipated, we investigate its behavior by adopting
isometric conditions corresponding to the Helmholtz ensem-
ble [106–108]. We make the assumption that, during the
system extension (i.e., increasing Y ), the system is composed
of a segment with ξ intact elements on the left side of the
system, and of a segment with η − ξ broken elements on
the right. As a result, the system evolution is characterized
by the propagation of a single interface between intact and
broken springs, regulated by the assigned traction conditions
and by the temperature. This hypothesis (known as single do-
main wall assumption) simplifies the calculations and makes
it possible to analytically derive the partition function and,
thus, the important macroscopic physical quantities. The same

FIG. 2. Potential energy of a single breakable spring with elastic
constant h (top panel) and corresponding force (bottom panel). The
quantity YM is the elongation after which the spring breaks, resulting
in a force equal to zero.

hypothesis is considered in the classical continuum fracture
models recalled in the introduction. The configurations pre-
viously described can be summarized by the relation 1 �
ξ � η � N , where ξ represents the domain wall or interface
position. We remark that the last N − η sites of the chain
are always considered disconnected from the bottom layer in
order to simulate a possible existing initial fractured domain.
This is coherent with the assumption of an initial crack exten-
sion in the classical Griffith criterion, which is the milestone
of the linear elastic fracture mechanics [1,2].

Based on previous key premises, the total energy of the
system is

�H (y1, . . . , yN , ξ ) =
N∑

i=0

k

2
(yi+1 − yi )

2 +
N∑

i=1

l

2
(Y − yi )

2

+
ξ∑

i=1

h

2
y2

i +
η∑

i=ξ+1

h

2
Y 2

M, (1)

with the boundary conditions y0 = 0 and yN+1 = Y . Here the
variables yi represent the vertical coordinates of the lattice
points while ξ assigns the discrete interface position. Observe
that the first addend of Eq. (1), proportional to the elastic
constant k, is the energetic contribution of the shear unbreak-
able springs. We remark that the use of the shear springs with
elastic constant k is an approximation valid under the small
deformation assumption (in our models the central nodes can
only move vertically). The second addend, proportional to the
elastic constant l , is the contribution of the vertical unbreak-
able springs that connect the upper layer to the inner lattice
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points. Finally, the energetic contribution proportional to the
elastic constant h, regarding the breakable springs, is split
into two addends: the first one corresponds to the unbroken
springs (going from i = 1 to i = ξ ), and the second one cor-
responds to the broken ones (from i = ξ + 1 to i = η). Again,
the assumption of linear elastic springs, as typical in linear
elastic fracture mechanics, allow for a proper description of

fracture effects under the hypothesis of small strains. Such
a simplification is crucial for the following analytical treat-
ment. The energy contribution associated with broken bonds
corresponds to the surface energy of the two exposed sides
of the fracture, originally introduced by Griffith in the overall
energy balance and eventually yielding his classical stability
criterion [1].

The energy in Eq. (1) can be rewritten as

�H = k

2

⎡
⎣ N∑

i=1

(
2 + l

k

)
y2

i +
ξ∑

i=1

h

k
y2

i −
N−1∑
i=1

yi+1yi −
N−1∑
i=1

yiyi+1

⎤
⎦+ kY

[
−

N∑
i=1

l

k
yi − yN

]
+ 1

2
kY 2 + 1

2
lNY 2 + 1

2
hY 2

M (η − ξ ).

(2)

We can introduce the following N-component vectors:

�y = (y1, y2, . . . , yN ), (3)

�v = (β, . . . , β, 1 + β ), (4)

and the tridiagonal matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 −1 0 · · · 0

−1 . . .
. . .

. . .
...

0 . . .
. . .

. . . 0
...

. . .
. . .

. . . −1
0 · · · 0 −1 aN

⎤
⎥⎥⎥⎥⎥⎥⎦

, (5)

where the diagonal components ai are defined as follows:

ai =
{

2 + α, if 1 � i � ξ,

2 + β, if ξ + 1 � i � N,
(6)

with

α = l + h

k
, β = l

k
, (7)

measuring extension versus shear springs stiffness of the lat-
tice. Adopting the matrix A and the vectors �y and �v, we can
write Eq. (2) as

�H = 1
2 k�y · A �y − kY �v · �y+ 1

2 kY 2+ 1
2 lNY 2 + 1

2 hY 2
M (η − ξ ).

(8)
This new compact expression is more suitable to evaluate the
partition function of the system, defined by

ZH (Y ) =
η∑

ξ=0

∫
RN

e− �H
KBT d�y. (9)

Here we have integrated the continuous coordinates yi, and we
have summed over the discrete or spin variable ξ identifying
the interface position. We have

ZH (Y ) =
η∑

ξ=0

exp

[
− kY 2

2KBT
− lNY 2

2KBT
− hY 2

M (η − ξ )

2KBT

]
Iξ ,

(10)
where

Iξ =
∫

RN

exp

(
− k

2KBT
�y · A �y + kY

KBT
�v · �y

)
d�y. (11)

By using the classical Gaussian integral,∫
RN

e−�y·M �ye �w·�yd�y =
√

πN

det M
e

1
4 �w·M−1 �w, (12)

which is valid for a positive definite symmetric matrix M (as
can be shown for the tridiagonal matrix A ) and for any vector
�w, we get

Iξ =
√

(2πKBT )N

kN det A
exp

(
kY 2

2KBT
�v · A −1�v

)
. (13)

Thus, the partition function can be written as

ZH (Y ) =
η∑

ξ=0

exp

[
− kY 2

2KBT
− lNY 2

2KBT
− hY 2

M (η − ξ )

2KBT

]

×
√

(2πKBT )N

kN det A
exp

(
kY 2

2KBT
�v · A −1�v

)
. (14)

Since A depends on ξ [see Eqs. (5) and (6)], both A −1 and
det A depend on ξ in the sum of Eq. (14). In Appendix A
we discuss an efficient method to determine A −1 and det A
for a tridiagonal matrix. This method will be used to obtain
asymptotic expressions, useful to study the system behavior
for large values of N (and for the thermodynamic limit). By
introducing the quantity

q = 1 + βN − �v · A −1�v, (15)

we can write the partition function in the form

ZH (Y ) =
η∑

ξ=0

√
(2πKBT )N

kN det A
exp

[−hY 2
M (η − ξ ) − kY 2q

2KBT

]
.

(16)
We can now evaluate the expected values of macroscopic

quantities. For example, expectation value of the force applied
to the system is [106–108]

〈 f 〉 = −KBT
1

ZH

∂ZH

∂Y
, (17)

resulting in

〈 f 〉 =
∑η

ξ=0(det A )−
1
2 exp

[−hY 2
M (η−ξ )−kY 2q

2KBT

]
q∑η

ξ=0(det A )−
1
2 exp

[−hY 2
M (η−ξ )−kY 2q

2KBT

] k Y. (18)
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FIG. 3. Behavior of the brittle-fracture model with a variable
number of units (N = {50, 125, 200} as indicated by arrows) and a
variable thermal to elastic energy ratio KBT/(hY 2

M ) = 0.5 (blue or
dark gray), and KBT/(hY 2

M ) = 2 (orange or light gray). The dimen-
sionless quantities 〈 f 〉/(NhYM ) (top panel) and 〈ξ〉/N (bottom panel)
are represented vs the dimensionless parameter Y/YM , where, in both
cases, l/h = k/h = 1. We also fixed η = N , which means there are
no missing or broken elements in the initial configuration.

This expression gives a physical interpretation to the ex-
pectation value 〈q〉 of the variable q. Since 〈 f 〉 = k〈q〉Y ,
the quantity k〈q〉 represents the effective stiffness 〈 f 〉/Y of
the system. Using a similar analysis, it is possible to obtain
the average value of the number of unbroken bonds, which is
given by

〈ξ 〉 =
∑η

ξ=0(det A )−
1
2 exp

[−hY 2
M (η−ξ )−kY 2q

2KBT

]
ξ∑η

ξ=0(det A )−
1
2 exp

[−hY 2
M (η−ξ )−kY 2q

2KBT

] . (19)

In Fig. 3 we show the main effects on the fracture behavior
of both temperature T and discreteness parameter N . The
main effect that can be observed is related to temperature,
which is able to shift the value of the extension corresponding
to the fracture of the system. In particular, we may observe
that, as typically experimentally observed, the higher the tem-
perature, the lower the force and the extension required to
induce fracture. The model then predicts a thermally activated
fracture phenomenon. As described in the following, in the
thermodynamic limit (i.e., for N → ∞), this behavior can be
theoretically interpreted as a phase transition. We can observe

since now (see Fig. 3) that, as the discreteness parameter N
increases, the force-displacement curves become sharper, in-
creasing the brittleness of the system. In summary, the model
exhibits a temperature-dependent brittle behavior, which can
be thoroughly described by analytic expressions for large val-
ues of N , obtained in the following section.

III. ASYMPTOTIC BEHAVIOR OF THE ELASTO-FRAGILE
MODEL

Equations (18) and (19) determine the expected value of
〈 f 〉, the force applied to the system, and the average value
〈ξ 〉 of the number of intact bonds as functions of both the
assigned displacement Y and of the temperature T . Here, to
give a clearer physical interpretation of such results, we obtain
analytical approximated relations, effective in the case of large
values of N . In particular, for large values of N , we have (see
Appendix B)

q ∼ lh

l + h

ξ

k
+ ε, (20)

where

ε =
√

β2 + 4β − β

2
> 0 (21)

and

det A ∼ τ ξ
α τ

N−ξ

β , (22)

with

τs = 2 + s + √
s2 + 4s

2
, s = α, β. (23)

By using Eq. (18), we obtain the following asymptotic expres-
sion of the force-extension relation:

〈 f 〉 ∼
∑η

ξ=0 exp
(− ξ

2 ln δ + hY 2
Mξ

2KBT − Y 2

2KBT
lh

l+hξ
)
q∑η

ξ=0 exp
(− ξ

2 ln δ + hY 2
Mξ

2KBT − Y 2

2KBT
lh

l+hξ
) k Y, (24)

where we introduced δ = τα/τβ . After defining

z = exp

(
−1

2
ln δ + hY 2

M

2KBT
− Y 2

2KBT

lh

l + h

)
, (25)

and adopting similar considerations for the quantity 〈ξ 〉, we
may easily deduce

〈 f 〉 ∼
(

kε + lh

l + h

∑η

ξ=0 ξzξ∑η

ξ=0 zξ

)
Y, (26)

〈ξ 〉 ∼
∑η

ξ=0 ξzξ∑η

ξ=0 zξ
, (27)

for large values of N . Combining Eqs. (26) and (27), we find

〈 f 〉 ∼
(

kε + lh

l + h
〈ξ 〉
)

Y. (28)

So, if we calculate the expectation value of intact elements
〈ξ 〉, we also deduce the force-extension relation 〈 f 〉-Y . To do
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FIG. 4. Comparison between the approximated quantities given
by Eqs. (28) and (31) (dashed lines) and the corresponding exact
results in Eqs. (18) and (19) (continuous lines) for 〈 f 〉/(NhYM ) (top
panel) and 〈ξ〉/N (bottom panel) vs the dimensionless extension
Y/YM . The thermal to elastic energy ratio KBT/(hY 2

M ) is set to 0.5
(blue or dark gray curves) and 2 (orange or light gray curves). The
total number of units is set to N = 50 and N = 200 (see arrows).
The dimensionless quantities are set to l/h = 1 and k/h = 1. We also
considered η = N .

this in explicit form, we have to evaluate the sums that appear
in the expression of 〈ξ 〉, i.e.,

η∑
ξ=0

ξzξ = z[1 − (η + 1)zη + ηzη+1]

(1 − z)2
, (29)

η∑
ξ=0

zξ = 1 − zη+1

1 − z
, (30)

where we adopted the variable z defined in Eq. (25). To con-
clude, we write

〈ξ 〉 ∼ 1 − (η + 1)zη + ηzη+1

1 − zη+1

z

1 − z
. (31)

These results represent the approximated expressions for
the response of the system under isometric condition for large
values of N . As shown in Fig. 4 (for η = N), we can observe
that the approximations given in Eqs. (28) and (31) (dashed
lines in the figure) are in perfect agreement with the exact
results (continuous lines), previously obtained in Eqs. (18)
and (19). We remark that the agreement is very good for
different temperatures and for different (large) values of N .

These approximated results are particularly useful to study
the thermodynamic limit or, equivalently, to study the limiting
case for N → ∞, as discussed below.

IV. THERMODYNAMIC LIMIT OF THE
ELASTO-FRAGILE MODEL

We perform now the limit for N → ∞. Since previous
asymptotic results in Eqs. (28) and (31) depend on powers of
z, we study the inequality z > 1. To verify this condition we
need to set the argument of the exponential in Eq. (25) larger
than zero, obtaining the following condition on Y :

|Y | �
√

l + h

lh

[
hY 2

M − KBT ln δ
]
� Ys, (32)

where we introduced the critical extension Ys, the physical
interpretation of which will be given below. We also define
a critical temperature Tc for the system through the condition
hY 2

M − KBTc ln δ = 0 [see Eq. (32)] that, once solved for Tc,
gives

Tc = hY 2
M

KB ln

⎛
⎜⎝2 + l+h

k +
√(

l+h
k

)2 + 4 l+h
k

2 + l
k +

√(
l
k

)2 + 4 l
k

⎞
⎟⎠

, (33)

where we used δ = τα/τβ . This is a specific value of the tem-
perature, depending on the main material parameters of the
system, which corresponds to a phase transition, as discussed
below. For the moment, we can write

z > 1 ⇐⇒ |Y | �
√

l + h

l
Y 2

M

(
1 − T

Tc

)
� Ys (34)

so that Ys = 0 when T = Tc.
We first analyze the limit for N → ∞ of the average frac-

tion of intact elements:

〈ξ 〉
N

= 1 − (η + 1)zη + ηzη+1

1 − zη+1

z

1 − z

1

N

= 1 − zη+1 + (η + 1)(zη+1 − zη )

1 − zη+1

z

1 − z

1

N

=
(

1

N
+ η + 1

N

1 − z

z − z−η

)
z

1 − z
. (35)

Now, we consider η = N − M, where M = φN is the number
of initially absent breakable springs (initial fractured domain).
Here φ is the percentage of initially absent breakable springs
over the total number N of elements. The fraction of intact
elements is determined as follows:

lim
N→∞

〈ξ 〉
N

=
{

1 − φ if z > 1 or |Y | < Ys,

0 if z < 1 or |Y | > Ys.
(36)

This means that all elements are broken simultaneously (brit-
tle fracture) when Y = Ys.

For the stress 〈 f 〉/N (density of force over the number of
bonds), we get

lim
N→∞

〈 f 〉
N

=
{ lh

l+h (1 − φ)Y if z > 1 or |Y | < Ys,

0 if z < 1 or |Y | > Ys.
(37)
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FIG. 5. Comparison between the thermodynamic limit obtained
for N → ∞ and the approximations obtained with large values of N
(see arrows). We plotted 〈 f 〉/(NhYM ) (top panel) and 〈ξ〉/N (bottom
panel) vs the dimensionless extension Y/YM . The thermal to elastic
energy ratio is set to KBT/(hY 2

M ) = 0.5 (in blue or dark gray) and
to KBT/(hY 2

M ) = 2 (in orange or light gray), while the total number
of units for the large N approximation is set to N = 500. The di-
mensionless quantities are set to l/h = 1 and k/h = 1. Moreover, we
adopted η = N corresponding to φ = 0.

Thus (see Fig. 5), after an initial linear behavior, the stress
collapses to zero at the extension threshold Ys. Together with
the extension threshold Ys, we can therefore introduce the
stress threshold σs as follows:

Ys = YM

√
l + h

l

(
1 − T

Tc

)
, (38)

σs = hYM (1 − φ)

√
l

l + h

(
1 − T

Tc

)
. (39)

In other words, σs is the value of 〈 f 〉/N in correspondence
of Y = Ys. We can say that Ys is the fracture extension
while σs is the fracture strength inducing the breaking
process.

The behavior of the system is shown in Fig. 5, where
the dimensionless quantities 〈 f 〉/(NhYM ) and 〈ξ 〉/N are
represented versus the dimensionless extension Y/YM . We
compared here the response for a large value of N and the
thermodynamic limit. In this limit, the breaking is fully brittle
with temperature-dependent fracture extension and stress.
Thus, as typical in collective phenomena of complex systems,

FIG. 6. Fracture extension Ys/YM (in orange or light gray) and
fracture strength σs/(hYM ) (in blue or dark gray) vs the reduced
temperature T/Tc. All quantities are written in dimensionless form.
We can observe that both quantities present a critical behavior cor-
responding to a phase transition for T = Tc. We adopted l/h = 1,
k/h = 1, and φ = 0.

although each breakable spring has a temperature-
independent breakage threshold, the overall system exhibits a
temperature-dependent fracture point due to the interactions
between the springs and the thermal bath. In particular,
the system undergoes a phase transition for T = Tc, with
both fracture extension and stress decreasing to zero at
T = Tc when the system breaks without any external
mechanical actions. This is described in Fig. 6, where
we plot the dimensionless fracture extension Ys/YM and
the dimensionless fracture strength σs/(hYM ) versus the
temperature ratio T/Tc. This critical behavior corresponds
to a classical second-order phase transition. We also remark
that Eq. (39) represents an extension of the Griffith criterion
of the linear elastic fracture mechanics, accounting for the
additional effects of temperature. From Fig. 2, we see that the
energy necessary to break an element is given by hY 2

M/2 and
then the Griffith surface energy density γs is proportional to
hY 2

M/2. Equivalently, YM is proportional to
√

γs and therefore
it is easily seen that the fracture strength given in Eq. (39)
is proportional to

√
γs, exactly as in Griffith’s criterion [1].

Moreover, at constant temperature it is well seen that the
breaking strength decreases if φ increases, which is exactly
what the Griffith’s criterion states [1]. This means that, if
the initial system is degraded, a smaller force is required to
continue its mechanical degradation. Of course, our version
is quantitatively different from the original one because of
the simplified geometry we used. In particular, we do not
consider the exact elastic energy distributed over the deformed
continuum due to fracture. Our model, however, introduces
thermal effects in brittle fracture and, in particular, shows
the phase transition at the critical temperature Tc given in
Eq. (33).

To show the effectiveness of the obtained results, we
analyze the temperature-dependent fracture behavior of [110]-
oriented silicon nanowires [94]. In Fig. 7 we compare the
theoretical fracture force given by Eq. (39) with the molecu-
lar dynamics results discussed in Ref. [94]. We observe that
the theory well predicts the brittle fracture behavior of the
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FIG. 7. Tensile strength of [110]-oriented silicon nanowires as a
function of temperature for wires with different diameters: compari-
son between molecular dynamics simulations results [94] (symbols)
and our theory given by Eq. (39) (continuous lines). The parameters
used are reported in the main text.

nanowires both temperature- and diameter-wise [see Fig. 4(b)
of Ref. [94]]. In the figure the theoretical force in Eq. (39)
has been divided by the area S pertaining to each breakable
spring in order to obtain the stress σ = 〈 f 〉/(NS) = σs/S.
The strain has been determined as ε = Y/�, where � is the
characteristic lengthscale induced by the crystal structure. For
all curves we adopted the parameters YM = 1.78 × 10−11 m,
S = 2.27 × 10−21 m2, � = 1.82 × 10−10 m, k = 88.4 N/m,
and KB = 1.38 × 10−23 J/K. Moreover, for the blue curve
(or dark gray, D = 5 nm) we used l = 9.07 N/m and h =
2.00 N/m; for the yellow curve (or light gray, D = 6 nm) we
used l = 9.54 N/m and h = 2.05 N/m; for the orange curve
(or intermediate gray, D = 7 nm) we used l = 9.94 N/m and
h = 2.08 N/m. While most of geometrical parameters were
available in the original paper dealing with molecular dynam-
ics simulations, the other physical parameters (in particular
the elastic constants), were fitted to correctly reproduce the
results. The elastic constants take effective values pertinent
to the springs of our lattices and therefore cannot be di-
rectly obtained from the data available in the above papers.
Interestingly, all the obtained (fitted) values are reasonable
and consistent with the underlying physics of the system. In
particular, the fact that h and l increase with the diameter is
consistent with the results of Ref. [94], providing evidence
that the nanowires Young modulus E increases with diameter
(scale effect). This coherence is also quantitative since in our
case we have E = �/[(1/l + 1/h)S], which assumes the val-
ues 130 GPa, 135 GPa, and 138 GPa, for the three diameters
5 nm, 6 nm, and 7 nm, in agreement with Fig. 4(a) of Ref. [94].
The good agreement between theory and simulations makes
us confident on the applicability of our theory to micro- and
nanoscopic systems.

V. SOFTENING-FRACTURE MODEL

The previous model, useful to describe brittle fracture, is
further generalized here to introduce a material ductile behav-
ior of the elements possibly resulting in a brittle-to-ductile
transition. Specifically, in the same spirit of the Dugdale-
Barenblatt model [13,14], we introduce a cohesive zone

FIG. 8. Scheme of the fracture model with the softening mecha-
nism. The central horizontal chain (colored in black) is composed of
N + 1 linear springs with elastic constant k. The nodes of this chain
are connected to the top layer (at y = Y ) by N vertical linear springs
with elastic constant l (colored in yellow or light gray). The first η

nodes (i = 1, . . . , η) are also linked to the bottom layer (at y = 0)
by η vertical softenable and breakable springs with elastic constant
h when intact (colored in blue or dark gray), or p when softened
(colored in green, springs with fewer coils). The broken elements are
represented in orange and identified by a rupture in the springs. We
remark that the first node (i = 0) and the last one (i = N + 1) are
anchored to the bottom and the top layers, respectively.

between the elastic and fractured domains of the breakable
springs, characterized by two different states before the bro-
ken configuration, depending on their extension yi (see Fig. 8).
More precisely, each breakable spring presents an elastic con-
stant h when its extension is less than the softening point
Yp and a lower elastic constant p < h for larger extensions,
until the breaking point corresponding to the extension Yb is
attained and the link is broken (see Fig. 9). As we can see,
each breakable element behaves as a spring of elastic constant
h when −Yp � yi � Yp. Then the spring is softened with an
elastic constant p < h when Yp � |yi| � Yb. After the breaking
point Yb, the potential energy is constant and therefore the re-
sulting force is zero. Thus, the potential energy of a breakable
spring is

U (yi ) =

⎧⎪⎨
⎪⎩

1
2 hy2

i if |yi| � Yp,
1
2 py2

i + �E if Yp � |yi| � Yb,
1
2 pY 2

b + �E if |yi| � Yb.

(40)

Given the two elastic moduli h and p (with p < h) and the
energy gap �E > 0, we obtain the softening point

Yp =
√

2�E

h − p
, (41)

which must always satisfy the condition Yp < Yb. Thus
�E + pY 2

p /2 = hY 2
p /2 is the energy necessary to weaken

one breakable element of the system, and �E + pY 2
b /2 =

hY 2
p /2 + p(Y 2

b − Y 2
p )/2 is the energy necessary to break

the element. This reproduces in the discrete context con-
sidered here the Irwin generalization of the Griffith’s
criterion [11,12].
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FIG. 9. Potential energy of a single softenable and breakable
spring of elastic constants h and p (top panel) and corresponding
force (bottom panel). We see that Yp is the elongation after which the
spring is weakened or softened, and Yb is the elongation after which
the spring is broken.

The total energy �H (y1, . . . , yN , ξ , χ ) of the system is

�H =
N∑

i=0

k

2
(yi+1 − yi )

2 +
N∑

i=1

l

2
(Y − yi )

2 +
ξ∑

i=1

h

2
y2

i

+
χ∑

i=ξ+1

( p

2
y2

i + �E
)

+
η∑

i=χ+1

( p

2
Y 2

b + �E
)
. (42)

Here we introduced the position ξ of the interface between
intact and softened elements, the position χ of the interface
between softened and fully broken elements and, finally, the
position η of the interface between fully broken and initially
absent elements. The value of η corresponds to the initial state
of the system and is therefore fixed. The two interfaces at ξ

and χ can move as a function of temperature and mechanical
actions on the system. The aim of this section is to study
the (quasistatic) evolution of these interfaces determining the
fracture propagation phenomenon. The region between ξ and
χ , characterized by softened elements, identifies the cohesive
zone of the rupture phenomenon. When the cohesive zone
is absent or negligible, the fracture is brittle; on the other
hand, when the cohesive zone is not negligible, the fracture
becomes ductile. Therefore, as we show in the following, this
model allows to describe the brittle-to-ductile transitions. As
in Sec. II, we remark that the use of the shear springs with
elastic constant k is an approximation valid under the small
deformation assumption (in our models the central nodes can
only move vertically).

We can rewrite Eq. (42) as

�H = k

2

[
N∑

i=1

(
2 + l

k

)
y2

i +
ξ∑

i=1

h

k
y2

i +
χ∑

i=ξ+1

p

k
y2

i

− 2
N−1∑
i=1

yi+1yi

]
+ kY

[
−

N∑
i=1

l

k
yi − yN

]
+ 1

2
kY 2

+ 1

2
lNY 2 +

( p

2
Y 2

b + �E
)

(η − χ ) + (χ − ξ )�E .

(43)

As before, to simplify the mathematical structure of the en-
ergy function, we introduce the vectors in Eqs. (3) and (4), and
the tridigonal matrix in Eq. (5), where the diagonal elements
ai are now defined as follows:

ai =
⎧⎨
⎩

2 + α if 1 � i � ξ,

2 + γ if ξ + 1 � i � χ,

2 + β if χ + 1 � i � N,

(44)

with the parameters

α = l + h

k
, β = l

k
, γ = l + p

k
, (45)

satisfying the condition β < γ < α. By introducing the ma-
trix A and the vectors �y and �v, we are able to write the total
energy as

�H = k

2
�y · A �y − kY �v · �y + k

2
Y 2 + l

2
NY 2

+ p

2
Y 2

b (η − χ ) + (η − ξ )�E . (46)

We suppose to embed the system in a thermal bath at temper-
ature T and, assuming to be not far from the thermodynamic
equilibrium, we can evaluate the partition function

ZH (Y ) =
η∑

χ=0

χ∑
ξ=0

∫
RN

e− �H
KBT d�y. (47)

By using Eq. (46), it can be evaluated as

ZH (Y ) =
η∑

χ=0

χ∑
ξ=0

Iξ,χeλξ,χ , (48)

where

λξ,χ = − kY 2

2KBT
− lNY 2

2KBT
− �E

KBT
(η − ξ ) − pY 2

b

2KBT
(η − χ )

(49)
and

Iξ,χ =
∫

RN

exp

(
− k

2KBT
�y · A �y + kY

KBT
�v · �y

)
d�y. (50)

Using Eq. (12) we get

Iξ,χ =
√

(2πKBT )N

kN det A
exp

(
kY 2

2KBT
�v · A −1�v

)
. (51)
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Summing up, we obtain the partition function as

ZH (Y ) =
η∑

χ=0

χ∑
ξ=0

√
(2πKBT )N

kN det A
e− kY 2

2KBT (1+βN−�v·A −1�v)

× exp

[
− �E

KBT
(η − ξ ) − pY 2

b

2KBT
(η − χ )

]
. (52)

In this case, by using Eq. (17), we get that the expected value
of the applied force is

〈 f 〉 =
∑η

χ=0

∑χ

ξ=0(det A )−
1
2 exp

(
2�Eξ + pY 2

b χ−kY 2q
2KBT

)
q∑η

χ=0

∑χ

ξ=0(det A )−
1
2 exp

(
2�Eξ + pY 2

b χ−kY 2q
2KBT

) k Y,

(53)

where we used the definition of q in Eq. (15). This is the
expression for the average value of the force necessary to
impose the extension Y to the system. Similarly, we obtain
the interface positions

〈ξ 〉 =
∑η

χ=0

∑χ

ξ=0(det A )−
1
2 exp

(
2�Eξ+pY 2

b χ−kY 2q
2KBT

)
ξ∑η

χ=0

∑χ

ξ=0(det A )−
1
2 exp

(
2�Eξ+pY 2

b χ−kY 2q
2KBT

) , (54)

〈χ〉 =
∑η

χ=0

∑χ

ξ=0(det A )−
1
2 exp

(
2�Eξ+pY 2

b χ−kY 2q
2KBT

)
χ∑η

χ=0

∑χ

ξ=0(det A )−
1
2 exp

(
2�Eξ+pY 2

b χ−kY 2q
2KBT

) .

(55)

These results allow us to fully describe the fracture behavior
for a ductile material. In particular, based on Eqs. (54) and
(55), we are able to determine when the fracture is brittle,
without the region of softened elements, or when the fracture
is ductile, i.e., with a nonnegligible fraction of softened ele-
ments, representing the cohesive region.

We mentioned the Dugdale and Barenblatt models since
historically they are the most important approaches to intro-
duce a process zone in fracture phenomena. It is useful to
remember that the original Dugdale model has been devel-
oped for plane strain conditions. Other approaches have been
developed successively to consider plane stress conditions
[109,110]. However, our model is composed of a quasi-one-
dimensional lattice of springs that does not allow the access to
realistic elastic fields in the structure. Hence, it is difficult to
quantitatively compare our results with elastic models in both
plane stress and plane strain. Moreover, Dugdale model does
not account for hardening phenomena, such as our approach,
which is completely linear. In spite of these limitations, Dug-
dale model has been generalized for strain hardening materials
[111,112]. It is also important to remember that the process
zone in real situations extends beyond the fracture growth
plane, a point neglected in both Dugdale’s original model
and ours. In real fractures, the actual deformation is repre-
sented by a complicated three-dimensional field, completely
disregarded in our one-dimensional analysis. To conclude, the
purpose of our models is not to improve aspects related to
continuous elastic fields but rather to introduce the effects
of temperature into a simplified model. With this in mind,
our approaches are not created to replace classical ones but

only to inform them of how temperature acts in fracture
phenomena.

It is also important to discuss the physical meaning of the
softened state of breakable springs. The ductility in metallic
materials is related to a population of dislocations originated
by the moving crack, generating a damaged zone near the
crack tip with degraded elastic properties [113–116]. Since,
we do not have the possibility to consider realistic disloca-
tions in our model, we introduced the weakened state for
the breakable springs, corresponding to the degraded elas-
tic properties of the damaged zone. In the realistic case,
the brittle-to-ductile transition is controlled by the competi-
tion between continuing the fracture (as in the brittle case)
or using an amount of energy to generate dislocations that
degrade the material. In our model, we have similar compe-
tition between the intact-broken switching (brittle regime) or
the intact-softened switching (ductile regime). This compe-
tition is strongly influenced by temperature and our model
explains this effect in detail. Besides metals, a similar dam-
aged zone, describing the physical state of the material
between the intact and the fully broken conditions, has been
also observed in different systems including concrete [117],
soft materials [118,119], polymeric networks [120,121], and
bones [122].

VI. ASYMPTOTIC BEHAVIOR OF THE
SOFTENING-FRACTURE MODEL

Once again to obtain clearer analytic results, we consider
the behavior of systems with large values of N . We have (see
Appendix B)

q ∼ β2

(
ξ

γ
− ξ

α
− χ

γ
+ χ

β

)
+ ε, (56)

where ε is given in Eq. (21), and

ln det A

N
∼ ln τβ + ξ

N
ln

τα

τγ

+ χ

N
ln

τγ

τβ

, (57)

where τα, τβ , and τγ are given in Eq. (23), for s = α, β, γ .
Thus, we can write the expressions for the average force and
the average interface positions as it follows:

〈 f 〉 ∼
∑η

χ=0

∑χ

ξ=0

[
β2
(

ξ

γ
− ξ

α
− χ

γ
+ χ

β

)+ ε
]
eqξ ξ+qχ χ∑η

χ=0

∑χ

ξ=0 eqξ ξ+qχ χ
k Y,

(58)

〈ξ 〉 ∼
∑η

χ=0

∑χ

ξ=0 ξeqξ ξ+qχ χ∑η

χ=0

∑χ

ξ=0 eqξ ξ+qχ χ
, (59)

〈χ〉 ∼
∑η

χ=0

∑χ

ξ=0 χeqξ ξ+qχ χ∑η

χ=0

∑χ

ξ=0 eqξ ξ+qχ χ
, (60)

where we introduced the quantities

qξ = −1

2
ln

τα

τγ

− kY 2β2

2KBT

(
1

γ
− 1

α

)
+ �E

KBT
, (61)

qχ = −1

2
ln

τγ

τβ

− kY 2β2

2KBT

(
1

β
− 1

γ

)
+ pY 2

b

2KBT
. (62)
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Using the expressions for 〈ξ 〉 and 〈χ〉, we can rewrite 〈 f 〉 in
the simpler form

〈 f 〉 ∼
[
ε + β2

(
1

γ
− 1

α

)
〈ξ 〉 + β2

(
1

β
− 1

γ

)
〈χ〉
]

k Y. (63)

Hence, once we know the expected values 〈ξ 〉 and 〈χ〉 of the
interface positions, we also know the force required to impose
the extension Y . To simplify the notation, we introduce

w = eqξ , (64)

z = eqχ . (65)

By Eqs. (59) and (60), using Eqs. (29) and (30), after long but
straightforward calculations, we obtain

〈ξ 〉 = Nξ

D
, (66)

〈χ〉 = Nχ

D
, (67)

where, for the sake of readability, we introduced

Nξ = w

1 − w

{
1 − zη+1

1 − z
− 1 − (wz)η+1

1 − wz
(68)

− (1 − w)wz

(1 − wz)2
[1 − (wz)η(1 + η) + η(wz)η+1]

}
, (69)

Nχ = z

(1 − z)2
(1 − zη(1 + η) + ηzη+1)

− w2z

(1 − wz)2
[1 − (wz)η(1 + η) + η(wz)η+1],

D = 1 − zη+1

1 − z
− w

1 − (wz)η+1

1 − wz
. (70)

These results approximate the behavior of the fracture process
in the presence of the softening phenomenon for large values
of N . In particular, we can determine the limit for N → ∞ of
the main observables, in order to provide a precise physical
interpretation of the brittle-to-ductile transition. The obtained
expressions depend on wη, zη, and (wz)η and, since in our
model η = N (1 − φ) where φ is the fraction of initially absent
breakable springs, they present an exponent going to infinity
when N → ∞. We know that, when N → ∞, a generic power
xN tends to infinity if x > 1 and tends to zero if |x| < 1, hence
we study the three inequalities w > 1, z > 1 and wz > 1,
which will be useful to better understand the system behavior.
These inequalities are equivalent to study the positive charac-
ter of their exponents qξ , qχ , and qξ + qχ .

We start by setting the exponent of w larger than zero

qξ = −1

2
ln

τα

τγ

− kY 2β2

2KBT

(
1

γ
− 1

α

)
+ �E

KBT
> 0. (71)

In terms of Y , this inequality gives

|Y | <

√
1

kβ2
(

1
γ

− 1
α

)[(h − p)Y 2
p − KBT ln

τα

τγ

]
� Yξ , (72)

where we introduced a first extension threshold Yξ . We ob-
serve that kβ2( 1

γ
− 1

α
) is always positive because p < h by

definition and, then, the argument of the square root is positive

when the temperature T is smaller than the critical tempera-
ture Tξ defined as

Tξ = (h − p)Y 2
p

KB ln τα

τγ

. (73)

The meaning of Yξ and Tξ will be clarified later. By setting the
exponent of z greater than zero, we define the inequality

qχ = −1

2
ln

τγ

τβ

− kY 2β2

2KBT

(
1

β
− 1

γ

)
+ pY 2

b

2KBT
> 0. (74)

It can be solved with respect to Y , eventually giving the result

|Y | <

√√√√ 1

kβ2
(

1
β

− 1
γ

)[pY 2
b − KBT ln

τγ

τβ

]
� Yχ , (75)

where we introduced a second extension threshold Yχ .
As before, the quantity kβ2( 1

β
− 1

γ
) is always positive and

therefore the whole square root argument is positive for values
of the temperature below the critical temperature Tχ defined as

Tχ = pY 2
b

KB ln τγ

τβ

. (76)

As before, Yχ and Tχ will be physically interpreted in the fol-
lowing. Finally, we set the exponent of wz greater than zero,
which corresponds to qξ + qχ > 0. We obtain the inequality

|Y | <

√
1

kβ2
(

1
β

− 1
α

)[pY 2
b + (h − p)Y 2

p − KBT ln
τα

τβ

]
� Yξχ ,

(77)
where we introduced a third extension threshold Yξχ . Being
kβ2( 1

β
− 1

α
) always positive, the square root has a positive

argument when T < Tξχ , where

Tξχ = pY 2
b + (h − p)Y 2

p

KB ln τα

τβ

. (78)

Again, we will discuss in the following the physical meaning
of Yξχ and Tξχ . Summarizing these results, we can write

{
w > 1
qξ > 0 ⇔ |Y | <

√
(l + p)(l + h)Y 2

p

l2

(
1 − T

Tξ

)
,

(79){
z > 1
qχ > 0 ⇔ |Y | <

√
(l + p)Y 2

b

l

(
1 − T

Tχ

)
,

(80)

{
wz > 1
qξ + qχ > 0 ⇔ |Y | <

√√√√ pY 2
b + (h − p)Y 2

p
lh

l+h

(
1 − T

Tξχ

)
,

(81)

where we used the definition for the critical temperatures Tξ ,
Tχ , and Tξχ previously introduced.

The three dimensionless extension thresholds Yξ /Yb, Yχ/Yb,
and Yξχ/Yb are plotted versus the dimensionless temperature
KBT/(hY 2

b ) in Fig. 10. We can already anticipate that brittle
or ductile behavior depends on the sign of Yχ − Yξ . Indeed,
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FIG. 10. Behavior of the dimensionless extension thresholds
Yξ /Yb, Yχ/Yb, and Yξχ /Yb vs the dimensionless temperature
KBT/(hY 2

b ) of the system. From the physical point of view, Yξχ

(yellow or light gray curve) describes the brittle fracture below the
transition temperature T ∗, and the couple Yξ (blue or dark gray), Yχ

(orange or intermediate gray) describes the ductile fracture above
the temperature T ∗. The three curves Yξ /Yb, Yχ/Yb, and Yξχ /Yb vs
KBT/(hY 2

b ) intersect at the bifurcation black point, characterized by
T ∗. We adopted the parameters α = 7/5, β = 2/5, γ = 9/10, and
�E/(hY 2

b ) = 1/10.

we have a brittle fracture if Yχ < Yξ , and a ductile fracture
if Yχ > Yξ (see Fig. 10). In the first brittle case, the rupture
occurs for Y = Yξχ . In the second ductile case, the softening
occurs for Y = Yξ and rupture for Y = Yχ . We observe there-
fore that it exists a brittle-to-ductile transition temperature T ∗
that separates the brittle behavior from the ductile one (see
the yellow point in Fig. 10). This temperature is defined by
equating Yξ and Yχ , as follows:

√√√√ (h − p)Y 2
p

kβ2
(

1
γ

− 1
α

)(1 − T ∗

Tξ

)
=
√√√√ pY 2

b

kβ2
(

1
β

− 1
γ

)(1 − T ∗

Tχ

)
.

(82)

When solved, this equation gives the value of T ∗ as

KBT ∗

hY 2
b

=
(

1
α−β

)[
α
(

Yp

Yb

)2
− β

]
(

α
α−γ

)
ln τα

τγ
− ( β

γ−β

)
ln τγ

τβ

. (83)

Interestingly, this quantity can be also explicitly written in
terms of the elastic constants of the system

T ∗ = (l + h)Y 2
p − lY 2

b

KB
(

l+h
h−p ln τα

τγ
− l

p ln τγ

τβ

) . (84)

To justify the introduction of all these quantities and no-
tations, we use now Eqs. (63), (66), and (67) to observe the
behavior of the system with different values of N and tem-
perature T . In particular, we consider Fig. 10 and we show
the system behavior for three values of the temperature be-
longing to the regions 0 < T < T ∗ (brittle response, Fig. 11),
T ∗ < T < Tξ (ductile response, Fig. 12), and Tξ < T < Tχ

(overductile response, Fig. 13). We do not consider values of
the temperature larger than Tχ since, in this case, all elements
are broken due to the only thermal effects, without the appli-
cation of mechanical actions.

In Fig. 11 we can find the dimensionless force given by
Eq. (63) in the first panel, and the three quantities 〈ξ 〉/N ,
〈χ − ξ 〉/N and 〈N (1 − φ) − χ〉/N representing the fraction
of intact, softened and broken elements, calculated through
Eqs. (66) and (67), respectively, in the second panel. For
simplicity, we always considered φ = 0. Note that the dimen-
sionless force is divided by N so as to be consistent with
the definition of mechanical stress. We can see that, with a
temperature in the range 0 < T < T ∗, the force drops to zero
in correspondence to the extension threshold Yξχ , describing
the simultaneous rupture of all elements. Indeed, it can be
seen in the second panel that the elements change almost
completely from the intact to the broken state, with a fraction
of softened elements that is negligible. The response becomes

FIG. 11. Brittle response of the fracture phenomenon (0 < T < T ∗). Left panel: dimensionless force vs dimensionless extension for
different values of N = 100, 250, 500 (as indicated by the arrow). Right panel: fraction of intact, softened, and broken elements for different
values of N = 100, 250, 500 (as indicated by arrows). Inset: same plot as Fig. 10, where the temperature used here is indicated by the black
point. We adopted the parameters α = 7/5, β = 2/5, γ = 9/10, �E/(hY 2

b ) = 1/10, φ = 0 (i.e., η = N), and KBT/(hY 2
b ) = 3/10.
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FIG. 12. Ductile response of the fracture phenomenon (T ∗ < T < Tξ ). Left panel: dimensionless force vs dimensionless extension for
different values of N = 500, 1000, 1500 (as indicated by the arrow). Right panel: fraction of intact, softened, and broken elements for different
values of N = 500, 1000, 1500 (as indicated by arrows). Inset: same plot as Fig. 10, where the temperature used here is indicated by the black
points. We adopted the parameters α = 7/5, β = 2/5, γ = 9/10, �E/(hY 2

b ) = 1/10, φ = 0 (i.e., η = N), and KBT/(hY 2
b ) = 4/5.

increasingly sharp as the value of N increases. In particular,
the fraction of softened elements decreases to zero for N
growing. A direct transition from intact to broken elements
without an intermediate phase is therefore observed. This
confirms that the response is brittle for T < T ∗ and the rupture
of the system occurs in this case at the applied extension Yξχ .

In Fig. 12 we represent the same functions for a temper-
ature in the range T ∗ < T < Tξ . In this case, we observe
an almost simultaneous transition of all breakable elements
from the intact to the softened state at the extension Yξ and a
subsequent transition from the softened to the broken state at
the threshold Yχ . This behavior reproduces a ductile fracture,
and the intermediate phase, characterized by the softened

elements, mimics the cohesive phase of the fracture phe-
nomenon. Also, in the force-extension diagram we see a first
peak in correspondence to the softening of the elements, and
a second peak describing the actual rupture. This curve is
sharper for high values of N and smoother for low values. The
comparison of Figs. 11 and 12 shows the transition from a
brittle to a ductile fracture as temperature increases, T ∗ being
the threshold temperature between the two regimes. This tran-
sition is described by the bifurcation at T ∗ exhibited in Fig. 10
(see the yellow point), which gives rise to the intermediate
region with softened elements.

To complete the picture on the system behavior, we also
show in Fig. 13 the extreme situation when temperature is

FIG. 13. Overductile response of the fracture phenomenon (Tξ < T < Tχ ). Left panel: dimensionless force vs dimensionless extension
for different values of N = 500, 1000, 1500 (as indicated by the arrow). Right panel: fraction of intact, softened, and broken elements for
different values of N = 500, 1000, 1500 (as indicated by arrows). Inset: same plot as Fig. 10, where the temperature used here is indicated by
the black point. We adopted the parameters α = 7/5, β = 2/5, γ = 9/10, �E/(hY 2

b ) = 1/10, φ = 0 (i.e., η = N), and KBT/(hY 2
b ) = 6/5.
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FIG. 14. Dimensionless force vs dimensionless extension for dif-
ferent values of the thermal to elastic energy ratio KBT/(hY 2

b ) =
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} (as indicated by the arrow). We
observe that the behavior of the model changes from brittle, at low
values of temperature, ductile for intermediate temperatures, to over
ductile at high temperatures. We adopted the parameters N = 1000,
α = 7/5, β = 2/5, γ = 9/10, φ = 0, and �E/(hY 2

b ) = 1/10.

in the range Tξ < T < Tχ (overductile response). Since the
temperature is larger than Tξ , at the beginning of the traction
almost all elements are already in the softened state even
without an applied mechanical action. As a result, we can
observe only one transition between the softened state and the
broken state at the extension threshold Yχ . Consequently, in
this temperature range, we observe a brittle transition between
thermally softened and broken elements. Since this response
is observed only after the classical ductile behavior, we called
it overductile response.

To better visualize the transitions between the different
fracture regimes, we show in Fig. 14 some force-extension
curves corresponding to different temperatures, spanning over
brittle, ductile, and overductile regimes. It is interesting to
remark that, within the ductile fracture, the shape of the
force-extension curve is smoother in correspondence to the
system softening or breaking since the cohesive phase is
able to absorb an amount of energy before the final rupture.
We also note that, within the ductile regime, the softening
stress is higher than the failure stress for lower tempera-
tures and conversely the softening stress becomes lower than
the failure stress for higher temperatures. This point will
be further discussed below. It is important to underline that
all curves seen in Figs. 11–14 have been obtained through
Eqs. (63), (66), and (67) with a large, but finite value of N .
In the following we also describe the thermodynamic limit
N → ∞.

What has been described so far represents the modeling
of brittle-to-ductile transition induced by thermal fluctuations.
Our model also allows us to describe a parametric brittle-to-
ductile transition, i.e., intrinsic to the structure of the system.
This means that there can be systems that exhibit only brit-
tle or ductile behavior, regardless of temperature. On the
one hand, an example of always brittle system is shown in
Fig. 15, left panel, where we represent the three dimension-
less extension thresholds Yξ /Yb, Yχ/Yb, and Yξχ/Yb versus
the dimensionless temperature KBT/(hY 2

b ). We can see that
Yχ < Yξχ < Yξ for any value of the temperature. This means
that there is no temperature high enough to induce a ductile
fracture (T ∗ > Tξ ). On the other hand, an example of always
ductile system is shown in Fig. 15, right panel. In this case,
Yχ > Yξχ > Yξ for any value of the temperature so that there
is no temperature low enough to induce a brittle fracture
(T ∗ < 0). These two situations describe materials that are

FIG. 15. Behavior of the dimensionless extension thresholds Yξ /Yb, Yχ/Yb, and Yξχ /Yb vs the dimensionless temperature KBT/(hY 2
b ) for a

system always brittle (left panel), and for a system always ductile (right panel). In the left panel we have Yχ < Yξχ < Yξ and we adopted the
parameters α = 13/10, β = 3/10, γ = 4/5, and �E/(hY 2

b ) = 1/5. In the right panel we have Yχ > Yξχ > Yξ and we adopted the parameters
α = 9/5, β = 4/5, γ = 13/10, and �E/(hY 2

b ) = 1/10.
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always brittle or always ductile, regardless of the considered
temperature.

To conclude, we obtained two types of brittle-to-ductile
transitions: a thermal transition, induced by the effects of
thermal fluctuations, and a parametric transition, induced by
the values of the elastic parameters. It is worth to point out
that this rather rich fracture behavior has been obtained based
on a minimal system depending on the competition between
elastic, entropic, and fracture energy terms, regulated by the
temperature and material parameters.

VII. THERMODYNAMIC LIMIT OF THE
SOFTENING-FRACTURE MODEL

To give an even clearer physical description, we deduce
here analytic results in the thermodynamic limit, N → ∞.
We start the analysis by examining the average value of the
number of intact, softened and broken elements of the system.
If we consider the brittle behavior, with 0 < T < T ∗, the
thermodynamic limit gives

lim
N→∞

〈ξ 〉
N

=
{

1 − φ if Y < Yξχ ,

0 if Y > Yξχ ,
(85)

lim
N→∞

〈χ − ξ 〉
N

= 0 for all Y, (86)

lim
N→∞

〈N (1 − φ) − χ〉
N

=
{

0 if Y < Yξχ ,

1 − φ if Y > Yξχ .
(87)

In this case, we observe a direct transition between intact and
broken elements without going through the softened state.
However, if we take into account the ductile behavior with
T ∗ < T < Tξ , we obtain for N → ∞

lim
N→∞

〈ξ 〉
N

=
{

1 − φ if Y < Yξ ,

0 if Y > Yξ ,
(88)

lim
N→∞

〈χ − ξ 〉
N

=
⎧⎨
⎩

0 if Y < Yξ ,

1 − φ if Yξ < Y < Yχ ,

0 if Y > Yχ ,

(89)

lim
N→∞

〈N (1 − φ) − χ〉
N

=
{

0 if Y < Yχ ,

1 − φ if Y > Yχ .
(90)

In this case, we observe the emergence of a region with soft-
ened elements, corresponding to the cohesive zone. Finally,
the overductile regime, characterized by Tξ < T < Tχ , for
N → ∞ leads to

lim
N→∞

〈ξ 〉
N

= 0 for all Y, (91)

lim
N→∞

〈χ − ξ 〉
N

=
{

1 − φ if Y < Yχ ,

0 if Y > Yχ ,
(92)

lim
N→∞

〈N (1 − φ) − χ〉
N

=
{

0 if Y < Yχ ,

1 − φ if Y > Yχ .
(93)

In this regime, all elements are initially softened and therefore
the single transition corresponds to their complete breaking.

Concerning the expected value of the force, from Eq. (63),
we can write

lim
N→∞

〈 f 〉
N

=
(

β2

(
1

γ
− 1

α

) 〈ξ 〉
N

+ β2

(
1

β
− 1

γ

) 〈χ〉
N

)
k Y,

(94)

where we can substitute the values of 〈ξ 〉/N and 〈χ〉/N per-
tinent to each fracture regime. We remark that in Eq. (94),
we have canceled out the first term shown in Eq. (63)
since N → ∞. For the brittle behavior (0 < T < T ∗), we
have

lim
N→∞

〈 f 〉
N

=
{

β2(1 − φ)
(

1
β

− 1
α

)
k Y if Y < Yξχ ,

0 if Y > Yξχ .
(95)

For the ductile behavior (T ∗ < T < Tξ ), we have

lim
N→∞

〈 f 〉
N

=

⎧⎪⎪⎨
⎪⎪⎩
β2(1 − φ)

(
1
β

− 1
α

)
k Y if Y < Yξ ,

β2(1 − φ)
(

1
β

− 1
γ

)
k Y if Yξ < Y < Yχ ,

0 if Y > Yχ .

(96)

Finally, for the overductile behavior (Tξ < T < Tχ ), we get

lim
N→∞

〈 f 〉
N

=
{

β2(1 − φ)
(

1
β

− 1
γ

)
k Y if Y < Yχ ,

0 if Y > Yχ .
(97)

The thermodynamic limit behavior (N → ∞) of the intact,
softened, and broken elements together with the value of the
stress 〈 f 〉/N is exhibited in Fig. 16, where all the three fracture
regimes brittle, ductile and overductile are considered. We
remark that the resulting overall picture is coherent with the
plots in Figs. 11–13, where the same quantities were repre-
sented for large, but finite, values of N .

These results allow us to identify the values of stress corre-
sponding to the behavioral transitions. In the brittle regime
(0 < T < T ∗) we identify the fracture or breaking stress
corresponding to σB = limN→∞ 〈 f 〉/N , for Y = Yξχ , which
assumes the value

σB = (1 − φ)

√
kβ2

(
1

β
− 1

α

)[
pY 2

b + (h − p)Y 2
p

](
1 − T

Tξχ

)

= (1 − φ)

√
lh

l + h

[
pY 2

b + (h − p)Y 2
p

](
1 − T

Tξχ

)
, (98)

depending on the critical temperature Tξχ (see fourth row, first
panel, of Fig. 16). In the ductile regime (T ∗ < T < Tξ ), we
have a first transition coinciding with the softening of all ele-
ments. It represents the beginning of the plastic regime. Two
different values of stress describe this transition: the upper
yield strength σ+

S = limN→∞ 〈 f 〉/N (for Y = Y −
ξ , i.e., on the

left of Yξ ), and the lower yield strength σ−
S = limN→∞ 〈 f 〉/N
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FIG. 16. Response of the system in the thermodynamic limit within the three temperature regimes 0 < T < T ∗ (brittle, first column),
T ∗ < T < Tξ (ductile, second column), and Tξ < T < Tχ (overductile, third column). We plotted the average number of intact (first row),
softened (second row), and broken elements (third row), and the stress 〈 f 〉/N (fourth row), for N → ∞. To compact the notation, we defined
φ̄ = 1 − φ, and we introduced the characteristic stresses σB, σ+

S , σ−
S , and σF , as defined in Eqs. (98)–(100), and (102).

(for Y = Y +
ξ , i.e., on the right of Yξ ), given by

σ+
S = (1 − φ)

√√√√kβ2

(
1
β

− 1
α

)2
1
γ

− 1
α

(h − p)Y 2
p

(
1 − T

Tξ

)

= (1 − φ)

√
h2

l + p

l + h
Y 2

p

(
1 − T

Tξ

)
, (99)

σ−
S = (1 − φ)

√√√√kβ2

(
1
β

− 1
γ

)2
1
γ

− 1
α

(h − p)Y 2
p

(
1 − T

Tξ

)

= (1 − φ)

√
p2

l + h

l + p
Y 2

p

(
1 − T

Tξ

)
, (100)

which depend on the critical temperature Tξ (see fourth row,
second panel, of Fig. 16). These two values are useful to calcu-
late the stress jump corresponding to the softening mechanism

(yielding) within the ductile regime

σ+
S − σ−

S = (1 − φ)Yp
l (h − p)√

(l + h)(l + p)

√
1 − T

Tξ

, (101)

which is always positive since h > p. Still in the ductile
regime (T ∗ < T < Tξ ), we observe the second transition de-
scribing the complete failure of all the elements for a stress
σF = limN→∞ 〈 f 〉/N , for Y = Yχ , assuming the value

σF = (1 − φ)

√
k

(
1

β
− 1

γ

)
p

(
1 − T

Tχ

)
β Yb

= (1 − φ)

√
l

l + p

(
1 − T

Tχ

)
pY 2

b , (102)

depending on the critical temperature Tχ (see fourth row,
second panel, of Fig. 16). In the overductile regime (Tξ < T <

Tχ ), the complete breaking of the system occurs at the same
stress σF given in Eq. (102) and shown in the fourth row, third
panel, of Fig. 16.
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FIG. 17. Behavior of the characteristic stresses σB, σ+
S , σ−

S , and σF vs the temperature T , as defined in Eqs. (98)–(100), and (102) with
φ = 0. Moreover, some stress-extension curves are plotted in correspondence of the following values of the temperature: (a) 0 < T < T ∗;
(b) T = (T ∗)− (on the left of T ∗); (c) T = (T ∗)+ (on the right of T ∗); (d) T = T ∗∗; (e) T ∗∗ < T < Tξ ; (f) Tξ < T < Tχ . While the temperature
T ∗ indicates the switching between brittle and ductile behavior [see Eq. (84)], the temperature T ∗∗ corresponds to σ+

S = σF ; see Eq. (103). In
the panels we also show the stress-extension response for N = 1000 (dim colors or light gray curves).

The behavior of these transition stresses is summarized in
Fig. 17, where they are plotted versus the temperature T . In
addition, different stress-extension curves are shown at differ-
ent temperatures of interest. In the first two cases, Figs. 17(a)
and 17(b), we observe a brittle behavior characterized by the
breaking of the system when the stress reaches the value σB

and the extension the value Yξχ . While the case in Fig. 17(b)
corresponds to a temperature slightly smaller than T ∗ (brittle),
the case in Fig. 17(c) represents a temperature slightly larger
than T ∗, being therefore in the ductile region. We see here
both the softening transition at Yξ and the failure transition at
Yχ . In this case [Fig. 17(c), the stresses satisfy the relation-
ship σ−

S < σF < σ+
S and then the softening peak (upper yield

strength) is larger than the failure peak. We can now continue
to increase the temperature until σ−

S < σF = σ+
S , that is, until

the softening peak is equal to the failure peak. This condition
is fulfilled in Fig. 17(d), and it corresponds to the temperature

T ∗∗, defined as

T ∗∗ =
h2

l+hY 2
p − p2l

(p+l )2 Y 2
b

KB
[

h2

(l+h)(h−p) ln τα

τγ
− pl

(p+l )2 ln τγ

τβ

] . (103)

In the stress-temperature plot, this temperature value T ∗∗ rep-
resents the intersection of the two curves σF and σ+

S versus T .
Increasing the temperature further, we enter the region T ∗∗ <

T < Tξ (once again ductile), represented in Fig. 17(e), where
the failure peak is larger than the softening peak (upper yield
strength), σ−

S < σ+
S < σF . Finally, for values of temperature

in the range Tξ < T < Tχ , we are in the overductile regime
and the softening peak disappears, remaining only the failure
peak σF for the overall system, as shown in Fig. 17(f). In
all panels of Fig. 17 we also represent the stress-extension
response for a finite (large) value of N in order to show the
good agreement between the approximated expressions and
the thermodynamic limit.
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FIG. 18. Tensile stress-strain curves for a GaN nanowire oriented
in the direction [0001] (diameter of 1.92 nm, length of 6.12 nm). The
lateral facets are oriented along the {112̄0} side planes. Comparison
between molecular dynamics simulations results [93] (dashed lines)
and our theory given by Eqs. (95) and (96) (continuous lines). The
parameters used are reported in the main text.

As a conclusion to this discussion, we would like to point
out that the strength (rupture stress) of the system as a func-
tion of temperature is finally represented by a discontinuous
curve formed by the branch σB for 0 < T < T ∗ (brittle) and
by the branch σF for T ∗ < T < Tχ (ductile), as one can
see in the panel σ − T of Fig. 17. This discontinuity can
be easily explained by observing that the brittle-to-ductile
transition involves the phenomenon of softening and thus the
synchronized lowering of the elastic constant of all breakable
elements. Since we are applying a stretching to the system
controlled by the extension, the reduction of the overall elastic
constant produces a consequent reduction in stress (which is
therefore discontinuous). We further remark that the strength
(σB or σF , depending on the temperature) is proportional to the
factor 1 − φ, which represents the fraction of initially present
elements (φ is in fact the fraction of initially absent elements).
This is reminiscent of the Griffith criterion, stating that the
stress at fracture is lower if the initial crack opening is larger
[1]. In our case, the initial crack opening is proportional to φ

and, therefore, the Griffith criterion is respected. However, we
add here the temperature-dependent nature of this criterion,
which is described by the classical term

√
1 − T

Tξχ
in σB, or√

1 − T
Tχ

in σF , which represents the critical behavior eventu-
ally resulting in a genuine phase transition.

The brittle-to-ductile transition has been observed in GaN
nanowires through molecular dynamics simulations [93],
and Fig. 18 shows the comparison with our theoretical
results. We considered a GaN nanowire oriented in the di-
rection [0001], with a diameter of 1.92 nm and a length
of 6.12 nm, as reported in Fig. 2(d) of Ref. [93]. The lat-
eral facets of this system are oriented along the {112̄0}
side planes, as shown in Fig. 1(b) of Ref. [93]. In Fig. 18
the blue curves (or dark gray) represent the brittle behavior
whereas the orange (or light gray) ones describe the duc-
tile behavior. We remark that Eqs. (95) and (96) define a
relation 〈 f 〉/N = F (Y ) where F is a given function. We
have to introduce the real stress σ = 〈 f 〉/(NS), where S is
the area pertaining to each breakable spring, and the real

strain ε = Y/�, where � is the characteristic length scale
induced by the crystal structure. The stress-strain relation
can be therefore written as σ = F (ε�)/S, where F is
the relationship defined by Eqs. (95) and (96). In Fig. 18
we adopted the parameters h = 3.77 N/m, p = 0.234 N/m,
l = 0.725 N/m, k = 2.00 N/m, �E = 11.0 × 10−21 J, Yb =
17.8 × 10−11 m, S = 22.7 × 10−22 m2, � = 12.1 × 10−12 m,
and KB = 1.38 × 10−23 J/K. As before, most of geometrical
parameters were available in the original paper dealing with
molecular dynamics simulations and the others were fitted to
correctly reproduce the results. We then plotted the stress-
strain curves for the two temperatures T = 300 K (brittle
behavior) and T = 1800 K (ductile behavior). It is interest-
ing to note that the structural parameters used in our model
are able to predict the correct brittle-to-ductile transition as
obtained through molecular dynamics simulations. Moreover,
also the upper and lower yield stresses of the ductile behavior
are in quite good agreement with simulations. We remark that
in our model there is a single softening process and therefore
we can see only one failure peak after the softening peak
in the stress-strain relation. As discussed in the conclusions,
the model could be generalized with more softening steps to
describe real damage such as that of the nanowires studied
here.

VIII. CONCLUSIONS

We proposed and studied two prototypical models able to
describe temperature effects in fracture processes. The first
is aimed at explaining the temperature-dependent behavior
for brittle systems, and the second at showing the complex
damage processes occurring in the presence of ductile break-
able links with a possibility of a brittle-to-ductile transition
regulated by thermal effects. Both models are based on a
simple lattice structure built through unbreakable and break-
able springs. The system is confined between two layers,
one fixed and one movable, and is designed in such a way
that lifting the top layer results in a force experienced by
the system, being able to generate fracture propagation. This
structure is supposed to be embedded into a thermal bath at
fixed temperature. Hence, the models are developed within the
equilibrium statistical mechanics formalism. The difference
between the two models lies in the behavior at rupture of
the breakable springs. In the first model for brittle fracture,
each breakable spring can be in two states, namely elastic or
broken, depending on the extension applied to the element
itself. The state transition occurs through the absorption of
an amount of energy that corresponds to the typical surface
energy of the Griffith criterion [1]. In the second model, each
breakable spring can be in three different states representing
the elastic, softened, and broken regimes. The intermediate
softened state is introduced to reproduce the possible duc-
tile regime of the fracture process. In this case, we have a
“yielding” point between the elastic and the ductile regimes,
followed by a final failure point corresponding to fracture.
The transition between intact and softened states occurs after
the yielding energy is absorbed, and the transition between
softened and broken occurs through the absorption of another
amount of energy corresponding to fracture. Thus, in both
models the energy balance is similar to what is typically
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assumed in linear elastic fracture mechanics since Griffith’s
and Irwin’s pioneering works [1,11,12], with the fracture phe-
nomenon regulated by elastic, damage and fracture (surface)
energy. However, including thermal fluctuations sensibly
modifies the results and add important features to the system
description.

As for the model for brittle fracture, we obtain a
temperature-dependent fracture stress and a corresponding
fracture strain, representing a “genuine” phase transition.
Thus, we obtain a critical temperature at which both fracture
stress and fracture strain are zero and therefore the material
is always broken for supercritical temperatures. Interest-
ingly, the obtained temperature-dependent strength is in good
agreement with several experiments and molecular dynam-
ics simulations as demonstrated previously. It is interesting
to note that although breakable springs have a temperature-
independent breaking behavior, the overall system exhibits
a breaking point that is highly dependent on temperature.
This is a typical case of a complex system with collective
behavior, giving rise to a critical phenomenon. We argue that
this effect is relevant in the case of weak links, such as hy-
drogen bonds in biological materials, or in rubber, where the
elasticity has an entropic character, or in small size metallic
or semiconductor systems, such as the considered nanowires
[91–102].

The model with ductile breakable elements exhibits an
even richer behavior. In this case it is the full response of
the system that is temperature dependent. Indeed, we have
demonstrated the existence of a brittle-to-ductile transition
temperature T ∗ (whose expression is obtained in closed form)
that regulates the behavior of the fracture process. On the one
hand, for temperatures lower than T ∗, we observe a brittle be-
havior characterized by a direct transition of the springs from
the elastic to the broken state, without passing through the in-
termediate softened state. On the other hand, for temperatures
higher than T ∗, we see that, as the extension applied to the
system increases, first the springs soften (yielding point), and
then they switch from the softened to the broken state (failure
point). The intermediate softened region reproduces in this
discrete context the cohesive zone of the classical Dugdale-
Barenblatt model of the ductile fracture [13,14]. Of course,
both yielding and failure point depend on temperature and are
again characterized by phase transitions. In fact, importantly,
we are not only able to calculate the brittle-to-ductile transi-
tion temperature, but also to predict the critical behavior of the
upper and lower yield strengths, and the thermal properties of
the fracture strength. Our model is also able to predict the ex-
istence of a special fracture regime, here called overductile, in
which the temperature is high enough to damage all elements
without mechanical action. In this situation, as the extension
of the system increases, we observe the only transition from
the softened to the broken regime.

From the methodological point of view, to elaborate the
closed form expression of the partition function in both
proposed models, we adopted specific techniques particu-
larly suitable for calculating the determinant and inverse of
tridiagonal matrices [123,124]. These approaches allow the
derivation of exact solutions as shown in Appendix A, but
also asymptotic approximations as discussed in Appendix B.
Although these mathematical developments are relegated to

the appendices, they are of crucial importance for obtaining
the physical results on fracture processes.

We point out that even if the models here presented clarify
fundamental aspects of thermally activated rupture phenom-
ena, they should be generalized to take into account the
complex reality of these processes. We want to mention here
at least four points that partially limit the applicability of
these models to real situations. The first issue concerns the
spatial homogeneity of the adopted models. We have al-
ways considered all springs of discrete systems having the
same mechanical behavior (in terms of elastic constants,
failure thresholds, etc.). In reality, this is true only for per-
fect monocrystalline structures that are quite rare. It would
be interesting to study these phenomena in disordered sys-
tems that, on the one hand, are more similar to several real
structures, and on the other hand, may generate even more
interesting critical behaviors typical of complex systems with
quenched disorder [53,55–60]. The second point to be ex-
plored is the kinetic of rupture processes. Here we have
considered only quasistatic phenomena studied by means of
equilibrium statistical mechanics. In real experiments, traction
can be applied at different tensile velocities, and the response
obviously depends on these traction rates [36,68]. To model
these phenomena one would have to adopt out-of-equilibrium
statistical mechanics and then base the analysis on Langevin
or Fokker-Planck methodologies [125–128]. To conclude, the
third point that could be improved concerns the fact that the
softening process is restricted to a single step of reduction of
the elastic constant of the breakable springs. In order to be
more adherent to the physical reality of the yielding process
one would have to imagine a series of steps where several
reductions of the elastic constant take place progressively. In
this sense, the yielding point would be implemented through a
multi-softening process, more similar to what happens in real
nonlinear materials. The fourth and final point concerns the
too-simple geometry of our model, which should be improved
(with 2D or 3D lattices) in order to be able to represent real
elastic fields to be compared with models from continuum
mechanics.
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APPENDIX A: EXACT RESULTS FOR TRIDIAGONAL
MATRICES

Since the matrix A defined in Eq. (5) is tridiagonal, we
can analytically evaluate the inverse A −1 and the determinant
det A [123,124]. We consider a generic tridiagonal matrix
M , and we define its elements as Mi,i = bi (main diago-
nal), Mi,i−1 = ai (lower diagonal), and Mi,i+1 = ci (upper
diagonal). All other elements are zero. We can introduce the
quantities θi by means of the following recurrence relation

θi = biθi−1 − aici−1θi−2,

θ−1 = 0, θ0 = 1, i = 1, 2, . . . , N,
(A1)
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where, in particular, θN = det M . Furthermore, it is possible
to define the quantities φi through the recurrence formula

φi = biφi+1 − ciai+1φi+2,

φN+2 = 0, φN+1 = 1, i = N, N − 1, . . . , 1,
(A2)

where φ1 = θN = det M . These definitions can be used to
determine the elements of the inverse matrix M −1 [123,124],
as follows:

(M −1)i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)i+ jcici+1 . . . c j−1θi−1φ j+1

θN
, if i < j,

θi−1φi+1

θN
, if i = j,

(−1)i+ ja j+1a j+2 . . . aiθ j−1φi+1

θN
, if i > j.

(A3)
By considering our particular case, the elements in the main
diagonal of A are defined as ai = 2 + α for 1 � i � ξ ,
and ai = 2 + β for ξ + 1 � i � N . Moreover, we have that
Ai,i+1 = Ai+1,i = −1 for the upper and lower diagonals. For
this special situation, θi and φi are defined by the rules

θi = aiθi−1 − θi−2,

θ−1 = 0, θ0 = 1, i = 1, 2, . . . , N,
(A4)

and

φi = aiφi+1 − φi+2,

φN+2 = 0, φN+1 = 1, i = N, N − 1, . . . , 1. (A5)

Consequently, the elements of the inverse matrix A −1 are
given by

(A −1)i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θi−1φ j+1

θN
, if i < j,

θi−1φi+1

θN
, if i = j,

θ j−1φi+1

θN
, if i > j.

(A6)

Hence, we need to find θi and φi in order to obtain the inverse
matrix elements. We start by evaluating θi for i � ξ . In this
case, ai = 2 + α, and Eq. (A4) becomes

θi = (2 + α)θi−1 − θi−2. (A7)

To find a solution, we substitute θi = λi in the last equa-
tion, and we obtain a second degree algebraic equation with
solutions

λ1,2 = 2 + α ± √
α2 − 4α

2
. (A8)

Then, a generic solution for θi, with i � ξ , is given by the
following linear combination:

θi = A

(
2 + α + √

�α

2

)i

+ B

(
2 + α − √

�α

2

)i

, (A9)

where we introduced �α = α2 + 4α. We can obtain the two
coefficients A and B by the initial conditions in Eq. (A4). We

obtain

A = 2 + α + √
�α

2
√

�α

, B = −2 + α − √
�α

2
√

�α

. (A10)

Therefore, the final solution for θi, when i � ξ , is

θi = G (α, i + 1), (A11)

where we introduced the function

G (γ , z) = 1√
�γ

[(
2 + γ +√�γ

2

)z

−
(

2 + γ −√�γ

2

)z]
,

(A12)

with �γ = γ 2 + 4γ . If we introduce the parameters τγ and
ργ as follows:

τγ = 2 + γ +√�γ

2
, ργ = 2 + γ −√�γ

2
, (A13)

the function G (γ , z) can be written as

G (γ , z) = 1√
�γ

(
τ z
γ − ρz

γ

)
. (A14)

We note that

τγ − ργ = √�γ , ργ τγ = 1. (A15)

Now, we evaluate θi when i � ξ + 1. In this case, ai = 2 + β

and Eq. (A4) becomes

θi = (2 + β )θi−1 − θi−2. (A16)

As before, we find that the general solution is given by the
linear combination

θi = C

(
2 + β +√�β

2

)i

+ D

(
2 + β −√�β

2

)i

, (A17)

where �β = β2 + 4β. To find the coefficients C and D, we
exploit the initial conditions θξ = G (α, ξ + 1) and θξ−1 =
G (α, ξ ). Straightforward calculations lead to the solution for
θi, when i � ξ + 1, in the form

θi = G (β, i − ξ + 1)G (α, ξ + 1) − G (β, i − ξ )G (α, ξ ),
(A18)

where we used the function defined in Eq. (A12). We consider
Eq. (A5), and we proceed with the evaluation of φi. We start
with the case where i � ξ + 1. In this condition, the recurrent
equation becomes

φi = (2 + β )φi+1 − φi+2, (A19)

which must be combined with the initial conditions in
Eq. (A5). Eventually, we obtain φi for i � ξ + 1 in the form

φi = −G (β, i − N − 2). (A20)

We can find φi when i � ξ by using the two conditions
φξ+1 = −G (β, ξ − N − 1) = G (β, N + 1 − ξ ) and φξ+2 =
−G (β, ξ − N ) = G (β, N − ξ ). After straightforward calcu-
lations, we get for i � ξ

φi = G (β, N + 1 − ξ )G (α, ξ + 2 − i)

− G (β, N − ξ )G (α, ξ + 1 − i). (A21)
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The obtained values of θi and φi allow the calculation of
A −1 and det A , useful to implement the determination of the
partition function in Eq. (16) and the quantities in Eqs. (18)
and (19). Moreover, these results are useful to develop some
asymptotic expressions in Appendix B.

APPENDIX B: ASYMPTOTIC ANALYSIS

Considering the brittle model with a large number N of
units, it is possible to derive approximations to simplify
the partition function and the main average quantities. More
specifically, we can find approximations for �v · A −1�v and for
det A . We start our analysis by expanding the first quadratic
form as follows:

�v · A −1�v =
N∑

i=1

N∑
j=1

vi(A
−1)i, jv j

=
N∑

i=1

N∑
j=1

(β + δi,N )(A −1)i, j (β + δ j,N )

= β2
N∑

i=1

N∑
j=1

(A −1)i, j+2β

N∑
i=1

(A −1)i,N+(A −1)N,N

= β2S2(ξ ) + 2βS1(ξ ) + S0(ξ ), (B1)

where we introduced S2(ξ ) as the sum over all the elements
of the inverse matrix, S1(ξ ) as the sum over all the elements
of the N th column of the inverse matrix, and S0(ξ ) as the
element (N, N ) of the inverse matrix. We observe that these
three quantities are in general function of ξ .

Exploiting the symmetry of the inverse matrix A −1, we
write S2(ξ ) as

S2(ξ ) =
N∑

i=1

(A −1)i,i + 2
N−1∑
i=1

N∑
j=i+1

(A −1)i, j . (B2)

The evaluation of S2(ξ ) for a matrix A that shows heteroge-
neous diagonal elements ai (ξ �= {0, N}) can be done but is not
straightforward. Fortunately, it is possible to observe that, in
the limit of large N , the form of S2(ξ ) is a linear combination
of the two values S2(0) and S2(N ), each corresponding to a
matrix with homogeneous diagonal. In fact, when ξ = 0, the
diagonal components of A are all equal to 2 + β, and when
ξ = N , the diagonal components of A are all equal to 2 + α.

With the help of the left panel of Fig. 19, we can observe
that, as N increases, the form of S2(ξ ) numerically obtained
through Eq. (A6) (continuous curves), approach the straight
line joining S2(0) and S2(N ) (dashed line). To improve the
approximation, we observe that in the linear solution for S2(ξ )
we could also add a zeroth-order term (with respect to N),
represented by an additional small quantity C(ξ ), possibly
dependent on ξ , but independent of N .

Now, we analytically evaluate S2(0). By means of this
value, it is also easy to obtain S2(N ) simply substituting β

with α. When ξ = 0, we have from Appendix A

θi = G (β, i + 1), (B3)

φi = G (β, N + 2 − i), (B4)

FIG. 19. The quantities S2(ξ )/N , S1(ξ ) and S0(ξ ) are obtained
using Usmani relations (continuous curves) for different values
of N = {10, . . . , 300} (with step of 10). We observe that, as N
increases, the quantities approach their relative approximations ob-
tained for large N (dashed lines).

where i = 1, . . . , N . In addition, Eq. (A6) gives

(A −1)i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G (β, i)G (β, N + 1 − j)

G (β, N + 1)
, if i < j,

G (β, i)G (β, N + 1 − i)

G (β, N + 1)
, if i = j,

G (β, j)G (β, N + 1 − i)

G (β, N + 1)
, if i > j.

(B5)
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We can therefore write S2(0) as

S2(0) =
N∑

i=1

G (β, i)G (β, N + 1 − i)

G (β, N + 1)

+ 2
N−1∑
i=1

N∑
j=i+1

G (β, i)G (β, N + 1 − j)

G (β, N + 1)
. (B6)

Using the definition of G (γ , z) in Eq. (A12), and the proper-
ties of τγ and ργ introduced in Eq. (A15), we get

S2(0) =
(
τN+1
β − τ−N−1

β

)−1√
�β

×
{

2(N − 1)

(
τN+1
β

τβ − 1
− τ−N

β

τβ − 1

)
+ 2τ 2−N

β − 2τN
β

τ 2
β − 1

+ N
(
τN+1
β + τ−N−1

β

)+ 2τβ(
τ 2
β − 1

) (τ−N
β − τN

β

)

+ 2 + 2τβ

(τβ − 1)2

(
1 + τβ − τN

β − τ 1−N
β

)}
, (B7)

where we used several times the geometric sum. The expres-
sion for S2(0) given in Eq. (B7) is not transparent but, in the
limit of large N , it can be approximated by

S2(0) ∼ N

β
−
√

β2 + 4β − β

β2
= N

β
+ C(0), (B8)

where

C(0) = −
√

β2 + 4β − β

β2
. (B9)

This term represents the zeroth-order correction (with respect
to N), previously discussed. When ξ = N , we can obtain the
result by simply substituting β with α, eventually obtaining

S2(N ) ∼ N

α
−

√
α2 + 4α − α

α2
= N

α
+ C(N ), (B10)

where

C(N ) = −
√

α2 + 4α − α

α2
. (B11)

Finally, we can write the general approximation for S2(ξ ) in
the limit of large N as

S2(ξ ) ∼ N

β
+
(

N

α
− N

β

)
ξ

N
+ C(ξ ), if α, β �= 0, (B12)

where C(0) is given in Eq. (B9), C(N ) is given in Eq. (B11),
and C(ξ ) assumes a constant value for ξ ∈ {1, . . . , N − 1}
(for large N), which is always in the range between C(0) and
C(N ). We do not determine here this value since is not relevant
for our analysis. Indeed, although the zeroth-order term of
S2(ξ ) is represented by three different values of the constant
depending on ξ , in the application to the fracture problem we
adopt the value C(0) in all calculations. It is not difficult to
realize that this is the only value playing a role in our model
since it describes the behavior of the system when ξ = 0, i.e.,
when all the breakable springs are fractured. In this condition,
only one spring links together the two layers of the system and

the constant C(0) is able to describe the exact stiffness of the
resulting spring network. The other values C(ξ ), for ξ �= 0,
are negligible when N → ∞.

The approach used to find the approximation of S2(ξ ) for
large N , can be also applied for S1(ξ ) and S0(ξ ). Concerning
S1(ξ ), as shown in the center panel of Fig. 19, its value
numerically obtained with Eq. (A6) approaches the constant
value S1(0) as N increases. This value is therefore the approx-
imation of S1(ξ ) for large N . Through previous definitions, we
can write S1(0) as

S1(0) =
N∑

i=1

(A −1)i,N =
N∑

i=1

θi−1

θN
=

N∑
i=1

G (β, i)

G (β, N + 1)
,

(B13)
which, in the limit of large N , leads to

S1(ξ ) ∼ S1(0) ∼ 2

β +√�β

. (B14)

We can observe that the exact values of S0(ξ ) approach the
constant value S0(0) for large N , as one can see in the right
panel of Fig. 19. We have the exact expression

S0(0) = (A −1)N,N = θN−1

θN
, (B15)

which, in the limit of large N , gives

S0(ξ ) ∼ S0(0) ∼ 1

τβ

= 2

2 + β +
√

β2 + 4β
, (B16)

as shown in the right panel of Fig. 19. Now we determine the
value of the quadratic form in Eq. (B1), for large N , as

�v · A −1�v ∼ β2

[
N

β
+
(

1

α
− 1

β

)
ξ + C(0)

]

+ 2β

(
2

β +
√

β2 + 4β

)

+
(

2

2 + β +
√

β2 + 4β

)
. (B17)

To conclude, we recall the definition of q, stated in Eq. (15),
and we get

q = 1 + βN − �v · A −1�v ∼ lh

l + h

ξ

k
+ ε, (B18)

where we introduced

ε =
√

β2 + 4β − β

2
. (B19)

Finally, Eqs. (B18) and (B19) prove Eqs. (20) and (21).
To complete this part, we study the approximation of det A

for large values of N . Due to Usmani theory [123,124], we
have

det A = θN . (B20)

Adopting the results of Appendix A, it is possible to eval-
uate the determinant of A for different ξ = 0, . . . , N . The
results can be found in Fig. 20, from which we realize that
the value of ln(det A )/N is approximated by a straight line
that links together the values of ln det A /N when ξ = 0, and
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FIG. 20. The quantity (ln det A )/N is obtained using Usmani re-
lations (continuous curves) for different values of N = {10, . . . , 300}
(with steps of 10). We observe that, as N increases, (ln det A )/N
approaches its approximation for large N (dashed line).

when ξ = N , in the limit of large N . It is simple to prove
that for ξ = 0 we have ln θN/N � ln τβ when N → ∞, and
similarly for ξ = N we have ln θN/N � ln τα when N → ∞.
The equation that gives the value of ln det A /N , in the limit
of large N , is therefore obtained as

ln det A

N
= ln θN

N
∼ ln τβ + ξ

N
ln

τα

τβ

. (B21)

Equivalently, we can write

det A ∼ τ ξ
α τ

N−ξ
β , (B22)

which proves Eq. (22).
We discuss now the same results for the model with the

softening mechanism. In this case, the quadratic form �v ·
A −1�v, can be written as in Eq. (B1)

�v · A −1�v = β2S2(ξ, χ ) + 2βS1(ξ, χ ) + S0(ξ, χ ), (B23)

where S2, S1, and S0 depends now on both interface positions
ξ and χ . We start by analyzing the behavior of S2. Since
S2(0, 0) � N/β, S2(0, N ) � N/γ , and S2(N, N ) � N/α, we
get for large values of N the following expression:

S2(ξ, χ ) � N

β
+
(

N

α
− N

γ

)
ξ

N
+
(

N

γ
− N

β

)
χ

N
+ C,

(B24)

where considerations similar to the previous ones confirm that
the zeroth-order term C assumes the same value in Eq. (B9).
Similarly, we can prove that for large values of N the quanti-
ties S1 and S0 assume the same values obtained for the purely
brittle fracture model, i.e.,

S1(ξ, χ ) ∼ 2

β +
√

β2 + 4β
, (B25)

S0(ξ, χ ) ∼ 2

2 + β +
√

β2 + 4β
, (B26)

which are independent of ξ andχ . Adopting these approxima-
tions in the expression for q, we obtain for N → ∞

q ∼ β2

(
ξ

γ
− ξ

α
− χ

γ
+ χ

β

)
+ ε, (B27)

where ε is given by

ε =
√

β2 + 4β − β

2
. (B28)

This result corresponds to Eq. (56). Finally, we can also
find an approximated expression for det A (ξ, χ ) that now
depends on both ξ and χ . Since previous approximation for
ln det A (ξ ) was a linear function of ξ linking the values ob-
tained for the two homogeneous matrices at ξ = 0 and ξ = N ,
we can now assume that the approximation for ln det A (ξ, χ )
is a linear function in ξ and χ passing through the three points
identified by (ξ, χ ) = (0, 0), (N, 0), and (N, N ). Hence, we
assume that

ln det A

N
∼ a + bξ + cχ, (B29)

where a, b, and c are coefficients, which can be found with the
assumptions a = ln τβ , a + cN = ln τγ , and a + cN + bN =
ln τα , with

τα = 2 + α + √
α2 + 4α

2
, (B30)

τβ = 2 + β +
√

β2 + 4β

2
, (B31)

τγ = 2 + γ +
√

γ 2 + 4γ

2
. (B32)

These values satisfy the relation τβ < τγ < τα . To conclude,
we obtain the relation

ln det A

N
∼ ln τβ + ξ

N
ln

τα

τγ

+ χ

N
ln

τγ

τβ

, (B33)

which corresponds to Eq. (57).
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