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The combination of bistability and cooperativity plays a crucial role in several biological and artificial micro-
and nanosystems. In particular, the exhaustive understanding of the mechanical response of such systems under
the effect of thermal fluctuations is essential to elucidate a rich variety of phenomena. Here a linear chain
composed of elastic units, which are bistable (folded or unfolded) and coupled through an Ising-like interaction,
is selected as a case study. We assess the macroscopic thermoelastic response of this chain in terms of its
microscopic description. For small systems, far from the thermodynamic limit, this response depends on the
applied isometric or isotensional boundary conditions, which correspond to the Helmholtz or Gibbs ensembles of
the statistical mechanics, respectively. The theoretical analysis is conducted through the spin variables approach,
based on a set of discrete quantities able to identify the folded or unfolded state of the chain units. Eventually,
this technique yields closed-form expressions for the force-extension curves and the average number of unfolded
units, as function of the applied fields. In addition, it allows to unveil a critical behavior of such systems,
characterizing the operating regions with negative differential stiffness (spinoidal phase).
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I. INTRODUCTION

The thorough understanding and the tuning of the physical
properties of bistable and cooperative systems are the object
of extensive research activity [1,2]. While the bistability rep-
resents the tendency for a system to be in only one of two
distinct states, the cooperativity concerns systems composed
of several units with mutual interactions. It means that, in
bistable cooperative systems, each unit can undergo a transi-
tion between two states, and the transition of one unit affects
the transition of the others (because of the interactions among
units).

This apparently simple scheme is able to induce very com-
plex behaviors in a large number of physical systems. Without
the pretension of being exhaustive, we can cite the snapping
and unidirectional waves in elastic metamaterials [3,4], the
mechanics of muscle contraction [5,6], the magnetic, optical,
and structural bistability in spin-crossover nanocrystals [7,8],
the information processing in biochemical reactions [9,10],
the protein folding-unfolding processes [11–14], the DNA
overstretching and denaturation [15–18], and the physics of
force-spectroscopy experiments on macromolecules [19–21].
This last example is particularly important since force-
spectroscopy experiments, conceived to measure the force-
extension relation of a single macromolecule, were able for
the first time to directly test the thermodynamics and the
statistical mechanics of small systems [22,23]. In particular,
devices like atomic-force microscopes, laser optical tweez-
ers, magnetic tweezers, and microelectromechanical systems
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[24–29] have been employed to investigate proteins [30–32],
RNA [33,34], and DNA [35–40].

While the force-extension response of molecular chains
without bistability is considered to be well understood
[41–45], the real complexity of chains with bistable units
has only been revealed through the introduction of the above
force-spectroscopy techniques. In this context, the mechani-
cally induced folding and unfolding of the units of a chain,
governed by the conformational transition between two states,
has been detected in polypeptides, nucleic acids, and other
molecules. Notably, for relatively short bistable molecular
chains (small systems thermodynamics), the applied boundary
conditions play an important role in defining their overall
response [46–49].

On the one side, isotensional experiments (conducted at
constant applied force by soft devices) correspond to the
Gibbs statistical ensemble and lead to a plateau-like force-
extension curve with a threshold force characterizing the
synchronized unfolding of all chain units [37,50–55]. On the
other side, isometric experiments (conducted at prescribed
displacement by hard devices) represent a realization of the
Helmholtz statistical ensemble, and the corresponding force-
extension curve shows a sawtooth-like shape, proving that
the units unfold sequentially in reaction to the increasing
extension [30,32,54–61]. In any case, the differences between
isotensional and isometric force-extension curves disappear
whenever the number of units is very large since, in the
thermodynamic limit, the Gibbs and Helmholtz ensembles
become statistically equivalent [62,63]. A different point of
view about two-state systems driven by hard or soft devices
has been introduced to model plasticity, hysteretic behaviors
and martensitic transformations in solids [64–71].
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The models proposed in the literature in order to explain
the behavior of mechanical bistable chains typically disre-
garded the interactions among the units, thus neglecting the
actual cooperativity of the system. Conversely, we propose
here a model where a bistable chain is explicitly coupled to an
Ising spin system, allowing the understanding of the combi-
nation of bistability and cooperativity. As a consequence, our
model paradigmatically represents most features of the above
discussed real systems. Previous attempts to integrate Ising
chains in mechanical systems concerned only the dynamics of
a single harmonic oscillator coupled to a linear chain of spins
[72,73] and the analysis of ripples in strings [74]. To comple-
ment this picture, our analysis fully describes the (entropic
and/or enthalpic) elastic response and the units transitions
in small systems, within both the Helmholtz and the Gibbs
ensembles of the statistical mechanics. For instance, this
approach can help the explanation of the heterogeneous series
of force peaks observed in the Helmholtz response during a
protein-unfolding process. A first reported case concerns the
tandem repeats in red cell spectrin [75], where two adjacent
units unfold at the same time (cooperatively) because of their
strong interaction. Moreover, a similar observation has been
made on Filamin A, where domain-domain interactions lead
to a hierarchy of unfolding forces that may be properly studied
by an Ising scheme [76]. From the continuum mechanics point
of view, our model may represent plastic phenomena with
nonlocal behaviors, i.e., with interactions among the different
regions of the plastic body.

The underlying idea of our method consists in associating
to each unit a discrete variable (or spin), able to define the
folded or unfolded state of the unit itself. So the bistable
potential function of each unit can be approximated by two
quadratic potentials, and the switching between them is con-
trolled by the corresponding spin variable (see Fig. 1 for
details). From the historical point of view, the first model
based on a discrete quantity, similar to a spin variable, has
been performed to predict the response of skeletal muscles

[77,78]. This method has been recently applied to different
two-state systems and molecular chains as well [79–82]. Both
Gibbs and Helmholtz ensembles can be considered by the
spin variables approach, allowing to draw direct comparisons
between isotensional and isometric conditions at thermody-
namic equilibrium. While the Gibbs ensemble will be stud-
ied by means of the classical transfer matrix method [83],
typically adopted for one-dimensional interacting models, the
Helmholtz ensemble presents major difficulties and will be
approached by exploiting the Laplace transform relationship
between the Gibbs and Helmholtz partition functions [84].
It is important to remark that we are studying small systems
(with the inequivalence of the ensembles), and we need there-
fore to determine the exact value of the partition functions and
not their approximations holding for a large number of units,
as usually done for systems attaining the thermodynamic
limit. We provide evidence that the cooperativity, measured by
the Ising interaction coefficient, strongly modifies the force-
extension response of the chain and its configurational prop-
erties. In particular, under isometric conditions, we thoroughly
analyze the hierarchy of force peaks as function of the in-
teraction coefficient. To complement the equilibrium picture,
we further characterize the criticality of the spinoidal phase,
describing the regions with negative differential stiffness.

The structure of the paper is the following. In Sec. II we
define the system under investigation and its Hamiltonian
function. In Secs. III and IV we analyze the behavior of
the chain with Ising interactions under isotensional (Gibbs)
and isometric (Helmholtz) conditions, respectively. Since the
problem of the Helmholtz ensemble is solved here through a
semianalytic procedure, we propose in Secs. V, VI, and VII
additional explicit asymptotic results describing the behav-
ior of the system under weak and strong Ising interactions
(ferromagnetic-like and antiferromagnetic-like). Finally, in
Sec. VIII we generalize our results in order to take account
of a finite extensibility of the chain units, and we illustrate its
effect on the critical behavior of the system.
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FIG. 1. (a) Chain of m two-state units with Ising interactions. While the first end terminal α is able to tether the first unit to a given
substrate, the second one β is able either to apply a force (Gibbs condition) or a position (Helmholtz condition) to the last unit. (b) Potential
energy of a single unit of the chain (dashed black curve). The potential wells are approximated through two parabolic (i.e., quadratic) profiles
(solid blues curves), identified by Si = −1 (folded state) and Si = +1 (unfolded state).
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II. THE SYSTEM

We take into consideration a chain of m two-state elements
[see Fig. 1(a)], each described by a bistable potential energy
with a stable folded state and a metastable unfolded state
[see Fig. 1(b)]. The two potential wells in Fig. 1(b) can be
characterized by the elastic constant k(Si ), the equilibrium
length �0(Si ), and the basal energy v(Si ), where Si is a dis-
crete variable (or spin variable) assuming values in {−1,+1},
used to distinguish one well from the other. We state that
Si = +1 corresponds to unfolded elements, whereas Si = −1
corresponds to folded ones. This description suggests that the
bistable energy potential can be represented by two quadratic
potentials approximating the real wells of the units [see again
Fig. 1(b)] [81]. In this case, the discrete variables belong to the
phase space of the system and allow us to specify the explored
well for each unit. The introduction of the discrete or spin vari-
ables also allows the direct implementation of an interaction
between adjacent elements of the chain, e.g., described by a
classical Ising Hamiltonian. The overall Hamiltonian of this
system can be therefore written as

H = −λ

m−1∑
i=1

SiSi+1 − μ

m∑
i=1

Si

+
m∑

i=1

{
v(Si ) + 1

2
k(Si )[‖�ri − �ri−1‖ − �0(Si )]

2

}
.

(1)

While the first line in Eq. (1) represents the Ising inter-
action among spin variables, the second line describes the
springlike behavior of each unit placed between positions
�ri−1 and �ri , ∀i = 1, . . . , m. We remark that λ > 0 tries to
force all elements to be folded or unfolded (ferromagnetic-
like interaction), whereas λ < 0 tries to force all elements to
be alternatively folded and unfolded (antiferromagnetic-like
interaction). The parameter μ is a sort of external field or
chemical potential (μ > 0 tries to unfold the domains and
μ < 0 tries to fold them).

A first validation of the spin approach to describe mul-
tistable potential energies has been performed in Ref. [81],
where we directly compared a real two-state system [dashed
black curve in Fig. 1(b)] without Ising interactions with the
approximation given by two parabolic profiles governed by
the spin variables [solid blue curves in Fig. 1(b)], by obtaining
a good agreement provided that Eb � v(1) − v(−1) � KBT

(where Eb is the energy barrier). However, the spin variables
approach can be adopted only when we work at thermody-
namic equilibrium. As a matter of fact, the quadratic potentials
and the associated spin variables are not sufficient to describe
the dynamic regime since the relaxation times of the system
strongly depend on the energy barriers between the potential
wells, which are neglected within our approach. This is a
well-known result, encoded within the Kramers rate formula,
originally formulated to study chemical reactions [85], and
recently generalized for arbitrary systems with nonconvex
energy landscapes [86,87].

In the following, we suppose to embed the system in a
thermal bath at the temperature T , we consider the system
at thermodynamic equilibrium, and we study the effects of

the Ising interactions on the mechanical and configurational
behavior within the Gibbs (applied external force) or the
Helmholtz (prescribed end-to-end distance) ensembles [see
Fig. 1(a)].

III. TWO-STATE CHAIN WITH ISING INTERACTIONS:
THE GIBBS ENSEMBLE

We consider now the extended Hamiltonian

HG = −λ

m−1∑
i=1

SiSi+1 − μ

m∑
i=1

Si − �f · �rm

+
m∑

i=1

{
v(Si ) + 1

2
k(Si )[‖�ri − �ri−1‖ − �0(Si )]

2

}
,

(2)

introduced to deal with the isotensional conditions. Here �f is
the force applied to the last unit, identified by its position �rm.
We suppose that quantities �ri ∈ R3 and Si ∈ {−1,+1} ∀i ∈
{1 . . . m} belong to the phase space of the system. Moreover,
to fix the ideas, we always consider �r0 = 0. The statistical
mechanics of the system can be introduced by calculating the
partition function, as

ZG =
∑
S1

· · ·
∑
Sm

∫
P

exp

[
−HG({Si}, {�ri})

KBT

]
d�r1 · · · d�rm

=
∑
S1

· · ·
∑
Sm

exp

(
λ

KBT

m−1∑
i=1

SiSi+1

)

× exp

(
μ

KBT

m∑
i=1

Si

)
exp

[
− 1

KBT

m∑
i=1

v(Si )

]

×
∫
P

exp

{
−1

2

m∑
i=1

k(Si )

KBT
[‖�ri − �ri−1‖ − �0(Si )]

2

}

× exp

( �f · �rm

KBT

)
d�r1 · · · d�rm, (3)

where P = R3m. The integral I = ∫
P · · · d�r1 · · · d�rm, shown

in the last two lines of Eq. (3), can be developed by means
of the change of variables �ξ1 = �r1 − �r0, �ξ2 = �r2 − �r1,..., �ξm =
�rm − �rm−1, giving

I =
∫
P

exp

{
−1

2

m∑
i=1

k(Si )

KBT
[‖�ξi‖ − �0(Si )]

2

}

× exp

( �f
KBT

·
m∑

i=1

�ξi

)
d�ξ1 · · · d�ξm. (4)

To further simplify this integral, by exploiting the isotropy
of the system, we suppose that �f = (0, 0, f ), and we
introduce the spherical coordinates for the vectors �ξi ,
namely, �ξi = (ξi cos ϕi sin θi, ξi sin ϕi sin θi, ξi cos θi ). There-
fore, we easily obtain ‖�ξi‖ = ξi , �f · �ξi = f ξi cos θi and
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d�ξi = ξ 2
i sin θidξidϕidθi , and we get for I the expression

I =
∫
D

exp

{
−1

2

m∑
i=1

k(Si )

KBT
[ξi − �0(Si )]

2

}

× exp

(
m∑

i=1

f ξi cos θi

KBT

)
m∏

i=1

(
ξ 2
i sin θi dξi dϕi dθi

)

= (2π )m
∫
Am

exp

{
−1

2

m∑
i=1

k(Si )

KBT
[ξi − �0(Si )]

2

}

×
[

m∏
i=1

∫
C

exp

(
f ξi cos θi

KBT

)
sin θi dθi

]
m∏

i=1

ξ 2
i dξi

= (4π )m
m∏

i=1

∫
A

exp

{
−1

2

k(Si )

KBT
[ξi − �0(Si )]

2

}

× sinh
(

f ξi

KBT

)
f ξi

KBT

ξ 2
i dξi, (5)

where D = Am × Bm × Cm with A = (0,+∞), B = (0, 2π ),
and C = (0, π ). The integral over A can be interpreted as a
convolution between the enthalpic response (represented by
the exponential term) and the entropic one [represented by the
function sinh(z)/z]. Anyway, the integral I can be strongly
simplified if we make the assumption to deal with a freely
jointed chain [84], with elements of fixed lengths, i.e., without
elasticity. It is equivalent to say that k(+1) = k(−1) → +∞.
This hypothesis will be removed in a successive section of
the paper, where we will study an extensible chain with Ising
interactions. If we use the property

√
α
π
e−αx2 → δ(x) for α →

∞, then we simplify the result for I as

I =
m∏

i=1

∫
A

δ[ξi − �0(Si )]
sinh

(
f ξi

KBT

)
f ξi

KBT

ξ 2
i

�2
dξi, (6)

where we omitted a noninfluential multiplicative constant and
� = �0(−1) corresponds to the length of the folded units. We
finally obtain

I =
m∏

i=1

sinh
[

f �0(Si )
KBT

]
f �0(Si )
KBT

�2
0(Si )

�2
. (7)

Eventually, the partition function assumes the simpler form

ZG =
∑
S1

· · ·
∑
Sm

{
exp

(
λ

KBT

m−1∑
i=1

SiSi+1

)

× exp

(
μ

KBT

m∑
i=1

Si

)
exp

[
− 1

KBT

m−1∑
i=1

v(Si )

]

×
m∏

i=1

sinh
[

f �0(Si )
KBT

]
f �0(Si )
KBT

�2
0(Si )

�2

}
. (8)

We have now to approach the problem of calculating the sums
over the spin variables. To this aim, a more symmetric form

of Eq. (8) can be obtained by observing that

m∏
i=1

ci = √
c1

[
m−1∏
i=1

√
cici+1

]
√

cm, (9)

which is a property valid for real numbers ci > 0 ∀i. Accord-
ingly, we have

ZG =
∑

S1,...,Sm

exp

(
μ

2KBT
S1

)
exp

[
− v(S1)

2KBT

]√
c1

×
m−1∏
i=1

{
exp

(
λ

KBT
SiSi+1

)
exp

[
μ(Si + Si+1)

2KBT

]

× exp

[
− v(Si )

2KBT
− v(Si+1)

2KBT

]√
cici+1

}

× exp

(
μ

2KBT
Sm

)
exp

[
− v(Sm)

2KBT

]√
cm, (10)

where we defined

ci = sinh
[

f �0(Si )
KBT

]
f �0(Si )
KBT

�2
0(Si )

�2
. (11)

To further elaborate the partition function, we also consider
�0(−1) = �, v(−1) = 0, �0(+1) = χ�, and v(+1) = �E,
where χ is the ratio between unfolded and folded lengths, and
�E is the energy jump between the wells (see Fig. 1). We can
adopt the technique of the transfer matrix [83], and then we
can directly write

ZG = �wT Tm−1 �w, (12)

where we have

�w =
√

2

(√
p√
q

)
, (13)

T = 2

(
pe

λ
KB T

√
pqe

− λ
KB T

√
pqe

− λ
KB T qe

λ
KB T

)
, (14)

with the parameters

p = 1

2
e
− μ

KB T
sinh(ξ )

ξ
, (15)

q = 1

2
e

μ

KB T χφ
sinh(χξ )

ξ
, (16)

and the coefficients

φ = e
− �E

KB T , (17)

ξ = f �

KBT
, (18)

representing the Boltzmann factor calculated with �E and the
normalized force. Since we are studying the thermodynamics
of small systems (small values of m), we need to calculate
the exact value of the partition function given in Eq. (12)
and not its approximation evaluated for a large value of m,
corresponding to the thermodynamic limit. To develop the
calculation of ZG, we can simply calculate the eigenvalues
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of T:

λ1,2 = 1

x
[(p + q ) ±

√
(p + q )2 − 4pq(1 − x4)], (19)

where we also introduced x = e
− λ

KB T . We underline that if λ1

corresponds to the sign “+” and λ2 to the sign “−,” then we
get λ1 > λ2 > 0. Now, we need to explicitly determine the
matrix power Tm−1. Hence, we use the matrix function theory
[88], and we get after straightforward calculations

Tm−1 = λm−1
1 − λm−1

2

λ1 − λ2
T + λ1λ

m−1
2 − λ2λ

m−1
1

λ1 − λ2
I, (20)

where I is the 2 × 2 identity matrix. The partition function
then assumes the form

ZG = λm−1
1 − λm−1

2

λ1 − λ2
α + λ1λ

m−1
2 − λ2λ

m−1
1

λ1 − λ2
β, (21)

where α and β can be obtained through long but straightfor-
ward calculations as

α = �wT T �w = x(1 + x2)(λ1 + λ2)2 − 2xλ1λ2

1 + x2
, (22)

β = �wT �w = x(λ1 + λ2). (23)

Finally, the explicit exact form of the Gibbs partition function
is

ZG(f ) = x

1 + x2

[
λm

1

(
1 + x2 λ1 + λ2

λ1 − λ2

)

+ λm
2

(
1 − x2 λ1 + λ2

λ1 − λ2

)]
, (24)

written as function of x, λ1, and λ2. This is the most important
result of this section and allows us to determine the mechan-
ical and configurational macroscopic behavior of the whole
chain under isotensional conditions. As usual, we obtain the
force-extension response as

〈r〉 = KBT
∂ log ZG

∂f
= KBT

1

ZG

∂ZG

∂f
, (25)

where 〈r〉 represents the average value of the extension,
measured in the direction of the applied force. We also note
that the quantity Si+1

2 gives 0 for folded elements and 1
for unfolded elements. Therefore, we have that 〈∑m

i=1
Si+1

2 〉
is the average number of unfolded elements. On the other
hand, the term

∑m
i=1 v(Si ) of the Hamiltonian in Eq. (2) can

be also written as
∑m

i=1
Si+1

2 �E, and, therefore, we have
that

∑m
i=1

Si+1
2 = ∂HG

∂�E
. It follows that 〈∑m

i=1
Si+1

2 〉 can be
evaluated through the expression〈

m∑
i=1

Si + 1

2

〉
=

∑
�S
∫

∂HG

∂�E
e
− HG

KB T d�r∑
�S
∫

e
− HG

KB T d�r
, (26)

where �S = (S1, . . . , Sm) and �r = (�r1, . . . , �rm). Then Eq. (26)
can be simplified to give〈

m∑
i=1

Si + 1

2

〉
= −KBT

∂ log ZG

∂�E
= −KBT

1

ZG

∂ZG

∂�E
,

(27)

which is the final expression for the average value of unfolded
domains. It is useful to introduce here the Gibbs free energy
of the system G = −KBT log ZG. The above expected values
can be reformulated in terms of this thermodynamic function
as

〈r〉 = −∂G
∂f

, (28)〈
m∑

i=1

Si + 1

2

〉
= ∂G

∂�E
. (29)

The knowledge of ZG or G allows therefore the determination
of both the average extension of the chain and the average
number of unfolded units as function of the applied force and
temperature.

An application of Eqs. (28) and (29) can be found in Fig. 2.
First of all, we discuss the curves for λ = 0, i.e., without
Ising interactions: in the force-extension curve [Fig. 2(a)],
we note a force plateau corresponding to the synchronized
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FIG. 2. Average normalized extension (a) and average number of unfolded units (b) versus the applied normalized force for a chain
with Ising interactions under isotensional (Gibbs) conditions. The curves have been obtained with �E = 7KBT , m = 4, χ = 2, μ = 0, and
λ = 0, ±1, ±2KBT . The black dashed curves correspond to the chain without interactions (λ = 0), the dark red (or dark gray) curves to
ferromagnetic-like Ising interactions (λ > 0), and the orange (or light gray) curves to antiferromagnetic-like interactions (λ < 0).
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unfolding of the m units. This behavior is confirmed by the
number of unfolded units [Fig. 2(b)], which shows a transition
from 0 to m, at the same threshold force as the previously
mentioned plateau. This force plateau is the classical result of
force-spectroscopy experiments conducted with soft devices
[50–55]. The Ising interactions modify this scenario as fol-
lows: if λ > 0, the units are favored to be in the same state, and
the transition is therefore sharper than the one observed for
λ = 0; on the other hand, if λ < 0, it is easier to unfold the first
units, and the response is therefore smoother. It is interesting
to note that, for strong antiferromagnetic-like interactions,
even with f = 0, we can have a positive number of unfolded
units because of the energetic compromise between λ and
�E. Indeed, when we observe unfolded units with f = 0, the
cooperativity effect is stronger than the energy jump between
folded and unfolded states. We finally remark that the curves
in Fig. 2 are valid for any value of � and T . If, as an example,
we consider � = 0.4 nm and T = 300 K, we get a plateau
force at f = 70 pN, which is coherent, e.g., with the DNA
overstretching transition [48].

IV. TWO-STATE CHAIN WITH ISING INTERACTIONS:
THE HELMHOLTZ ENSEMBLE

We consider now the Helmholtz ensemble where the last
element of the chain is fixed at a given arbitrary position
(isometric condition). The Hamiltonian reads

HH = λ

m−1∑
i=1

SiSi+1 − μ

m∑
i=1

Si

+
m∑

i=1

{
v(Si ) + 1

2
k(Si )[‖�ri − �ri−1‖ − �0(Si )]

2

}
,

(30)

where �rm = �r is fixed. The phase space is therefore composed
of �ri ∀i = 1, . . . , m − 1 and Si ∀i = 1, . . . , m. Hence, the
partition function can be written as

ZH =
∑
S1

· · ·
∑
Sm

∫
Q

exp

[
−HH ({Si}, {�ri})

KBT

]
d�r1 · · · d�rm−1

=
∑
S1

· · ·
∑
Sm

exp

(
λ

KBT

m−1∑
i=1

SiSi+1

)

× exp

(
μ

KBT

m∑
i=1

Si

)
exp

[
− 1

KBT

m∑
i=1

v(Si )

]

×
∫
Q

exp

{
−1

2

m∑
i=1

k(Si )

KBT
[‖�ri − �ri−1‖ − �0(Si )]

2

}

× d�r1 · · · d�rm−1, (31)

where Q = R3(m−1). It is not difficult to realize that the
calculation of ZH is much more complicated than the one
performed for ZG. Indeed, in this case, we can not apply a
simple change of variables in order to factorize the multi-
dimensional integral. From the physical point of view, this
difficulty depends on the fact that the isometric condition
induces an effective interaction among the units, fixing the

sum of all vectors �ri − �ri−1 (for i from 1 to m). Then we
have now the combination of two forms of interaction among
the units, the first being implicitly encoded in the isometric
condition and the second explicitly implemented through the
Ising scheme. An useful technique to cope with this difficulty
is the following. By comparing Eqs. (3) and (31), we deduce
that the two partition functions ZG and ZH are related through
a three-dimensional bilateral Laplace transform, as

ZG( �f ) =
∫
R3

ZH (�r ) exp

(
�r · �f
kBT

)
d�r, (32)

where, as usual, we neglect the noninfluential multiplicative
constants in the partition functions. Moreover, by considering
the spherical symmetry of the problem, we easily obtain the
inverse relationship

ZH (r ) =
∫ +∞

−∞
ZG(iη)

η

r
sin

ηr

KBT
dη, (33)

where ZG(iη) is the analytic continuation of the partition
function ZG(f ) for the Gibbs ensemble, given in Eq. (24).
The integral in Eq. (33) can be simplified by the change of
variable y = η�

KBT
, leading to

ZH (r ) =
∫ +∞

−∞
ZG

(
iy

KBT

�

)
y

r
sin

yr

�
dy, (34)

where, as before, we neglected the noninfluential multiplica-
tive constant. Coherently with our assumptions, the variables
p and q assume the form

p = 1

2
e
− μ

KB T
sin y

y
= p̃

y
, (35)

q = 1

2
e

μ

KB T χφ
sin χy

y
= q̃

y
. (36)

Accordingly, the eigenvalues of the transfer matrix become

λ1,2 = 1

xy
[p̃ + q̃ ±

√
(p̃ + q̃ )2 − 4p̃q̃(1 − x4)] = λ̃1,2

y
,

(37)

where p̃ = py, q̃ = qy, and λ̃1,2 = λ1,2y. Hence, the analytic
continuation of the Gibbs partition function becomes

ZG

(
iy

KBT

�

)
= x

1 + x2

1

ym

[
λ̃m

1

(
1 + x2 λ̃1 + λ̃2

λ̃1 − λ̃2

)

+ λ̃m
2

(
1 − x2 λ̃1 + λ̃2

λ̃1 − λ̃2

)]
, (38)

where, importantly, λ̃1 and λ̃2 depend on y only through sin y

and sin χy. In particular, when χ is an integer (or also a
rational number), ZG is composed of a periodic function of
y divided by ym. So we have

ZG

(
iy

KBT

�

)
= 1

ym
P (y), (39)
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where P (y) = P (y + Ly ) for a given Ly , and we have

P (y) = x

1 + x2

[
λ̃m

1

(
1 + x2 λ̃1 + λ̃2

λ̃1 − λ̃2

)

+ λ̃m
2

(
1 − x2 λ̃1 + λ̃2

λ̃1 − λ̃2

)]
. (40)

If we consider integer values of χ , P (y) is periodic with a
period of Ly = 2π , and it can be developed in Fourier series,
as

P (y) =
+∞∑

k=−∞
Cke

iky, (41)

where

Ck = 1

2π

∫ 2π

0
P (y)e−iky dy. (42)

The values of Ck can be obtained numerically by calculat-
ing the integrals through classical numerical techniques (we
verified that the simple Simpson’s rule is sufficient to obtain
accurate results). Once we determined the Ck coefficients, the
Helmholtz partition function can be obtained analytically as
follows. To begin, we have from Eq. (33)

ZH (r ) = −i

∫
�

ZG

(
iy

KBT

�

)
y

r
e

yr

� dy. (43)

Here we used the Euler formula e
iry

� = cos ry

�
+ i sin ry

�
,

and we observed that the integral with cos ry

�
is zero since

ZG(iy KBT
�

) is an even function of y. Moreover, since the func-
tion to integrate is regular on the real axis and holomorphic on
a strip |Imy| < M for an arbitrary M ∈ R, we can use the path
� shown in Fig. 3. This will be useful to elaborate the partition
function integral and to write it in a form with singularities at
the origin.

Indeed, we have

ZH (r ) = −i

∫
�

P (y)

ym

y

r
e

iry

� dy (44)

= −i

∫
�

1

ym

+∞∑
k=−∞

Cke
iky y

r
e

iry

� dy

= −i

+∞∑
k=−∞

Ck

1

r

∫
�

1

ym−1
ei(k+ r

�
)y dy, (45)

where the last integral is well defined since the path � ex-
cludes the singularity at the origin from the integration. We

ε

Im y

Re yΓ

0

FIG. 3. Definition of the contour � on the complex plane with an
arbitrary radius ε.

know that an application of the residue theorem delivers [81]∫
�

eiay

ym
dy =

{
0 if a > 0,

−2πim am−1

(m−1)! if a � 0.
(46)

Therefore,

ZH (r ) = i

+∞∑
k=−∞

Ck

r
2πim−1

(
k + r

�

)m−2

(m − 2)!
1
(
−k − r

�

)

= 2πim

r

+∞∑
h=−∞

C−h

(
r
�

− h
)m−2

(m − 2)!
1
(
h − r

�

)
, (47)

where 1(x) represents the Heaviside step function, defined as
1(x) = 1 if x � 0, and 1(x) = 0 if x < 0. Finally,

ZH (r ) = 2πim

r (m − 2)!

+∞∑
h=−∞

(Ch)∗
( r

�
− h

)m−2
1
(
h − r

�

)
,

(48)

where we used the property stating that C−h = (Ch)∗, which
is valid for the Fourier coefficients of a real periodic function.
The result obtained in Eq. (48) is exact for χ ∈ N, but it
is based on the numerical computation of the coefficients
Ck (semianalytic procedure). The limitation introduced by
considering integer values for χ does not restrict the physical
interpretation of the results. Moreover, this procedure can be
easily generalized in order to consider arbitrary rational values
for χ [of course, the function P (y) remains periodic with χ ∈
Z]. Furthermore, in next sections, we also discuss additional
asymptotic results, which are not based on restrictions over
the values of the parameter χ .

It is important to remark that our semianalytic procedure,
leading to Eq. (48) and based on the numerical implemen-
tation of Eq. (42), is very efficient for the determination of
the Helmholtz partition function. Indeed, the direct numerical
calculation of the original integral in Eq. (34), grounded on the
knowledge of the Gibbs partition function given in Eq. (38),
is a really hard, if not impossible, task since the integrand
function is decreasing (as 1/ym−1) and oscillating for any r

in the whole interval between 0 and mχ�. Since we need the
quantity log ZH (r ) to analyze the system behavior, all the
oscillations of the integrand function (also for large values
of |y|) play an important role in defining the result. For this
reason, our procedure leads to very accurate results, being
based on the analytic determination of the integral over �

and on the numerical evaluation of the integrals over (0, 2π )
defined in Eq. (42), which are much more stable than the one
defined in Eq. (34).

By mean of ZH given in Eq. (48), we can find the force-
extension response through the expression

〈f 〉 = −KBT
∂

∂r
log ZH (r ) = ∂F

∂r
, (49)

and the average value of unfolded domains with the relation〈
m∑

i=1

Si + 1

2

〉
= −KBT

∂

∂�E
log ZH (r ) = ∂F

∂�E
, (50)
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FIG. 4. Force-extension response (a), average number of un-
folded units (b), and Helmholtz free energy (c) for a chain with Ising
interactions under isometric (Helmholtz) conditions. The curves have
been obtained with �E = 5KBT , m = 5, χ = 2, μ = 0, and λ =
0, ±0.5, ±1KBT . The black dashed curves correspond to the chain
without interactions (λ = 0), the dark red (or dark gray) curves to
ferromagnetic-like Ising interactions (λ > 0), and the orange (or light
gray) curves to antiferromagnetic-like interactions (λ < 0).

where we introduced the Helmholtz free energy of the system
F = −KBT log ZH . An example of application can be found
in Fig. 4, where we show the force extension response, the
average number of unfolded units and the Helmholtz free en-
ergy for a chain stretched under isometric conditions and with
a variable Ising interaction coefficient. First of all, concerning
the case with λ = 0, we observe that the force extension

curve is composed of a number of peaks corresponding to
the nonsynchronized (sequential) unfolding of the units. This
is confirmed by the stepwise curve representing the average
number of unfolded units versus the chain extension. Each
step corresponds to the unfolding of a unit induced by the
increasing extension of the chain. This behavior agrees with
previous theoretical and experimental results [54–61]. This
scenario is modified by the introduction of the Ising inter-
actions. If λ > 0, the unfolding of the first units requires a
larger force peak since the units are favored to remain in
the initial folded state. On the contrary, the unfolding of the
last units requires a smaller force since most of the units are
already unfolded and they prefer to be in the same state as
the majority. This interpretation equally holds for the plot
of the average value of unfolded units, where we can also
note that the antiferromagnetic-like behavior may induce the
unfolding of some units also without the applied force. The
origin of the nonsynchronized transitions can be highlighted
in the Helmholtz free energy curves, characterized by a series
of cusps able to induce the force peaks in the force extension
curve. To conclude, the Ising interactions induce a specific
cooperativity, which can be detected in the modification of the
hierarchy of forces in the sawtooth-like response, as recently
observed in force spectroscopy experiments of proteins (e.g.,
in Filamin A) [76].

A form of criticality can be noticed for the Helmholtz
response of the bistable Ising chain. To do this, in the
force-extension curves shown in Fig. 4(a), we can identify
the spinoidal regions, characterized by a negative slope or,
equivalently, by a negative differential stiffness. It means
that, for each force peak observed in Fig. 4(a), we have a
spinoidal interval with ∂f/∂r < 0. It is interesting to study
the evolution of these spinoidal regions in terms of the tem-
perature. In general, we can say that the system is or not
in a spinoidal phase depending on values of r and T . We
can therefore determine a sort of phase diagram, as shown
in Fig. 5, where the end points of each spinoidal interval
(on the extension axis) are shown versus the temperature.
While the left end-point corresponds to the maximum of the
force peak, the right end point corresponds to the following
minimum. These curves have been represented for different
values of the interaction coefficient λ to explore the effects
of the Ising scheme on this critical behavior. Importantly, we
can observe that each spinoidal interval disappears for a given
temperature, which is a critical temperature for the system.
Hence, for a given chain composed of m units, there are m

different critical temperatures, one for each unfolding process.
We remark that, for a system without Ising interactions, the
critical temperature is larger for the last unfolded units. This
contrast among critical temperatures is further amplified for
antiferromagnetic-like systems. On the other hand, a given in-
tensity of ferromagnetic-like interactions is able to equilibrate
the critical temperatures among the unfolding processes (see,
e.g., the curves in Fig. 5 corresponding to λ = +1KBT0). This
point can be explained by observing that λ > 0 favors the
simultaneous unfolding of the units, thus inducing a similar
behavior of these ones. We can say that the ferromagnetic-
like interactions induce a resistance to fluctuations within the
system. It means that all unfolding processes do not lose their
snap-through response for a given range of temperature. The
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FIG. 5. Spinoidal phase diagram showing the end-points of the
spinoidal intervals (with ∂f/∂r < 0) versus the temperature of the
system (T > T0). Different Ising interaction coefficients λ have been
considered. Gray arrows indicate the increasing values of λ. The
curves have been obtained with �E = 5KBT0, m = 5, χ = 2, and
μ = 0. The parameters � and T0 are arbitrary (typical values are
� = 1 nm and T0 = 300 K).

bistability resistant to fluctuations is an important concept for
micro- and nanomechanical systems with nonconvex elastic
energy, where one attempts to sustain the bistability at pos-
sibly large temperatures [2]. We remark that the observation
of a negative differential stiffness for subcritical temperatures
and of a positive differential stiffness for supercritical temper-
atures can be interpreted by stating that the system behaves
as a metamaterial [79,80]. In a following section, we will also
explore the effect of the intrinsic stiffness of the units on this
critical behavior.

V. HELMHOLTZ RESPONSE UNDER WEAK
ISING INTERACTIONS

We investigate in more detail the particular case with
weak Ising interaction, i.e., |λ| 
 KBT , by considering both
ferromagnetic-like and antiferromagnetic-like interactions.
Under this condition, we will introduce an asymptotic devel-
opment yielding a closed-form expression of ZH , not needing
the numerical calculation of the coefficients Ch. To this aim,
we observe that ZH can be written as in Eq. (34), and therefore
we can develop ZG(iy KBT

�
) in Taylor series with respect to the

parameter λ. We easily find that

ZG

(
iy

KBT

�

)
=

[
1 + λ

KBT
(m − 1)

]
(a + b)m

− 4λ

KBT
(m − 1)ab(a + b)m−2 + O(λ2).

(51)

The first-order approximation in Eq. (51) (which is valid for
|λ| 
 KBT ) can be easily integrated to obtain the Helmholtz

partition function. Here we defined

a = sin y

y
, (52)

b = χφ
sin χy

y
. (53)

In this section, we consider μ = 0 to simplify the following
calculations. We have to determine

ZH (r ) = −i

∫
�

ZG

(
iy

KBT

�

)
y

r
ei

ry

� dy (54)

=
[

1 + λ

KBT
(m − 1)

]
I1 − 4λ

KBT
(m − 1)I2,

where we used the approximation of ZG given in Eq. (51). We
firstly calculate the quantity I1, as

I1 = −i

∫
�

(a + b)m
y

r
ei

ry

� dy

= −i

∫
�

m∑
k=0

(
m

k

)(
sin y

y

)m−k(
χφ

sin χy

y

)k
y

r
ei

ry

� dy.

(55)

Since

sinm−k y = 1

(2i)m−k

m−k∑
p=0

(
m − k

p

)
(−1)peiy(m−k−2p),

sink (χy) = 1

(2i)k

k∑
q=0

(
k

q

)
(−1)qeiχy(k−2q ), (56)

we find

I1 = −i

∫
�

1

ym

m∑
k=0

m−k∑
p=0

k∑
q=0

(
m

k

)(
m − k

p

)(
k

q

)
1

(2i)m

× (−1)p+q (χφ)keiy(m−k−2p+χk−2qχ ) y

r
ei

ry

�

= 1

2mim+1

1

r

m∑
k=0

m−k∑
p=0

k∑
q=0

(
m

k

)(
m − k

p

)(
k

q

)

× (−1)p+q (χφ)k
∫

�

eiy(m−k−2p+χk−2qχ )

ym−1
dy. (57)

Now we use the result in Eq. (46), and we obtain

I1 = π

2m−1

1

r (m − 2)!

m∑
k=0

m−k∑
p=0

k∑
q=0

(
m

k

)(
m − k

p

)(
k

q

)

× (−1)p+q (χφ)k (−�)m−21(�), (58)

where −� = m − k − 2p + χk − 2χq + r
�
. Similarly, we

calculate the integral I2 given by

I2 = −i

∫
�

ab(a + b)m−2 y

r
ei

ry

� dy

= −i

∫
�

m−2∑
k=0

(
m − 2

k

)
bk+1am−1−k y

r
ei

ry

� dy
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= −i

m−2∑
k=0

k+1∑
q=0

m−1−k∑
p=0

(
m − 2

k

)(
k + 1

q

)(
m − 1 − k

p

)

×
∫

�

y

r
ei

ry

� (−1)p+q 1

(2iy)m
(χφ)k+1eiχy(k+1−q )

× e−iχyqeiy(m−1−k−p)e−iyp dy, (59)

and, by using again the integral in Eq. (46), we eventually
obtain

I2 = π

2m−1

1

r (m − 2)!

m−2∑
k=0

k+1∑
q=0

m−1−k∑
p=0

(
m − 2

k

)(
k + 1

q

)

×
(

m − 1 − k

p

)
(−1)p+q (χφ)k+1(−�0)m−21(�0),

(60)

where −�0 = m − 1 − k − 2p − 2χq + χk + χ + r
�
.

Finally, the partition function reads

ZH (r ) = π

2m−1r (m − 2)!

[
1 + λ

KBT
(m − 1)

]

×
m∑

k=0

m−k∑
p=0

k∑
q=0

(
m

k

)(
m − k

p

)(
k

q

)

×(−1)p+q (χφ)k (−�)m−21(�)

− π

2m−1r (m − 2)!

4λ

KBT
(m − 1)

×
m−2∑
k=0

k+1∑
q=0

m−1−k∑
p=0

(
m − 2

k

)(
k + 1

q

)(
m − 1 − k

p

)

× (−1)p+q (χφ)k+1(−�0)m−21(�0). (61)

This is the final form of the Helmholtz partition function,
calculated under the hypothesis of weak Ising interaction.
In this expression, there are no limitations concerning the
parameter χ . We note that, for λ = 0, we obtain the partition
function of the system without Ising interactions, discussed
in recent literature [81]. In Fig. 6 one can find some results
for λ = 0, λ = +0.3KBT , and λ = −0.3KBT . We plotted the
force-extension curves and the average number of unfolded
units for both ferromagnetic-like and antiferromagnetic-like
interactions. In each case, we compared the approximated
result stated in Eq. (61) (dark red or dark gray curves), the
exact result given in Eq. (48) (orange or light gray curves),
and the response without Ising interactions (black dashed
curves). We note a good agreement between approximated
and exact results both for λ < 0 and λ > 0. Concerning the
interpretation of the curves, the discussion reported at the end
of Sec. IV remains valid for all results of Fig. 6.

VI. HELMHOLTZ RESPONSE UNDER STRONG ISING
FERROMAGNETIC-LIKE INTERACTIONS

We introduce here an asymptotic development concerning
the case of a strong Ising ferromagnetic-like interaction. If

λ → +∞, then x = e
− λ

KB T → 0, and it is not difficult to
obtain the asymptotic expression for the analytic continuation

of ZG. The result is

ZG

(
iy

KBT

�

)
= exp

[
λ(m − 1)

KBT

]{[
sin(y)

y

]m

× +
[
χφ

sin(χy)

y

]m}
. (62)

Therefore, we easily determine the Helmholtz partition func-
tion, as

ZH (r ) = −i

∫
�

ZG

(
iy

KBT

�

)
y

r
ei

ry

� dy

= −i

∫
�

exp

[
λ(m − 1)

KBT

]
1

(2i)m

m∑
k=0

(
m

k

)
(−1)k

1

r

× [eiy(m−2k) + (χφ)meiχy(m−2k)]
1

ym−1
ei

ry

� dy. (63)

To conclude the calculation, we can use the integral in
Eq. (46), and we get the final result

ZH (r ) = π

2m−1(m − 2)!r
exp

[
λ(m − 1)

KBT

] m∑
k=0

(
m

k

)
(−1)k

×
[(

m − 2k + r

�

)m−2

1
(

2k − m − r

�

)
+ (χφ)m

×
(

χm − 2χk + r

�

)m−2

1
(

2χk − χm − r

�

)]
,

(64)

which is valid for strong ferromagnetic-like Ising interactions.
An application of this expression is shown in Fig. 7. In partic-
ular, we compare the approximated result in Eq. (64) (yellow
or light gray curve) with the exact response obtained from
Eq. (48) for λ = 0.5, 1, 1.5, . . . , 7KBT (red or gray curves)
and with the response without Ising interactions (black dashed
curve). In Fig. 7 one can find the force-extension curves,
the average number of unfolded units and the Helmholtz
free energy. It is interesting to discuss the evolution of the
overall behavior of the system with an increasing interaction
coefficient. Indeed, as λ is increased, the units are progres-
sively favored to be in the same state, and therefore there
is an increasing average number of units which unfolds at
r = m�. It means that the number of unfolding processes at
r = m� is a growing function of the Ising coefficient λ, going
from 1 with λ = 0 to m with λ approaching infinity. This
can be seen in Fig. 7(b), where this process is represented
by the series of red curves (or gray) with increasing λ,
and it ends with the yellow (or light gray) curve obtained
through Eq. (64). The latter means that all units unfold at
the same time at r = m� when λ → ∞, and this behavior is
perfectly caught by the asymptotic development. Accordingly,
the peaks in the force-extension curve are strongly modified
by increasing λ: while the first peak becomes more and more
pronounced, the others are progressively reduced, as shown
in Fig. 7(a). As a matter of fact, the first peak corresponds to
the simultaneous unfolding of the units when λ is very large.
Hence, in the limiting case of λ → ∞, the force-extension
curve is composed of only one peak (yellow or light gray

052146-10



ISOTENSIONAL AND ISOMETRIC FORCE-EXTENSION … PHYSICAL REVIEW E 98, 052146 (2018)

0

5

10

15

20
(a)

(approx.)

Ferromagnetic-like

(exact)

0

5

10

15

20
(c)

(approx.)

Antiferromagnetic-like

(exact)

0

1

2

3

4

5

6
(b)

(approx.)

Ferromagnetic-like

(exact)

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10
0

1

2

3

4

5

6
(d)

(approx.)

Antiferromagnetic-like

(exact)

FIG. 6. Force-extension response (a)–(c) and average number of unfolded units (b)–(d) for weak Ising interactions with ferromagnetic-like
behavior (a)–(b) and antiferromagnetic-like behavior (c)–(d). In each panel, the response without interactions (λ = 0, black dashed curves) is
shown together with the exact result (orange or light gray curves) obtained through Eq. (48) and the first-order approximation (dark red or dark
gray curves) given in Eq. (61). The curves have been obtained with �E = 5KBT , m = 5, χ = 2, μ = 0, and λ = ±0.3KBT .

curve), as one can see in Fig. 7(a). Of course, the origin of
peaks modification in the force-extension curve and of the
steps structure in the average number of unfolded units can
be observed in the plot of the Helmholtz free energy, shown
in in Fig. 7(c). Here we can see the evolution of the typical

cusps with the increasing Ising coefficient. As an example,
the collapse of all the force peaks into a single unfolding
event explains the tandem repeats behavior in red cell spectrin,
where two units unfold simultaneously because of a strong
cooperativity [75].

VII. HELMHOLTZ RESPONSE UNDER STRONG ISING ANTIFERROMAGNETIC-LIKE INTERACTIONS

We discuss here the development of the theory under strong Ising antiferromagnetic-like interactions. As before, we can

develop the analytic continuation of the Gibbs partition function in a power series of λ → −∞, i.e., for x = e
− λ

KB T → +∞. The
result can be eventually obtained as

ZG

(
iy

KBT

�

)
= xm−1

{
P

m
2 [1 + (−1)m] + 1

2
P

m−1
2 S[1 − (−1)m]

}
=

{
xm−1P

m
2 if m is even,

xm−1SP
m−1

2 if m is odd,
(65)

where

S = sin(y)

y
+ χφ

sin(χy)

y
, (66)

P = sin(y)

y
χφ

sin(χy)

y
. (67)
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We will develop the asymptotic theory for both the cases with m odd and even. We first elaborate the Helmholtz partition function
for m odd:

ZH (r ) = −i

∫
�

ZG

(
iy

KBT

�

)
y

r
ei

ry

� dy = −i
xm−1

r
(χφ)

m−1
2

∫
�

[sin
m+1

2 (y) sin
m−1

2 (χy) + χφ sin
m−1

2 (y) sin
m+1

2 (χy)]
1

ym−1
ei

ry

� dy.

(68)

Here we use the relation

sink y = 1

(2i)k

k∑
p=0

(
k

p

)
(−1)peiy(k−2p), (69)

and we get

ZH (r ) = −i
xm−1

r
(χφ)

m−1
2

∫
�

1

ym−1
ei

ry

�

⎡
⎣ 1

(2i)
m+1

2

m+1
2∑

p=0

(m+1
2

p

)
(−1)peiy( m+1

2 −2p) 1

(2i)
m−1

2

m−1
2∑

q=0

(m−1
2

q

)
(−1)qeiyχ ( m−1

2 −2q )

+ χφ
1

(2i)
m−1

2

m−1
2∑

q=0

(m−1
2

q

)
(−1)qeiy( m−1

2 −2q ) 1

(2i)
m+1

2

m+1
2∑

p=0

(m+1
2

p

)
(−1)peiyχ ( m+1

2 −2p)

⎤
⎦dy. (70)

Then straightforward calculations deliver

ZH (r ) = − ixm−1

r (2i)m
(χφ)

m−1
2

m+1
2∑

p=0

m−1
2∑

q=0

(m+1
2

p

)(m−1
2

q

)
(−1)p+q

[∫
�

e−iy�a

ym−1
dy + χφ

∫
�

e−iy�b

ym−1
dy

]
, (71)

where

�a = 2p − m + 1

2
− χ

m − 1

2
+ 2χq − r

�
, (72)

�b = 2q − m − 1

2
− χ

m + 1

2
+ 2χp − r

�
. (73)

Hence, by using Eq. (46), we get the final result

ZH (r ) = 2π

2m

exp
[− λ

KBT
(m − 1)

]
(m − 2)!

1

r
(χφ)

m−1
2

m+1
2∑

p=0

m−1
2∑

q=0

(m+1
2

p

)(m−1
2

q

)
(−1)p+q [(−�a )m−21(�a ) + χφ(−�b )m−21(�b )], (74)

which is valid for m odd.
We calculate now the same quantity for m even:

ZH (r ) = −i

∫
�

ZG

(
iy

KBT

�

)
y

r
ei

ry

� dy = −i

∫
�

xm−1

[
sin(y)

y
χφ

sin(χy)

y

] m
2 y

r
ei

ry

� dy

= − ixm−1

r (2i)m
(χφ)

m
2

m
2∑

p=0

m
2∑

q=0

(m
2

p

)(m
2

q

)
(−1)p+q

∫
�

1

ym−1
exp[−iy�c] dy, (75)

where �c = 2p − m
2 + 2χq − χ m

2 − r
�
. Finally, by using again Eq. (46), we get

ZH (r ) = 2π

2m

exp
[− λ

KBT
(m − 1)

]
(m − 2)!

1

r
(χφ)

m
2

m
2∑

p=0

m
2∑

q=0

(m
2

p

)(m
2

q

)
(−1)p+q (−�c )m−21(�c ), (76)

which is valid for m even. The solutions given in Eqs. (74)
and (76) represent the most important result of this section
and must be discussed as follows.

An example of application of Eq. (74) for m odd can be
found in Fig. 8, where force-extension curves, average number
of unfolded units, and Helmholtz free energy are represented
for several values of λ. When we consider an increasing

value of |λ| (λ < 0), we observe that the first force peaks
tend to disappear, while the last ones become more and more
pronounced [Fig. 8(a)]. This is coherent with the assumption
that, in an antiferromagnetic-like system, the favored states
are alternatively folded and unfolded. Accordingly, with an
increasing value of |λ| (λ < 0), we have an increasing number
of unfolded units in the initial configuration with r = 0.
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FIG. 7. Force-extension response (a), average number of un-
folded units (b), and Helmholtz free energy (c) for a chain with strong
ferromagnetic-like interactions. In each panel, the response without
interactions (λ = 0, black dashed curves) is shown together with
the exact results for an increasing ferromagnetic interaction (λ =
0.5jKBT ∀j = 1, . . . , 14, red or gray curves) and the asymptotic
expansion (λ → ∞, yellow or light gray curves) given in Eq. (64).
The curves have been obtained with �E = 5KBT , m = 5, χ = 2,
and μ = 0.

Clearly, the maximum value of this number of unfolded units
with r = 0 is (m − 1)/2 and not (m + 1)/2 since the unfolded
units are costly from the energetic point of view and the
system chooses the configuration with the smallest number
of unfolded units between (m − 1)/2 and (m + 1)/2. This
overall interpretation of Fig. 8 must be improved to better
understand the yellow (or light gray) curves corresponding to

λ → ∞. So, if we look at Eq. (74), we note that ZH (r ) is
different from 0 when �a > 0 or �b > 0. It means

2p − m + 1

2
− χ

m − 1

2
+ 2χq − r

�
> 0 (77)

or

2q − m − 1

2
− χ

m + 1

2
+ 2χp − r

�
> 0. (78)

Now the maximum values of p and q are m+1
2 and m−1

2 ,
respectively. Hence, we have

r

�
< 2

m + 1

2
− m + 1

2
− χ

m − 1

2
+ 2χ

m − 1

2
(79)

or
r

�
< 2

m − 1

2
− m − 1

2
− χ

m + 1

2
+ 2χ

m + 1

2
. (80)

Equivalently,

r

�
<

m + 1

2
+ χ

m − 1

2
< mχ (81)

or
r

�
<

m − 1

2
+ χ

m + 1

2
< mχ, (82)

where mχ is the upper limit of r
�
, attained when all elements

are unfolded. It means that the total length of the unit cannot
exceed m−1

2 + χ m+1
2 [which is the highest value between

Eqs. (81) and (82)]. The value m+1
2 + χ m−1

2 corresponds to
m+1

2 folded domains and m−1
2 unfolded domains: this is the

starting configuration for the strong antiferromagnetic system,
which can be represented as �S = {↑↓↑↓↑} for m = 5, where
{↑} represents a folded unit and {↓} an unfolded one. This
configuration is stable with r = 0. When we apply a sufficient
extension, the unfolded domains become more stable, and
we have an inversion in the alternating disposition leading to
�S = {↓↑↓↑↓}. This transition can be observed through the
single peak in the force-extension yellow (or light gray) curve
[Fig. 8(a)] and in the shift from 2 to 3 of the average number
of unfolded units [yellow or light gray curve in Fig. 8(b)].
As a matter of fact, in this case, we can not unfold all
elements because of the hypothesis of large (ideally infinite)
antiferromagnetism (λ → −∞). For this reason, ZH (r ) is
defined for r < m−1

2 � + m+1
2 χ� and not for r < mχ�, as in

previous cases.
A similar discussion holds for the case with m even. An

example of application of Eq. (76) is shown in Fig. 9. While
the red (or gray) curves with an increasing value of |λ| (λ < 0)
are similar to those shown in Fig. 8, the yellow (or light gray)
curves representing the asymptotic behavior for λ → −∞ are
different and require some comments. In this case, ZH (r ) is
different from 0 if �c > 0, or if 2p − m

2 + 2χq − χ m
2 − r

�
>

0. Now, p and q assume the same maximum value m
2 , and

therefore we have r
�

< 2 m
2 − m

2 + 2χ m
2 − χ m

2 or equivalently,
r
�

< m
2 + χ m

2 . It is evident that ( m
2 + χ m

2 )� is the length of the
chain with m

2 folded domains and m
2 unfolded domains. So,

if λ → −∞, the number of unfolded domains is a constant
equal to m

2 and ZH (r ) is defined only for r < ( m
2 + χ m

2 )�. In
this case, we have no inversion of the configuration, which
corresponds to �S = {↓↑↓↑} or to �S = {↑↓↑↓} for λ → −∞
and m = 4. These two configurations are indeed completely
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FIG. 8. Force-extension response (a), average number of un-
folded units (b), and Helmholtz free energy (c) for a chain with strong
antiferromagnetic-like interactions and an odd number of units. In
each panel, the response without interactions (λ = 0, black dashed
curve) is shown together with the exact results for an increasing
antiferromagnetic interaction (λ = −0.25jKBT ∀j = 1, . . . , 6, red
or gray curves) and the asymptotic expansion (λ → −∞, yellow or
light gray curve) given in Eq. (74). The curves have been obtained
with �E = 5KBT , m = 5, χ = 2, and μ = 0.

equivalent from the energetic point of view, and they are
therefore indistinguishable. As a conclusion, if λ → −∞, the
force extension curve is a monotonically increasing function
of r (without peaks), the average number of unfolded units
is a constant equal to m/2, and the Helmholtz free energy is
without cusps (yellow or light gray curves in Fig. 9).
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FIG. 9. Force-extension response (a), average number of un-
folded units (b), and Helmholtz free energy (c) for a chain with strong
antiferromagnetic-like interactions and an even number of units. In
each panel, the response without interactions (λ = 0, black dashed
curve) is shown together with the exact results for an increasing
antiferromagnetic interaction (λ = −0.25jKBT ∀j = 1, . . . , 6, red
or gray curves) and the asymptotic expansion (λ → −∞, yellow or
light gray curve) given in Eq. (76). The curves have been obtained
with �E = 5KBT , m = 4, χ = 2, and μ = 0.

VIII. CHAIN WITH ISING INTERACTIONS
AND EXTENSIBLE UNITS

We consider now a chain of bistable units characterized by
a finite elastic constant. We start the analysis by considering
the Gibbs ensemble defined through the extended Hamiltonian
given in Eq. (2). Here, for the sake of simplicity, we suppose
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that the folded and unfolded basins of the potential energy
shown in Fig. 1 exhibit the same elastic constant k(−1) =
k(+1) = κ . In this case, it is not difficult to prove that Eq. (7)
of Sec. III can be substituted by the approximated result

I = exp

(
f 2

2κKBT

) m∏
i=1

sinh
[

f �0(Si )
KBT

]
f �0(Si )
KBT

�2
0(Si )

�2
, (83)

which can be easily proved by calculating the exact solution
of Eq. (5) and by considering its approximation for finite
relatively high values of κ . The details of this calculation can
be found in recent literature [82]. Typical values of κ for real
macromolecules are compatible with such approximations
[89]. Coherently with Eq. (83), the Gibbs partition function
can be obtained as

ZG(f ) = x

1 + x2
exp

(
mαξ 2

2

)[
λm

1

(
1 + x2 λ1 + λ2

λ1 − λ2

)

+ λm
2

(
1 − x2 λ1 + λ2

λ1 − λ2

)]
, (84)

where, with respect to Eq. (24) of Sec. III, we added an
exponential term, which is quadratic in the normalized force
ξ = f �

KBT
and defined through a coefficient α = KBT

κ�2 . This
latter represents the ratio between the thermal energy and
the elastic one, thus measuring the compromise between the
enthalpic contribution and fluctuations. The parameters x, λ1,
and λ2 remain defined as in Sec. III.

Concerning the Helmholtz ensemble, the system is de-
scribed by the Hamiltonian in Eq. (31), where, as before,
we assume that k(−1) = k(+1) = κ . The calculation of the
corresponding partition function is based on the Laplace
transform relation between the Gibbs and the Helmholtz
ensembles, summed up in Eq. (34). If we consider integer
values for the parameter χ (ratio between unfolded and
folded length), the analytic continuation of the Gibbs partition

function assumes the form

ZG

(
iy

KBT

�

)
= 1

ym
exp

(
−mαy2

2

)
P (y), (85)

where P (y) is the periodic function defined in Eq. (40) and
described by the Fourier coefficients given in Eq. (42). The
Helmholtz partition function can be finally determined as

ZH (r ) = −i

∫
�

ZG

(
iy

KBT

�

)
y

r
e

yr

� dy

= −i

∫
�

P (y)

ym

y

r
e− mαy2

2 e
iry

� dy

= −i

+∞∑
k=−∞

Ck

1

r

∫
�

1

ym−1
e− mαy2

2 ei(k+ r
�

)y dy

= −i

+∞∑
k=−∞

Ck

1

r
Jm−1

(
k + r

�
,
mα

2

)
, (86)

where we used the Fourier development of the function P (y)
in order to perform the calculation. To complete the task, we
have to calculate a sequence of integral of the form

JN (a, b) =
∫

�

eiaye−by2 dy

yN
, (87)

where a ∈ R, b > 0, N ∈ N and the path � is given in Fig. 3.
An application of the complex variable method allows us to
obtain the closed-form expression for this integral, as [82]

JN (a, b) = √
π

{
b

N−1
2 e− a2

4b (2i)NH−N

(
− a

2
√

b

)

+ 1(−a)
N−1∑
h=0

(ia)N−1−h(−4b)h/2

ih!(N − 1 − h)!

×�

(
h + 1

2

)
[1 + (−1)h]

}
, (88)
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FIG. 10. Force-extension response for a chain of interacting units with finite intrinsic stiffness κ . We used the values κ�2 = 100KBT

(a), and κ�2 = 200KBT (b). In each panel, the response without interactions (λ = 0, black curves) is shown together with the results with
λ = +1KBT (dark red or dark gray curves) and λ = −1KBT (orange or light gray curves). The Gibbs and Helmholtz responses correspond
to dashed and solid lines, respectively. The curves have been obtained with �E = 5KBT , m = 5, χ = 2, and μ = 0.
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FIG. 11. Spinoidal phase diagrams obtained for four different
values of the intrinsic stiffness κ of the units (defined by κ�2 =
100, 133, 166, 200KBT0). They show the end points of the spinoidal
intervals versus the temperature of the system (T > T0). The curves
have been obtained with �E = 5KBT0, m = 5, χ = 2, μ = 0,
and five different values of the Ising interaction coefficient λ =
0, ±0.5, ±1KBT0. Gray arrows indicate increasing values of λ. The
parameters � and T0 are arbitrary (typical values are � = 1 nm and
T0 = 300 K).

where 1(x) represents the Heaviside step function, and
H−N (z) are the generalization of the Hermite polynomials,
obtained by considering negative indices. They can be defined
as [82,90]

H−N (z) = 1

(2i)N
√

π

∫ +∞

−∞

e−η2
dη

(η − iz)N
, (89)

and they can be obtained recursively through the formula
[82,90]

H−(N+1)(z) = 1

2N
H−(N−1)(z) − z

N
H−N (z), (90)

initialized with H0(z) = 1 ∀z ∈ R and H−1(z) =
√

π

2 ez2

[1 − erf(z)] for z > 0 and H−1(z) odd, i.e., H−1(−z) =
−H−1(z) [82,90]. This recursive law allows us to affirm that
H−N (z) is odd if N is odd and that H−N (z) is even if N is
even. We underline that the Hermite elements with N < 0
are not polynomials, contrarily to the classical Hermite

polynomials, defined with N > 0. Many other interesting
properties of this sequence of functions can be found in
Ref. [90].

An application of the Gibbs and Helmholtz partition func-
tions, stated in Eqs. (84) and (86), respectively, is presented
in Fig. 10, where we show the force-extension curves for two
values of the constant κ and for three values of the coefficient
λ. First, we note that the constant slope of the final part of the
force-extension curves represents the finite effective stiffness
of the chain, after the unfolding processes. Moreover, it is
interesting to remark that the softer systems exhibit a sensibly
reduced force peaks in the Helmholtz response. This point can
be also noticed by drawing a comparison between Fig. 4(a),
obtained for κ → ∞, and Fig. 10, corresponding to finite
values of κ . A similar phenomenon can be also observed in the
phase diagram showing the critical behavior of the spinoidal
response of the system. Indeed, we plotted in Fig. 11 four
phase diagrams corresponding to four different values of the
elastic constant. We observe that the critical temperature of the
unfolding processes is an increasing function of κ , similarly
to the previously discussed force peaks of the Helmholtz
response. Besides, as already seen in Fig. 5 concerning the
case with κ → ∞, antiferromagnetic-like interactions am-
plify the dissimilarity among the critical temperatures, while
ferromagnetic-like interactions reduce this contrast, eventu-
ally producing a more uniform response of the unfolding
processes.

IX. CONCLUSIONS

We investigated the properties of a chain of two-state
units coupled through an Ising interaction scheme, providing
a paradigmatic description of the effects of bistability and
cooperativity in biological and artificial micro- and nanosys-
tems. Accordingly, we studied our model by means of the
statistical mechanics of small systems, i.e., far from the
thermodynamic limit. It means that, for a limited number
m of units of the chain, the Gibbs and Helmholtz statistical
ensembles are not equivalent, and we ultimately obtain two
different isotensional and isometric responses, well recog-
nized, e.g., in force-spectroscopy experiments. Some of the
most interesting findings of this paper concern the influence of
the cooperativity, measured by the Ising coefficient λ, on the
mechanical behavior and on the configurational features of the
system. In particular, we analyzed the force-extension curve
under isotensional conditions, obtaining a sharper or smoother
transition depending on λ, and under isometric conditions,
getting a variable hierarchy of force peaks as function of
the cooperativity. Also, the unfolding processes of the units
have been characterized by plotting the number of unfolded
units versus the mechanical quantity (f or r) inducing the
chain stretching. This point allows the interpretation of the
unfolding processes as synchronized or simultaneous under
isotensional conditions and as nonsynchronized or sequential
under isometric conditions. This result underlines the conve-
nience of the spin variables to investigate the configurational
properties of the system.

From the methodological point of view, we underline that
the spin variables approach is useful to elaborate semianalytic
or closed-form expressions for the relevant observables. More
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specifically, to solve the problem within the Gibbs ensemble,
we coupled this spin variables approach with the classic
transfer matrix technique to take account of the interactions.
On the other hand, to overcome the complexity induced
by the isometric conditions, we made use of the Laplace
transform between Gibbs and Helmholtz partition functions.
This expedient consents to study the Helmholtz ensemble
response by solving a given integral, based on the analytic
continuation of the Gibbs partition function on the imaginary
axis. In addition, we proposed explicit asymptotic results
describing the behavior of the system under weak and strong
Ising interactions (for both the ferromagnetic-like and the
antiferromagnetic-like schemes).

To give a complete picture of the equilibrium behavior of
the system, we also investigated a form of criticality exhibited
by the system. In particular, our analysis highlights the critical
behavior of the spinoidal regions, characterizing the part of
the isometric response showing a negative differential elastic
stiffness. We prove that each unfolding process exhibits a
critical temperature defined by stating that we measure a
negative differential stiffness for subcritical temperatures and
a positive differential stiffness for supercritical temperatures.
This behavior is influenced by the cooperativity, which has the
capability to make the critical temperatures of the unfolding
processes more uniform. We can therefore state that a positive
cooperativity increases the resistance to fluctuations,
making the spinoidal intervals equally stable to temperature
variations.

While being a paradigmatic model for the understanding of
several phenomena, our chain with Ising interactions should

be improved to better represent more realistic situations. One
drawback concerns the uniformity of all parameters defining
the properties of the units. Indeed, in order to correctly
model the actual mechanical behavior of heterogeneous struc-
tures, such as proteins, we would have the possibility to
freely choose these parameters for each unit. Nevertheless,
this heterogeneity consists in a form of quenched disorder,
which is much more complicated to be taken into account
by classical statistical mechanics methods. However, it should
be important to introduce this point since it could allow to
determine the full unfolding pathway, which depends on the
system microstructure. As an example, this is directly related
to the biological function of a protein. Another improvement
concerns the dynamics of the unfolding processes, which
should be studied in the context of the out-of-equilibrium
statistical mechanics. It is worth noting here that the spin
variable approach can be used for decoupling two kinds of
characteristic times: (i) the purely mechanical times induced
by the stiffness of each basin of the potential energy and
(ii) the times induced by the transition rates between the
basins, which depend on the energy barrier as classically
described by the Kramers theory. This approach should permit
to consider out-of-equilibrium unfolding processes, typically
induced in isometric force-extension experiments conducted
at fixed pulling velocity of the tethered chain.
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