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The catenary is a curve that has played a significant role in the history of
mathematics, finding applications in various disciplines such as mechanics,
technology, architecture, the arts, and biology. In this paper, we introduce some
generalizations by applying the variational method to deformable strings. We
explore two specific cases: (i) in the first case, we investigate the nonlinear behav-
ior of an elastic string with variable length, dependent on the applied boundary
conditions; specifically, this analysis serves to introduce the variational method
and demonstrate the process of finding analytical solutions; (ii) in the second
case, we examine a deformable string with a constant length; however, we intro-
ducemass redistributionwithin the string throughnonlinear elastic interactions.
In the first scenario, the deformation state of the string always describes elon-
gation, as compression states prove to be unstable for fully flexible strings. In
contrast, in the second scenario, the finite length constraint induces compressive
states in specific configurations and regions of the string. However, it is worth
noting that the solution to this problem exists only for values of the elastic con-
stant that are not too low, a phenomenon that is studied in detail. We conduct
here both analytical and graphical analyses of various geometries, comparing the
elastic behavior of the two aforementioned types of strings. Understanding the
elastic behavior of deformable strings, especially the second type involving mass
redistribution, is crucial for enhancing comprehension in the study of biological
filaments or fibers and soft matter. For instance, these investigations can con-
tribute to understanding the mechanisms employed by cells to sense gravity or
other mechanical conditions.

1 INTRODUCTION

The classical problem pertaining to the elasticity of wires and strings is exemplified by the so-called catenary. This math-
ematical model describes the shape of an inextensible wire, cable, or rope suspended from two ends and subjected to the
force of gravity. Apparently, the initial exploration of the catenary was conducted by Leonardo da Vinci (1452–1519), who
depicted the form of a rope tethered at its ends in his notebooks [1]. In 1638, Galileo Galilei (1564–1642) tackled the catenary
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problem. In the second day of “Discorsi e dimostrazioni matematiche intorno a due nuove scienze attinenti alla mecca-
nica e i movimenti locali,” he asserted, through the voice of Salviati, that the catenary assumes the shape of a parabola [2]:
“Drive two nails into a wall at a convenient height and at the same level.... Over these two nails hang a light chain.... This
chain will assume the form of a parabola....”. Indeed, from this passage, it appears that Galileo equates the shape of a cate-
nary with that of a parabola. Subsequently, this error continued to be unjustly attributed to him by numerous historians
and scientists. In fact, in the fourth day, Galileo, once again conveyed through the voice of Salviati, explicitly asserts that
the parabola is only an approximation of the catenary. He emphasizes that although the two curves appear similar, they
are fundamentally distinct [3]: “But more I want to tell you....that the rope thus stretched,...., bends in lines, which almost
approach parabolas....”. Galileo also noted that this approximation becomes more accurate as the curvature decreases and
is nearly exact when the elevation is less than 45◦ [4]. Christiaan Huygens (1629–1695) likely became acquainted with the
problem of the hanging chain through his tutor and engaged in extensive correspondence with Marin Mersenne (1588–
1648) on this matter. In these letters, Huygens demonstrated toMersenne that the hanging chain did not assume the shape
of a parabola [5]. Indeed, we now understand that the curve formed by such a chain is a catenary or a hyperbolic cosine.
The term catenary is the English rendition of the Latin term “catenaria,” a term originally coined by Huygens himself
in a letter to Gottfried Leibniz (1646–1716) in November 1690 [5]. Huygens also delved into an additional problem that he
had previously discussed with Mersenne–that of forcing the chain to adopt the configuration of a parabola. To continue
this story, in the May 1690 edition of Acta Eruditorum, Jacob Bernoulli (1655–1705) presented a solution to the isochrone
problem, addressing the definition of a curve along which a body will fall in the same amount of time from any initial
position [6]. After this solution, he wrote [7]: “And now let this problem be proposed: to find the curve assumed by a loose
string hung freely from two fixed points. And let this string be flexible and of uniform cross-section”. A first response can
be found in the Huygens’s paper in Acta Eruditorum [8], which, despite its brevity of less than two pages, was replete with
numerous insights into the catenary. While Huygens did not provide a formula for the catenary curve, his compilation of
results demonstrates a profound understanding of this curve [9]. This work was immediately followed by the responses
of Johann Bernoulli (1667–1748) [10] and Gottfried Leibniz [11], always in Acta Eruditorum [12]. Today, Huygens, Johann
Bernoulli, and Leibniz are regarded as the three solvers of the catenary problem [13]. Christian Huygens’ development
relied on geometrical arguments, whereas Gottfried Leibniz and Johann Bernoulli utilized the new techniques of differ-
ential calculus in their respective demonstrations. Anyway, there was absolutely no mention of hyperbolic functions or
any other explicit function in the solutions provided in 1691 [14]. A slightly later reference to the catenary curve can be
attributed to Leonhard Euler (1707–1783) in his work on the calculus of variations. In his 1744 publication “Methodus Inve-
niendi Lineas Curvas Maximi Minimive Proprietate Gaudentes,” [15] Euler showed that a catenary rotating about its axis
(forming a catenoid) generates the unique minimal surface of revolution. It is interesting to mention that the expressions
(𝑒𝑥 + 𝑒−𝑥)∕2 and (𝑒𝑥 − 𝑒−𝑥)∕2 appear for the first time in Volume I of Euler’s “Introductio in analysin infinitorum” in
1748 [16]. However, Euler did not employ the term “hyperbolic” when referring to these expressions, nor did he introduce
any specific notation or nomenclature for them [14]. Today, the analytical examination of the catenary represents a classic
topic in physics and mathematics, encountered by every college student during their studies. At the intermediate level,
several texts derive the catenary equation without relying on the calculus of variations [17, 18]. The classical treatment is
founded on the solution of a differential equation that represents the equilibrium of forces. This is the classical method
adopted to investigate the behavior of elastic structures [19–21]. Inmore advancedmathematics and physics textbooks, the
catenary equation is often presented as an application of the calculus of variations, with limited discussion of the under-
lying physics [22–24]. Some more recent research has reexamined the catenary problem in order to propose alternative
solutions of some simplicity or elegance [25–27]. Of course, the catenary problem has always been addressed and solved
for a uniform gravitational field, as is always done in elasticity theory problems. However, it is important to mention that
recently the problem has also been solved for a catenary immersed in a true central gravitational field, that is, in a poten-
tial of the type −1∕𝑟 [28, 29]. The authors of this study call it “catenaria vera,” that is, true catenary. Interestingly enough,
we remark that the hyperbolic cosine reappears in the explicit formula of the true catenary. Another interesting general-
ization concerns the viscous catenary, which consists in a filament of a highly viscous incompressible fluid, supported at
its ends, relaxing under the influence of gravity [30–35]. This matter has also been investigated for filaments composed
of soft materials, described by an arbitrary constitutive equation [36], or exhibiting a viscoelastic behavior [37, 38]. More
theoretical research has involved the variational approaches to strain energy [39, 40], the analysis of multiple equilibrium
states [41, 42], and the introduction of a bending energy [43–45].
The study of the catenary and its variations and generalizations has found applications in various fields. In technology,

it has facilitated the examination of the mechanics and configuration of cables and ropes, proving valuable for the stabil-
ity of structures and the transmission of electricity, notably in railway systems and fabrication processes [46–54]. When
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F IGURE 1 Schemes of the discrete version of the strings discussed in this work. Left panel: deformable string with variable length.
Right panel: string with fixed length 𝓁, exhibiting mass redistribution under applied fields, such as gravity.

inverted from the vertical, the catenary generates the shape of an arch widely employed in architecture. Indeed, In 1675,
Robert Hooke (1635–1703) discovered that a thin arch supporting its own weight with pure compression must adopt the
inverted shape of a hanging chain, specifically, an inverted catenary [55]. This principle has been applied in numerous
architectural works, including notable examples such as the Gateway Arch in St. Louis, constructed in 1963 by the archi-
tect Eero Saarinen, the arches in Casa Mila built between 1906 and 1913 by Antoni Gaudí in Barcelona, and the Sagrada
Familia, under construction since 1882, representing the pinnacle of Gaudí’s work [56]. It is worth noting that the applica-
tion of catenaries extends to the realm of arts as well. [57]. The geometry and physics of inverse catenary are also helpful in
explaining the fountain chain phenomenon, according to which a chain in gravity spontaneously rises from the container
containing it before falling to the ground [58–60]. Furthermore, the inverted catenary has also been employed to elucidate
the gliding phenomenon, a form of locomotion utilized by various bacteria, including myxobacteria and cyanobacteria
[61]. This process is facilitated by a filament extruded from the bacteria, making contact with the substrate and inducing
shock propagation [62]. Other applications of catenaries to biology include the examination of plant root tip outlines [63],
and the development of growthmodels [64]. Moreover, the study of simple elastic systems under gravity is useful to better
understand the role of biological structures, for example, the cytoskeleton, in the process of sensing gravity by cells [65–67].
The aim of the present paper is to present a variational approach to themechanics and elasticity of strings useful to study

two different generalizations of the catenary problem. The first one deals with the elastic or deformable catenary, which
means thatwe take into consideration possible elongations and compressions of the string (wewill see that the compressed
state is unstable in this case). Therefore, depending on the elastic constant of the string and on its linear density, the
shape of the catenary can be strongly deformed with respect to the classical inextensible catenary. The corresponding
system, from the discrete point of view, can be conceptualized through a fully flexible mass-spring chain, where the spring
have a finite equilibrium length (see left panel of Figure 1). This is a typical nonlinear elasticity problem, for which we
determine the exact equation for an arbitrary dynamic regime, although solutions will be found only in the static cases.
Although this problem is a simple generalization of the classical catenary, it remains useful for introducing the variational
approach and showing how the exact solutions can be found. It thus provides the basis for the following analysis. The
second problem concerns a new soft matter catenary characterized by its inextensibility and the possibility of havingmass
redistribution within it. From the discrete point of view, it can be conceptualized by means of an inextensible weightless
wire along which a series of rings (with mass) connected by elastic springs of finite length can move (see right panel of
Figure 1). In the case of such a chain with the ends fixed in gravity, the weight will not be able to change the total length,
but it will facilitate the rings to move toward the point of minimum, thus changing the shape of the chain compared to
the classical inextensible catenary (compression states can be observed in this case). This original model is then able to
describe behaviors of soft matter catenaries where the mass can redistribute over the fixed length according to the applied
fields. It is interesting to note that the solution to this problem exists only if the elastic modulus of the chain is larger
than a given threshold. In fact, we show that there is a value of the elastic modulus below which the solution is no longer
represented by a smooth curve and loses its physical meaning. Indeed, if the elastic modulus is too low, the masses can
collapse towards the minimum potential zone making the configuration unattainable. In other words, for too low values
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4 of 26 GIORDANO

of the elastic constant, the solution of the elastic problem is incompatible with the finite length constraint. This point is
studied thoroughly, including with a discrete case described in the Appendix. A detailed comparison between the two
proposed models is finally discussed.

2 THE VARIATIONAL FORMALISM FOR FLEXIBLE DEFORMABLE STRINGS

We introduce here a method based on a discrete to continuum limit in order to obtain the equation of motion of a fully
flexible deformable string. We start with a first approach based on the Lagrangian equations of motion of the analytical
mechanics. Then,we use a variational formalism to study the boundary conditions thatmust be associated to the evolution
equation. The system under consideration consists in a mass-spring chain where each nonlinear spring is described by
an elastic constant 𝑘0 and an equilibrium length Δ𝓁. We note that the spring turns out to be linear only when Δ𝓁 = 0, a
condition that is not interesting for the purposes of this work. Indeed, we want to preserve a finite length of the wire in
the continuous limit. We do not specify for the moment the boundary conditions concerning the first and the last mass of
the chain. The elastic energy of a single spring can be written as

𝑈𝑠𝑝𝑟𝑖𝑛𝑔 =
1
2
𝑘0

[‖‖‖𝑟𝑞+1 − 𝑟𝑞
‖‖‖ − Δ𝓁

]2
, (1)

where 𝑟1, … , 𝑟𝑁 represent the position vectors of the masses of the chain. By means of these premises, we can introduce
the Lagrangian 𝐿 of the system, which depends on position vectors and velocities of the elements of the chain

𝐿 = 𝐿

(
𝑟1, … , 𝑟𝑁,

𝑑𝑟1
𝑑𝑡

, … ,
𝑑𝑟𝑁
𝑑𝑡

, 𝑡

)
. (2)

More explicitly, it is composed by the kinetic energy and the total potential energy of the system, as it follows

𝐿 =
𝑁∑
𝑞=1

1
2
𝑚
𝑑𝑟𝑞
𝑑𝑡

⋅
𝑑𝑟𝑞
𝑑𝑡

−
𝑁−1∑
𝑞=1

1
2
𝑘0

[‖‖‖𝑟𝑞+1 − 𝑟𝑞
‖‖‖ − Δ𝓁

]2
− 𝑈𝑒𝑥𝑡

(
𝑟1, … , 𝑟𝑁, 𝑡

)
. (3)

Here, we also introduced an external potential energy𝑈𝑒𝑥𝑡

(
𝑟1, … , 𝑟𝑁, 𝑡

)
=

∑𝑁
𝑞=1 𝑈

(
𝑟𝑞, 𝑡

)
representing the external forces

applied to the chain. For the sake of simplicity, we assume that all particles are subjected to the same potential energy
𝑈

(
𝑟𝑞, 𝑡

)
, which only depends on 𝑟𝑞 and time 𝑡. Bymeans of the Lagrangian function, we canwrite themotion equations in

the classical form

d
d𝑡

𝜕𝐿

𝜕 ̇⃗𝑟𝑘
−

𝜕𝐿

𝜕𝑟𝑘
= 0. (4)

To develop the explicit form of the motion equations, we have to perform the following derivatives with respect to ̇⃗𝑟𝑘

𝜕𝐿

𝜕 ̇⃗𝑟𝑘
= 𝑚 ̇⃗𝑟𝑘,

d
d𝑡

𝜕𝐿

𝜕 ̇⃗𝑟𝑘
= 𝑚̈⃗𝑟𝑘, (5)

and those concerning 𝑟𝑘

𝜕𝐿

𝜕𝑟𝑘
= 𝑘0

[
1 −

Δ𝓁‖‖𝑟𝑘+1 − 𝑟𝑘‖‖
](
𝑟𝑘+1 − 𝑟𝑘

)
− 𝑘0

[
1 −

Δ𝓁‖‖𝑟𝑘 − 𝑟𝑘−1‖‖
](
𝑟𝑘 − 𝑟𝑘−1

)
−
𝜕𝑈𝑒𝑥𝑡

(
𝑟1, … , 𝑟𝑁, 𝑡

)
𝜕𝑟𝑘

. (6)

Summing up, we have the dynamical equations for our system in the form

̈⃗𝑟𝑘 =
𝑘0
𝑚

[
1 −

Δ𝓁‖‖𝑟𝑘+1 − 𝑟𝑘‖‖
](
𝑟𝑘+1 − 𝑟𝑘

)
−
𝑘0
𝑚

[
1 −

Δ𝓁‖‖𝑟𝑘 − 𝑟𝑘−1‖‖
](
𝑟𝑘 − 𝑟𝑘−1

)
−

1
𝑚

𝜕𝑈
(
𝑟𝑘, 𝑡

)
𝜕𝑟𝑘

, (7)
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GIORDANO 5 of 26

since 𝜕𝑈𝑒𝑥𝑡

(
𝑟1, … , 𝑟𝑁, 𝑡

)
∕𝜕𝑟𝑘 = 𝜕𝑈

(
𝑟𝑘, 𝑡

)
∕𝜕𝑟𝑘. We underline that these equations are strongly nonlinear because of the

strictly positive equilibrium length of the springs composing the chain. Of course, if Δ𝓁 = 0, the equations turn out to be
linear and they would represent the discrete version of the D’Alambert wave equation. This nonlinearity plays a central
role in the following developments. That being said, we can now perform the continuum limit in order to introduce the
equation for a one-dimensional elastic string. The unperturbed or unstretched string has the total length 𝓁 and therefore
we can write (𝑁 − 1)Δ𝓁 = 𝓁with𝑁 → ∞ andΔ𝓁 → 0. In the continuum limit, the variables 𝑟𝑘(𝑡)will be substituted with
a function 𝑟(𝑠, 𝑡), where 𝑠 is the curvilinear abscissa, with 𝑠 ∈ [0, 𝓁]. It means that 𝑠 introduces a natural parametrization
for the curve representing the chain only in the unstretched (not elongated and not compressed) condition. We can there-
fore add that the function 𝑟(𝑠, 𝑡) represents the position of the point of the arbitrarily deformed chain having curvilinear
abscissa 𝑠 in the unstretched chain. Moreover, Δ𝓁 represents the increment of the variable 𝑠 since (𝑁 − 1)Δ𝓁 = 𝓁 and
𝑠 ∈ [0, 𝓁]. Therefore, we can rewrite Equation (7) as

𝑚
Δ𝓁

̈⃗𝑟𝑘 = 𝑘0Δ𝓁

[
1 −

Δ𝓁‖𝑟𝑘+1−𝑟𝑘‖
]
𝑟𝑘+1−𝑟𝑘

Δ𝓁
−

[
1 −

Δ𝓁‖𝑟𝑘−𝑟𝑘−1‖
]
𝑟𝑘−𝑟𝑘−1

Δ𝓁

Δ𝓁
−

1
Δ𝓁

𝜕𝑈
(
𝑟𝑘, 𝑡

)
𝜕𝑟𝑘

, (8)

where we can easily identify the first order and second order incremental ratios. We can define the mass density (for
unit length) 𝜆 = lim𝑁→∞𝑚∕Δ𝓁 (with𝑚 → 0 and Δ𝓁 → 0), and the density of potential energy (for unit length) (𝑟, 𝑡) =
lim𝑁→∞𝑈

(
𝑟𝑘, 𝑡

)
∕Δ𝓁 (with𝑈 → 0 and Δ𝓁 → 0). Moreover, for any single spring, we can write 𝑓 = 𝑘0(Δ𝓁

′ − Δ𝓁), where
𝑓 is the applied force, Δ𝓁′ is the deformed length, and Δ𝓁 is the original length. If this spring represents a small portion
of wire, we can also write 𝜎 = 𝐸𝜀, where 𝜎 = 𝑓∕𝑆 is the stress, 𝑆 is the cross-sectional area, and 𝜀 = (Δ𝓁′ − Δ𝓁)∕Δ𝓁 is the
strain. Comparing these two points of view, we find that 𝑘0Δ𝓁 = 𝑆𝐸, or more precisely, 𝑆𝐸 = lim𝑁→∞ 𝑘0Δ𝓁, with 𝑘0 → ∞
and Δ𝓁 → 0. It means that we are considering engineering stress and strain. As usual, for not too large deformations, the
results should not deviate too much from those obtained with true stress and strain. To conclude, the continuum limit of
Equation (8) can be written as

𝜆
𝜕2𝑟

𝜕𝑡2
= 𝑆𝐸

𝜕
𝜕𝑠

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣1 −

1‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖
⎤⎥⎥⎥⎦
𝜕𝑟
𝜕𝑠

⎫⎪⎬⎪⎭ −
𝜕
𝜕𝑟

, (9)

with the unknown vector 𝑟(𝑠, 𝑡). This equation fully describes the statics and the dynamics of the elastic string or wire.
However, for the moment, we do not know the form of boundary conditions to be imposed in order to find solutions to
real problems. To solve this difficulty, it is better to reformulate the procedure through a variational approach. To this aim,
we can rewrite the Lagrangian function in Equation (3) as it follows

𝐿 =
𝑁∑
𝑞=1

[
𝑚
2Δ𝓁

𝑑𝑟𝑞
𝑑𝑡

⋅
𝑑𝑟𝑞
𝑑𝑡

]
Δ𝓁 −

𝑁−1∑
𝑞=1

⎡⎢⎢⎢⎣
𝑘0Δ𝓁

2

⎛⎜⎜⎝
‖‖‖𝑟𝑞+1 − 𝑟𝑞

‖‖‖
Δ𝓁

− 1
⎞⎟⎟⎠
2⎤⎥⎥⎥⎦Δ𝓁 −

𝑁∑
𝑞=1

[
𝑈
(
𝑟𝑘, 𝑡

)
Δ𝓁

]
Δ𝓁. (10)

In this expression we can observe, in the limit of Δ𝓁 → 0, the convergence of the sums to integrals, eventually obtaining

𝐿 = ∫
𝓁

0

1
2
𝜆

(
𝜕𝑟
𝜕𝑡

)2

𝑑𝑠 − ∫
𝓁

0

1
2
𝑆𝐸

[‖‖‖‖𝜕𝑟𝜕𝑠 ‖‖‖‖ − 1

]2
𝑑𝑠 − ∫

𝓁

0
 (𝑟)𝑑𝑠. (11)

This result allows us to define a Lagrangian density  by means of the expression

 =
1
2
𝜆

(
𝜕𝑟
𝜕𝑡

)2

−
1
2
𝑆𝐸

[‖‖‖‖𝜕𝑟𝜕𝑠 ‖‖‖‖ − 1

]2
− (𝑟), (12)

such that 𝐿 = ∫ 𝓁

0
𝑑𝑠. These quantities are of central importance in introducing the action  of the system as

 = ∫
𝑇

0
𝐿𝑑𝑡 = ∫

𝑇

0 ∫
𝓁

0
𝑑𝑠𝑑𝑡. (13)
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6 of 26 GIORDANO

The evolution of the system is then based on the stationary-action principle (or the principle of least action) stating that
the evolution of the system makes the action functional stationary (or minimal). The calculus of variations allows us to
study the stationarity conditions of the action defined in Equation (13). Let ℎ⃗(𝑠, 𝑡) be a variation allowed to the solution
𝑟(𝑠, 𝑡). We can calculate the perturbation to the action induced by this variation ℎ. We find

(𝑟 + 𝛼ℎ⃗) = ∫
𝑇

0 ∫
𝓁

0

1
2
𝜆

(
𝜕𝑟
𝜕𝑡

+ 𝛼
𝜕ℎ⃗
𝜕𝑡

)2

𝑑𝑠𝑑𝑡 − ∫
𝑇

0 ∫
𝓁

0

1
2
𝑆𝐸

[‖‖‖‖‖𝜕𝑟𝜕𝑠 + 𝛼
𝜕ℎ⃗
𝜕𝑠

‖‖‖‖‖ − 1

]2
𝑑𝑠𝑑𝑡 − ∫

𝑇

0 ∫
𝓁

0
 (𝑟 + 𝛼ℎ⃗)𝑑𝑠𝑑𝑡, (14)

where𝛼 is a real parameter. In order to calculate theGateaux differential of the action , we firstly evaluate 𝜕(𝑟 + 𝛼ℎ⃗)∕𝜕𝛼

𝜕(𝑟 + 𝛼ℎ⃗)

𝜕𝛼
= ∫

𝑇

0 ∫
𝓁

0
𝜆

(
𝜕𝑟
𝜕𝑡

+ 𝛼
𝜕ℎ⃗
𝜕𝑡

)
⋅
𝜕ℎ⃗
𝜕𝑡
𝑑𝑠𝑑𝑡 − ∫

𝑇

0 ∫
𝓁

0
𝑆𝐸

[‖‖‖‖‖𝜕𝑟𝜕𝑠 + 𝛼
𝜕ℎ⃗
𝜕𝑠

‖‖‖‖‖ − 1

](
𝜕𝑟

𝜕𝑠
+ 𝛼

𝜕ℎ⃗

𝜕𝑠

)
⋅
𝜕ℎ⃗

𝜕𝑠‖‖‖‖ 𝜕𝑟𝜕𝑠 + 𝛼
𝜕ℎ⃗

𝜕𝑠

‖‖‖‖
𝑑𝑠𝑑𝑡

− ∫
𝑇

0 ∫
𝓁

0

𝜕
𝜕𝑟

⋅ ℎ⃗𝑑𝑠𝑑𝑡, (15)

and we then specialize the result for 𝛼 = 0

𝜕(𝑟 + 𝛼ℎ⃗)

𝜕𝛼

|||||𝛼=0 =∫
𝑇

0 ∫
𝓁

0

⎡⎢⎢⎢⎣𝜆
𝜕𝑟
𝜕𝑡

⋅
𝜕ℎ⃗
𝜕𝑡

− 𝑆𝐸

⎛⎜⎜⎜⎝1 −
1‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎞⎟⎟⎟⎠
𝜕𝑟
𝜕𝑠

⋅
𝜕ℎ⃗
𝜕𝑠

−
𝜕
𝜕𝑟

⋅ ℎ⃗

⎤⎥⎥⎥⎦𝑑𝑠𝑑𝑡. (16)

As usual, one can work out the first and second terms by integration by parts, as follows

𝜕(𝑟 + 𝛼ℎ⃗)

𝜕𝛼

|||||𝛼=0 =∫
𝑇

0 ∫
𝓁

0

⎧⎪⎨⎪⎩−𝜆
𝜕2𝑟

𝜕𝑡2
+ 𝑆𝐸

𝜕
𝜕𝑠

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝1 −

1‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖
⎞⎟⎟⎟⎠
𝜕𝑟
𝜕𝑠

⎤⎥⎥⎥⎦ −
𝜕
𝜕𝑟

⎫⎪⎬⎪⎭ ⋅ ℎ⃗𝑑𝑠𝑑𝑡

+ ∫
𝓁

0
𝜆
𝜕𝑟
𝜕𝑡

⋅ ℎ⃗𝑑𝑠
|||||
𝑇

0

−∫
𝑇

0
𝑆𝐸

⎛⎜⎜⎜⎝1 −
1‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎞⎟⎟⎟⎠
𝜕𝑟
𝜕𝑠

⋅ ℎ⃗𝑑𝑡

||||||||
𝓁

0

. (17)

This Gateaux differential must be zero for any perturbation ℎ⃗ compatible with the boundary conditions, and therefore we
deduce that the first double integral in the right hand side of Equation (17) yields the equation of motion already stated in
Equation (9). The second integral concerns the time initial and/or final conditions and is typical of variational approaches
in mechanics. Finally, the third integral is particularly important since generates the space boundary conditions. If the
position vectors 𝑟(0, 𝑡) and 𝑟(𝓁, 𝑡) of the chain extremities are fixed, we have that ℎ⃗(0, 𝑡) = 0 and ℎ⃗(𝓁, 𝑡) = 0, and therefore
the third term at the right hand side of Equation (17) is zero. However, if for example 𝑟(𝓁, 𝑡) is free to move in the space,

then ℎ⃗(𝓁, 𝑡) is also free, and thus wemust impose
‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖ = 1 for 𝑠 = 𝓁. It is indeed evident that in the free end theremust be

no local deformation, and this means that 𝑠 is a local natural parameter near the free end. This explains how the calculus
of variations is important in determining not only the equation to be solved but also the conditions to be associated to

correctly approach the physical problem. To conclude, we remark that the quantity
‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖ can be named stretch and must

be always positive for a regular motion of the string [21]. Moreover, where
‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖ > 1 the string is elongated, and where‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖ < 1, the string is compressed. In the following, we will study the three configurations schematized in Figure 2,

where the adopted boundary and loading conditions can be clearly identified.
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GIORDANO 7 of 26

F IGURE 2 Scheme of the three configurations studied in this work: (a) elastic wire hanging form one hand, (b) elastic wire anchored at
both ends, (c) elastic wire with one end fixed and the other subjected to applied force. The boundary and loading conditions can be clearly
identified for each configuration. These three geometries are studied for both the extensible string (in Section 2) and the inextensible string
with mass redistribution (in Section 3).

2.1 Elastic wire hanging from one end

As a first example of application, we consider an elastic wire hanging at a fixed point and subject to the force of gravity.
It means that the first extremity is fixed, say at the origin of the axes, and the second one is free. Of course, the wire is
aligned with the 𝑧-axis, for 𝑧 < 0 (see Figure 2a). In static conditions, from Equation (9), we have

𝑆𝐸
𝜕
𝜕𝑠

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣1 −

1‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖
⎤⎥⎥⎥⎦
𝜕𝑟
𝜕𝑠

⎫⎪⎬⎪⎭ =
𝜕
𝜕𝑟

, (18)

and, moreover, we consider  = 𝜆𝑔𝑧, where 𝑔 is gravitational acceleration. Projecting this equation onto the vertical
𝑧-axis, we obtain

𝑆𝐸
𝜕
𝜕𝑠

⎧⎪⎨⎪⎩
⎡⎢⎢⎣1 − 1||| 𝜕𝑧𝜕𝑠 |||

⎤⎥⎥⎦𝜕𝑧𝜕𝑠
⎫⎪⎬⎪⎭ = 𝜆𝑔. (19)

In our case we clearly have that 𝜕𝑧∕𝜕𝑠 < 0. Hence, we get

𝑆𝐸
𝜕
𝜕𝑠

(
𝜕𝑧
𝜕𝑠

+ 1

)
= 𝜆𝑔. (20)

A first integration yields

𝜕𝑧
𝜕𝑠

+ 1 =
𝜆𝑔

𝑆𝐸
𝑠 + 𝐶1. (21)

A second integration leads to

𝑧(𝑠) =
𝜆𝑔

2𝑆𝐸
𝑠2 − 𝑠 + 𝐶1𝑠 + 𝐶2. (22)

The boundary conditions are given by 𝑧(0) = 0 in the fixed end, and
‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖ = 1 for 𝑠 = 𝓁, that is, 𝜕𝑧∕𝜕𝑠 = −1 for 𝑠 = 𝓁 (free

end, see Figure 2a). We easily find that 𝐶2 = 0 and 𝐶1 = −𝜆𝑔𝓁∕(𝑆𝐸), and the final solution is

𝑧(𝑠) =
𝜆𝑔

2𝑆𝐸
𝑠2 − 𝑠 −

𝜆𝑔𝓁

𝑆𝐸
𝑠. (23)

Therefore, the position of the free extremity is identified by 𝑧(𝓁) = −𝓁 − 𝜆𝑔𝓁2∕(2𝑆𝐸), and the extension of the wire due to
its weight is given by 𝜆𝑔𝓁2∕(2𝑆𝐸) = 𝑀𝑔𝓁∕(2𝑆𝐸), where𝑀 = 𝜆𝓁 is the total mass distributed over the wire. Interestingly,
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8 of 26 GIORDANO

F IGURE 3 Elastic wire hanging from one end. Left panel: plot of the parametrization 𝑧 = 𝑧(𝑠) for different values of the elastic constant
𝐸. Right panel: plot of the stretch ||| 𝜕𝑧𝜕𝑠 |||, representing the elongation of the string. We adopted the parameters 𝓁 = 1, 𝜆𝑔 = 1, and 𝐸𝑆 = 0.5, 0.6,
0.8, 1.2, 2, 4, 20, in arbitrary units.

the obtained total extension is one half of that corresponding to the case of a weightless wire with a mass𝑀 concentrated
at the free end, which is given by 𝑀𝑔𝓁∕(𝑆𝐸). This difference is due to the fact that the continuous mass distribution
obviously reduces the total extension of the wire with respect to the concentrated mass. We also observe that when 𝐸
tends to infinity we get the simple solution 𝑧(𝑠) = −𝑠 that obviously represents the undeformed string. Concerning the

stretch of the string, we have that
‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖ = ||| 𝜕𝑧𝜕𝑠 ||| = 1 +

𝜆𝑔

𝑆𝐸
(𝓁 − 𝑠) and therefore the string is everywhere elongated with the

maximum elongation for 𝑠 = 0 (fixed end), and without local elongation for 𝑠 = 𝓁 (free end).
The results obtained are shown in Figure 3, where the plots of the parametrization 𝑧(𝑠) and of the stretch ||| 𝜕𝑧𝜕𝑠 ||| can

be found for different values of the elastic constant 𝐸 of the string. We note the increasing elongation of the curve as 𝐸
decreases (left panel) and the fact that the string is always in a stretched state, which is largest near the upper constraint
and absent at the lower point (right panel). Here and in the following plots, we use arbitrary values of the product 𝐸𝑆
only to explain the physics of the problem. We recall that the Young’s modulus of rubber-like materials ranges between
1/1000 and 1/10 GPa, for metals is around 100 GPa, for a nylon rope between 2 and 4 Gpa, and for a Deoxyribonucleic acid
(DNA) macromolecule it is around 350 MPa. For example, if we consider 1 nm for the DNA radius, we get 𝐸𝑆 = 1nN.
Otherwise, a nylon rope with 𝐸 = 3 GPa and a radius of 5 mm has an 𝐸𝑆 value of 2.5×105 N. We then remark that the
order of magnitude of 𝐸𝑆 varies strongly with material and size.

2.2 Elastic wire anchored at both ends

We consider now a two-dimensional problem concerning an extensible wire with the two extremities tethered at 𝑟(0) =
(0, 0) and 𝑟(𝓁) = (𝑑, 0), and subjected to the gravity (see Figure 2b). It represents the elastic or deformable catenary. The
static equations of the problem are

𝑆𝐸
𝜕
𝜕𝑠

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣1 −

1‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖
⎤⎥⎥⎥⎦
𝜕𝑥
𝜕𝑠

⎫⎪⎬⎪⎭ = 0, 𝑆𝐸
𝜕
𝜕𝑠

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣1 −

1‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖
⎤⎥⎥⎥⎦
𝜕𝑧
𝜕𝑠

⎫⎪⎬⎪⎭ = 𝜆𝑔. (24)

Hence, a first integration delivers

⎡⎢⎢⎢⎣1 −
1‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎤⎥⎥⎥⎦
𝜕𝑥
𝜕𝑠

= 𝐶,

⎡⎢⎢⎢⎣1 −
1‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎤⎥⎥⎥⎦
𝜕𝑧
𝜕𝑠

=
𝜆𝑔

𝑆𝐸
𝑠 + 𝐷, (25)

with arbitrary constants 𝐶 and 𝐷. The constant 𝐷 can be easily found by symmetry. Indeed, 𝑧(𝑠) must have a mini-
mum point for 𝑠 = 𝓁∕2 and, therefore, 𝜕𝑧∕𝜕𝑠must be zero for 𝑠 = 𝓁∕2. This implies that 𝐷 = −𝜆𝑔𝓁∕(2𝑆𝐸). Now, from
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GIORDANO 9 of 26

Equation (25), we get

𝜕𝑧
𝜕𝑠

=
1
𝐶
𝜕𝑥
𝜕𝑠

(
𝜆𝑔

𝑆𝐸
𝑠 −

𝜆𝑔𝓁

2𝑆𝐸

)
. (26)

Then, we can calculate the square of the stretch, as follows

‖‖‖‖𝜕𝑟𝜕𝑠 ‖‖‖‖
2

=

(
𝜕𝑥
𝜕𝑠

)2

+

(
𝜕𝑧
𝜕𝑠

)2

=

(
𝜕𝑥
𝜕𝑠

)2

+

(
𝜕𝑥
𝜕𝑠

)2
1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑠 −

𝜆𝑔𝓁

2𝑆𝐸

)2

, (27)

and, since 𝜕𝑥∕𝜕𝑠 > 0 in our geometry, we can also write

‖‖‖‖𝜕𝑟𝜕𝑠 ‖‖‖‖ = 𝜕𝑥
𝜕𝑠

√
1 +

1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑠 −

𝜆𝑔𝓁

2𝑆𝐸

)2

. (28)

From the first relation in Equation (25), we deduce that

𝜕𝑥
𝜕𝑠

= 𝐶 +

𝜕𝑥

𝜕𝑠‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖
= 𝐶 +

1√
1 +

1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑠 −

𝜆𝑔𝓁

2𝑆𝐸

)2 , (29)

and by integrating we have

𝑥(𝑠) = 𝐶𝑠 + ∫
𝑠

0

𝑑𝑡√
1 +

1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑡 −

𝜆𝑔𝓁

2𝑆𝐸

)2 . (30)

This integral can be performed by the change of variable 𝜉 = 𝜆𝑔

𝑆𝐸
𝑡 −

𝜆𝑔𝓁

2𝑆𝐸
, leading to

𝑥(𝑠) = 𝐶𝑠 +
𝑆𝐸
𝜆𝑔 ∫

𝜆𝑔

𝑆𝐸
𝑠−

𝜆𝑔𝓁

2𝑆𝐸

−
𝜆𝑔𝓁

2𝑆𝐸

𝑑𝜉√
1 +

𝜉2

𝐶2

. (31)

Since

∫
𝑑𝜉√
1 +

𝜉2

𝐶2

= 𝐶 ln

(
𝜉

𝐶
+

√
1 +

𝜉2

𝐶2

)
+ 𝑐𝑜𝑛𝑠𝑡, (32)

we obtain the final solution for 𝑥(𝑠) in the form

𝑥(𝑠) = 𝐶𝑠 + 𝐶
𝑆𝐸
𝜆𝑔

ln

1

𝐶

(
𝜆𝑔

𝑆𝐸
𝑠 −

𝜆𝑔𝓁

2𝑆𝐸

)
+

√
1 +

1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑠 −

𝜆𝑔𝓁

2𝑆𝐸

)2
−

1

𝐶

𝜆𝑔𝓁

2𝑆𝐸
+

√
1 +

1

𝐶2

(
𝜆𝑔𝓁

2𝑆𝐸

)2 , (33)

where the constant 𝐶 must be calculated by imposing 𝑥(𝓁) = 𝑑. In order to obtain a similar result for 𝑧(𝑠), we start by
considering Equation (26), from which we can write

𝜕𝑧
𝜕𝑠

=
1
𝐶

⎛⎜⎜⎜⎜⎝
𝐶 +

1√
1 +

1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑠 −

𝜆𝑔𝓁

2𝑆𝐸

)2
⎞⎟⎟⎟⎟⎠
(
𝜆𝑔

𝑆𝐸
𝑠 −

𝜆𝑔𝓁

2𝑆𝐸

)
. (34)
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10 of 26 GIORDANO

Again, by integration we obtain

𝑧(𝑠) =
𝜆𝑔

2𝑆𝐸
𝑠2 −

𝜆𝑔𝓁

2𝑆𝐸
𝑠 +

1
𝐶 ∫

𝑠

0

𝜆𝑔

𝑆𝐸
𝑡 −

𝜆𝑔𝓁

2𝑆𝐸√
1 +

1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑡 −

𝜆𝑔𝓁

2𝑆𝐸

)2 𝑑𝑡. (35)

As before, the change of variable 𝜉 = 𝜆𝑔

𝑆𝐸
𝑡 −

𝜆𝑔𝓁

2𝑆𝐸
, delivers

𝑧(𝑠) =
𝜆𝑔

2𝑆𝐸
𝑠2 −

𝜆𝑔𝓁

2𝑆𝐸
𝑠 +

1
𝐶
𝑆𝐸
𝜆𝑔 ∫

𝜆𝑔

𝑆𝐸
𝑠−

𝜆𝑔𝓁

2𝑆𝐸

−
𝜆𝑔𝓁

2𝑆𝐸

𝜉𝑑𝜉√
1 +

𝜉2

𝐶2

, (36)

and therefore we obtain

𝑧(𝑠) =
𝜆𝑔

2𝑆𝐸
𝑠2 −

𝜆𝑔𝓁

2𝑆𝐸
𝑠 + 𝐶

𝑆𝐸
𝜆𝑔

⎡⎢⎢⎣
√
1 +

1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑠 −

𝜆𝑔𝓁

2𝑆𝐸

)2

−

√
1 +

1

𝐶2

(
𝜆𝑔𝓁

2𝑆𝐸

)2⎤⎥⎥⎦. (37)

Now, Equations (33) and (37) represent the solution of the problem provided that we determine the constant 𝐶 with the
condition 𝑥(𝓁) = 𝑑. This condition can be explicitly written in the form

𝑑 = 𝐶𝓁 + 𝐶
𝑆𝐸
𝜆𝑔

ln

1

𝐶

𝜆𝑔𝓁

2𝑆𝐸
+

√
1 +

1

𝐶2

(
𝜆𝑔𝓁

2𝑆𝐸

)2
−

1

𝐶

𝜆𝑔𝓁

2𝑆𝐸
+

√
1 +

1

𝐶2

(
𝜆𝑔𝓁

2𝑆𝐸

)2 , (38)

which can be further simplified by elaborating the term ln[(
√
𝐵 + 𝐴)∕(

√
𝐵 − 𝐴)], where 𝐴 =

1

𝐶

𝜆𝑔𝓁

2𝑆𝐸
and 𝐵 = 1 + 𝐴2.

We obtain ln[(
√
𝐵 + 𝐴)∕(

√
𝐵 − 𝐴)] = 2 ln(

√
𝐵 + 𝐴) = 2 arcsinh𝐴. To compact the resulting expressions, instead of

considering the constant 𝐶, we can introduce the coefficient 𝜇 = 𝜆𝑔∕(𝐶𝑆𝐸), and it must fulfils the equation

𝜇𝓁

2
= sinh

(
𝜇𝑑

2
−
𝜆𝑔𝓁

2𝑆𝐸

)
. (39)

To conclude, Equations (33) and (37) can be rewritten in terms of the new coefficient 𝜇 as follows

𝑥(𝑠) =
𝜆𝑔

𝜇𝑆𝐸

(
𝑠 −

𝓁
2

)
+
𝑑
2
+
1
𝜇
ln

⎡⎢⎢⎣𝜇
(
𝑠 −

𝓁
2

)
+

√
1 + 𝜇2

(
𝑠 −

𝓁
2

)2⎤⎥⎥⎦, (40)

𝑧(𝑠) =
𝜆𝑔

2𝑆𝐸
𝑠(𝑠 − 𝓁) +

1
𝜇

⎡⎢⎢⎣
√
1 + 𝜇2

(
𝑠 −

𝓁
2

)2

−

√
1 + 𝜇2

(
𝓁
2

)2⎤⎥⎥⎦, (41)

where we used the property: ln
[
−𝜇𝓁∕2 +

√
1 + 𝜇2 (𝓁∕2)

2
]
= arcsinh(−𝜇𝓁∕2) = −𝜇𝑑∕2 + 𝜆𝑔𝓁∕(2𝑆𝐸). Then, once the

solution of the Equation (39) is found, the value of 𝜇 can be used in the parametric representation of the curve
given in Equations (40) and (41). Note that 𝑠 in general is not a natural parameter because the wire is not in an
undeformed condition.
If the elastic parameter 𝐸 approaches infinity, the curve must coincide with the catenary, that is, the curve that an

idealized undeformable hanging chain assumes under its own weight when supported only at its ends in a uniform grav-
itational field. From classical textbooks of mechanics and calculus of variations [17, 21, 22], we learn that such a curve in
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GIORDANO 11 of 26

cartesian coordinates is given by

𝑧 =
1
𝜇

[
cosh

(
𝜇𝑥 −

𝜇𝑑

2

)
− cosh

(
𝜇𝑑

2

)]
, (42)

with

𝜇𝓁

2
= sinh

(
𝜇𝑑

2

)
(43)

where, for ease of comparison, we have used the same geometry and notations adopted in this article. This classical result
shows that the shape of the inextensible wire is coincident with a properly rescaled and translated hyperbolic cosine. We
try to rewrite this classical solution in parametric form with a natural parameter 𝑠. This is useful to draw a comparison
with Equations (39), (40), and (41) when 𝐸 approaches infinity. Given the curve 𝑧 = 𝑓(𝑥) defined in Equation (42), its
length in the region (0, 𝑥) is given by

𝑠(𝑥) = ∫
𝑥

0

√
1 + 𝑓′(𝑡)2𝑑𝑡 = ∫

𝑥

0
cosh

(
𝜇𝑡 −

𝜇𝑑

2

)
𝑑𝑡 =

1
𝜇

[
sinh

(
𝜇𝑥 −

𝜇𝑑

2

)
+ sinh

(
𝜇𝑑

2

)]
. (44)

By evaluating the inverse function 𝑥(𝑠) of previous expression and by determining 𝑧(𝑠) = 𝑓(𝑥(𝑠)), we get

𝑥(𝑠) =
𝑑
2
+
1
𝜇
ln

⎡⎢⎢⎣𝜇
(
𝑠 −

𝓁
2

)
+

√
1 + 𝜇2

(
𝑠 −

𝓁
2

)2⎤⎥⎥⎦, (45)

𝑧(𝑠) =
1
𝜇

⎡⎢⎢⎣
√
1 + 𝜇2

(
𝑠 −

𝓁
2

)2

−

√
1 + 𝜇2

(
𝓁
2

)2⎤⎥⎥⎦. (46)

These expressions represent the natural parametrization of the classical, that is, inextensible, catenary. This finally proves
that, when 𝐸 approaches infinity, Equations (39), (40), and (41) for the deformable wire converge to Equations (43), (45),
and (46) of the classical catenary. A last interesting point concerns the elongation of the deformable wire under the effect

of gravity. From Equations (40) and (41), we determine
‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖ in the form

‖‖‖‖𝜕𝑟𝜕𝑠 ‖‖‖‖ = 1 +
𝜆𝑔

𝜇𝐸𝑆

√
1 + 𝜇2

(
𝑠 −

𝓁
2

)2

, (47)

and therefore the total length 𝓁𝑑𝑒𝑓 of the wire, in its equilibrium deformed condition, is

𝓁𝑑𝑒𝑓 = 𝓁 +
𝜆𝑔

𝜇𝐸𝑆 ∫
𝓁

0

√
1 + 𝜇2

(
𝑠 −

𝓁
2

)2

𝑑𝑠. (48)

Straightforward calculations deliver the total elongation in the form

𝓁𝑑𝑒𝑓 − 𝓁 =
𝜆𝑔

𝜇2𝐸𝑆

⎡⎢⎢⎣
𝓁𝜇

2

√
1 + 𝜇2

(
𝓁
2

)2

+
𝑑𝜇

2
−
𝜆𝑔𝓁

2𝐸𝑆

⎤⎥⎥⎦. (49)

To conclude, we deduce from Equation (47) that the stretch is always larger than one, proving that the string is always in
an elongated state. The elongation is maximum at the constrained ends and minimum at the lower point of the catenary.
Some results showing the behavior of the elastic catenary can be found in Figure 4. First, in the upper left panel, the

graphical solution of Equation (39) is observed. The values of 𝜇 can be deduced from the intersection between the curves
and the horizontal black line. It is observed that these intersections, as the value of Young’s modulus increases, converge
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12 of 26 GIORDANO

F IGURE 4 Elastic wire anchored at both ends. Left top panel: graphical solution of the transcendental equation given in Equation (39).
Right top panel: plot of the parametrization 𝑥 = 𝑥(𝑠), 𝑧 = 𝑧(𝑠). Left bottom panel: shape of the elastic catenary on the plane (𝑥, 𝑧). Right
bottom panel: plot of the stretch ‖‖‖ 𝜕𝑟

𝜕𝑠

‖‖‖, representing the elongation of the string. In all plots, continuous lines correspond to different values of
𝐸, while the black dashed line describes the inextensible catenary (𝐸 → ∞). We adopted the parameters 𝓁 = 1, 𝑑 = 0.5, 𝜆𝑔 = 1, and 𝐸𝑆 = 0.5,
1, 1.5, 2, 3, 5, 10, +∞, in arbitrary units.

to the value of the parameter 𝜇 characteristic of the classical catenary without extensibility. The numerical solution is
simply obtained by bisection. In the upper right panel we see the representation of the parametrization 𝑥(𝑠), 𝑧(𝑠) as a
function of the elastic constant 𝐸. Note that 𝑥(𝑠) is little affected by this parameter, at least in the range considered here.
In the lower left panel we show the shape of the elastic catenary, and it can be seen that the total elongation increases as
the elasticity decreases, as expected from Equation (49) (the black dashed line corresponds to the classical inextensible
catenary). Finally, in the bottom right panel we show the stretch behavior as the elastic constant changes. As proven
analytically, the string is always in a stretched state. This corresponds to the fact that the compressional states of the elastic
string are always unstable and cannot be observed in solutions at equilibrium. We will see in the following developments
that they can be found only when we add the constraint of inextensibility with mass redistribution, while maintaining
elasticity.

2.3 Elastic wire with one end fixed and the other subjected to applied force

Wenow take into consideration a flexiblewirewith the first end tethered at 𝑟(0) = (0, 0) and an arbitrary force 𝐹⃗ = (𝐹𝑥, 𝐹𝑧)
applied at the second end (see Figure 2c). So doing, 𝑟(𝓁) can assume an arbitrary position in the plane (𝑥, 𝑧). We need to
obtain the boundary condition to use in the end-terminal with the applied force. In order to take into account the force 𝐹⃗,
we have to consider into the Lagrangian density in Equation (12) an additional energy density of the form

𝐹 = −𝐹⃗ ⋅ 𝑟𝛿(𝑠 − 𝓁), (50)

where 𝛿(⋅) represents the Dirac delta function. Therefore, the following term should be added to the the action given in
Equation (13)

𝐹 = −∫
𝑇

0 ∫
𝓁

0
𝐹𝑑𝑠𝑑𝑡. (51)
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GIORDANO 13 of 26

The perturbation of this term corresponds to

𝐹(𝑟 + 𝛼ℎ⃗) = ∫
𝑇

0 ∫
𝓁

0
𝐹⃗ ⋅ (𝑟 + 𝛼ℎ⃗)𝛿(𝑠 − 𝓁)𝑑𝑠𝑑𝑡, (52)

and its derivative with respect to 𝛼 is obtained as

𝜕𝐹(𝑟 + 𝛼ℎ⃗)

𝜕𝛼
= ∫

𝑇

0 ∫
𝓁

0
𝐹⃗ ⋅ ℎ⃗𝛿(𝑠 − 𝓁)𝑑𝑠𝑑𝑡 = ∫

𝑡

0
𝐹⃗ ⋅ ℎ⃗(𝓁, 𝑡)𝑑𝑡. (53)

This term must be added to Equation (17), and then, the spatial boundary conditions can be written as

−∫
𝑇

0
𝑆𝐸

⎛⎜⎜⎜⎝1 −
1‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎞⎟⎟⎟⎠
𝜕𝑟
𝜕𝑠

⋅ ℎ⃗𝑑𝑡

||||||||
𝓁

0

+ ∫
𝑡

0
𝐹⃗ ⋅ ℎ⃗(𝓁, 𝑡)𝑑𝑡 = 0. (54)

For 𝑠 = 0 (tethered end), the perturbation ℎ⃗ must be zero and therefore the condition is 𝑟(0, 𝑡) = (0, 0), as expected. For
𝑠 = 𝓁 (end-terminal with the applied force), ℎ⃗ is free and we get the new boundary condition

𝑆𝐸

⎛⎜⎜⎜⎝1 −
1‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎞⎟⎟⎟⎠
𝜕𝑟
𝜕𝑠

= 𝐹⃗. (55)

For the static case under investigation, Equation (25) remains valid, and therefore Equation (55) allows us to directly obtain
the coefficients 𝐶 and 𝐷 as follows

𝐶 =
𝐹𝑥
𝑆𝐸

, 𝐷 =
𝐹𝑧
𝑆𝐸

−
𝜆𝑔𝓁

𝑆𝐸
. (56)

The differential equations for this problem can be finally written in the form

⎡⎢⎢⎢⎣1 −
1‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎤⎥⎥⎥⎦
𝜕𝑥
𝜕𝑠

=
𝐹𝑥
𝑆𝐸

,

⎡⎢⎢⎢⎣1 −
1‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎤⎥⎥⎥⎦
𝜕𝑧
𝜕𝑠

=
𝜆𝑔

𝑆𝐸
(𝑠 − 𝓁) +

𝐹𝑧
𝑆𝐸

, (57)

and can be solved exactly as in the previous case. Straightforward calculations deliver the solutions

𝑥(𝑠) =
𝐹𝑥
𝑆𝐸

𝑠 +
𝐹𝑥
𝜆𝑔

ln
𝐹𝑧 − 𝜆𝑔(𝓁 − 𝑠) +

√
𝐹2𝑥 + [𝐹𝑧 − 𝜆𝑔(𝓁 − 𝑠)]

2

𝐹𝑧 − 𝜆𝑔𝓁 +
√
𝐹2𝑥 + [𝐹𝑧 − 𝜆𝑔𝓁]

2
, (58)

𝑧(𝑠) =
𝜆𝑔

2𝑆𝐸
𝑠2 +

𝐹𝑧 − 𝜆𝑔𝓁

𝑆𝐸
𝑠 +

1
𝜆𝑔

[√
𝐹2𝑥 + [𝐹𝑧 − 𝜆𝑔(𝓁 − 𝑠)]

2
−

√
𝐹2𝑥 + [𝐹𝑧 − 𝜆𝑔𝓁]

2
]
, (59)

which are correct for any applied force 𝐹⃗ = (𝐹𝑥, 𝐹𝑧).
A simple application concerns the case with 𝐹𝑥 = 0 and 𝐹𝑧 = 0. Under these conditions we exactly retrieve the solution

given in Equation (23) for the elastic wire hanging from one end. Moreover, the obtained solution can be also applied to
study the elastic wire anchored at both ends. Indeed, our solution can be written in the form 𝑥(𝑠) = 𝑓(𝑠, 𝐹⃗) and 𝑧(𝑠) =
𝑔(𝑠, 𝐹⃗), where the function 𝑓 and 𝑔 are defined in Equations (58) and (59), respectively. To study the problem analyzed in
Section 2.2, we have to impose 𝑓(𝓁, 𝐹⃗) = 𝑑 and 𝑔(𝓁, 𝐹⃗) = 0, where 𝑑 is the distance between the constrained ends. Once
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14 of 26 GIORDANO

F IGURE 5 Elastic wire with one end fixed and the other subjected to applied force. Left panel: shape of the catenary in the (𝑥, 𝑧) plane.
Right panel: plot of the stretch ‖‖‖ 𝜕𝑟

𝜕𝑠

‖‖‖, representing the elongation of the string. In both plots, continuous lines correspond to different values of
𝐸, while the black dashed line describes the inextensible catenary (𝐸 → ∞). We adopted the parameters 𝓁 = 1, 𝜆𝑔 = 1, 𝐹𝑥 = 0.01, 𝐹𝑧 = 0.4,
and 𝐸𝑆 = 0.28, 0.35, 0.5, 0.8, 1.4, 2.5, +∞, in arbitrary units.

this system of equations is solved with respect to the force 𝐹⃗, applied by the right constraint to the chain, the parametric
representation 𝑥(𝑠) = 𝑓(𝑠, 𝐹⃗), 𝑧(𝑠) = 𝑔(𝑠, 𝐹⃗) is fully determined. Simple calculations make it possible to find the vertical
component of the force 𝐹𝑧 = 𝜆𝑔𝓁∕2 from 𝑔(𝓁, 𝐹⃗) = 0. This means, of course, that each end must support half the total
weight of the wire. Moreover, from 𝑓(𝓁, 𝐹⃗) = 𝑑, we get the equation for the horizontal component of the force 𝐹𝑥 in the
form

𝜆𝑔𝓁

2𝐹𝑥
= sinh

(
𝜆𝑔𝑑

2𝐹𝑥
−
𝜆𝑔𝓁

2𝑆𝐸

)
. (60)

By comparing this equation with Equation (39), we deduce that 𝜇 = 𝜆𝑔∕𝐹𝑥. This result gives a physical meaning of the
parameter 𝜇, which is in fact related with the horizontal component of the force applied to the second end-terminal to
impose the positional constraint. We finally underline that, in the inextensible case with 𝐸 → ∞, Equations (58) and (59)
can be easily simplified by obtaining new expressions representing a classical catenary with the first fixed end, and a force
applied to the second end. In cases with an applied force in the second end, solutions are always explicit, as opposed to
cases with both ends fixed where an equation always remains in implicit form.
An example application of the results found is shown in Figure 5, where the shape of an elastic catenary with a given

force applied to the second end is shown (left panel). The various colored curves correspond to different elasticities, while
the black dashed curve refers to the inextensible catenary. We observe that the slope of the curve in the right end is
independent of the elastic constant since it depends only on the applied force 𝐹⃗. In addition, the curve becomes longer
as the elastic constant decreases, as seen previously in other cases. Thus, the more deformable the wire (low Young’s
modulus), the lower the minimum of the catenary curve. Conversely, the stiffer the wire is, the higher the minimum of
the curvewill be. Of course, during this process the end of the threadwith the applied force shifts so as tominimize the total
energy of the system. In the right panel one can see that the string is stretched everywhere and theminimum of stretching
is in the minimum of the curve. In this panel of the figure, we see that the stretch is practically linear in the two regions to
the left and right of the minimum, and this means that the mass density increases almost linearly from the extreme left to
theminimumand decreases almost linearly from theminimum to the extreme right. Let us first observe that theminimum
of the curve exists only under certain force conditions: clearly it is present when the 𝐹𝑧 component is approximately equal
to half the weight of the wire 𝜆𝑔𝓁∕2. If the minimum is actually present in the equilibrium configuration, the transition
between the two quasistraight behaviors to the left and right of the minimum is sharper when 𝜆 is high and when 𝐸 is
small. That is, we can say that the transition is sharper when the ratio 𝜆𝑔∕(𝑆𝐸) is high. In fact, in this condition the high
weight produces a great elongation of the thread, aided by its low elastic constant.

3 VARIATIONAL APPROACH FOR INEXTENSIBLE STRINGSWITHMASS
REDISTRIBUTION

We introduce a rather different model but still based on previous developments. We suppose to consider a chain of masses
and springs like the one described in Section 1, but this time we impose overall thread inextensibility. In other words,
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GIORDANO 15 of 26

we can say that masses are always connected to each other by a two-body elastic interaction but can only move on an
inextensible but flexible wire of assigned length. After performing the continuum limit of this situation, we obtain a
Lagrangian density as in Section 1, but we have to consider an additional constraint given by the fixed length of the wire

∫
𝓁

0

‖‖‖‖𝜕𝑟𝜕𝑠 ‖‖‖‖𝑑𝑠 = 𝓁. (61)

We note that this condition fixes the length but the norm, that is, the stretch, will generally not be identically equal to one
since there may be regions of some compression and regions of some elongation along the wire. They must compensate
for each other but locally the norm is not unitary. This also means that the length is fixed but the representation of the
deformed configuration is not the natural one because of these local elongations or compressions. In order to simplify the
discussion we study here only the static regime of the inextensible wire with mass redistribution. In addition, to study all
possible configurations more easily, we consider a Lagrangian density with a term that takes into account a force applied
on the second end of the wire

(𝑟) = −
1
2
𝑆𝐸

[‖‖‖‖𝜕𝑟𝜕𝑠 ‖‖‖‖ − 1

]2
− (𝑟) + 𝐹⃗ ⋅ 𝑟𝛿(𝑠 − 𝓁). (62)

The Lagrangian function that must be made stationary is then

𝐿 = ∫
𝓁

0
(𝑟)𝑑𝑠 + Λ

[
∫

𝓁

0

‖‖‖‖𝜕𝑟𝜕𝑠 ‖‖‖‖𝑑𝑠 − 𝓁

]
, (63)

whereΛ is the Lagrangianmultiplier corresponding to the length constraint. This corresponds to an isoperimetric problem
of the calculus of variations. The perturbation of this Lagrangian function is obtained by substituting 𝑟 with 𝑟 + 𝛼ℎ⃗, as
follows

𝐿(𝑟 + 𝛼ℎ⃗) = ∫
𝓁

0

⎧⎪⎨⎪⎩−
1
2
𝑆𝐸

[‖‖‖‖‖𝜕(𝑟 + 𝛼ℎ⃗)

𝜕𝑠

‖‖‖‖‖ − 1

]2
− (𝑟 + 𝛼ℎ⃗) + 𝐹⃗ ⋅ (𝑟 + 𝛼ℎ⃗)𝛿(𝑠 − 𝓁)

⎫⎪⎬⎪⎭𝑑𝑠 + Λ

[
∫

𝓁

0

‖‖‖‖‖𝜕(𝑟 + 𝛼ℎ⃗)

𝜕𝑠

‖‖‖‖‖𝑑𝑠 − 𝓁

]
,

(64)

and the Gateaux derivative is eventually obtained as

𝜕𝐿(𝑟 + 𝛼ℎ⃗)

𝜕𝛼

|||||𝛼=0 = ∫
𝓁

0

⎧⎪⎨⎪⎩𝑆𝐸
𝜕
𝜕𝑠

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝1 −

1 + Θ‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖
⎞⎟⎟⎟⎠
𝜕𝑟
𝜕𝑠

⎤⎥⎥⎥⎦ −
𝜕
𝜕𝑟

⎫⎪⎬⎪⎭ ⋅ ℎ⃗𝑑𝑠 − 𝑆𝐸

⎛⎜⎜⎜⎝1 −
1 + Θ‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎞⎟⎟⎟⎠
𝜕𝑟
𝜕𝑠

⋅ ℎ⃗

||||||||
𝓁

0

+ 𝐹⃗ ⋅ ℎ⃗(𝓁), (65)

where we introduced the rescaled Lagrangian multiplier Θ, such that Λ = 𝑆𝐸Θ. By equating the Gateaux derivative to
zero, we obtain the following constrained differential problem

𝑆𝐸
𝜕
𝜕𝑠

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝1 −

1 + Θ‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖
⎞⎟⎟⎟⎠
𝜕𝑟
𝜕𝑠

⎤⎥⎥⎥⎦ =
𝜕
𝜕𝑟

, (66)

∫
𝓁

0

‖‖‖‖𝜕𝑟𝜕𝑠 ‖‖‖‖𝑑𝑠 = 𝓁, (67)

where the second equation is useful to obtain the value of Θ. Concerning the boundary conditions, we can have the
following cases: (i) if both ends are fixed (𝐹⃗ is not relevant in this case), we have ℎ⃗(0) = ℎ⃗(𝓁) = 0, and the conditions are
simply stated as 𝑟(0) = 𝑎⃗ and 𝑟(𝓁) = 𝑏, where 𝑎⃗ and 𝑏 are given vectors; (ii) when the first end is fixed, say at position 𝑎⃗,
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16 of 26 GIORDANO

and the second end is subjected to a force 𝐹⃗, we have 𝑟(0) = 𝑎⃗ and

𝑆𝐸

⎛⎜⎜⎜⎝1 −
1 + Θ‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎞⎟⎟⎟⎠
𝜕𝑟
𝜕𝑠

= 𝐹⃗, if 𝑠 = 𝓁; (68)

(iii) finally, if the first end is fixed, say at position 𝑎⃗, and the second end is free, we have 𝑟(0) = 𝑎⃗ and
‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖ = 1 + Θ. In

each case, the number of equations is equal to the number of unknown coefficients, so the problem is well posed. Some
configurations are studied in the following Sections (see Figure 2 as before).

3.1 Inextensible wire with mass redistribution hanging from one end

We consider a string with the elastic response described in previous Section hanging at the first end, with the second
end free (see Figure 2a). The problem is one-dimensional since the string is aligned with the z-axis (for 𝑧 < 0). From
Equation (66), where we consider = 𝜆𝑔𝑧, we get the projection on the z-axis

𝑆𝐸
𝜕
𝜕𝑠

⎧⎪⎨⎪⎩
⎡⎢⎢⎣1 − 1 + Θ||| 𝜕𝑧𝜕𝑠 |||

⎤⎥⎥⎦𝜕𝑧𝜕𝑠
⎫⎪⎬⎪⎭ = 𝜆𝑔. (69)

This equation must be associated with the boundary conditions 𝑧(0) = 0 (fixed end), ||𝜕𝑧∕𝜕𝑠|| = 1 + Θ for 𝑠 = 𝓁 (free end),
and with the length constraint ∫ 𝓁

0
||𝜕𝑧∕𝜕𝑠|| 𝑑𝑠 = 𝓁. In our case, we can assume that 𝜕𝑧∕𝜕𝑠 < 0. Hence, we get

𝑆𝐸
𝜕
𝜕𝑠

(
𝜕𝑧
𝜕𝑠

+ 1 + Θ

)
= 𝜆𝑔. (70)

A first integration yields

𝜕𝑧
𝜕𝑠

+ 1 + Θ =
𝜆𝑔

𝑆𝐸
𝑠 + 𝐶1. (71)

A second integration leads to

𝑧(𝑠) =
𝜆𝑔

2𝑆𝐸
𝑠2 − 𝑠 − 𝑠Θ + 𝐶1𝑠 + 𝐶2. (72)

We have to determine the three coefficients 𝐶1, 𝐶2, and Θ. From the condition 𝑧(0) = 0, we obtain that 𝐶2 = 0. Similarly,
from the condition 𝜕𝑧∕𝜕𝑠 = −1 − Θ for 𝑠 = 𝓁, we obtain 𝐶1 = −𝜆𝑔𝓁∕(𝑆𝐸). Since ||𝜕𝑧∕𝜕𝑠|| = 1 + Θ + 𝜆𝑔(𝓁 − 𝑠)∕(𝑆𝐸), from
the condition ∫ 𝓁

0
||𝜕𝑧∕𝜕𝑠|| 𝑑𝑠 = 𝓁, we easily obtain that Θ = −𝜆𝑔𝓁∕(2𝑆𝐸). In summary, we have shown that

𝑧(𝑠) = −𝑠 −
𝜆𝑔

2𝑆𝐸
𝑠(𝓁 − 𝑠), (73)

||||𝜕𝑧𝜕𝑠 |||| = 1 +
𝜆𝑔

𝑆𝐸

(
𝓁
2
− 𝑠

)
, (74)

where 𝑠 ranges in (0, 𝓁). An essential point that needs to be commented on, based on these results, is the behavior of
the stretch. We know that it must always be positive to have a smooth curve as a solution. Moreover, it is greater than
one where the string is stretched and less than one where it is compressed. First, we see that in this case we have both
stretching and compressionmanifestations because of the fixed length constraint. More importantly, it can be pointed out
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GIORDANO 17 of 26

F IGURE 6 Inextensible wire with mass redistribution hanging from one end. Left panel: plot of the parametrization 𝑧 = 𝑧(𝑠) for
different values of the elastic constant 𝐸. Right panel: plot of the stretch ||| 𝜕𝑧𝜕𝑠 |||, representing the elongation and the compression of the string.
We adopted the parameters 𝓁 = 1, 𝜆𝑔 = 1, and 𝐸𝑆 = 0.5, 0.6, 0.8, 1.2, 2, 4, 20, in arbitrary units.

that there are values of elastic constant 𝐸 for which the stretch becomes negative. This means that for these values there
are no solutions of the elastic problem that can comply with the geometric isoperimetric constraint. In other words, we
can say that for such values of 𝐸 the system has no solution. It is easily seen that the stretch is always positive, that is, the
curve is smooth everywhere, if and only if 𝑆𝐸 ≥ 𝜆𝑔𝓁∕2. From the physical point of view, it is observed that for values of 𝑆𝐸
smaller than this threshold, parts of the string would like to collapse downward, exceeding the length of the string itself,
which; however, must be fixed. This incompatibility results in the nonexistence of the solution. This phenomenon can be
easily explained by means of a one-dimensional discrete mass-spring chain with the two extremities fixed at 𝑧 = 0 and
𝑧 = −𝓁 placed vertically in a gravity field. We prove in the Appendix A that the sequence of masses remains monotonic
(and thus the length of the wire remains equal to 𝓁) if and only if the previous relation 𝑆𝐸 ≥ 𝜆𝑔𝓁∕2 is satisfied. For lower
values of the elastic constant, there will be some masses that have an equilibrium position with values of 𝑧 less than –𝓁:
this is incompatible with the finite length of the wire. This provides an additional interpretation to the threshold value of
the elastic constant that allows for solutions to the problem at hand.
These concepts can be observed in Figure 6, where we see the graphical representation of the parametrization 𝑧(𝑠), in

the left panel. The minimum value of the elastic constant used corresponds to the solution existence threshold, discussed
above. We can draw a comparison with the result in Figure 3. Indeed, compared with the elastic string case, in the present
situation it is seen that the constraint on length is respected (see left panel), and to do this, there is a compressive state in
the lower half of the string (see right panel).

3.2 Inextensible wire with mass redistribution anchored at both ends

We consider a two-dimensional problem concerning an inextensible wire with the two extremities tethered at 𝑟(0) = (0, 0)
and 𝑟(𝓁) = (𝑑, 0), and subjected to the gravity, similarly towhatwas considered in Section 2.2 (see Figure 2b). This problem
represents the generalization of the inextensible catenary with the additional mass redistribution. From Equation (66),
the static equations of the problem are obtained as

𝑆𝐸
𝜕
𝜕𝑠

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣1 −

1 + Θ‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖
⎤⎥⎥⎥⎦
𝜕𝑥
𝜕𝑠

⎫⎪⎬⎪⎭ = 0, 𝑆𝐸
𝜕
𝜕𝑠

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣1 −

1 + Θ‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖
⎤⎥⎥⎥⎦
𝜕𝑧
𝜕𝑠

⎫⎪⎬⎪⎭ = 𝜆𝑔, (75)

and, therefore, a first integration delivers

⎡⎢⎢⎢⎣1 −
1 + Θ‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎤⎥⎥⎥⎦
𝜕𝑥
𝜕𝑠

= 𝐶,

⎡⎢⎢⎢⎣1 −
1 + Θ‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎤⎥⎥⎥⎦
𝜕𝑧
𝜕𝑠

=
𝜆𝑔

𝑆𝐸
𝑠 + 𝐷, (76)

 15214001, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202400057 by C

ochrane France, W
iley O

nline L
ibrary on [03/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



18 of 26 GIORDANO

with arbitrary constants 𝐶 and 𝐷. The two differential equations can be analytically integrated by following the steps
already developed in Section 2.2, and the results can be found in the integral form

𝑥(𝑠) = 𝐶𝑠 + (1 + Θ)∫
𝑠

0

𝑑𝑡√
1 +

1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑡 + 𝐷

)2 , (77)

𝑧(𝑠) =
𝜆𝑔

2𝑆𝐸
𝑠2 + 𝐷𝑠 +

1 + Θ
𝐶 ∫

𝑠

0

𝜆𝑔

𝑆𝐸
𝑡 + 𝐷√

1 +
1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑡 + 𝐷

)2 𝑑𝑡. (78)

As before, the integrals can be calculated in closed form eventually obtaining

𝑥(𝑠) = 𝐶𝑠 + (1 + 𝜃)𝐶
𝑆𝐸
𝜆𝑔

ln

1

𝐶

(
𝜆𝑔

𝑆𝐸
𝑠 + 𝐷

)
+

√
1 +

1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑠 + 𝐷

)2
𝐷

𝐶
+

√
1 +

(
𝐷

𝐶

)2 , (79)

𝑧(𝑠) =
𝜆𝑔

2𝑆𝐸
𝑠2 + 𝐷𝑠 + (1 + Θ)𝐶

𝑆𝐸
𝜆𝑔

⎡⎢⎢⎣
√
1 +

1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑠 + 𝐷

)2

−

√
1 +

(
𝐷
𝐶

)2⎤⎥⎥⎦. (80)

These expressions represent the general solution of the problem, independently of the boundary conditions. Indeed,

the coefficients 𝐶, 𝐷, and Θmust be obtained by imposing 𝑥(𝓁) = 𝑑, 𝑧(𝓁) = 0, and ∫ 𝓁

0

‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖ 𝑑𝑠 = 𝓁. Then, to impose the

fixed length constraint, we need to determine the stretch, that is, the norm
‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖. Starting from Equation (76) we directly

obtain

‖‖‖‖𝜕𝑟𝜕𝑠 ‖‖‖‖ = 𝐶

√
1 +

1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑠 + 𝐷

)2

+ 1 + Θ, (81)

and therefore the length of the string can be written as

∫
𝓁

0

‖‖‖‖𝜕𝑟𝜕𝑠 ‖‖‖‖𝑑𝑠 = 𝐶 ∫
𝓁

0

√
1 +

1

𝐶2

(
𝜆𝑔

𝑆𝐸
𝑠 + 𝐷

)2

𝑑𝑠 + (1 + Θ)𝓁. (82)

By exploiting the classical indefinite integral

∫
√
1 + 𝜉2𝑑𝜉 =

1
2
𝜉
√
1 + 𝜉2 +

1
2
ln

(
𝜉 +

√
1 + 𝜉2

)
+ 𝑐𝑜𝑛𝑠𝑡, (83)

one easily obtains the constraint on length in the form

Θ = −𝐶2
𝑆𝐸
𝜆𝑔𝓁

⎡⎢⎢⎢⎢⎣
1
2𝐶

(
𝜆𝑔𝓁

𝑆𝐸
+ 𝐷

)√
1 +

1

𝐶2

(
𝜆𝑔𝓁

𝑆𝐸
+ 𝐷

)2

−
𝐷
2𝐶

√
1 +

(
𝐷
𝐶

)2

+
1
2
ln

1

𝐶

(
𝜆𝑔𝓁

𝑆𝐸
+ 𝐷

)
+

√
1 +

1

𝐶2

(
𝜆𝑔𝓁

𝑆𝐸
+ 𝐷

)2
𝐷

𝐶
+

√
1 +

(
𝐷

𝐶

)2
⎤⎥⎥⎥⎥⎦
.

(84)

Thismeans that the fixed length condition induces a value ofΘ that directly depends on the coefficients𝐶 and𝐷, whichwe
now need to find. They can be obtained by fixing 𝑥(𝓁) = 𝑑 and 𝑧(𝓁) = 0. The second condition delivers𝐷 = −𝜆𝑔𝓁∕(2𝑆𝐸),
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GIORDANO 19 of 26

as one can easily verify. In addition, the first condition can be written, by introducing 𝜇 = 𝜆𝑔∕(𝐶𝐸𝑆), as

𝑑 =
𝜆𝑔𝓁

𝜇𝐸𝑆
+ (1 + 𝜃)

1
𝜇
ln

𝜇𝓁

2
+

√
1 +

(
𝜇𝓁

2

)2
−
𝜇𝓁

2
+

√
1 +

(
𝜇𝓁

2

)2 = 𝜆𝑔𝓁

𝜇𝐸𝑆
+ (1 + 𝜃)

2
𝜇
arcsinh

(
𝜇𝓁

2

)
, (85)

or equivalently, as

𝜇𝓁

2
= sinh

[
𝜇𝑑

2(1 + Θ)
−

𝜆𝑔𝓁

2(1 + Θ)𝐸𝑆

]
, (86)

which is a generalization of Equation (39). In this relation the value of Θ must be taken from Equation (84), where we
substitute 𝐷 = −𝜆𝑔𝓁∕(2𝑆𝐸) and 𝜇 = 𝜆𝑔∕(𝐶𝐸𝑆). We get

Θ = −
1

𝜇2𝓁2
𝜆𝑔𝓁

𝑆𝐸

⎡⎢⎢⎢⎢⎣
𝜇𝓁

2

√
1 +

(
𝜇𝓁

2

)2

+
1
2
ln

𝜇𝓁

2
+

√
1 +

(
𝜇𝓁

2

)2
−
𝜇𝓁

2
+

√
1 +

(
𝜇𝓁

2

)2
⎤⎥⎥⎥⎥⎦
. (87)

To conclude, we can rewrite the parametric equations of the curve in the final form where we substituted the values of 𝐷
and 𝜇

𝑥(𝑠) =
𝜆𝑔

𝜇𝐸𝑆
𝑠 + (1 + 𝜃)

1
𝜇
ln
𝜇
(
𝑠 −

𝓁

2

)
+

√
1 + 𝜇2

(
𝑠 −

𝓁

2

)2
−
𝜇𝓁

2
+

√
1 +

(
𝜇𝓁

2

)2 , (88)

𝑧(𝑠) =
𝜆𝑔

2𝑆𝐸
𝑠2 −

𝜆𝑔𝓁

2𝐸𝑆
𝑠 + (1 + Θ)

1
𝜇

⎡⎢⎢⎣
√
1 + 𝜇2

(
𝑠 −

𝓁
2

)2

−

√
1 +

(
𝜇𝓁

2

)2⎤⎥⎥⎦, (89)

which represent a generalization of Equations (40) and (41). Here, the value ofΘ comes from Equation (87) and the value
of 𝜇must be determined by Equation (86), whereΘ of course is taken fromEquation (87). It means that the transcendental
equation for 𝜇 is quite complicated and its solution can be only approached through numerical methods.
Some results concerning the elastic catenary with mass redistribution and fixed length can be found in Figure 7.

First, in the upper left panel, the graphical solution of Equation (86) combined with Equation (87) is shown for dif-
ferent values of the elastic constant 𝐸. The values of 𝜇 can be deduced from the intersection between the curves
and the horizontal black line. As before, the numerical solution is simply obtained by bisection. The curves seem to
have a slightly strange appearance because few of them were drawn so as not to overload the figure. Anyway, the
continuity of the family of curves and the convergence to the dashed one can be seen by observing the intersection
between the curves and the horizontal black straight line, representing the value of the parameter 𝜇. These inter-
sections represent a monotonically increasing 𝜇 value which tends for large values of 𝐸 to the typical value of the
classical catenary. It is important to remark that the classical catenary is re-obtained when the mass remains uniformly
distributed in the deformed configuration, and it happens for very large values of the Young’s modulus 𝐸. Indeed,
when 𝐸 approaches infinity the mass cannot be redistributed over the length of the wire, which is inextensible, and
therefore, we retrieve the classical catenary as the solution of the problem. This convergence can be appreciated in
Figure 7 (all panels), where the black dashed lines describe the inextensible catenary (𝐸 → ∞). In the upper right
panel, we see the representation of the parametrization 𝑥(𝑠), 𝑧(𝑠) as a function of the elastic constant 𝐸. Unlike in
Figure 4, the 𝑥(𝑠)-curves (higher up in the figure) now depend significantly on the elastic constant due to mass redis-
tribution. With regard to the 𝑧(𝑠)-curves (lower down in the figure), it can be seen that the system tends to deform
trying to keep the length of the string constant. The bottom left panel shows the shape of the modified catenary and
one can see that its length is constant but the shape changes as the elastic constant varies. If this constant is very
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20 of 26 GIORDANO

F IGURE 7 Inextensible wire with mass redistribution anchored at both ends: Left top panel: graphical solution of the transcendental
equation given in Equation (86). Right top panel: plot of the parametrization 𝑥 = 𝑥(𝑠) (higher up in the panel), 𝑧 = 𝑧(𝑠) (lower down in the
panel). Left bottom panel: shape of the elastic catenary on the plane (𝑥, 𝑧). Right bottom panel: plot of the stretch ‖‖‖ 𝜕𝑟

𝜕𝑠

‖‖‖, representing the
elongation and the compression of the string. In all plots, continuous lines correspond to different values of 𝐸, while the black dashed line
describes the inextensible catenary (𝐸 → ∞). We adopted the parameters 𝓁 = 1, 𝑑 = 0.5, 𝜆𝑔 = 1, 𝐸𝑆 = 0.138, 0.2, 0.25, 0.4, +∞, in arbitrary
units.

high, the curve takes on the shape of the classic catenary because the mass remains uniformly distributed along the
string (the black dashed line corresponds to the classical inextensible catenary). However, when the elastic constant
decreases, the mass can slide more easily towards the minimum of the curve, causing it to change shape: it becomes
more pointed and less curved, as one can easily imagine with simple physical interpretations. Finally, in the bot-
tom right panel we show the stretch behavior as the elastic constant changes. As can be seen, the string assumes
stretched states in the two highest zones and a compressed state in the lowest zone. This behavior is different from
that observed in Figure 4 for the elastic catenary without mass redistribution, for which only the stretched state was
present. While the compressional states of the elastic string are always unstable in the case of the elastic string with-
out mass redistribution (because states of compression are compensated by flexibility), in the present case they can
be observed because we have introduced the constraint on the fixed length. Nevertheless, such compressional states
can also generate the nonexistence of the solution in this case when the elastic constant is too low. In Figure 7, the
lowest value used for 𝐸 is close to the solution existence threshold and in fact the stretch is close to zero at the
curve’s minimum point. When 𝐸 becomes even lower, the stretch becomes negative, the curve is no longer regular,
and the problem no longer has solution. As already discussed, the incompatibility between the isoperimetric con-
straint and elastic solution (energy minimization) is at the origin of this nonexistence of the solution (see also the
Appendix A).

3.3 Inextensible wire with mass redistribution with one end fixed and the other
subjected to applied force

We consider an inextensible wire with mass redistribution with the first end tethered at the axes origin and with a force 𝐹⃗
applied to the second end (see Figure 2c). The first boundary condition can be therefore written as 𝑥(0) = 0 and 𝑧(0) = 0,
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GIORDANO 21 of 26

F IGURE 8 Inextensible wire with mass redistribution with one end fixed and the other subjected to applied force. Left panel: shape of
the catenary in the (𝑥, 𝑧) plane. Right panel: plot of the stretch ‖‖‖ 𝜕𝑟

𝜕𝑠

‖‖‖, representing the elongation and the compression of the string. In both
plots, continuous lines correspond to different values of 𝐸, while the black dashed line describes the inextensible catenary (𝐸 → ∞). We
adopted the parameters 𝓁 = 1, 𝜆𝑔 = 1, 𝐹𝑥 = 0.01, 𝐹𝑧 = 0.4, 𝐸𝑆 = 0.28, 0.35, 0.5, 0.8, 1.4, 2.5, +∞, in arbitrary units.

and the second one as in Equation (68). This condition can be written explicitly as

𝑆𝐸

⎡⎢⎢⎢⎣1 −
1 + Θ‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎤⎥⎥⎥⎦
𝜕𝑥
𝜕𝑠

= 𝐹𝑥, 𝑆𝐸

⎡⎢⎢⎢⎣1 −
1 + Θ‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖

⎤⎥⎥⎥⎦
𝜕𝑧
𝜕𝑠

= 𝐹𝑧, (90)

for 𝑠 = 𝓁, that is, in the right end terminal. Since Equation (76) is still valid for every value of s, we directly determine the
values of the constant 𝐶 and 𝐷. We eventually obtain

𝐶 =
𝐹𝑥
𝑆𝐸

, 𝐷 =
𝐹𝑧
𝑆𝐸

−
𝜆𝑔𝓁

𝑆𝐸
. (91)

By using these values in Equations (79) and (80), which are evidently also valid here, we get the parametric expressions

𝑥(𝑠) =
𝐹𝑥
𝑆𝐸

𝑠 + (1 + Θ)
𝐹𝑥
𝜆𝑔

ln
𝐹𝑧 − 𝜆𝑔(𝓁 − 𝑠) +

√
𝐹2𝑥 + [𝐹𝑧 − 𝜆𝑔(𝓁 − 𝑠)]

2

𝐹𝑧 − 𝜆𝑔𝓁 +
√
𝐹2𝑥 + [𝐹𝑧 − 𝜆𝑔𝓁]

2
, (92)

𝑧(𝑠) =
𝜆𝑔

2𝑆𝐸
𝑠2 +

𝐹𝑧 − 𝜆𝑔𝓁

𝑆𝐸
𝑠 +

1 + Θ
𝜆𝑔

[√
𝐹2𝑥 + [𝐹𝑧 − 𝜆𝑔(𝓁 − 𝑠)]

2
−

√
𝐹2𝑥 + [𝐹𝑧 − 𝜆𝑔𝓁]

2
]
, (93)

describing the generalized catenary in the present case. To conclude, the value of Θ can be obtained by means of
Equation (84) with the pertinent values of 𝐶 and 𝐷. The explicit expression follows

Θ = −
1

2𝑆𝐸𝜆𝑔𝓁

⎡⎢⎢⎢⎣𝐹
2
𝑥 ln

𝐹𝑧 +
√
𝐹2𝑥 + 𝐹2𝑧

𝐹𝑧 − 𝜆𝑔𝓁 +
√
𝐹2𝑥 + [𝐹𝑧 − 𝜆𝑔𝓁]

2
+ 𝐹𝑧

√
𝐹2𝑥 + 𝐹2𝑧 − (𝐹𝑧 − 𝜆𝑔𝓁)

√
𝐹2𝑥 + [𝐹𝑧 − 𝜆𝑔𝓁]

2

⎤⎥⎥⎥⎦, (94)

and must be considered in Equations (92) and (93), to obtain the parametric representation for the solution.
Some results concerning the elastic string with redistribution of mass and fixed length can be seen in Figure 8, in the

case where a force is applied to the second end of the string. Here the force is kept constant and the Young’s modulus is
instead variable in a certain range. In the left panel, we can observe the shape assumed by the string for different values of
the elastic constant and with a fixed applied force. The dashed black curve represents the classical inextensible catenary
with 𝐸 → ∞. In the right panel we also show the stretch of the string for the same values of the elastic constant. It is
interesting to note that, for the simple elastic catenary whose results are in Figure 5, when the elastic constant decreases,
the string is lengthened and consequently the point of force application shifts downward and to the right. In the present
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22 of 26 GIORDANO

case, in Figure 8, the behavior is different: as the elastic constant decreases, the mass concentrates toward the minimum
of the curve, forcing the force application point to move leftward and downward. This means that by decreasing the value
of the elastic constant of the wire, the mass redistribution phenomenon leads to an accumulation of the mass itself near
the center of the wire (i.e., close to the minimum point). This concentration of mass clearly also acts on the right end
where the force is applied which moves to the left and even a little downwards. This behavior perfectly characterizes the
phenomenon of mass redistribution. In addition, we can observe that in this case in the string there are regions with
stretch greater than one, near the ends, and regions with stretch less than one, in the central area. This is the other feature
resulting from the constant-length mass redistribution. The lowest value used for the elastic constant results in stretch
values close to zero in the minimum of the curve. Again, there is an threshold that defines the minimum value of elas-
tic constant for which the curve remains smooth that is, with positive stretch. As already discussed in Section 2.3, the

transition between the two quasistraight behaviors of
‖‖‖‖ 𝜕𝑟𝜕𝑠‖‖‖‖ to the left and right of the minimum is sharper when the ratio

𝜆𝑔∕(𝑆𝐸) is high. In fact, in this condition the high weight produces a great elongation of the thread, aided by its low elastic
constant.

4 CONCLUSIONS

In this work, we have developed a variational approach to study specific configurations of deformable strings with diverse
physical and geometric characteristics. The objective is to develop these models for application to biological problems, or
more broadly, for issues related to soft matter. We have considered a first model that captures the behavior of deformable
strings through nonlinear elasticity and a second model that describes deformable strings with mass redistribution while
maintaining a constant length. It is important to emphasize that the nonlinearity stems from the finite equilibrium length
of the springs utilized in the underlying discrete model. Indeed, the models are derived through the continuous limit of
discrete structures. The comparison between the two proposed models enables a deeper exploration of concepts related to
the existence and nonexistence of solutions in nonlinear elasticity. To investigate this aspect, we explored various geome-
tries, including scenarios such as the string hanging from one end and free from the other, the string hanging from
both ends, and the string suspended from one end with a force applied to the other. On the one hand, for deformable
elastic strings, it is observed that compression states cannot exist in equilibrium configurations due to their instabil-
ity. This instability arises from the inherent complete flexibility of a string. Conversely, in the case of strings with finite
length and mass redistribution, both stretched and compressed states can exist in the equilibrium static solutions. These
compressed zones, in this instance, are possible owing to the constant length constraint combined with the mass redis-
tribution phenomenon. Specifically, the masses tend to move towards areas with lower potential energy, and in order
to adhere to the length constraints, they compress. In this scenario, there may be instances of solutions nonexistence.
Specifically, if the elastic constant of the string, which governs the mass redistribution, is too small–falling below a cer-
tain threshold–the curve ceases to be regular (or smooth). In such cases, the stretch becomes negative as the solution
to the elastic problem becomes incompatible with the fixed length constraint. In practice, the masses attempt to move
towards regions with sufficiently low potential energy, causing the failure to satisfy the isoperimetric constraint (see the
Appendix A for a simple example based on a one-dimensional discrete system). These phenomena are also evident in
the generalization of the catenary with mass redistribution and fixed length. In this geometry, as depicted in the bottom
panel on the left of Figure 7, as the elastic constant decreases, the shape becomes more pointed with reduced curva-
ture on both sides. Indeed, the masses tend to slide towards the central area, causing a reshaping of the curve’s form.
Ideally, in this process, with a hypothetical elastic constant converging to zero, the system should approach a scenario
where all the mass concentrates at the minimum of the curve, resulting in a triangular shape. However, due to the depen-
dence of mass distribution on elastic interactions, this extreme situation is unattainable as it generates an incompatibility
between inextensibility and energy minimization. Indeed, regular solutions for the shape of the solution are obtained
only for values of the elastic constant exceeding a certain stability threshold. In future models, this kind of instability
could potentially be mitigated by introducing an additional nonlinearity that prevents the masses from interpenetrating,
especially when considering a discrete system for simplicity. Other perspectives include exploring more complex nonlin-
ear elastic responses of the materials used and studying the catenary for strings constrained to an arbitrary surface. It is
noteworthy that this latter study can be conducted for both deformable strings and strings with mass redistribution and
constant length.
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APPENDIX A: DISCRETE SYSTEM EXPLAINING THE POSSIBLE NONEXISTENCE OF SOLUTIONS FOR
INEXTENSIBLE STRINGSWITHMASS REDISTRIBUTION
In this Appendix we give a further interpretation to the possible nonexistence of solutions for inextensible strings with
mass redistribution. In particular, we refer to the case of an elastic wire hanging fromone hand discussed in Section 3.1.We
consider the discrete version of the configuration depicted in Figure 2a.We suppose that the vertical wire is composed of𝑁
springs with equilibrium length 𝐿 = 𝓁∕𝑁 and elastic constant 𝑘. We define 𝑧0 = 0, 𝑧𝑁 = −𝓁 and 𝑧1, 𝑧2, … , 𝑧𝑁 correspond
to the position of𝑁 − 1 particles of mass𝑚. It means that the first vertical spring is between 𝑧0 = 0 and 𝑧 = 𝑧1, the second
one between 𝑧1 and 𝑧2, and finally, the last one between 𝑧𝑁1

and 𝑧𝑁 = −𝓁 = −𝑁𝐿. The fixed extremities correspond to
the inextensibility condition of the string with mass redistribution. Considering the 𝑧-axis oriented as in Figure 2, it can
be seen that all 𝑧𝑖 coordinates will take negative values and that the total potential energy 𝑈 of the system can easily be
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written in the form

𝑈 =
1
2
𝑘

𝑁∑
𝑖=1

(𝑧𝑖−1 − 𝑧𝑖 − 𝐿)2 + 𝑚𝑔
𝑁−1∑
𝑖=1

𝑧𝑖, (A1)

where we considered the contribution of the elastic springs and the contribution of the gravity. The equilibrium of the
system can be obtained by minimizing this potential energy. We therefore calculate the partial derivatives

𝜕𝑈
𝜕𝑧𝑗

= 𝑘
𝑁∑
𝑖=1

(𝑧𝑖−1 − 𝑧𝑖 − 𝐿)(𝛿𝑗,𝑖−1 − 𝛿𝑗,𝑖) + 𝑚𝑔, (A2)

which are valid for 𝑘 = 1,… ,𝑁 − 1 and where 𝛿𝑗,𝑖 is the Kronecker’s delta symbol. Simplifying and equalizing to zero, we
obtain

𝜕𝑈
𝜕𝑧𝑗

= 𝑘(−𝑧𝑗+1 + 2𝑧𝑗 − 𝑧𝑗−1) + 𝑚𝑔 = 0. (A3)

We can now introduce the variables 𝑑𝑗 = 𝑧𝑗−1 − 𝑧𝑗 , which represent the length of the deformed springs from 𝑗 = 1 to
𝑗 = 𝑁. The equilibrium conditions are then reduced to

𝑑𝑗 − 𝑑𝑗+1 =
𝑚𝑔

𝑘
, (A4)

for 𝑘 = 1,… ,𝑁 − 1, with the condition that
∑𝑁

𝑖=1 𝑑𝑖 = 𝑁𝐿 = 𝓁. From Equation (A4) we recursively obtain that 𝑑1 = 𝑑𝑁 +
(𝑁 − 1)𝑚𝑔∕𝑘, 𝑑2 = 𝑑𝑁 + (𝑁 − 2)𝑚𝑔∕𝑘, 𝑑3 = 𝑑𝑁 + (𝑁 − 3)𝑚𝑔∕𝑘 and so on, such that the general relationship becomes

𝑑𝑗 = 𝑑𝑁 + (𝑁 − 𝑗)
𝑚𝑔

𝑘
, (A5)

for 𝑗 = 1,… ,𝑁 − 1. These expressions can be substituted in the total length condition
∑𝑁

𝑖=1 𝑑𝑖 = 𝑁𝐿 = 𝓁, yielding

𝑁𝑑𝑁 +
𝑁−1∑
𝑖=1

(𝑁 − 𝑖)
𝑚𝑔

𝑘
= 𝑁𝐿. (A6)

Recalling that
∑𝑁−1

𝑖=1 𝑖 = 𝑁(𝑁 − 1)∕2, we obtain the result for 𝑑𝑁

𝑑𝑁 = 𝐿 −
𝑁 − 1
2

𝑚𝑔

𝑘
. (A7)

By using Equation (A5), we obtain all the spring lengths as

𝑑𝑗 = 𝐿 +

(
𝑁 + 1
2

− 𝑗

)
𝑚𝑔

𝑘
. (A8)

All masses are contained in the segment (−𝓁, 0), and therefore the inextensibility constraint is satisfied, if and only if all
lengths 𝑑𝑗 are positive. This is equivalent to saying that 𝑑𝑁 is positive, in fact we see that 𝑑𝑗 > 𝑑𝑁 for all 𝑗 = 1,… ,𝑁 − 1,
see Equation (A5). Now, we see that the condition 𝑑𝑁 > 0 leads to 𝐿 > 𝑁−1

2

𝑚𝑔

𝑘
, where 𝑘 = 𝐸𝑆∕𝐿 in the continuum limit. It

means that the condition becomes 𝐸𝑆 > 𝑚𝑔(𝑁 − 1)∕2. To conclude, we observe that (𝑁 − 1)𝑚 represents the total mass
of the chain, which can also be written as 𝜆𝓁, and the condition 𝑑𝑁 > 0 assumes the final form 𝐸𝑆 > 𝜆𝓁𝑔∕2. The obtained
condition coincideswith the one obtained in Section 3.1 bymeans of a completely differentmethod based on the variational
approach. This clarifies the meaning of this condition. If we use values of Young’s modulus below the threshold found,
equilibrium for the discrete chain exists but some masses leave the segment (−𝓁, 0) not respecting inextensibility. When
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26 of 26 GIORDANO

we approach the continuous problem from the variational point of view, in such cases, solutions do not exist because of
the incompatibility between equilibrium search and inextensibility constraint.
The origin of this problem must be sought in the structure of the proposed model. The interaction between two con-

tiguous masses in a discrete model is characterized by a spring (nonlinear for the 2D and 3D cases) that describes the
elasticity of the wire. This interaction, however, contrary to physical reality, allows one mass to pass over another along
the wire. In other words, the interactions included in the model do not impose the impenetrability of matter. If one were
to add such impenetrability into the model, solutions would exist for any value of elastic constant, and for example we
could have all masses concentrated in the center of the wire in the case of the catenary with mass redistribution. But the
model would become too mathematically difficult and the complexity would probably not be manageable. This means
that the existence threshold of the solutions has no physical relevance since in reality the masses cannot freely step over
each other along the wire. However, this result is particularly interesting mathematically because it offers an example of
the existence or nonexistence of solutions in nonlinear elasticity.
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