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We discuss the effective diffusion constant Deff for stochastic processes with spatially dependent noise.
Starting from a stochastic process given by a Langevin equation, different drift-diffusion equations can be
derived depending on the choice of the discretization rule 0 � α � 1. We initially study the case of periodic
heterogeneous diffusion without drift, and we determine a general result for the effective diffusion coefficient
Deff , which is valid for any value of α. We study the case of periodic sinusoidal diffusion in detail, and we
find a relationship with Legendre functions. Then we derive Deff for general α in the case of diffusion with
periodic spatial noise and in the presence of a drift term, generalizing the Lifson-Jackson theorem. Our results
are illustrated by analytical and numerical calculations on generic periodic choices for drift and diffusion terms.
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I. INTRODUCTION

The concept of heterogeneous diffusion with a spa-
tially varying diffusivity is widely discussed in the litera-
ture to describe anomalous diffusion processes; see, e.g.,
[1–8]. Multiplicative noise plays an essential role in de-
scribing the behavior of several physical and biological
phenomena including the transmission of signals in neuron
models [9,10], phenotypic variability and gene expression
[11,12], the stochastic thermodynamics of holonomic sys-
tems [13–15], the ballistic-to-diffusive transition of heat
propagation [16,17], the fluctuations effects in lasers and
semiconductors [18–20], the statistical theory of turbulence
[21,22], and the modeling of stock prices, particularly through
the Black-Scholes model of option pricing [23,24]. This long
but clearly nonexhaustive list of examples shows that hetero-
geneous diffusion is an extremely useful and versatile tool for
the comprehension of a large variety of phenomena ranging
from physics to biology, and to finance.

Recently, we have addressed the role of the discretization
rule of stochastic processes with heterogeneous, i.e., spatially
dependent noise, in both long- and short-time limits [25,26].
The discretization rule refers to the rule of integration of the
Langevin equation, and commonly involves the introduction
of a real parameter α, with 0 � α � 1, with the common
cases being the Fisk-Stratonovich (midpoint) rule, α = 1/2
[27,28], or the endpoint rules α = 0 (Itô) [29] and α = 1
(Hänggi-Klimontovich) [20,30]. In our earlier work [25,26],
we established a number of limitations for the existence of
the probability distributions in short- and long-time regimes
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of certain Fokker-Planck equations, thereby demonstrating the
relevance of the discretization rule for the physical context in
which the corresponding equations might be employed.

In this work, we continue our discussion of the importance
of the discretization rule. Here we address the derivation of
the effective diffusion constant for stochastic heterogeneous
(drift-)diffusion processes. Effective diffusion constants are
well established quantities describing the long-time and large
length scale transport properties in heterogeneous systems;
see, among many others, Refs. [31–38]. They characterize,
e.g., the mean-squared displacement (MSD) of particles mov-
ing in an external potential at late times via [39]

〈[X (t ) − X (0)]2〉 � 2Defft . (1)

The effective diffusion constant Deff can be determined for
drift-diffusion equations, i.e., the Fokker-Planck equation, or,
more simply diffusion laws in heterogeneous media, in which,
at the level of the Langevin equation, the discretization rule
of the stochastic process in general matters, in contrast to
the process occurring under the action of simple (constant)
noise [40–43]. A general formula for the effective diffusion
constant was provided already long ago by Lifson and Jackson
[44] and also others (see below); however, to the best of our
knowledge, without addressing the role of the discretization
of the underlying stochastic process.

While most studies on heterogeneous diffusion consider
arbitrary spatially dependent noise g(x), in this paper we focus
our attention to the case of spatially periodic noise g(x).
Spatially periodic noise has been discussed in the literature
early on; see the classic work by Büttiker [45] and Landauer
[46]. Büttiker specifically considered the interplay between a
periodic drift and a periodic noise, and observed that current
flow can arise when the two modulations are out of phase
[45]. Landauer studied systems with nonuniform temperature
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observing that particles move out of the hot regions with
greater velocity than out of the cold regions, eventually mod-
ifying the overall dynamics [46]. Recently, the problem has
been taken up again by us in the context of the motion of
the Brownian particle in a tilted periodic potential (also called
washboard potential) [47]—a celebrated problem with a huge
literature, see the references listed in Ref. [47].

Our focus in the present paper is the determination of the
effective diffusion coefficient with an arbitrary value of 0 �
α � 1. We will first address the case of the absence of drift,
and then combining drift and diffusion. Thereby we obtain
a generalization the Lifson-Jackson formula for general α, a
result we believe has not been obtained previously.

The structure of our paper is as follows. Section II presents
the mathematical formulation of the problem studied in this
paper and outlines the logic followed in our developments.
In Sec. III we first calculate the effective diffusion constant
Deff in the Fisk-Stratonovich case with α = 1/2. Here, the
determination of Deff can be performed analytically, for which
we present two slightly alternative versions (the second one
in Appendix A). Our result is then applied to an exemplary
case, where the heterogeneous diffusion varies sinusoidally
in space. In this case we determine not only Deff but also
the full probability density of the process. In Sec. IV we
propose a method to obtain the effective diffusion constant for
the periodic heterogeneous diffusion problem with arbitrary
stochastic interpretation, i.e., for any value of α. Finally, in
Sec. V we consider an additive drift term in the Langevin
equation to study the combined effects of periodic drift and
periodic diffusion. We prove a generalized form of the Lifson-
Jackson theorem, which allows us to obtain the effective
diffusion coefficient under these conditions. As a special case,
we numerically study the problem when drift and diffusion
are both sinusoidal, with an arbitrary phase shift between the
two terms. We then discuss the physical phenomena induced
by diffusion-drift interaction in this particular case.

II. HETEROGENEOUS DIFFUSIONS: MODEL
DEFINITION AND THE CALCULATION OF Deff

We start our discussion with the case of heterogeneous
particle diffusion problems in the absence of forces, i.e., we
consider stochastic differential equations of Langevin type

dx

dt
= g(x)ξ (t ), (2)

where g(x) is a spatially dependent multiplicative noise with
g(x) > 0 for any x ∈ R. The process ξ (t ) in Eq. (2) is a
Gaussian white noise with average value E(ξ (t )) = 0, and
correlation E(ξ (t )ξ (τ )) = 2δ(t − τ ), where δ(t ) is the Dirac
delta function.

In order to properly define the mathematical meaning of
Eq. (2), we need to specify the type of stochastic interpreta-
tion adopted, or equivalently the discretization parameter α,
as discussed in the Introduction. The equivalent diffusion or
Fokker-Planck equation associated with Eq. (2) contains α

explicitly as a simple parameter. For general α, it is given by
the expression

∂W (x, t )

∂t
= ∂

∂x

{
g2α (x)

∂

∂x
[g2(1−α)(x)W (x, t )]

}
, (3)

for the probability density W (x, t ) [25]. For the above men-
tioned cases of α = 1/2, 1, 0, one thus obtains three distinct
expressions of Fokker-Planck type

∂W

∂t
= ∂

∂x

[
g

∂

∂x
(gW )

]
, α = 1/2, (4)

∂W

∂t
= ∂

∂x

[
g2 ∂W

∂x

]
, α = 1, (5)

∂W

∂t
= ∂2

∂x2
[g2W ], α = 0 (6)

that have all appeared before in the scientific literature. The
first equation is referred to as Wereide’s equation [48], the
second corresponds to the classical Fick law [49], and the third
is known as Chapman’s law [50].

Wereide’s diffusion law has been originally obtained to
study the particles diffusion in a region where there is a
spatially varying temperature field [48]. Today, the Wereide
law has been shown to correctly describe biological processes
of invasion into periodically fragmented environments [51].
Fick’s law, firstly introduced by Adolf Fick in 1855 [49],
governs the transport of mass through diffusive phenomena,
as largely confirmed by experimental results. Fick’s law is
in strong analogy with other mathematical expressions de-
scribing similar phenomena: the Darcy law for the hydraulic
flow in porous media, the microscopic Ohm law describing
the charge transport in electrical conductive materials, and
Fourier’s law explaining the heat transport in thermally con-
ductive media. Finally, Chapman’s law has been introduced,
by means of statistical mechanics arguments, to describe dif-
fusion processes in nonuniform fluids [50]. Recently, it has
been demonstrated that Chapman’s diffusion law describes
protein transport in heterogeneous biological environments
better than the Fick diffusion law [52]. While the comparison
among the different stochastic interpretations is performed
in Refs. [53,54], the corresponding diffusion processes are
analyzed and discussed in Refs. [55–57].

On the level of the probability density W (x, t ), we now
want to define a homogeneous diffusion equation

∂W

∂t
= Deff

∂2W

∂x2
(7)

that should represent, in a sense that needs to be precisely
specified, the homogenized version of the previous Fokker-
Planck equations. Thus arises the question on how to define
the effective diffusion constant. One possibility is [58]

Deff ≡ D = lim
t→∞

〈x2〉
2t

. (8)

Another possible definition of the effective diffusion constant
is the given by the expression

Deff ≡ a

2T FP
, (9)

where a is the length of a finite box and T FP is the mean first
passage time. Both expressions are equivalent [58], and we
will indeed apply them both.

In the following, we are concerned with determining the
effective diffusion coefficient in the case of a periodic function
g(x), using Eqs. (8) and (9). The proposed approach will be
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valid even with certain types of discontinuity in the function
g(x), as long as it remains positive and finite. For example, we
can admit a finite discontinuity in the derivative to represent
sawtooth functions, or we can admit a finite discontinuity in
the function itself to describe rectangular waveforms. More
generally, we can say that the theory is valid for periodic
functions g(x) that can be developed in Fourier series.

In the following Sec. III, we will first determine the
effective diffusion coefficient in the case of periodic het-
erogeneous diffusion studied under the hypothesis of the
Fisk-Stratonovich interpretation. Indeed, in this case the gen-
eral solution of Eq. (4) is known for an arbitrary function
g(x) and, of course, it can be used for a periodic g(x). The
knowledge of the probability density allows the application
of Eq. (8) since we can directly calculate the average value
〈x2〉, and eventually obtain the effective diffusion constant
under the Fisk-Stratonovich interpretation. For this reason, we
first started to approach the problem when α = 1/2. Unfortu-
nately, for the other cases with α 	= 1/2, the corresponding
Fokker-Planck equations cannot be solved in closed form
in order to obtain the relevant probability density. That is
why, in the absence of the probability density, we preferred
Eq. (9) to determine the effective diffusion coefficient. Even
before carrying out this calculation, note that in the case of
the Hänggi-Klimontovich stochastic interpretation, we obtain
the classical Fick diffusion law described by Eq. (5). In this
case, the effective diffusion constant is well known due to
several homogenization methods applied to one-dimensional
or stratified media and is given by Deff = 〈1/g2〉−1 [59–63].
Here 〈·〉 represents the mean value of the argument over one
period. We observe that this expression is different from the
one obtained for the case with α = 1/2, which is Deff =
〈1/g〉−2 (see next Sec. III). This proves that the discretization
parameter plays an important role in the characterization of
effective diffusion. This fact motivated us to look for a general
result, based on Eq. (9), and we demonstrate in Sec. IV that
Deff = 〈1/g2α〉−1〈1/g2−2α〉−1. This result is consistent with
previous particular cases and generalizes the determination
of the effective diffusion coefficient to any value of α. It
will be studied in detail for the case of a sinusoidal function
g(x). To conclude, in Sec. V we propose a generalization of
the classical Lifson-Jackson theorem for the case with spa-
tially periodic drift superposed to a periodic heterogeneous
diffusion. This problem is approached by means of a formal
analogy with the case without drift, solved in the previous
sections.

III. PERIODIC HETEROGENEOUS DIFFUSION IN THE
FISK-STRATONOVICH INTERPRETATION

We determine here the effective diffusion coefficient
for a periodic heterogeneous diffusion model under the
Fisk-Stratonovich interpretation. Our starting point for this
calculation is the closed form expression of the propagator of
Eq. (4) that we recently formulated (α = 1/2) [26]. It is given
by

W (x, t ; x0, t0) =
exp

[ − 1
4(t−t0 )

( ∫ x
x0

dη

g(η)

)2]
g(x)

√
4π (t − t0)

, (10)

for the deterministic initial condition W (x, t0; x0, t0) = δ(x −
x0). The Wiener process is obviously retrieved when g(x) is
a constant. The result in Eq. (10) is correct for any function
g(x), and in particular is valid for a periodic function g(x) =
g(x + L) with period L ∈ R. The periodicity assumption will
always be adopted in the following. Equation (10) can be spe-
cialized for x0 = 0 and t0 = 0, yielding the probability density
ρ(x, t ) = W (x, t ; 0, 0). In this particular case, it is interesting
to study the effective diffusion constant, as defined in Eq. (8).
We can write

D = lim
t→∞

〈x2〉
2t

= lim
t→∞

1

2t

∫ +∞

−∞
x2ρ(x, t ) dx

= lim
t→∞

1

2t

∫ +∞

−∞
x2

exp
[ − 1

4t

( ∫ x
0

dη

g(η)

)2]
g(x)

√
4πt

dx. (11)

If g(x) is periodic, bounded and strictly positive, 1/g(x) is also
periodic, bounded, and strictly positive and we can use the
Fourier series representation

1

g(x)
=

+∞∑
k=−∞

Ck exp

(
2π ikx

L

)
, (12)

where

Ck = 1

L

∫ L

0

1

g(x)
exp

(
−2π ikx

L

)
dx, (13)

with C−k = C∗
k , since g(x) ∈ R (in particular, it means that C0

is real). We define D(x) = ∫ x
0

dη

g(η) , and we easily get

D(x) =
+∞∑

k=−∞
Ck

∫ x

0
exp

(
2π ikx

L

)
dx

= C0x +
+∞∑

k=−∞
k 	=0

CkL

2π ik

[
exp

(
2π ikx

L

)
− 1

]

= C0x + p(x), (14)

where

p(x) =
+∞∑

k=−∞
k 	=0

CkL

2π ik

[
exp

(
2π ikx

L

)
− 1

]
(15)

is a periodic bounded function. Since D′(x) = 1/g(x), we can
rewrite the effective diffusion constant as

D = lim
t→∞

1

2t

∫ +∞

−∞
x2 exp

[ − D2(x)
4t

]
√

4πt
D′(x) dx, (16)

where

D2(x) = [C0x + p(x)]2 = x2

[
C2

0 + 2C0
p(x)

x
+ p2(x)

x2

]
.

(17)

When the time t is large, the exponential in Eq. (16) is increas-
ingly flat and close to one, and therefore the area for large
values of x becomes more and more important in calculating
the integral. Moreover, p(x) is bounded and periodic and
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therefore p(x)/x → 0 when x → ±∞. Hence, we can write

D = lim
t→∞

1

2t

∫ +∞

−∞
x2

exp
(
−C2

0 x2

4t

)
√

4πt

+∞∑
k=−∞

Ck exp

(
2π ikx

L

)
dx,

(18)

and the integral can be calculated using∫ +∞

−∞
x2e−ax2

eibx dx =
√

π

a3/2
e− 1

4
b2

a

(
1

2
− b2

4a

)
. (19)

The application of Eq. (19) to each term of Eq. (18), for k
ranging from −∞ to +∞, shows that only the term for k = 0
contributes to the result, which is eventually obtained in the
simple form

D = 1

C2
0

=
〈

1

g

〉−2

, (20)

where the operator 〈·〉 represents the mean value of the
argument over one period. This expression can be further
confirmed by an alternative derivation discussed for the sake
of completeness in Appendix A.

We now consider the simplest case of periodic diffusion,
which is described by a sinusoidal profile

g(x) = G0

(
1 + ε cos

2πx

L

)
, (21)

where G0 > 0 and ε2 < 1. These limitations ensure that we
always have g(x) > 0 ∀x ∈ R. The Fourier coefficients can
be calculated as

Ck = 1

L

∫ L

0

1

G0
(
1 + ε cos 2πx

L

) exp

(
−2π ikx

L

)
dx

= 1

πG0

∫ π

0

cos(ky)

1 + ε cos y
dy, (22)

where we used the change of variable y = 2πx/L and the
parity of the cosine function (here k ∈ Z). By considering the
integral [64,65]

∫ π

0

cos(ny)

1 + ε cos y
dy = π√

1 − ε2

(√
1 − ε2 − 1

ε

)n

, (23)

valid for n ∈ N and ε2 < 1, we directly obtain

Ck = 1

G0

√
1 − ε2

(√
1 − ε2 − 1

ε

)|k|
, (24)

for G0 > 0, ε2 < 1, and k ∈ Z. This result, by using Eq. (20),
allows the determination of the explicit expression for the
effective diffusion constant for this sinusoidal case, within the
Fisk-Stratonovich interpretation

D = G2
0(1 − ε2). (25)

We also want to determine the full form of the probability
density in this particular case. By recalling the definition of

D(x), we obtain

D(x) = 1

G0

√
1 − ε2

×

⎧⎪⎨
⎪⎩x + L

2π i

+∞∑
k=−∞

k 	=0

β |k|

k

[
exp

(
2π ikx

L

)
− 1

]⎫⎪⎬
⎪⎭, (26)

where we introduced β = (
√

1 − ε2 − 1)/ε to simplify the
notation. For the following calculations, it is useful to note
that β2 < 1 if and only if ε2 < 1. Moreover it is evident that

+∞∑
k=−∞

k 	=0

β |k|

k
= 0, (27)

and therefore the expression of D(x) is simplified as follows:

D(x)= 1

G0

√
1 − ε2

⎧⎪⎨
⎪⎩x+ L

2π i

+∞∑
k=−∞

k 	=0

β |k|

k
exp

(
2π ikx

L

)⎫⎪⎬
⎪⎭.

(28)

We prove in Appendix B that the series appearing in the
expression for D(x) can be calculated in closed form. This
development leads to the following final formula:

D(x) = 1

G0

√
1 − ε2

{
x + L

π

[
arctan

(√
1 − ε

1 + ε
tan

πx

L

)

− arctan
(

tan
πx

L

)]}
. (29)

The latter result can be directly used in the expression of the
probability density

ρ(x, t ) = exp
[−D2(x)

4t

]
G0

√
4πt

(
1 + ε cos 2πx

L

) , (30)

in order to study the space and time evolution of the stochastic
system.

An example of application of this result can be seen in
Fig. 1, where we represent the density ρ(x, t ) as a function
of x, and parameterized by t , for four different cases (with
L = 1): (i) G0 = 1 and ε = 0.3; (ii) G0 = 1 and ε = 0.7; (iii)
G0 = 5 and ε = 0.3; (iv) G0 = 5 and ε = 0.7. First of all, we
can observe that the general trend corresponds to the familiar
one of classical diffusion (think of the Wiener process given
by Eq. (10) with g(x) constant) in which, as time increases, the
density broadens on the spatial axis, increasing the variance.
This is true for any choice of parameters G0 and ε. However, in
our case, we observe a perturbation to the classical Gaussian
shape consisting of oscillations arising from heterogeneous
periodic sinusoidal diffusion. The points at which the density
has local minima correspond to the maxima of the local diffu-
sion function g(x); reciprocally, the points at which the density
has local maxima correspond to the minima of g(x). This is ex-
plained by the fact that the function g(x) somehow represents
the mobility of the particle that is moving, under overdamped
assumptions, in the periodic diffusive system. In other words,
it can be said that periodic diffusion induces particle trapping
phenomena (corresponding to density maxima) in areas of
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FIG. 1. Evolution of the probability density for a system with heterogeneous diffusion described by the sinusoidal behavior in Eq. (21).
We represented the density ρ(x, t ) as a function of x, and parameterized by t (see box). We considered four cases with the following values of
G0 and ε: (a) G0 = 1 and ε = 0.3; (b) G0 = 1 and ε = 0.7; (c) G0 = 5 and ε = 0.3; (d) G0 = 5 and ε = 0.7. We always considered L = 1.

low mobility, where the particle moves with more difficulty.
Since in reality the local diffusion coefficient depends on both
the temperature and the friction coefficient, these trapping
phenomena can be achieved both with heterogeneous tem-
peratures and with variable friction. This is in accord with
the work of Landauer [46], discussed in the Introduction.
From Fig. 1, we deduce that the evolution of the diffusion
phenomenon is faster for increasing values of G0 and slower
for increasing values of ε. This is consistent with the ex-
pression of the effective diffusion constant given in Eq. (25):
Deff is indeed increasing with G0 and decreasing with ε. We
finally observe that the trapping phenomenon is particularly
amplified for large values of G0 and values of ε close to 1.

IV. PERIODIC HETEROGENEOUS DIFFUSION WITH
ARBITRARY STOCHASTIC INTERPRETATION

We now study the effective diffusion coefficient Deff

for the stochastic differential equation with periodic
heterogeneous diffusion in the case of a general discretiza-
tion parameter 0 � α � 1. This means that we need to
study the properties of Eq. (3). In particular, the stan-
dard notation for the propagator that solves Eq. (3) is
given by W = W (x, t ; x0, t0). We use the initial condition

W (x, t0; x0, t0) = δ(x − x0) for defining this propagator. In the
following calculations, we set the initial time t0 = 0 and, in
order to simplify the notation, use only the first two arguments
for W to denote it as W (x, t ), associated with the initial con-
dition W (x, 0) = δ(x − x0). To further simplify the following
development, we also introduce the quantities

A(x) ≡ 1

g2α (x)
, (31)

B(x) ≡ 1

g2(1−α)(x)
, (32)

that are both periodic functions with period L. We therefore
analyze the differential problem

∂W (x, t )

∂t
= ∂

∂x

{
1

A(x)

∂

∂x

[
1

B(x)
W (x, t )

]}
, (33)

W (x, 0) = δ(x − x0), (34)

with the aim of finding the effective diffusion constant Deff in
terms of A(x) and B(x). If A and B were constant in space,
then the diffusion coefficient would be 1/(AB).

For this general problem, it is probably impossible to
obtain a closed form expression for the probability density
W (x, t ), and for this reason we now use the definition of the
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effective diffusion constant given by

Deff ≡ a

2T FP
, (35)

and will give a precise meaning of a and T FP for our problem.
In this case, in addition to the initial condition W (x, 0) =

δ(x − x0), the Fokker-Planck equation is considered to be
equipped with two adsorbing conditions at the points x0 − a
and x0 + a. Hence, the interval between the boundary con-
ditions is symmetric with respect to the position of the initial
condition; thus we have the supplementary conditions W (x0 −
a, t ) = 0 and W (x0 + a, t ) = 0. The particle is adsorbed at
these boundary points, and the density gradually tends to zero
in the inner range as time passes. The quantity T FP is the
mean first passage time, i.e., the average value of the time
it takes for the particle starting at x0 to arrive at one of the
two boundary points x0 − a or x0 + a. In other words, it is the
average time to wait for the particle to leave the considered
interval or, equivalently, the average time the particle needs to
travel the length a toward the left or toward the right, from the
initial position x0.

Since we are studying a periodic system, we choose the
length a equal to a multiple n of the period L. Then

W (x0 − nL, t ) = 0, (36)

W (x0 + nL, t ) = 0 . (37)

Next we define the survival probability

S(t ) =
∫ x0+nL

x0−nL
W (x, t ) dx, (38)

which is the probability for the particle to be in the interval
(x0 − nL, x0 + nL). The survival probability also represents
the probability that the first passage time TFP exceeds a given
time value t [42,43]

Pr {TFP > t} = S(t ) =
∫ x0+nL

x0−nL
W (x, t ) dx. (39)

Note the first passage time TFP, defined as the time to reach
either extremity placed at x0 ± a = x0 ± nL, is a random vari-
able whose distribution law and density can be defined, as
we will see shortly below. Through these, we can then define
the mean first passage time, which is the key quantity in this
procedure. Indeed, from Eq. (39) we have that

Pr {TFP � t} = 1 − Pr {TFP > t} = 1 −
∫ x0+nL

x0−nL
W (x, t ) dx

(40)

is the probability distribution of the first passage time. The
corresponding probability density is therefore given by

f (t ) = d

dt
Pr {TFP � t} = −

∫ x0+nL

x0−nL

∂W (x, t )

∂t
dx. (41)

We can calculate the mean first passage time as

T FP =
∫ +∞

0
t f (t ) dt = −

∫ +∞

0
t
∫ x0+nL

x0−nL

∂W (x, t )

∂t
dx dt

= −
∫ x0+nL

x0−nL

∫ +∞

0
t
∂W (x, t )

∂t
dt dx, (42)

and an integration by parts on the internal time integral yields

T FP =
∫ x0+nL

x0−nL

∫ +∞

0
W (x, t ) dt dx. (43)

By introducing

k(x) =
∫ +∞

0
W (x, t ) dt, (44)

we obtain the final expression

T FP =
∫ x0+nL

x0−nL
k(x) dx. (45)

We now determine the function k(x) for our problem stated in
Eqs. (33), (34), (36), and (37). We start by integrating Eq. (33)
over the time from 0 to +∞, and we find

W (x,+∞) − W (x, 0) = d

dx

{
1

A(x)

d

dx

[
k(x)

B(x)

]}
. (46)

Here and in the sequel we use the differential operator d
dx

instead of ∂
∂x since the time variable is no longer present.

Since W (x,+∞) → 0 and W (x, 0) = δ(x − x0), as defined in
Eq. (34), we have an equation for k(x)

−δ(x − x0) = d

dx

{
1

A(x)

d

dx

[
k(x)

B(x)

]}
, (47)

for which the boundary conditions in Eqs. (36) and (37) can be
rewritten as k(x0 − nL) = 0 and k(x0 + nL) = 0. The solution
of this equation is relegated to Appendix C, and the final result
can be written as

k(x) =
{

1
2B(x)

∫ x
x0−nL A(ξ ) dξ, x0 − nL � x < x0,

1
2B(x)

∫ x0+nL
x A(ξ ) dξ, x0 < x � x0 + nL.

(48)

Now, the mean first passage time can be explicitly calcu-
lated through Eq. (45), eventually yielding

T FP = 1

2

∫ x0

x0−nL
B(x)

∫ x

x0−nL
A(ξ ) dξ dx

+ 1

2

∫ x0+nL

x0

B(x)
∫ x0+nL

x
A(ξ ) dξ dx, (49)

where, remember, A and B are periodic functions with period
L. To simplify the obtained expression for T FP, we apply the
substitution y = x + nL to the first integral, and we get

T FP = 1

2

∫ x0+nL

x0

B(y − nL)
∫ y−nL

x0−nL
A(ξ ) dξ dy

+ 1

2

∫ x0+nL

x0

B(x)
∫ x0+nL

x
A(ξ ) dξ dx. (50)

Now the periodicity of B yields

T FP = 1

2

∫ x0+nL

x0

B(x)

[∫ x−nL

x0−nL
A(ξ ) dξ+

∫ x0+nL

x
A(ξ ) dξ

]
dx,

(51)

and the periodicity of A leads to

T FP = 1

2

∫ x0+nL

x0

B(x)

[∫ x

x0

A(ξ ) dξ +
∫ x0+nL

x
A(ξ ) dξ

]
dx.

(52)
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Therefore, the mean first passage time is simplified as

T FP = 1

2

∫ x0+nL

x0

B(x) dx
∫ x0+nL

x0

A(ξ ) dξ

= n2

2

∫ L

0
B(x) dx

∫ L

0
A(ξ ) dξ . (53)

To conclude, we can use Eq. (35) with a = nL, and we obtain
the effective diffusion constant as

Deff = (nL)2

2T FP
= L2∫ L

0 B(x) dx
∫ L

0 A(ξ ) dξ
= 1

〈A〉〈B〉 . (54)

This is the key result of the present section and, for the
interested readers, we prove in Appendix D that it is fully con-
sistent with a classical steady-state homogenization approach.
Our result can be explicitly rewritten in terms of the function
g(x) from the definitions of A and B,

Deff = 1〈
1

g2α (x)

〉〈
1

g2(1−α) (x)

〉 , (55)

where the symbol 〈·〉 represents the mean value of the argu-
ment over a period. This result is consistent with the effective
diffusion constant found in Sec. III for Wereide’s law (α =
1/2), and for the well-known effective diffusion constant
for Fick’s law (α = 1). It also provides a new result for
Chapman’s diffusion law (α = 0), which coincides with the
result concerning the Fick’s law. Indeed, Deff in Eq. (55) is
invariant under the substitution α � 1 − α.

We can now obtain the explicit result for the exemplary
sinusoidal function g(x) given in Eq. (21). By considering
ν = 2α or ν = 2(1 − α), we can calculate each of the average
values in Eq. (55) as〈

1

gν (x)

〉
= 1

L

∫ L

0
G−ν

0

(
1 + ε cos

2πx

L

)−ν

dx, (56)

where, as before, G0 > 0 and ε2 < 1. By the change of vari-
able ϑ = 2πx/L, we obtain〈

1

gν (x)

〉
= 1

2π

∫ 2π

0
G−ν

0 (1 + ε cos ϑ )−νdϑ. (57)

Now, we can introduce the parameters k and z defined in such
a way that kz = G0 and k

√
z2 − 1 = G0ε. By straightforward

calculations we have k = G0

√
1 − ε2 and z = 1/

√
1 − ε2,

and therefore the average value assumes the form〈
1

gν (x)

〉
= 1

2π

∫ 2π

0
k−ν (z +

√
z2 − 1 cos ϑ )−νdϑ. (58)

We can remember the Legendre function representation by
means of the following Laplace integral [64,65]:

Pμ(z) = 1

2π

∫ 2π

0
(z +

√
z2 − 1 cos ϑ )μdϑ, (59)

which can be used with both the argument z and the order μ

in the real domain, and we get〈
1

gν (x)

〉
= k−νP−ν (z) =

P−ν

(
1√

1−ε2

)
(G0

√
1 − ε2)ν

. (60)

Finally, the expression for the effective diffusion constant in
this sinusoidal case is given by the closed form expression

Deff = G2
0(1 − ε2)

P−2α

(
1√

1−ε2

)
P−2(1−α)

(
1√

1−ε2

) , (61)

which shows explicitly the dependence of Deff on the
discretization parameter α ∈ [0, 1] and the perturbation am-
plitude ε (with ε2 < 1). Of course, Deff is an even function of
ε. We observe that Deff = G2

0 when ε = 0, as expected, since
Pμ(1) = 1 ∀μ. Moreover, considering that P−1(z) = P0(z) =
1, and P−2(z) = P1(z) = z, we have the following particular
results: (i) for α = 1/2, we get Deff = G2

0(1 − ε2), in agree-
ment with Eqs. (20), (24), and (25); (ii) for α = 0 and α = 1,
we get the identical result Deff = G2

0(1 − ε2)3/2.
To further show the relationship between Deff and α, we

can determine the approximation of the obtained result for
small values of ε. It means that we consider small periodic
perturbation of the function g(x), see Eq. (21). To this aim,
we evaluate the Legendre function for small values of ε, as
follows:

Pμ(z) = zμ

2π

∫ 2π

0

(
1 +

√
z2 − 1

z
cos ϑ

)μ

dϑ

= zμ

2π

∫ 2π

0

(
1 +

√
z2 − 1

z
μ cos ϑ

+ 1

2
μ(μ − 1)

z2 − 1

z2
cos2 ϑ + · · ·

)
dϑ, (62)

where we applied the Newton binomial theorem. Performing
the integration and recalling that z = 1/

√
1 − ε2, we get the

second-order expansion

Pμ

(
1√

1 − ε2

)
= 1 + 1

4
μ(μ + 1)ε2 + · · · , (63)

which is valid for small values of ε. We can use this approxi-
mation in Eq. (61), and we obtain

Deff = G2
0

[
1 − 1

2 (3 − 4α + 4α2)ε2 + · · · ], (64)

which shows even more explicitly the dependence of the
diffusion constant on the parameter α, also for small pertur-
bations of g(x). Importantly, we observe that Deff � G2

0 since
3 − 4α + 4α2 is positive for any value of α. From a physical
point of view, this means that periodically perturbing a diffu-
sion coefficient means decreasing its effective value. We also
remark that the polynomial 3 − 4α + 4α2 is invariant to the
substitution α � 1 − α, as expected, since the approximated
relation given in Eq. (64) has been derived from the general
solution stated in Eq. (55).

A numerical implementation of Eq. (61) is presented in
Fig. 2, where we represent Deff/G2

0 versus ε and α. In the left
panel we find the effective diffusion constant as a function
of ε and parameterized by the discretization coefficient α.
Reciprocally, in the right panel we find the effective diffusion
constant as a function of α and parameterized by the ampli-
tude ε of the periodic perturbation. The ranges of variation
of these parameters are clearly specified within the panels. In
the left panel we see that the effective diffusion coefficient
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FIG. 2. Behavior of the effective diffusion constant with a periodic multiplicative noise described by g(x) in Eq. (21). The behavior
of Deff/G2

0 given in Eq. (61) is represented versus ε in the left panel and versus α in the right panel.

decreases monotonically with ε and reaches zero when ε = 1.
This decrease is explained by the fact that as ε increases, areas
with weak local diffusion appear and thus the particle moves
less easily, thus reducing the effective diffusion constant. In
the limit of ε = 1, the local diffusion becomes zero at cer-
tain points that the particle will be prevented from passing
through. From a physical point of view, the first-order stochas-
tic differential equation can be thought of as corresponding
to overdamped motion, and so the absence of inertial effects
helps even more to understand this cancellation of diffusion.
Regarding the effects of the discretization parameter α, we
observe that when it varies between 1/2 and 1, the effective
diffusion constant is monotonically decreasing. It is easily
seen that this result is consistent with the approximate formula
given in Eq. (64). This point will be further commented in
the next section. In the right panel we can come to the same
conclusions, and we also see the graphical representation of
the symmetry induced by the invariance of the result under the
substitution α � 1 − α. This finally allows us to observe that
for any fixed value of ε, the maximum value of effective diffu-
sion constant is obtained for α = 1/2, that is, in the stochastic
Fisk-Stratonovich interpretation (or Wereide’s diffusion law).

V. GENERALIZED LIFSON-JACKSON THEOREM

The result obtained in the previous section is closely re-
lated to the Lifson-Jackson theorem concerning the effective
diffusion constant for a particle embedded in a periodic po-
tential energy [44]. We briefly summarize the result of this
theorem in order to develop a generalization to the case of
heterogeneous diffusion superimposed on the effects of the
potential energy.

For a particle that is experiencing an overdamped motion
under the effect of any potential energy U (x), we can write
the first order Langevin’s equation

dx

dt
= − 1

mγ

dU

dx
+
√

kBT

mγ
ξ (t ), (65)

where m is the particle mass, γ is its friction coefficient, T is
the temperature, and kB is Boltzmann’s constant. For now, the

value of
√

kBT
mγ

is constant, and then we have a standard addi-

tive noise. The associated Fokker-Planck (or Smoluchovski)
equation can be written as

∂W

∂t
= 1

mγ

∂

∂x

(
∂U

∂x
W

)
+ kBT

mγ

∂2W

∂x2
, (66)

which is equivalent to the more useful form

∂W

∂t
= kBT

mγ

∂

∂x

[
e− U

kBT
∂

∂x

(
e+ U

kBT W
)]

. (67)

Incidentally, this second form is well adapted to recog-
nize that the asymptotic solution is correctly given by the

Gibbs-Boltzmann distribution W (x,+∞) = e− U
kBT /Z , where

the partition function Z it is used to normalize the probabil-
ity density. For this problem, with periodic potential energy
and homogeneous diffusion constant, the effective diffusion
constant is given by

Deff =
kBT
mγ〈

e− U (x)
kBT

〉〈
e+ U (x)

kBT
〉 , (68)

where kBT/mγ is the diffusion constant of the homogeneous
system with U = 0, see Eq. (66).

In their original paper [44], Lifson and Jackson proved
their theorem through a method proposed by Pontryagin, An-
dronow, and Witt that provides a differential equation for the
average time taken by a particle moving under the combined
effect of thermal agitation and a stationary force field to reach
a given boundary [66]. Given the elegance and application
importance of this theorem, many different demonstrations
have been presented in the literature. For instance, the concept
of mean first passage time has been used in Refs. [58,67,68],
a thorough technique based on an eigenfunction expansion
applied to the Smoluchovski equation has been proposed in
Ref. [69], and a clever demonstration based on a few physical
arguments has been developed in Ref. [70]. In all these devel-
opments, the noise is always additive and therefore there is no
influence of the discretization parameter α.

Here we propose a generalization taking into account a het-
erogeneous diffusion generated by a spatially varying friction
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coefficient γ (x), and an arbitrary discretization coefficient α.
In this situation, the Langevin equation assumes the form

dx

dt
= h(x) + g(x)ξ (t ), (69)

where h(x) and g(x) are defined as follows:

h(x) = − 1

mγ (x)

dU (x)

dx
, (70)

g(x) =
√

kBT

mγ (x)
, (71)

and where U (x) and γ (x) are periodic with period L. It is
easily seen that the heterogeneous diffusion is induced by the
variable periodic friction coefficient.

The probability density W (x, t ) is the solution of the
Fokker-Planck equation [40–43,71–73]

∂W

∂t
= − ∂

∂x

[(
h + 2αg

∂g

∂x

)
W

]
+ ∂2

∂x2

(
g2W

)
, (72)

which can be rewritten as

∂W

∂t
= ∂

∂x

[
g2αe− U

kBT
∂

∂x

(
g2(1−α)e+ U

kBT W
)]

. (73)

This is a crucial result for the continuation of the discussion.
The equivalence between these two forms can be proved by
performing the derivatives and by recalling the definitions of
h(x) and g(x) in Eqs. (70) and (71). We remark that, if g
is constant (i.e., γ is constant), we retrieve Eq. (67), and if
U = 0, we retrieve Eq. (3). Now, this new form of the Fokker-
Planck equation can be compared with Eq. (33) provided that
we introduce the new variable coefficients

A(x) = 1

g2α (x)e− U (x)
kBT

, (74)

B(x) = 1

g2(1−α)(x)e+ U (x)
kBT

, (75)

and therefore we can directly write down the expression for
the effective diffusion constant

Deff = 1〈
e
− U (x)

kBT

g2(1−α) (x)

〉〈
e
+ U (x)

kBT

g2α (x)

〉

= 1〈[
mγ (x)
kBT

]1−α

e− U (x)
kBT

〉〈[
mγ (x)
kBT

]α

e+ U (x)
kBT

〉 , (76)

which generalizes the Lifson-Jackson theorem stated in
Eq. (68). This result takes into consideration the combined
effects of the periodic potential energy and the periodic
heterogeneous diffusion, introduced through the variable fric-
tion coefficient. Of course, this result still depends on α,
but we have lost the symmetry induced by the substitution
α � 1 − α.

An interesting general property of this result can be derived
by means of the Cauchy-Schwartz inequality[∫ L

0
f (x)�(x) dx

]2

�
∫ L

0
f 2(x) dx

∫ L

0
�2(x) dx, (77)

which can be directly applied to the denominator of Eq. (76).
Straightforward calculations deliver

Deff �
1〈
1
g

〉2 , (78)

which means that the diffusion coefficient, regardless of po-
tential energy and stochastic interpretation, is always smaller
or equal than that corresponding to Wereide’s diffusion (Fisk-
Stratonovich interpretation) without drift. This can be easily
seen in the right panel of Fig. 2, where each curve shows a
maximum point for α = 1/2. Moreover, if g(x) is constant,
i.e., γ (x) is constant, we obtain that Deff � kBT/(mγ ) for any
potential energy U (x). It means that any shape of the periodic
potential energy can only reduce the effective diffusion con-
stant of the system with respect to the case with U = 0.

We represent some numerical results concerning the effec-
tive diffusion constant given in Eq. (76). To do this, we choose
the following profiles of heterogeneous diffusion and periodic
potential:

g(x) = G0

(
1 + ε cos

2πx

L

)
, (79)

U (x) = E0 cos

(
2πx

L
+ ϕ

)
, (80)

where ϕ represents a phase shift between the two sinusoidal
shapes. Experimental systems where the phase shift between
drift and noise is achievable can be superlattices where the
effect of friction (noise) is decoupled from the applied fields
(drift). A particular case is represented by Moiré superlattices
whose mechanical friction properties are well known [74].
Obviously, the potential energy is defined except for an ar-
bitrary additive constant that has no effect on the value of
Deff , as is easy to see from Eq. (76). In this case, it is not
possible to calculate in closed form the effective constant Deff ,
and the following results are therefore obtained with standard
procedures for numerical integration. In Fig. 3 we show the
behavior of Deff for four different values of the phase shift
ϕ = 0, π/3, 2π/3, π , in order to better explore the response
of the system. In each plot, we have reported five groups of
curves, identified by different colors, corresponding to differ-
ent values of the energy ratio E0/(kBT ) = 0, 1/2, 1, 3/2, 2.
In each of these groups, the four curves of the same color
correspond to different values of α = 1/2, 2/3, 5/6, 1. To
identify these curves, we remark that the topmost curve in
each group always corresponds to the value α = 1/2, and the
bottom curve always corresponds to the value α = 1. We can
observe the following general trends that explain the dynamics
of the system. First, in contrast to the case without drift, as
ε increases, we observe in some curves an initial increase
followed by a decrease in the effective diffusion constant.
This is due to the interaction between potential energy and
heterogeneous diffusion. When ε = 1, we observe that in each
case such an effective diffusion is zero because the particle
cannot go through the points where the local diffusion coef-
ficient is zero. As before, this point can be interpreted with
an overdamped particle motion, where all inertial effects are
completely neglected. We also observe that the energy ratio
E0/(kBT ) strongly influences the evolution of the effective
diffusion constant. Of course, when E0 = 0 we get the same
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FIG. 3. Behavior of the effective diffusion constant with a periodic multiplicative noise described by g(x) in Eq. (79) and by a periodic
potential described by U (x) in Eq. (80). The behavior of Deff/G2

0 given in Eq. (76) is represented versus ε and parameterized by the energy
ratio E0/(kBT ) and the discretization coefficient α.

results as in Fig. 2 (left panel), which correspond to the blue
groups of curves in Fig. 3. In fact, in this case the drift is
not present and only the heterogeneous diffusion acts on the
system. Increasing the value of E0 with respect to the thermal
energy kBT shows a sharp decrease in effective diffusion
justified by the fact that the particle in this case must cross an
energy barrier of increasing amplitude. The values of Deff/G2

0
for ε = 0 correspond the the original Lifson-Jackson theorem
stated in Eq. (68), and the observed decreasing trend with the
increasing ratio E0/(kBT ) corresponds to the previous analy-
sis based on the Cauchy-Schwartz inequality. The behavior
induced by the discretization coefficient α is analogous to
the one already observed in the case without drift, and can
be summarized by saying that when alpha increases from
1/2 to 1 the coefficient Deff is monotonically decreasing, in
agreement with the inequality given in Eq. (78). In addition,
one is reminded of the symmetry of the response described
by the invariance to the interchange α � 1 − α. The analysis
of the effects of the phase shift ϕ is more intricate because
it represents the interaction between the profiles of heteroge-
neous diffusion and periodic potential. We can simply observe
that the curvature of the response in the (Deff/G2

0, ε) plane
decreases as the phase shift increases from 0 to π . In fact, the
maximum value of the effective diffusion constant gradually
decreases as ϕ increases between 0 and π . This behavior

is reproduced periodically for values of the phase shift out-
side this range. A better explanation of the behavior of the
diffusion constant versus the phase shift between drift and
diffusion can be found in Fig. 4. Here the behavior of Deff/G2

0,
given in Eq. (76), is represented versus ϕ and parameterized
by ε = 0.1, 0.2, 0.3, . . . , 0.9 (the thickest line corresponds
to ε = 0.9). We adopted E0/(kBT ) = 5, and the five differ-
ent values of the discretization coefficient α. The particular
case with α = 1/2, corresponding to the Fisk-Stratonovich
integration rule, can be interpreted as follows. To begin, we
can state that overcoming an energetic barrier is easier if the
maximum of the noise occurs where the external force is
largest. In this case, the noise would help to bring the particle
over the energetic barrier. When α = 1/2, we see that the
effective diffusion constant is larger if the phase shift is π/2
or 3π/2. It is easily seen that at these two points a maximum
of g(x) always corresponds to the point at which there is a
maximum of force. This explains the behavior of the graphs
for α = 1/2. This interpretation is perfectly consistent with
the findings of Landauer [46], and Breoni et al. [47]. It is then
seen that the behavior is opposite in Itô-type and anti-Itô-type
regions. In fact, in the Itô-type region we see a maximum
of diffusivity for ϕ = π , while in the anti-Itô-type region we
see a minimum of diffusivity for ϕ = π . The observation of
the five panels in Fig. 4 shows a continuity in behavior with
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FIG. 4. Behavior of the effective diffusion constant with a periodic multiplicative noise described by g(x) in Eq. (79) and by a peri-
odic potential described by U (x) in Eq. (80). The behavior of Deff/G2

0 given in Eq. (76) is represented versus ϕ and parameterized by
ε = 0.1, 0.2, 0.3, . . . , 0.9 (the thickest line corresponds to ε = 0.9). We adopted E0/(kBT ) = 5 and the five different values of the discretization
coefficient α.

respect to α, described by the maximum of the Itô trend and
the minimum of the anti-Itô trend, which are split into two
maxima when α tends to 1/2. However, the behavior away
from Fisk-Stratonovich type region remains difficult to be
interpreted physically because the stochastic integration does
not follow the conventional rules of mathematical analysis.

VI. CONCLUSIONS

In this work we have addressed the calculation of the
effective diffusion constant for stochastic processes described
by Fokker-Planck equations for different discretizations of the
underlying Langevin equation. The discretization parameter
0 � α � 1 enters the Fokker-Planck equation as a simple
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parameter. We have determined the effective diffusion con-
stant specifically for heterogeneous diffusions in the presence
of a periodically modulated noise. First, we addressed such
stochastic processes in the Fisk-Stratonovich interpretation
by two different approaches. In this case with α = 1/2, the
Fokker-Planck equation is typically referred to as Wereide’s
equation [48], and it is different from the more classical
Fick’s law [33,49]. It is interesting to remark that the Fisk-
Stratonovich interpretation [27,28], which is the most used
at least in physical applications, leads to a diffusion equa-
tion not corresponding to the widely adopted Fick’s law.
Anyway, our approach provided the result Deff = 〈1/g〉−2

for the effective diffusion constant. If we now consider the
Hänggi-Klimontovich interpretation of the stochastic calculus
with α = 1 [20,30], in the associated Fokker-Planck equation
we immediately recognize the Fick’s law [49]. In this more
classical case, the current probability density J = −g2 ∂W

∂x is
given by the heterogeneous diffusion constant g2 times the
gradient of the density (with opposite sign), as typically oc-
curs in the transport of heat, mass, or electrical charge [33,75].
For this Fick’s law, the effective diffusion constant is given
by Deff = 〈1/g2〉−1, as can be shown by different homoge-
nization techniques applied to one-dimensional or stratified
media [59–63]. Therefore, the effective behavior of Fick’s
law is different from that of Wereide’s law. The value of α

is therefore of central importance in determining the effective
diffusion constant. Moreover, to the authors’ knowledge, no
homogenization law was known for Chapman’s diffusion,
corresponding to α = 0 (Itô stochastic interpretation [29]).
For these reasons, we have discussed the case of general
α, which includes the three previous particular situations.
The problem has been approached by determining the mean
first passage time for a problem with adsorbing boundary
conditions, which are symmetric with respect to the initial
condition. In Appendix D we have also provided an equivalent
demonstration based on standard homogenization techniques.
We obtained an α-dependent result for the diffusion con-
stant, namely, Deff = 〈1/g2α〉−1〈1/g2−2α〉−1. This expression
is invariant under the substitution α � 1 − α, and therefore
yields the same result for Fick’s and Chapman’s diffusion law.
Moreover, Wereides’s diffusion law always gives the highest
value of the diffusion constant. As an illustration of our re-
sults, we have applied them to a simple sinusoidal case, which
can be treated in analytical detail. Interestingly, the effective
diffusion constant in this case can be written in terms of
Legendre functions. Finally, we have formulated a generaliza-
tion of the Lifson-Jackson theorem for the case of combined
periodic potentials and diffusion coefficients. We discussed an
example where potential energy and heterogeneous diffusion
are both sinusoidal with a variable phase shift. In this case,
the calculation cannot be performed analytically and therefore
we applied classical numerical techniques. The results have
been discussed in terms of physical parameters describing the
system. Note in particular the importance of the discretization
parameter α when studying the dependence of Deff on the
shift angle ϕ. An interesting perspective of our work con-
cerns the generalization of the obtained results to the case
of a biased or tilted periodic potential energy (or washboard
potential). It means that in addition to the periodic potential,
one could consider a linear term representing a superimposed

constant external force. In this case, we can define an average
drift velocity and an effective diffusion constant. While this
problem has been largely studied for homogeneous diffusion
[76–81], the case with heterogeneous diffusion still needs to
be investigated in more detail.
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APPENDIX A: ALTERNATIVE DERIVATION OF THE
DIFFUSION CONSTANT IN THE

FISK-STRATONOVICH INTERPRETATION

We propose here an alternative derivation of Eq. (20). Since

∂

∂x
exp

[
−D2(x)

4t

]
= −D(x)D′(x)

2t
exp

[
−D2(x)

4t

]
, (A1)

we can write the effective diffusion constant defined in
Eq. (16) as

D = lim
t→∞

∫ +∞

−∞

⎡
⎢⎣− x2

D(x)

∂
∂x exp

[
−D2(x)

4t

]
√

4πt

⎤
⎥⎦dx. (A2)

Now, integrating by parts we easily obtain

D = lim
t→∞

∫ +∞

−∞

∂

∂x

(
x2

D(x)

)exp
[
−D2(x)

4t

]
√

4πt
dx

= lim
t→∞

∫ +∞

−∞

2xD(x) − x2D′(x)

D2(x)

exp
[
−D2(x)

4t

]
√

4πt
dx. (A3)

First of all, we have to prove that there are no singularities
for x = 0, even if D(x) = 0 when x = 0. Since D(x) = C0x +
p(x) [see Eq. (14)], the fraction appearing in Eq. (A3) can be
rewritten as

2xD(x) − x2D′(x)

D2(x)
= C0 + 2 p(x)

x − p′(x)

C2
0 + 2C0

p(x)
x + p2(x)

x2

. (A4)

Here the function p(x) is given in Eq. (15), and, therefore, we
obtain

p(x)

x
=

+∞∑
k=−∞

k 	=0

CkL

2π ik

exp
(

2π ikx
L

) − 1

x
. (A5)

We can use the well-known property stating that (eh − 1)/h
approaches 1 when h approaches 0. So doing, we get the limit-
ing behavior p(x)/x → ∑+∞

k=−∞, k 	=0 Ck = 1/g(0) − C0, when
x → 0. By using this result in Eq. (A4), we finally obtain the
limiting behavior

lim
x→0

2xD(x) − x2D′(x)

D2(x)
= g(0), (A6)

which excludes any possible singularity in the same fraction.
As before, when the time t is large, the exponential in Eq. (A3)
is increasingly flat and close to one, and the area for large val-
ues of x becomes more and more important. Thus, being p(x)
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bounded and periodic, we can neglect p(x)/x and p2(x)/x2 in
Eq. (A4) for large time, and we get

D = lim
t→∞

∫ +∞

−∞

C0 − p′(x)

C2
0

exp
(
−C2

0 x2

4t

)
√

4πt
dx.

Recalling the Fourier development for p(x) and applying the
integral formula∫ +∞

−∞
e−ax2

eibxdx =
√

π

a
e− 1

4
b2

a , (A7)

we easily achieve the same result as obtained in Eq. (20).
This new verification has the advantage of having used the
integral in Eq. (A7), which is simpler than Eq. (19). However,
the function that is integrated to find the diffusion coefficient
must be worked out properly, as seen above, in order to apply
this simplification.

APPENDIX B: EXPLICIT CALCULATION OF THE
QUANTITY D(x) FOR THE SINUSOIDAL PROFILE

We calculate here the closed form expression for the
quantity D(x), starting from Eq. (28) of the main text, for
the sinusoidal heterogeneous diffusion. We must then sum
the series contained in that equation. To begin, we define
z = 2πx/L, and we observe that

+∞∑
k=−∞

k 	=0

β |k|

k
eikz =

+∞∑
k=1

(βeiz )k

k
−

+∞∑
k=1

(
βe−iz

)k

k

= Fβ (z) − Fβ (−z), (B1)

where we introduced Fβ (z) = ∑+∞
k=1 (βeiz )k/k. In order to

calculate a closed form expression for Fβ (z), we start by
observing that

+∞∑
k=1

(βeiz )k = βeiz

1 − βeiz
= β(cos z − β ) + iβ sin z

1 − 2β cos z + β2
, (B2)

where the geometric series is always convergent since β2 < 1.
If we integrate term by term the series in Eq. (B2) we get∫ s

0

+∞∑
k=1

(βeiz )kdz =
+∞∑
k=1

βk

ik
(eiks − 1), (B3)

and therefore we can write

Fβ (s) =
+∞∑
k=1

βk

k
+ iR(s) − I (s)

= ln
1

1 − β
+ iR(s) − I (s), (B4)

where we used the classical logarithmic series and we defined
the real and imaginary parts of the integral of Eq. (B2), as
follows:

R(s) =
∫ s

0

β(cos z − β )

1 − 2β cos z + β2
dz, (B5)

I (s) =
∫ s

0

β sin z

1 − 2β cos z + β2
dz . (B6)

The first integral can be tackled through the substitution t =
tan(z/2), which leads to the new form

R(s) = 2β

(1 + β )2

∫ tan s
2

0

1 − t2 − β(1 + t2)[
t2 +

(
1−β

1+β

)2
]

(t2 + 1)
dt . (B7)

After partial fraction decomposition, we obtain

R(s) =
∫ tan s

2

0

⎡
⎢⎣ 1−β

1+β

t2 +
(

1−β

1+β

)2 − 1

t2 + 1

⎤
⎥⎦dt, (B8)

and the final result is

R(s) = arctan

(
1 + β

1 − β
tan

s

2

)
− arctan

(
tan

s

2

)
. (B9)

The second integral turns elementary with the substitution t =
cos z, and the result follows

I (s) = 1

2
ln

1 − 2β cos s + β2

1 − 2β + β2
. (B10)

Summing up, thanks to Eq. (B4), we can obtain the closed
form for the function Fβ (s)

Fβ (s) = ln
1

1 − β
+ i arctan

(
1 + β

1 − β
tan

s

2

)

− i arctan
(

tan
s

2

)

− 1

2
ln

1 − 2β cos s + β2

1 − 2β + β2

= 1

2
ln

1

1 − 2β cos s + β2

+ i

[
arctan

(
1 + β

1 − β
tan

s

2

)
− arctan

(
tan

s

2

)]
.

(B11)

Incidentally, by separating the real and imaginary parts of
the series defining the function Fβ (s), we obtain these two
results:

+∞∑
k=1

βk

k
cos(ks) = 1

2
ln

1

1 − 2β cos s + β2
, (B12)

+∞∑
k=1

βk

k
sin(ks) = arctan

(
1 + β

1 − β
tan

s

2

)
− arctan

(
tan

s

2

)
,

(B13)

which can be also proved with different standard techniques
to sum complex series. Coming back to the heterogeneous
sinusoidal diffusion, we can obtain the function D(x) through
Eq. (28):

D(x)= 1

G0

√
1 − ε2

{
x+ L

2π i

[
Fβ

(
2πx

L

)
− Fβ

(
−2πx

L

)]}
.

(B14)
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By substituting Eq. (B11) in Eq. (B14) and by considering the

relationship 1+β

1−β
=
√

1−ε
1+ε

, we get the final result

D(x) = 1

G0

√
1 − ε2

{
x + L

π

[
arctan

(√
1 − ε

1 + ε
tan

πx

L

)

− arctan
(

tan
πx

L

)]}
, (B15)

which proves Eq. (29). In making the above substitution, we
observed that the real part of Fβ is an even function while the
imaginary part is an odd function.

APPENDIX C: SOLUTION OF THE DIFFERENTIAL
EQUATION FOR k(x)

We describe here the solution of the differential equa-
tion for the quantity k(x), defined in Eq. (47). To solve
Eq. (47), we first consider the left region x0 − nL � x < x0,
and here we have

0 = d

dx

{
1

A(x)

d

dx

[
k(x)

B(x)

]}
, (C1)

from which we can take

1

A(x)

d

dx

[
k(x)

B(x)

]
= cL, (C2)

where cL is a constant (L means left). By integration we obtain∫ x

x0−nL

d

dξ

[
k(ξ )

B(ξ )

]
dξ = cL

∫ x

x0−nL
A(ξ ) dξ, (C3)

or equivalently

k(x)

B(x)
− k(x0 − nL)

B(x0 − nL)
= cL

∫ x

x0−nL
A(ξ ) dξ . (C4)

Since k(x0 − nL) = 0, we get

k(x) = cLB(x)
∫ x

x0−nL
A(ξ ) dξ, (C5)

in the left region x0 − nL � x < x0.
We consider now the right region x0 < x � x0 + nL, and

we have from Eq. (47)

0 = d

dx

{
1

A(x)

d

dx

[
k(x)

B(x)

]}
, (C6)

from which we find

1

A(x)

d

dx

[
k(x)

B(x)

]
= cR, (C7)

where cR is another constant (R means right). Again by inte-
gration we get∫ x0+nL

x

d

dξ

[
k(ξ )

B(ξ )

]
dξ = cR

∫ x0+nL

x
A(ξ ) dξ, (C8)

or equivalently

k(x0 + nL)

B(x0 + nL)
− k(x)

B(x)
= cR

∫ x0+nL

x
A(ξ ) dξ . (C9)

Since k(x0 + nL) = 0, we get

k(x) = −cRB(x)
∫ x0+nL

x
A(ξ ) dξ, (C10)

in the right region x0 < x � x0 + nL.
We search now for the connection conditions for the two

solutions in Eqs. (C5) and (C10). To this end, we integrate
Eq. (47) in a small symmetric interval of radius ε around x0,
namely,

−
∫ x0+ε

x0−ε

δ(x − x0)dx =
∫ x0+ε

x0−ε

d

dx

{
1

A(x)

d

dx

[
k(x)

B(x)

]}
dx,

(C11)

which yields

−1 = 1

A(x)

d

dx

[
k(x)

B(x)

]∣∣∣∣
x0+ε

x0−ε

= cR − cL. (C12)

Moreover, we remember that W (x, t ) is a continuous func-
tion of x for x ∈ (x0 − nL, x0 + nL). In particular, W (x−

0 , t ) =
W (x+

0 , t ), and since k(x) = ∫ +∞
0 W (x, t )dt , we deduce that

k(x−
0 ) = k(x+

0 ). Given that the function A(x) is periodic,
Eqs. (C5) and (C10), combined with k(x−

0 ) = k(x+
0 ), result

in cL = −cR. Hence, the system composed by the two con-
nection conditions −1 = cR − cL and cL = −cR delivers cL =
−cR = 1/2, and the final solution for k(x) is

k(x) =
{

1
2B(x)

∫ x
x0−nL A(ξ )dξ, x0 − nL � x < x0,

1
2B(x)

∫ x0+nL
x A(ξ )dξ, x0 < x � x0 + nL,

(C13)

which corresponds to Eq. (48).

APPENDIX D: HOMOGENIZATION APPROACH

We consider Eq. (33), and we prove that the obtained
effective diffusion constant in Eq. (54) is coherent with the
following ad hoc homogenization procedure. In particular, we
take into account the stationary version of Eq. (33), which
reads

0 = d

dx

{
1

A(x)

d

dx

[
1

B(x)
W (x)

]}
, (D1)

and we introduce the two boundary conditions W (0) = Wa

and W (nL) = Wb, with x ∈ (0, nL). As before, we use the
differential operator d

dx instead of ∂
∂x since the time variable

is no longer present. The steady-state condition involves a
constant flow J , given by

1

A(x)

d

dx

[
1

B(x)
W (x)

]
= −J. (D2)

When A(x) and B(x) are constant functions, we find that J =
− 1

AB
dW (x)

dx , and therefore the effective diffusion constant can
be written as

Deff = 1

AB = − JnL

Wb − Wa
, (D3)

since in this case the gradient is obtained as dW (x)
dx = (Wb −

Wa)/(nL).
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In the general case with A(x) and B(x) being periodic
functions, we can integrate Eq. (D2), eventually obtaining

W (x)

B(x)
− W (0)

B(0)
= −J

∫ x

0
A(ξ ) dξ, (D4)

or equivalently

W (x) = B(x)

[
W (0)

B(0)
− J

∫ x

0
A(ξ ) dξ

]
. (D5)

This is the behavior of the density over the considered interval,
that is for x ∈ (0, nL). From this expression, we can also
obtain a similar result for W (x + L), which assumes the form

W (x + L) = B(x + L)

[
W (0)

B(0)
− J

∫ x+L

0
A(ξ ) dξ

]
. (D6)

By using the periodicity of B(x), we obtain

W (x + L) − W (x) = −JB(x)
∫ x+L

x
A(ξ ) dξ, (D7)

and by using the periodicity of A(x), we can write

W (x + L) − W (x) = −JB(x)
∫ L

0
A(ξ ) dξ . (D8)

It means that the function W (x + L) − W (x) is periodic and
it is proportional to B(x). We can calculate the average value
over one period of the function W (x + L) − W (x), and we get

〈W (x + L) − W (x)〉 = − J

L

∫ L

0
B(η) dη

∫ L

0
A(ξ ) dξ . (D9)

Similarly to the approach discussed for finding Eq. (D3), we
can assume that

Deff = − JL

〈W (x + L) − W (x)〉 . (D10)

This relationship corresponds to assuming that Wb − Wa =
N〈W (x + L) − W (x)〉, as can be seen immediately from
Eq. (D3). This turns out to be quite reasonable when we
consider that the density jump between 0 and nL is given by
the sum of the density jumps over all the periods composing
the total interval and that the function W (x + L) − W (x) is
periodic. Anyway, by combining Eqs. (D9) and (D10), we
immediately obtain the result

Deff = L2∫ L
0 B(η)dη

∫ L
0 A(ξ )dξ

= 1

〈A〉〈B〉 , (D11)

which is consistent with Eq. (54).
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