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Théo Mathurin1, Stefano Giordano1,a, Yannick Dusch1, Nicolas Tiercelin1, Philippe Pernod1, and Vladimir
Preobrazhensky1,2

1 International Associated Laboratory LEMAC/LICS: IEMN, UMR CNRS 8520, ComUE Lille Nord de France, ECLille, Avenue
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Abstract. Magnetic domain walls are fundamental objects arising in ferromagnetic materials, largely in-
vestigated both through micromagnetic simulations and experiments. While current- and field-based tech-
niques for inducing domain wall propagation have been widely studied for fundamental understanding
and application-oriented purposes, the possibility to manipulate domain walls using mechanical stress in
magnetoelastic materials has only recently drawn interest. Here, a complete analytical model describing
stress-induced transverse domain wall movement in ferromagnetic nanostripe with variable cross-section is
presented. This approach yields a nonlinear integro-differential equation describing the magnetization field.
Its numerical implementation, based on the nonlinear relaxation method, demonstrates the possibility to
precisely control the position of a domain wall through mechanical action.

1 Introduction

The control of position and motion of ferromagnetic do-
main walls in nanoscale structures is an emergent sub-
ject with relevant applications to magnetic logic [1] and
memory devices [2], promising interesting properties such
as non-volatility, high integration density, low power con-
sumption and high speed.

Several techniques exist to generate the motion of a
ferromagnetic domain wall. Firstly, the domain wall prop-
agation can be induced by external magnetic fields. For
instance, the motion of a magnetic domain wall in a sub-
micrometer magnetic wire was detected by use of the giant
magnetoresistance effect [3]. Also, room-temperature mea-
surements revealed extremely high propagation velocities
of a domain wall in ferromagnetic nanowires [4]. The prop-
agation velocity was proved to show two linear regimes,
with the wall mobility at high magnetic fields reduced ten-
fold from that at low fields [5].

A second technique to induce motion is based on spin-
polarized currents. Recently, the velocity of domain walls
driven by current in zero magnetic field is measured us-
ing real-time resistance measurements. It has been argued
that not only spin angular momentum but also linear mo-
mentum is transferred to the domain wall from the flow of
electrons [6]. Also, the relation between the pinning pro-
cesses and the threshold current has been investigated in
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order to propose the engineering of pinning sites to obtain
efficient current-induced domain wall manipulation [7].
The best conditions for efficient domain-wall motion by
spin-orbit torques have been analyzed. Indeed the over-
all effect depends critically on the domain-wall configura-
tion, the current injection scheme, and the symmetry of
the spin-orbit torque [8]. Moreover, it has been shown that
domain wall motion can be initiated by conventional spin-
transfer torque and complemented by indirect spin-torque.
The latter is created by remote currents and transferred
to the domain wall by the exchange-spring mechanism [9].

A third possibility for moving domain walls is based
on localized non-uniform mechanical stress. An inter-
esting proposal uses the piezoelectric-piezomagnetic cou-
pling and a series of contacts mimicking the movement
of pinning sites. The domain wall moves accordingly, ir-
respective of the domain wall structure [10]. As a con-
sequence, the domain wall velocity depends on the ap-
plied stress gradient [11]. This principle has been realized
through practical geometries constituted of piezoelectric
phases and spin-valve nanowires. By combining magneto-
optical Kerr effect and magnetoresistance measurements,
the domain wall propagation fields have been observed and
characterized [12].

Other methodologies have been developed through
pinning phenomena onto ferroelectric domain walls [13,14]
and temperature gradients [15]. Also, the mobility of
a current-induced domain wall can be piezoelectrically
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controlled through a strain-mediated magnetic aniso-
tropy [16]. We remark that a similar research line exists
for the dynamics of domain walls in ferroelectric materi-
als [17]. However, the domains behavior in ferroelectrics
is at present a very well understood subject. The domains
are simple regions separated by Ising-like walls. On the
other hand, Bloch or Néel walls in magnets are very com-
plex systems and only recently has their complexity been
revealed through transmission electron microscopy, elec-
tron holography, atomic force microscopy, magnetic force
microscopy and Kerr microscopy [17]. These refined tech-
nologies have opened the way to the development of new
devices based on magnetic domain walls, ranging from
neuromorphic systems [18], spintronic logic [19], racetrack
memories [20], memristors [21], to lab-on-chip manipula-
tion of magnetic microbeads [22].

Here, we propose the theoretical and numerical anal-
ysis of a Néel domain wall displacement induced by uni-
form mechanical stress in a nanostripe with variable sec-
tion. First of all, the use of a purely mechanical action to
move the domain wall is very advantageous from the en-
ergetic point of view. In fact, current and magnetic field
based domain wall motion devices are typically subject
to higher energy consumption. Secondly, the procedure
used to derive the main equation (see Eq. (30)) is very
general and can be applied to other magnetic problems as
well. Finally, the technique adopted to solve this equation,
based on an iterative method, is very efficient from the nu-
merical point of view. This ad hoc approach allows for a
clear physical interpretation of the phenomena involved in
our system, without requiring time-consuming micromag-
netic simulations [23]. To introduce the proposed physical
principle, we consider a uniaxial ferromagnetic nanostripe
and we apply an external magnetic field (perpendicular to
the stripe itself) to break the symmetry of the two sta-
ble magnetization states. So doing, we generate two tilted
magnetization states within the material. We assume to
have a domain wall between these states. Then, we sup-
pose to further apply a uniform mechanical stress to the
two-domain system. As a result, we induce a couple of
asymmetrical states and the wall moves so as to expand
the domain that is energetically favored and contract the
other one.

As recently discussed, the stress can be generated by
a piezoelectric substrate [24], by designing a system be-
longing to the multiferroic heterostructures [25]. While
the magnetoelectric coupling in multiferroic structures has
been largely studied both experimentally [25] and theoret-
ically in the linear [26,27] and nonlinear [28] regime, the
exploitation of the magnetization dynamics in single- and
multi- domain systems is a very recent application with
important applications in memories, spintronics and new
paradigms of information processing. Indeed, it is impor-
tant to remark that the idea of breaking the symmetry of
states in uniaxial magnets has been largely exploited to
design memory elements [29–33] and is here generalized
to systems with analog behavior. In the first case there
is a single magnetic domain and we can switch its mag-
netization between two asymmetric states. In the second

V ⊂ �3

∂V

n

M (r ) =Msγ(r )

ferromagnetic material

vacuum
μ0

Fig. 1. Geometry of the ferromagnetic material occupying a
region V with external surface ∂V and normal unit vector n.

one we have a two-domain system with a domain wall able
to move, expanding one domain and narrowing the other.
In this work, the switching process is thus replaced by a
continuous motion of the wall separating two adjacent do-
mains. Since it has been proved that the stress-mediated
control of magnetization allows for excellent energy effi-
ciency in single domain elements, we argue that the me-
chanical control of the domain walls position is very ad-
vantageous for reducing energy consumption [34–38].

The structure of the paper follows. In Section 2,
we briefly introduce the micromagnetism formalism for
magnetoelastic materials. In particular, we present the
classical variational formulation and we describe the
methodology adopted to cope with the problem of the de-
magnetization field. In Section 3, we introduce the phys-
ical principles at the origin of the domain wall motion
induced by a uniform mechanical stress. We describe the
physics and geometry of the system, we perform its en-
ergetic analysis and we apply the variational procedure.
As a result, we obtain the equation giving the magneti-
zation distribution within the nanostripe. To conclude, in
Section 4, we propose a numerical technique to solve this
equation, from which we can deduce the position of the
domain wall as a function of the applied stress. We finally
show a series of results demonstrating the suitability of
this concept for innovative devices.

2 Micromagnetism formalism

In this section we present a brief introduction of the mi-
cromagnetism formalism [39–41]. In particular, we give a
complete assessment of the problem concerning the de-
magnetization vector field. To begin, we take into consid-
eration a region V ⊂ R

3 with external surface ∂V and
normal unit vector n (see Fig. 1). We suppose that the
region V is filled with a ferromagnetic material with mag-
netoelastic (or magnetostrictive) properties, while the ex-
ternal region R

3 \V is composed of a linear magnetic ma-
terial characterized by the vacuum permeability μ0. The
ferromagnetic material is described by a magnetization
vector M , defined within the region V by its space vary-
ing direction γ(r). It means that M(r) = Msγ(r), where
MS represents the magnetization at saturation (a physical
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parameter of the ferromagnetic material). We consider the
most general form of the energy density stored within the
ferromagnetic material. It is composed of the following
terms

u = uan + uex + ume + uZe, (1)

where:

– uan represents the anisotropy energy density and takes
into consideration specific directions where the magne-
tization is preferably oriented. This term is due to the
crystalline structure of the ferromagnetic material [39].
We consider here an arbitrary form

uan = φ(γ). (2)

– uex takes into consideration the exchange interaction
among magnetic dipoles of the magnetization distribu-
tion. Its general form follows [39]

uex =
1
2
αij

∂γl

∂xi

∂γl

∂xj
, (3)

where γ is the magnetization direction and αij is a
symmetric tensor.

– ume is the energy associated to the magnetoelastic ef-
fect. Its general form can be written as [39–41]

ume = −aiklmTikγlγm = −Tikε
μ
ik. (4)

Here, Tik is the Cauchy stress tensor, which is consid-
ered known and imposed to the structure1 and aiklm is
a tensor property with the symmetries aiklm = akilm

and aiklm = aikml. The quantity εμik (γ) = aiklmγlγm

is the so-called eigenstrain characterizing the magne-
tostrictive effect. It means that the constitutive equa-
tion from the elastic point of view is given by T̂ =
L̂
(
ε̂− ε̂μ

)
, where T̂ and ε̂ are the actual stress and

strain tensors, and L̂ is the elastic stiffness tensor (sat-
isfying the same symmetries as â plus the additional
property Liklm = Llmik). This constitutive equation
must be interpreted as follows. If the stress is zero
(elastically free body), then we find ε̂ = ε̂μ, i.e. the
real strain corresponds to the eigenstrain, which as-
sumes the character of strain imposed by the magneti-
zation. It means that, when γ is fixed in a given region,
then ε̂ will tend to be equal to ε̂μ(γ). In the situation
where T̂ is not zero (region V constrained or embedded
in a given elastic matrix), the actual strain ε̂ cannot
assume the value ε̂μ, and the system finds a compro-
mise between the effects of magnetization and elastic
interactions with the matrix.

– uZe is the energy corresponding to the local interaction
between magnetization and magnetic field. It is called
the Zeeman term and its general expression is [42]

uZe = −μ0MS HL · γ. (5)

1 The problem of determining the actual stress distribution
in V , when the body is embedded in a different elastic envi-
ronment is treated elsewhere and not considered in the present
development (see, e.g., Ref. [34]).

It is important to underline that HL is the local mag-
netic field that one can measure at any given point r.
Typically, it is composed of two contributions: an ex-
ternally applied field H0 and a magnetic field Hd gen-
erated by the magnetization distribution M (r) itself.
The latter is referred to as the demagnetization field.
Therefore, we have HL = H0+Hd, where Hd directly
depends on γ (r).

We can finally introduce the total energy stored within
the region V

U =
∫
V

u dv =
∫
V

(uan + uex + ume + uZe) dv. (6)

In this expression, U depends on the function γ = γ (r),
while T̂ and HL are imposed quantities. The behavior of
the region V can be summarized through the following
principle: the magnetization distribution within V must
be found by minimizing U with respect to γ (r), with T̂ (r)
and HL (r) fixed. From the mathematical point of view,
this is a problem of the calculus of variations. However,
this approach is hardly applicable to real situations since,
typically, we are able to fix the external field H0, but we
can not control the total field HL. Indeed, the demagne-
tization field Hd depends on γ = γ (r) being the sum of
all contributions generated by the elementary dipoles of
the overall distribution [42]

Hd (r) = MS

∫
V

N̂ (r, r0)γ (r, r0) dr0, (7)

with

N̂ (r, r0) =
1
4π

[
3 (r − r0) ⊗ (r − r0)

‖r − r0‖5
− Î

‖r − r0‖3

]
.

(8)
In equation (8), a ⊗ b represents the tensor product be-
tween two vectors a and b, i.e. (a ⊗ b)ij = aibj, and Î is
the identity operator. One can prove that N̂ exhibits the
symmetries

N̂ (r, r0) = N̂T (r, r0) , (9a)

N̂ (r, r0) = N̂ (r0, r) . (9b)

The above principle suggests to minimize U with T̂ and
HL fixed. We have to prove an equivalent result based on
a different functional Ũ minimized with T̂ and H0 fixed.
In other words, we search for a new functional Ũ satisfying
the following equivalence

min
γ : ‖γ‖=1

U

∣∣∣∣
HL fixed

⇔ min
γ : ‖γ‖=1

Ũ

∣∣∣∣
H0 fixed

. (10)

We prove in Appendix A that the exact mathematical
form of Ũ is the following

Ũ =
∫
V

[
φ(γ) +

1
2
αij

∂γl

∂xi

∂γl

∂xj
− Tikε

μ
ik + μ0MSH0iγi

]
dv

−
∫
V

∫
V

1
2
μ0M

2
Sγ(r) · N̂(r, r0)γ(r0)dr0dr, (11)
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where the last term represents the demagnetization en-
ergy. The minimization of Ũ with respect to the direc-
tion γ, with T̂ and H0 imposed, leads to the actual mag-
netization of the ferromagnetic body. Incidentally, it is
interesting to point out that this mathematical problem
completely describes the emergence of the domains struc-
ture typical of the ferromagnetic materials. The result of
this minimization, proved in Appendix A, follows

γ × Heff = 0, (12)

where

Heff = H0 + Hd − 1
μ0MS

∂φ

∂γ

+
αij

μ0MS

∂2γ

∂xi∂xj
+

2
μ0MS

â : T̂γ. (13)

These results are in perfect agreement with classical de-
velopments [39–41,43,44]. On the external surface of the
region V we must impose the boundary conditions (see
again Appendix A for details)

αijεlstγt
∂γl

∂xj
ni = 0 ∀ s on ∂V. (14)

In particular, with isotropic exchange (αij ∝ δij), the
boundary conditions simplify to

∂γ

∂n
= 0 on ∂V. (15)

To conclude, the behavior of the ferromagnetic region V
can be summarized by observing that equation (12) must
be satisfied in V with boundary conditions stated in equa-
tion (14) for the general case, or in equation (15) for
isotropic exchange. Of course, the boundary conditions
must be substituted with γ(r) = f(r) for r ∈ ∂V when
the magnetization is imposed on ∂V .

3 Mechanical control of domain wall position

In this section, we describe the application of the previous
formalism (with some modifications) to demonstrate the
possibility to control the position of a domain wall through
a uniform mechanical stress in uniaxial ferromagnets.

3.1 Description of the system

The general geometry of the ferromagnetic system is
shown in Figure 2. It is constituted by a nanostripe of
thickness h, length L and variable width 	(x). Two hy-
potheses will be assumed for analyzing the system: (i) the
magnetization M lies in the (x, y) plane, and (ii) the mag-
netization depends only on x. Hence, we have

M (r) = MS (cos θ(x), sin θ(x), 0) , (16)

where θ(x) is the angle between M and the x-axis. These
hypotheses are reasonable as long as the thickness and

σ

σ

y(HA)

x(EA)

H 0

M

θ(x)

z

�(x)

h

L

Fig. 2. Ferromagnetic nanostripe characterized by a vari-
able cross-section h�(x). The ferromagnetic easy-axis (EA) is
aligned with the x-axis, while the hard-axis (HA) corresponds
to the y-axis. The magnetization M is described by the angle
θ(x) (measured anticlockwise) and the magnetic field H0 and
mechanical action σ are applied to the system.

width of the nanomagnet are small compared to its length
(nanostripe geometry). Moreover, we can anticipate that
the shape function 	(x) used to stabilize the wall posi-
tion is very slightly variable with x, consistently with our
assumptions. We also underline that assumptions (i) and
(ii) have been used in the past to study the motion of
a domain wall induced by an external magnetic field. In
this case the model yielded results in good agreement with
experiments [45].

As described in Figure 2, we consider a material with
uniaxial behavior, having the easy-axis (EA) aligned to
the x-axis and the hard-axis (HA) aligned to the y-axis.
It means that the angles θ = 0 and θ = π correspond to
two stable positions M1 and M 2 of the magnetization
under the sole influence of the anisotropy (see Fig. 3). In
these conditions (H0 = 0 and σ = 0), we consider a Néel
domain wall positioned at x = 0 (see Fig. 4). It is created
by the imposed boundary conditions (see Sect. 3.3 for de-
tails) and it is stable because of the symmetrical shape
function having minimal cross section for x = 0. The ex-
ternal magnetic field is a crucial element for the working
principle of the proposed system. Indeed, when we apply
H0 along the y-axis, the stable orientations of the mag-
netization are tilted in the direction of the field, obtaining
M ′

1 and M ′
2, as shown in Figure 3. We remark that M ′

1

and M ′
2 are still symmetric. Hence, the domain wall re-

mains in the position x = 0 since the energy density is the
same in the two domains. This position is therefore still
stable. Further, if we also apply the mechanical uniform
stress σ, along the bisector of the second quadrant as in-
dicated in Figure 2, the new magnetization vectors M ′′

1
and M ′′

2 lose their symmetry, as shown in Figure 3 (for
both σ > 0 and σ < 0). In this situation the energy den-
sity is not the same within the two domains. Therefore,
the domain wall moves in order to reduce the size of the
domain with higher energy density. The domain wall mo-
tion stops only when the total energy reaches its minimum
(see Sect. 2), corresponding to the new equilibrium for the
system.
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H0

M1M2

M′
1

M′
2 M′′

1

M′′
2

π/43π/4

σ > 0

H0

M1M2

M′
1

M′
2

M′′
1

M′′
2

π/43π/4

σ < 0

Fig. 3. Stable magnetization states within the nanostripe. The uniaxial anisotropy without H0 and σ induces two opposite
states M 1 and M 2. When H0 is applied, we have M ′

1 and M ′
2, still symmetric. Further, the mechanical stress leads to the

tilted states M ′′
1 and M ′′

2 , which are asymmetric for both σ > 0 and σ < 0.

x = 0

M

x = −L
2 x = +L

2

Fig. 4. Typical magnetic distribution in a Néel wall as consid-
ered within the nanostripe.

H0 (103Am−1)

θs

0 20015010050

0

π
4

π
2

π

3π
4

Fig. 5. Effect of the magnetic field on the stable states of the
system (with σ = 0). The two angles get closer as H0 increases
until only one stable position remains (θ = π

2
) for H0 ≥ Ha.

We underline that the influence of the applied mag-
netic field is essential for the mechanical stress to induce
movement since it tilts the states with respect to the x
direction. Indeed, without a significant magnetic field, the
role of the Zeeman energy can be disregarded and the ap-
plication of the mechanical stress leaves the two states
indistinguishable (from the energetic point of view). At
the same time, the magnetic field intensity should not be
larger than a given threshold, otherwise the anisotropy en-
ergy becomes negligible, leaving a single stable state cor-
responding to θ = π

2 . In Figure 5 we show the angles θs

of the stable states as a function of the applied field H0,
with σ = 0. One can clearly see the typical bifurcation
for a critical value of H0, referred to as Ha (see below
for details). We have θs = θ1 or θ2 (corresponding to M ′

1
and M ′

2) if H0 < Ha and θs = π/2 if H0 > Ha. These

θ1
θ2

u2 − u1

200

0

π

0 100-100

σ (MPa)

×104

2

1

0

-1

-2

θs

π
4

π
2

3π
4

5π
4

-200

-π4

Δu
(Jm−3)

Fig. 6. Angles θ1 and θ2 of stable magnetization orientations
as a function of the mechanical stress σ, and energy density
gap Δu = u2 − u1 between the corresponding states.

considerations yield quantitative constraints to the design
of the proposed system. From the point of view of the
implementation, the field H0 can be realized through mi-
cropatterned permanent nanomagnets [46], which do not
participate to the energy consumption.

As discussed above, the mechanism driving domain
wall motion when applying a mechanical stress lies in the
energy asymmetry. Indeed, the tilt generated on the mag-
netization vectors of the domains is such that they are dis-
tinguishable from the energetic point of view. In Figure 6
one can find the values of stables positions θ1 and θ2 (cor-
responding to M ′′

1 and M ′′
2) as functions of the applied

stress, as well as the energy density gap induced between
the two domains (for a given H0 �= 0). This gap has been
calculated by adding Zeeman, anisotropy and magnetoe-
lastic energies. In this preliminary discussion we neglected
the demagnetization and exchange energies, deeply dis-
cussed below. Anyway, we observe that the energy density
gap increases in absolute value with increasing mechanical
stress, showing saturation for σ → ±∞. To better under-
stand the working principle of the system we also show
in Figure 7 the energy density landscape, i.e. the energy
density of a domain in terms of the angle θ characterizing
the magnetization and the applied magnetic field H0. We
can observe the intrinsic bistability of the system under
the threshold Ha of magnetic field and the effect of the
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Fig. 7. Energy landscape as a function of the magnetization angle θ and applied magnetic field H0. The application of a stress
modifies the stable magnetization states and their energy densities, favoring a given state over the other one. In the first panel
we considered σ = 0, in the second one σ > 0 and in the third one σ < 0.

mechanical stress, which generates an energy gap between
the stable states (only when H0 �= 0). In general, depend-
ing on the geometry adopted, the motion induced by σ
can either continue indefinitely or stop at a given equi-
librium position. We proved that for a nanostripe with
uniform section it is impossible to stabilize the position
for all stress values (see below). On the other hand, the
geometry with larger section close to the extremities may
guarantee the existence of an equilibrium position for the
domain wall, preventing it from reaching the extremities
and thus being ejected. Indeed, the domain wall has an
intrinsic surface energy (proportional to the wall area),
which participates to the total system energy. This point
substantiates the shape of the ferromagnetic nanostripe
shown in Figure 2. It is worth noting that in real exper-
imental setups, several techniques have been studied and
are routinely used to create pinning sites to stabilize mag-
netic domain walls. They include inhomogeneities [47] or
structural defects [48–51], and geometrical notches [52,53].
Here, we follow an alternative way to prevent domain wall
ejection based on the variable cross-section.

3.2 Energetic analysis

As previously discussed, the first step of the system anal-
ysis consists in writing the overall energy of the sys-
tem, composed of anisotropy, Zeeman, magnetoelastic, ex-
change and demagnetization contributions.

To begin with, let us consider the anisotropic uniaxial
behavior described by the energy density

uan = −Kuγ
2
x = −Ku cos2 θ. (17)

Moreover, because of the uniaxial symmetry of the fer-
romagnet, the exchange energy described in equation (3)
simplifies by considering two different constants α11 = 2A
and α22 = α33 = 2B (αij = 0 ∀ i �= j). Explicitly, we have

uex = A

(
∂γ

∂x

)2

+B

[(
∂γ

∂y

)2

+
(
∂γ

∂z

)2
]
. (18)

With the assumption in equation (16), we easily get

uex = A

(
∂θ

∂x

)2

. (19)

As stated in previous description of the system, the ap-
plied magnetic field is considered aligned with the y-axis,
leading to the following contribution

uZe = −μ0MSH0 · γ = −μ0MSH0 sin θ, (20)

where we considered only the externally applied field H0.
The demagnetization field will be treated separately. Let
us now discuss the mechanical stress and the correspond-
ing magnetoelastic energy. First of all, the mathematical
form of the magnetostriction ε̂μ(γ) should be defined. It
corresponds to the strain tensor associated with the mag-
netization direction γ for a body free of stress. A dis-
placement field describing a uniform deformation along
γ can be written as u(x) = εlγ(x · γ), where εl is the
so-called longitudinal deformation. On the other hand, a
displacement field corresponding to a uniform transver-
sal deformation εt is given by u(x) = εt [x − γ(x · γ)].
The sum of the two contributions leads to an eigenstrain
εμij = εlγiγj + εt(δij − γiγj). It has been well established
that the magnetostriction is an isovolumic process and
thus we impose Trε̂μ = 0, i.e. εμii = εl + 2εt = 0, from
which it follows that εt = − εl

2 . By defining λS = εl, typ-
ically referred to as the magnetostriction coefficient, we
have

εμij =
λS

2
(3γiγj − δij), (21)

and the general form of the magnetostrictive energy is

ume = −T̂ : εμ = −λS

2 (3γiγjTij − Tii) . (22)

As an example, if T22 = σ and the other components are
zero,

ume = −3
2
λSσγ

2
2 + const. (23)

In our system, a unidirectional stress is applied along the
direction identified by θ = −π

4 (bisector of the second
quadrant). In order to obtain the corresponding energy
density, it is convenient to work in the frame (x′, y′) tilted
with respect to (x, y) by an angle of π

4 . Hence, we have
γ = cos(θ − π

4 )ex′ + sin(θ − π
4 )ey′ . Here, ex′ and ey′

are the unit vectors in directions x′ and y′, respectively.
Now, in the (x′, y′) frame we have a unidirectional stress
along the y′-axis and, therefore, the energy density is given
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by equation (23), with γ2
2 = sin2(θ − π

4 ) = − sin θ cos θ +
const. Finally, the energy density is

ume =
3
2
λSσ sin θ cos θ, (24)

where we neglected the irrelevant additive constant. To
sum up, the total energy density of the system is

u = −Ku cos2 θ +A

(
dθ

dx

)2

− μ0MSH0 sin θ

+
3
2
λSσ sin θ cos θ − 1

2
μ0MSHd · γ, (25)

where the last term represents the demagnetization energy
density, as shown in equation (11). The total energy U can
be finally calculated by integrating equation (25) over the
ferromagnetic region

U =

L
2∫

−L
2

h	(x)

[
−Ku cos2 θ +A

(
dθ

dx

)2

− μ0MSH0 sin θ +
3
2
λSσ sin θ cos θ

]
dx

−
∫
V

∫
V

1
2
μ0M

2
Sγ(r) · N̂(r, r0)γ(r0) dr0dr, (26)

where the cross section h	(x) has been introduced for in-
tegrating the first four terms (where the energy density
depends only on x).

3.3 Variational procedure

Let us consider the total energy U as a functional of θ(x).
The Gâteaux derivative [54] of U can be written as follows

d

dα
U (θ(x) + αk(x))

∣∣∣∣
α=0

=

L
2∫

−L
2

h	(x)
[
Ku sin(2θ)k(x) − μ0MSH0 cos θk(x)

+
3
2
λSσ cos(2θ)k(x) + 2A

dθ

dx

dk

dx

]
dx

−1
2
μ0M

2
S

⎛
⎝∫

V

∫
V

∂γ

∂θ
(x) · N̂(r, r0)γ(x0)k(x)dr0dr

+
∫
V

∫
V

γ(x) · N̂(r, r0)
∂γ

∂θ
(x0)dr0dr

⎞
⎠ , (27)

where α is a real parameter and k(x) is the perturbation
function. The exchange term can be elaborated through
an integration by parts. Moreover, the two demagnetiza-
tion terms in the fourth and fifth lines of equation (27)

are identical, as can be proved by exploiting symmetries
of tensor N̂ stated in equations (9a) and (9b). Hence, the
demagnetization term, referred to as D, can be rewrit-
ten as

D = −μ0M
2
S

∫
V

∫
V

∂γ

∂θ
(x) · N̂(r, r0)γ(x0)k(x)dr0dr

= −μ0MS

∫
V

∂γ

∂θ
(x) · Hd(r)k(x)dr

= −μ0MS

+ L
2∫

−L
2

h	(x)
∂γ

∂θ
(x) · 〈Hd〉y,z k(x) dx, (28)

where

〈Hd〉y,z =
1

h	(x)

+ �(x)
2∫

− �(x)
2

+ h
2∫

−h
2

Hd(r)dzdy

is the average value of the field Hd over the cross section at
x constant. By substituting equation (28) in equation (27)
we eventually get

d

dα
U (θ(x) + αk(x))

∣∣∣∣
α=0

=

+ L
2∫

−L
2

h	

[
2Ku sin(2θ)−μ0MSH0 cos θ+

3
2
λSσ cos 2θ

]
kdx

−
+ L

2∫
−L

2

2hA
(
d	

dx

dθ

dx
+ 	

d2θ

d2x

)
k dx+

[
2hA	

dθ

dx
k

]+ L
2

−L
2

−μ0MS

+ L
2∫

−L
2

h	
∂γ

∂θ
· 〈Hd〉y,z k dx. (29)

Now, since we wish to study the motion of a domain wall
in the interval

[−L
2 ,+

L
2

]
, the function θ assumes fixed

finite values at θ
(−L

2

)
and θ

(
+L

2

)
, which correspond to

the stable magnetization states mentioned above. As a
consequence, the perturbation function k must vanish at
the interval end-points x = ±L

2 . Hence, equation (29) is
zero for any real function k when

d2θ

d2x
+

1
	(x)

d	(x)
dx

dθ

dx
− μ0Ms

2A

[
Ku

μ0Ms
sin(2θ)

− H0 cos θ +
3
2
λSσ

μ0Ms
cos(2θ)

+ sin θ〈Hdx〉y,z − cos θ〈Hdy〉y,z

]
= 0. (30)

This is the main equation governing the behavior of the
magnetization orientation within the structure considered.
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From the mathematical point of view it is a second order
integro-differential equation with fixed boundary condi-
tions (〈Hd〉y,z depends on θ through an integral opera-
tion). The original character of this equation can be un-
derlined by observing that it describes a one-dimensional
model but, at the same time, its second term in equa-
tion (30) takes into account the actual shape of the fer-
romagnetic region (through the variable width 	). This
point also represents the crucial modification introduced
with respect to the classical development summarized in
Section 2. Therefore, this approach, specifically elaborated
for the study of a nanostripe with a two-domain structure,
allows for the wall motion analysis with a strong reduc-
tion of the necessary computational effort with respect to,
e.g., a standard finite element micromagnetic approach.
The latter, while allowing to tackle a wide variety of mag-
netic problems, is less computationally efficient for such a
simple system.

The orientations of the magnetization at both bound-
aries of the nanostripe can be imposed by considering the
states M ′′

1 and M ′′
2 , introduced in Section 3.1. The cor-

responding angles can be found by using equation (30)
where we neglect exchange and demagnetization terms.
The resulting equation can be written as

Ku sin(2θ) − μ0MSH0 cos θ +
3
2
λSσ cos(2θ) = 0. (31)

This equation provides two angles corresponding to the
stable states generated by the combination of anisotropy,
applied magnetic field and mechanical stress. By defining
t = tan(θ/2), we get a fourth-degree algebraic equation,
which can be numerically solved with standard techniques.
We can also take into consideration the simpler boundary
conditions θ(−L/2) = 0 and θ(+L/2) = π, fixed for any
value of the mechanical stress σ. The comparison of results
obtained with the two different types of boundary condi-
tions is useful to understand their effect on the overall
behavior of the system.

4 Numerical implementation and results

The main equation derived above must be numerically
solved to get the desired solution representing the angle
profile θ(x). We describe here in detail the numerical ap-
proach implemented alongside its results. We anticipate
that all numerical calculations have been carried out with
a given set of physical properties corresponding to the
magnetoelastic material Terfenol. Accordingly, we used a
magnetization saturation Ms = 64× 104 A/m [34], an ex-
change interaction coefficient A = 9×10−12 A/m [55]. We
also adopt an anisotropy constant Ku = 37.5 × 103 J/m3

corresponding to an anisotropy field Ha = 92 × 103 A/m
(defined through the expression Ku = 1

2μ0MsHa), which
can be easily obtained in real ferromagnetic layers [30].
We remark that Ha represents the bifurcation thresh-
old shown in Figure 5. The strong magnetostriction in
Terfenol is characterized by a coefficient λS = 1 ×
10−3 [56]. Moreover, an applied field H0 = 20×103A/m is

used throughout all simulations. These values have been
also used in Figures 5–7.

4.1 Nonlinear relaxation

The aim of this section is to describe the numerical method
proposed to solve equation (30). This is a nonlinear second
order integro-differential equation with fixed boundary
conditions. Therefore, we can use a nonlinear relaxation
method, or iterative technique [57]. This approach is based
on a spatial discretization of the interval [−L/2,+L/2]
with N points, where x1 = −L/2 and xN = L/2. Thus we
define Δx = L

N−1 . All physical variables used in our pro-
cedure will be calculated according to this discretization.

The only non-trivial term to compute is the demag-
netization contribution. As a matter of fact, the demag-
netization field at each point depends on the magnetiza-
tion of the whole ferromagnetic body, which, in addition,
changes at each iteration. Therefore, a straightforward
implementation is likely to be computationally intensive.
Here, we consider the sequence of N−1 regions [xi, xi+1]×
[− l(xi)

2 ,+ l(xi)
2 ]× [−h

2 ,+
h
2 ] for i ∈ {1, . . . , N−1}. The con-

tribution of each region to the demagnetization field can
be calculated through closed form expressions, as demon-
strated in Appendix B. Then, the total demagnetization
field, measured at any given point, is simply the sum of
all contributions generated by all parallepepipedal regions.
Of course, we introduce a small systematic error due to
the fact that the system with variable cross-section can be
only approximately represented by the juxtaposition of all
the parallelepipeds. However, the approximation is very
good for a low derivative 	′(x). It is important to notice
that this scheme ensures a relatively efficient computation
since in equations (B.19) and (B.20) of Appendix B the
geometry (derivatives of F function) and physics (mag-
netization) can be decoupled so that geometry dependant
factors are calculated once and for all before the run (i.e.,
off-line).

We define θm
i as the unknown angle for x = xi =

−L/2 + (i − 1)Δx and calculated at the mth iteration.
Since θ1 = θ(x1) = θ(−L/2) and θN = θ(xN ) = θ(+L/2)
are fixed, we can start the procedure with a given guess
function θ0i , i = 1, . . . , N (such that θ01 = θ(−L/2) and
θ0N = θ(+L/2)), and then proceed by iterations [57]. In-
deed, we observe that equation (30) can be written in a
discretized way as follows

0 =
1

Δx2

(
θm

i+1 − 2θm+1
i + θm

i−1

)
+

1
2Δx

(
θm

i+1 − θm
i−1

) 	′i
	i

−μ0MS

2A

[
Ku

μ0MS
sin 2θm+1

i

−H0 cos θm+1
i +

3
2
λSσ

μ0MS
cos 2θm+1

i

+ sin θm+1
i 〈Hdx〉y,z − cos θm+1

i 〈Hdy〉y,z

]
, (32)
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where the unknown quantity at each iteration is θm+1
i ∀i,

and the index m relates to quantities coming from the pre-
vious iteration. As an example, the guess function can be
considered as the linear function imposed by θ1 and θN .
The previous equation (32) is a transcendental nonlin-
ear equation, which must be solved numerically. To solve
this problem, we can reasonably use the bisection method,
which allows for both fast convergence and arbitrarily high
precision. Moreover, the terms 〈Hdx〉y,z and 〈Hdy〉y,z can
be computed by means of the magnetization distribution
at the m-th step. Two parameters are introduced to con-
trol the convergence criteria of the bisection method and
the iterative procedure itself, respectively.

In order to check the performances of the proposed
numerical technique and, in particular, its convergence to-
ward the right solution, we considered a simple case that
can be handled analytically. It corresponds to a nanos-
tripe with constant width, where we only take exchange
and anisotropy contributions into account. In this case the
solution is given by the following closed form expressions√

Ku

A

(
x+

L

2

)
=

1
ξ
F

(
arcsin

ξ sin θ√
ξ2 − cos2 θ

,
1
ξ

)
, (33)

1
ξ
K

(
1
ξ

)
=
L

2

√
Ku

A
, (34)

which are proved in Appendix C (where we also define the
elliptic functions F and K). The second equation must
be solved with respect to the parameter ξ and then the
first one gives the relation between x and θ characteriz-
ing the specific domain wall under investigation (for de-
tails see Appendix C). We underline that this result is
consistent with classical expressions obtained considering
L → +∞ [39]. This solution is now used to check the
numerical technique by direct comparison. We consider
a uniform nanostripe with h = 20 nm, 	 = 40 nm and
L = 400 nm. As one can see in Figure 8, the numerical
procedure correctly converges toward the expected solu-
tion. We used the linear guess to initialize the iterative
procedure. In the inset of Figure 8 we have also shown
the relative error δ (the difference in norm between steps
m and m + 1), which tends to zero, proving the Cauchy
convergence of the sequence [54]. The stopping criterion
of the iterative process is based on a threshold value of δ,
referred to as δmin (here we used δmin = 10−20).

The convergence of the procedure can be more closely
monitored by quantifying the absolute error ε defined as
the difference between the numerical and the theoretical
solution. We considered different level of discretization,
analyzed with the same stopping criterion based on δmin =
10−20. In Figure 9 we show ε as a function of the number
of points N used in the discretization. The relationship
between the two is clearly represented by a power law,
the exponent being about −4. This value of the exponent
remains constant by varying the parameters A and Ku

of the problem, thereby proving a universal convergence.
As usual, one has to find a compromise between accuracy
and calculation time. Indeed, by increasing the number
of points we improve the accuracy but we slow down the

iterations

δ
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π
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0

10−20

10−10

100 104102
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100θ

x (nm)
-100-200 0 100 200

Fig. 8. Magnetization orientation distribution θ(x) converging
toward the analytical solution (red curve) for the simple system
with only exchange and anisotropy contributions. The iteration
process starts from a linear guess. The inset shows the relative
error versus the number of iterations.
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Fig. 9. Absolute error ε between numerical and theoretical so-
lutions versus the number N of points used in the discretization
(all simulations have been performed with the same stopping
criterion based on δmin = 10−20).

convergence, as is visible from the slopes in Figure 10.
Here, the relative error is shown versus the number of
iterations for different levels of discretization.

From these results, the proposed method appears to
be reliable and efficient, and suitable for our purposes.

4.2 Results

We now show some solutions of equation (30) by demon-
strating the possibility to control the position of a domain
wall within the nanostripe. To do this, as before, we use
its discretized form shown in equation (32). With regard
to the initial guess function utilized, we performed a first
simulation with the relaxation method with σ = 0 starting
from the linear guess between the boundary conditions. In
this case the algorithm yields the magnetization profile in
the ferromagnet when no stress is applied. This solution is
then used as the initial guess function in simulations with

http://www.epj.org


Page 10 of 17 Eur. Phys. J. B (2016) 89: 169

iterations

δ iterations

δ

0 500 1000 1500 2500 3000

10−4

100

10−8

10−12

10−16

10−20

N=100

N=200

N=300

N=250

N=150

2000

10−10

101100 102 103
10−20

100

Fig. 10. Relative error δ as a function of the number of iter-
ations for different values of N . In all cases, the convergence
is definitively exponential. Moreover, for a larger number of
points the convergence is slower.

applied stress σ �= 0. This shows that the application of
a stress to the nanostripe results in a change of equilib-
rium position for the domain wall in a direction dictated
by the sign of σ. However, in the case of a nanostripe with
constant cross-section, the domain wall reaches one stripe
extremity, corresponding to domain wall ejection in a real
experiment. For this reason, we propose to use a variable
cross-section in order to have equilibrium positions within
the length of the nanostripe with a smooth relation be-
tween applied stress and wall position.

Let us consider now a function 	(x) increasing with
|x| and minimal for x = 0, which is the initial location of
the domain wall. Once the mechanical stress is applied,
the domain wall will not reach the extremities, thanks to
the exchange energy that grows with |x|. A new equilib-
rium position xp is thus found and depends on the am-
plitude of the mechanical stress. It is interesting to notice
that for larger σ, the domain wall will shift farther from
the center, since the energy gap between the two domains
widens. For high values of σ, the system exhibits a satu-
ration of the domain wall position.

An example of wall ejection is shown in Figure 11
where we considered a uniform nanostripe with h =
20 nm, 	 = 40 nm and L = 400 nm. We adopted the
boundary conditions described by equation (31). The sym-
metrical curve between −L/2 and +L/2 represents the so-
lution with σ = 0, used as initial guess for the iterative
procedure when σ = −100 MPa. All the dashed lines rep-
resent iterations of the relaxation method. We plotted a
curve every 1000 iterations to better show the evolution
of the process and we used δmin = 10−10 for the stopping
criterion. The domain wall arrives at the right extremity,
eliminating the second magnetic domain (ejection). In the
inset we also show the relative error δ versus the itera-
tion number. We can identify two relaxation regime: in
the first one the relative error decreases and the magne-
tization distribution assumes the correct shape (e.g., in
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Fig. 11. Iterative process showing the ejection of the domain
wall in a ferromagnet with constant rectangular section (h =
20 nm and � = 40 nm). In the inset the relative error δ is
plotted versus the iterations number. We used δmin = 10−10

and σ = −100 MPa.
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θ
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δ
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π
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Fig. 12. Iterative process showing the path toward the equi-
librium location of the domain wall for a parabolic nanos-
tripe with central width a = 40 nm and width at extremities
b = 70 nm (h = 20 nm). In the inset the relative error δ is
plotted versus the iterations number. We used δmin = 10−10

and σ = −100 MPa.

terms of slope of the domain wall); in the second one the
relative error is quite constant and the wall moves until
ejection, corresponding to the final error drop.

In Figure 12 we observe an equilibrium position ob-
tained in a nanostripe with variable (parabolic) cross-
section. We considered a nanostripe with h = 20 nm and
	(x) = a + 4 b−a

L2 x
2 where a = 	(0) = 40 nm (central

width), b = 	(±L/2) = 70 nm (width at extremities) and
L = 400 nm. By starting with the same initial guess used
in Figure 11, we apply σ = −100 MPa and we obtain a
final position at about 60 nm. As before, we note two scal-
ing regimes for the relative error, namely (i) attainment
of the shape and (ii) displacement of the wall.

The magnetization distributions corresponding to dif-
ferent values of the applied stress are shown in Figure 13
together with the related energy distributions within the
nanostripe. These results have been obtained with a pro-
file 	(x) with a = 40 nm, b = 70 nm, h = 10 nm and
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Fig. 13. Magnetization orientation distributions θ(x) (left) and corresponding energy profiles e(x) (right) for several values
of the applied stress σ: (a) σ = 60 MPa; (b) σ = 20 MPa; (c) σ = 0; (d) σ = −20 MPa; and (e) σ = −60 MPa. In the left
panel solid lines correspond to solutions with boundary conditions calculated as in equation (31), whereas θ(−L/2) = 0 and
θ(+L/2) = π have been used for solutions represented with dashed lines.

L = 400 nm. In the left panel, concerning the magne-
tization distributions, the solid lines correspond to so-
lutions obtained with the boundary conditions in equa-
tion (31) and the dashed lines to the boundary conditions
θ(−L/2) = 0 and θ(+L/2) = π. Therefore, we can observe
that the boundary conditions do not influence the over-
all behavior of the system. This is especially true for long
wires and as long as there are two large and clearly defined
domains. Indeed, the differences can be only observed in
the regions close to the extremities. In the right panel we
show the corresponding energy profiles e(x) defined such
that the total energy is U =

∫ +L/2

−L/2
e(x)h	(x)dx. It is not

difficult to identify the regions corresponding to the two
domains (with different energy densities) and the region
related to the wall between them (peaks). It is interesting
to note that the slope of the magnetization distribution
of the wall (see left panel) is higher with stronger applied
stress σ. It is coherent with the fact that the thickness of
the wall (see right panel) is smaller with higher σ.

The knowledge of the magnetization distribution for
several values of σ, as in Figure 13 (left panel), allows us
to determine the position of the domain wall versus the
applied stress, which represents the characteristic response
of the system. We performed this analysis for three differ-
ent structures as shown in Figure 14. In all cases we used
a parabolic profile 	(x) defined by the parameter a and
b, as before. The response exhibits a quite linear behavior
for small values of σ and a saturation of the displacement
for high values of σ. We underline that a larger section at
the extremities of the nanostripe reduces the slope of the
xp − σ curve and maximum displacement of the domain
wall (it can be deduced by comparing the results for 	2
and 	3). This is due to the total exchange energy associ-
ated with the domain wall. Similarly, a larger thickness of
the nanostripe reduces the slope of the curve and maxi-
mum displacement of the domain wall (it can be deduced
by comparing the results for 	1 and 	2). This is due to
the demagnetization energy, which is lower with thinner
nanostripes.
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m
)
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�2(x)
�3(x)

0

-100
8040 120-40-80-120
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Fig. 14. Domain wall displacement as a function of the applied
stress for three different quadratic profiles �1, �2 and �3 (a1 =
a2 = a3 = 40 nm, b1 = b2 = 70 nm, b3 = 80 nm, h1 = 10 nm,
h2 = h3 = 20 nm). After a nearly linear region for low values
of σ, the response saturates, exhibiting a displacement range
depending on the geometry.

5 Conclusion

In this paper we presented a complete model describing
the magnetization behavior in nanostripes with variable
cross-section, subject to an external magnetic field and
a mechanical stress. In particular, we wrote the equation
governing the magnetization distribution by taking into
account anisotropy, exchange, demagnetization, magne-
tostriction and Zeeman effects. The method applied con-
sists in writing the total energy of the system in terms
of the direction of the magnetization and then in apply-
ing the techniques of the calculus of variation in order to
minimize the total energy itself. We also proposed an effi-
cient numerical technique in order to solve the main non-
linear integro-differential equation with a relaxation, or
iterative, method. We studied the convergence properties
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of this algorithm by applying it to a particular case, which
can be handled analytically. By means of our theoretical
device, we demonstrated the possibility to control a mag-
netic domain wall position in a ferromagnetic nanostripe
with external mechanical actions. This point is important
for the applications since the mechanical stress to be ap-
plied can be generated through piezoelectric substrate. It
means that the control of a magnetic domain wall position
can be realized in multiferroic heterostructures (composed
of piezoelectric and magnetoelastic subsystems) [24]. This
technique is relevant from the energetic point of view. We
can indeed draw a comparison with other methods based
on the application of an external electric current. If we
consider a piezoelectric substrate in our system, we obtain
an energyΔE = 1.5×10−15 J for moving the wall between
the left and right extreme positions. The details of the
calculation can be found in reference [24]. In general, the
total energy for moving the wall domain between two po-
sitions is the sum of the electrostatic energy stored within
the piezoelectric substrate (CV 2) and the magnetic energy
dissipated within the magnetoelastic stripe. Nevertheless,
the latter is typically negligible and the total energy is ap-
proximately equal to the electrostatic contribution [35,36].
In this case we numerically proved that the magnetic dissi-
pation (�10−17 J) is two order of magnitude smaller than
the electrostatic contribution (�10−15 J), substantiating
the previous statement.

For comparison, the energy consumption for one logic
operation in a current-driven gate based on domain wall
motion is ΔE = 104 fJ [58]. Further investigations on this
subject will consist in analyzing the dynamic behavior of
the system [59–61] and the effects of thermal noise on the
dynamics [62], as well as studying these phenomena at the
experimental level.
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Appendix A: Variational approach
to micromagnetism

The minimization of the functional U defined in equa-
tion (6) can be performed as follows

min
γ : ‖γ‖=1

U → min
γ

⎡
⎣U +

∫
V

λ (γ · γ − 1) dv

⎤
⎦ , (A.1)

where λ = λ (r) is a Lagrange multiplier introduced to
fix the norm of the unit vector γ. Therefore, we have to
minimize

U ′ =
∫
V

⎡
⎣uan + uex + ume + λγ · γ −μ0MS HL · γ︸ ︷︷ ︸

uZe

⎤
⎦ dv,

(A.2)

with HL fixed. This functional assumes its extremal value
when

d

dα
U ′ [γ (r) + αh (r)]

∣∣∣∣
α=0

= 0 ∀h (r) , (A.3)

where the left-hand side represents the Gâteaux deriva-
tive of the functional U ′ [54]. If we define the quantity
U ′′ (γ) = U ′ (γ) − ∫

V

uZedv, equation (A.3) can be rewrit-

ten as
d

dα
U ′′ [γ + αh]

∣∣∣∣
α=0

− d

dα

∫
V

μ0MS HL · (γ + αh) dv
∣∣∣∣
α=0

= 0, (A.4)

or, equivalently, as

d

dα
U ′′ [γ + αh]

∣∣∣∣
α=0

−
∫
V

μ0MS HL · h dv = 0. (A.5)

Although in implicit form, this is the equation giving γ(r)
in V . At this point, we can combine it with HL = H0 +
Hd. It is important to note that this subsitution cannot
be made in U or U ′, before the minimization, since Hd is
a function of γ. Anyway, equation (A.5) becomes

d

dα
U ′′ [γ + αh]

∣∣∣∣
α=0

−
∫
V

μ0MS H0 · h dv

−
∫
V

∫
V

μ0M
2
S h(r) · N̂(r, r0)γ(r0) dr0dr = 0, (A.6)

where we used equation (7) for the demagnetization field.
Equivalently, we can also write

d

dα
U ′′ [γ+αh]

∣∣∣∣
α=0

− d

dα

∫
V

μ0MS H0 · (γ + αh) dv
∣∣∣∣
α=0

− d

dα

1
2

∫
V

∫
V

μ0M
2
S [γ(r) + αh(r)]

·N̂(r, r0) [γ(r0) + αh(r0)] dr0dr

∣∣∣∣
α=0

= 0, (A.7)

where we used the symmetries described in equations (9a)
and (9b). We can then define an auxiliary function Ũ ′

Ũ ′ = U ′′(γ) −
∫
V

μ0MS H0 · γ dv

−
∫
V

∫
V

1
2
μ0M

2
Sγ(r) · N̂(r, r0)γ(r0) dr0dr, (A.8)
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which can be minimized with H0 fixed. We have therefore
proved this series of equivalences

min
γ : ‖γ‖=1

U

∣∣∣∣
HL fixed

⇔ min
γ

U ′
∣∣∣∣
HL fixed

⇔ min
γ
Ũ ′

∣∣∣∣
H0 fixed

⇔ min
γ : ‖γ‖=1

Ũ

∣∣∣∣
H0 fixed

, (A.9)

where Ũ is defined in equation (11). Finally, the minimiza-
tion of Ũ with respect to the direction γ, with T̂ and H0

imposed, leads to the actual magnetization of the ferro-
magnetic body. We can therefore apply the methods of
the calculus of variations to obtain the equation for γ. As
before, we work with the Gâteaux derivative

d

dα
Ũ ′ (γ + αh)

∣∣∣∣
α=0

= 0, (A.10)

where

Ũ ′(γ) = Ũ +
∫
V

λ(r)(γ · γ − 1) dv. (A.11)

We obtain

0 =
∫
V

[
∂φ

∂γ
· h − 1

2
αij

(
∂hl

∂xi

∂γl

∂xj
+
∂γl

∂xi

∂hl

∂xj

)
+ 2λhlγl

− μ0MSH0ihi − aiklmTik(hlγm + γlhm)
]
dv

−μ0M
2
s

∫
V

∫
V

Nij(r, r0)hi(r)γj(r0)dr0dr, (A.12)

where we used again both symmetries of tensor N̂ . To
proceed from here, we use the divergence theorem in the
form ∫

V

∂Φ

∂xi
dv =

∫
∂V

Φni dS. (A.13)

Now, if Φ = fg, we have∫
V

f
∂g

∂xi
dv =

∫
∂V

fg ni dS − ∫
V

g ∂f
∂xi

dv. (A.14)

This property can be used to further elaborate equa-
tion (A.12), as follows

0 =
∫
V

[
∂φ

∂γ
· h − αijhl

∂2γl

∂xi∂xj
+ 2λhlγl − μ0MSH0lhl

− 2aiklmTikhlγm

]
dv +

∫
∂V

αijhl
∂γl

∂xj
ni dS

−μ0M
2
s

∫
V

∫
V

Nij(r, r0)hi(r)γj(r0)dr0dr, (A.15)

where we exploited the symmetry of tensor αij . Being
equation (A.15) true for any smooth function h ∈ R

3,
we can write

0 =
∂φ

∂γ
− αij

∂2γ

∂xi∂xj
− μ0MSH0

+2λγ − μ0MSHd − 2â : T̂γ, (A.16)

where
(
â : T̂γ

)
l

= aiklmTikγm. The Lagrange multiplier
λ can be finally eliminated by applying a cross-product
with γ, which yields equations (12) and (13).

From equation (A.15), we can also deduce the
boundary conditions which can be applied to minimize the
energy functional: αijhl

∂γl

∂xj
ni = 0 on ∂V , where the per-

turbation vector h is not free since it must verify the con-
dition (γ + αh) · (γ + αh) = 1 when γ ·γ = 1. To the first
order in α this translates to γ · h = 0 and, therefore, we
can say that h = w × γ for an arbitrary vector w. Then,
h is not arbitrary but w is completely free. By consider-
ing hl = εlstwsγt, we have αijεlstwsγt

∂γl

∂xj
ni = 0 ∀ws, or

αijεlstγt
∂γl

∂xj
ni = 0 ∀s on ∂V (εlst being the Levi-Civita

permutation symbol). This condition can be strongly sim-
plified when αij ∝ δij (isotropic exchange). In this case
we have εlstγt

∂γl

∂xi
ni = 0 ∀s, where ∂γl

∂xi
ni is the directional

derivative of γl along n. So, it corresponds to γ × ∂γ
∂n = 0.

We also observe that γ is always perpendicular to ∂γ
∂n since

‖γ‖ = 1. Therefore, in order to impose γ × ∂γ
∂n = 0, it is

sufficient to have ∂γ
∂n = 0 on ∂V .

Appendix B: Calculation
of the demagnetization field

We provide here a technique to numerically evaluate the
demagnetization field in our system. To begin, we consider
equation (7) giving the demagnetization field for an arbi-
trary region V . In analogy with the theory of the electric
dipole [42], we may introduce a magnetic scalar poten-
tial Φ such that

Hd(r) = −∇Φ, (B.1)

where

Φ(r) =
∫
V

1
4π

M (r0) · (r − r0)
‖r − r0‖3

dr0. (B.2)

A useful development can be performed when the magne-
tization M is uniform in a given region. In this case we
can apply the divergence theorem∫

V

div w dv =
∫

∂V

w · n dS, (B.3)

where we consider w = M
‖r−r0‖ , with a constant field M .

Indeed, we obtain

div w = M · ∇ 1
‖r−r0‖ = M · r−r0

‖r−r0‖3 , (B.4)
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and, therefore, equation (B.3) reads∫
V

M · r − r0

‖r − r0‖3
dv =

∫
∂V

M · n
‖r − r0‖ dS. (B.5)

As a conclusion, for a uniform magnetization M , the
scalar potential is given by

Φ(r) =
1
4π

M ·
∫

∂V

n dS

‖r − r0‖ , (B.6)

where n is the unit vector normal to the external sur-
face ∂V with area element dS. To calculate the total de-
magnetization field in a given point, we can partition the
whole region in a given number of parallelepipedal layers.
As discussed below, the parallelepipedal geometry allows
for quick and simple computation of the demagnetization
field through the scalar potential Φ. Then, we can add
all the contributions to get the final result. Hence, we
suppose M uniform within the arbitrary parallelepiped
[x1, x2] × [y1, y2] × [z1, z2], and we calculate Φ through
equation (B.6). We define the integral I =

∫
∂V

n dS
‖r−r0‖ and

we write the x component as

Ix =

z2∫
z1

y2∫
y1

dy0 dz0√
(x− x2)2 + (y − y0)2 + (z − z0)2

−
z2∫

z1

y2∫
y1

dy0 dz0√
(x− x1)2 + (y − y0)2 + (z − z0)2

. (B.7)

A change of variables leads to

Ix =

z−z2∫
z−z1

y−y2∫
y−y1

dξdη√
(x− x2)2 + ξ2 + η2

−
z−z2∫

z−z1

y−y2∫
y−y1

dξdη√
(x − x1)2 + ξ2 + η2

. (B.8)

Now, let us define the function F (A,B,C,D,E, F ) as

F =

B∫
A

D∫
C

[
1√

E2 + ξ2 + η2
− 1√

F 2 + ξ2 + η2

]
dξdη,

(B.9)
and we obtain the demagnetization potential in the form

Φ(r) =
1
4π

[MxIx +MyIy +MzIz ] , (B.10)

where

Ix = F(z − z1, z − z2, y − y1, y − y2, x− x1, x− x2),
(B.11)

Iy = F(x− x1, x− x2, z − z1, z − z2, y − y1, y − y2),
(B.12)

Iz = F(y − y1, y − y2, x− x1, x− x2, z − z1, z − z2).
(B.13)

To lighten the notation, we chose to write it in more con-
cise form

Φ(r) =
1
4π

[
MxF

∣∣∣∣
321

+MyF
∣∣∣∣
132

+MzF
∣∣∣∣
213

]
, (B.14)

where the symbol F
∣∣∣∣
ijk

means that the function F is

calculated with variables specified in equations (B.11)–
(B.13). Finally, the components of the demagnetization
field can be derived as

Hdx = −∂Φ
∂x

= − 1
4π

[
Mx

(
∂F
∂E

∣∣∣∣
321

+
∂F
∂F

∣∣∣∣
321

)

+My

(
∂F
∂A

∣∣∣∣
132

+
∂F
∂B

∣∣∣∣
132

)

+ Mz

(
∂F
∂C

∣∣∣∣
213

+
∂F
∂D

∣∣∣∣
213

)]
, (B.15)

Hdy = −∂Φ
∂y

= − 1
4π

[
Mx

(
∂F
∂C

∣∣∣∣
321

+
∂F
∂D

∣∣∣∣
321

)

+My

(
∂F
∂E

∣∣∣∣
132

+
∂F
∂F

∣∣∣∣
132

)

+ Mz

(
∂F
∂A

∣∣∣∣
213

+
∂F
∂B

∣∣∣∣
213

)]
, (B.16)

Hdz = −∂Φ
∂z

= − 1
4π

[
Mx

(
∂F
∂A

∣∣∣∣
321

+
∂F
∂B

∣∣∣∣
321

)

+My

(
∂F
∂C

∣∣∣∣
132

+
∂F
∂D

∣∣∣∣
132

)

+ Mz

(
∂F
∂E

∣∣∣∣
213

+
∂F
∂F

∣∣∣∣
213

)]
. (B.17)

In equation (30), we are working with a two-dimensional
problem where Mz = 0 and, therefore, the number of nec-
essary components to compute Hd is reduced. Moreover,
the symmetry in equation (9a) allows us to prove that the
operator relating Hd and M is always symmetric. Indeed,
we have

∂F
∂A

∣∣∣∣
132

+
∂F
∂B

∣∣∣∣
132

=
∂F
∂C

∣∣∣∣
321

+
∂F
∂D

∣∣∣∣
321

, (B.18)

a property which further reduces the complexity of equa-
tions (B.15) and (B.16)

Hdx = − 1
4π

[
Mx

(
∂F
∂E

∣∣∣∣
321

+
∂F
∂F

∣∣∣∣
321

)

+ My

(
∂F
∂A

∣∣∣∣
132

+
∂F
∂B

∣∣∣∣
132

)]
, (B.19)

Hdy = − 1
4π

[
Mx

(
∂F
∂A

∣∣∣∣
132

+
∂F
∂B

∣∣∣∣
132

)

+ My

(
∂F
∂E

∣∣∣∣
132

+
∂F
∂F

∣∣∣∣
132

)]
. (B.20)
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To complete this discussion, one can observe that the in-
tegral in equation (B.9) can be calculated in closed form.
This is very useful for the numerical implementation of
the proposed procedure

F = +A ln
√

E2 + A2 + D2 + D√
F 2 + A2 + D2 + D

√
F 2 + A2 + C 2 + C√
E2 + A2 + C 2 + C

+B ln
√

E2 + B2 + C 2 + C√
F 2 + B2 + C 2 + C

√
F 2 + B2 + D2 + D√
E2 + B2 + D2 + D

+C ln
√

E2 + A2 + C 2 −A√
F 2 + A2 + C 2 −A

√
F 2 + B2 + C 2 − B√
E2 + B2 + C 2 −B

+D ln
√

E2 + B2 + D2 −B√
F 2 + B2 + D2 −B

√
F 2 + A2 + D2 −A√
E2 + A2 + D2 −A

+E arctan

(
E2 + A2 − A

√
E2 + A2 + D2

D E

)

−E arctan

(
E2 + A2 − A

√
E2 + A2 + C 2

C E

)

−E arctan

(
E2 + B2 − B

√
E2 + B2 + D2

D E

)

+E arctan

(
E2 + B2 − B

√
E2 + B2 + C 2

C E

)

−F arctan

(
F 2 + A2 − A

√
F 2 + A2 + D2

D F

)

+F arctan

(
F 2 + A2 − A

√
F 2 + A2 + C 2

C F

)

+F arctan

(
F 2 + B2 − B

√
F 2 + B2 + D2

D F

)

−F arctan

(
F 2 + B2 − B

√
F 2 + B2 + C 2

C F

)
.

(B.21)

Moreover, all its derivatives can be computed in order
to implement equations (B.15)–(B.17). This can be easily
done, e.g., in a symbolic environment. A similar calcula-
tion can be also found in reference [63].

Appendix C: Domain wall with exchange
and anisotropy energy

We analyze a specific domain wall configuration, which is
important from both the theoretical and numerical points
of view. We consider the simple case of a ferromagnetic

stripe with only exchange and anisotropy energy contribu-
tions. Accordingly, the total energy can be deduced from
equation (26), eventually obtaining

U = hl

+ L
2∫

−L
2

[
−Ku cos2 θ +A

(
dθ

dx

)2
]
dx. (C.1)

The Lagrangian function of the variational problem is
therefore

L = −Ku cos2 θ +Aθ′2, (C.2)

where θ′ ≡ dθ
dx . The associated Hamiltonian function is

H =
∂L
∂θ′

θ′ − L = Aθ′2 +Ku cos2 θ. (C.3)

Since ∂L
∂x = 0, we have the conservation of H, leading to

the simplified differential equation

θ′ =

√
−Ku

A
cos2 θ + C1, (C.4)

where C1 is an integration constant. The boundary con-
ditions

θ

(
−L

2

)
= 0, θ

(
+
L

2

)
= π, (C.5)

adopted to analyze the problem, guarantee the existence
of the ferromagnetic domain wall. Separating the variables
in equation (C.4), we obtain

θ∫
0

dθ√
C2 + sin2 θ

=
(
x+

L

2

)√
Ku

A
, (C.6)

where we used the first boundary condition and we in-
troduced C2 = AC1/Ku − 1. The coefficient C2 can be
calculated by considering the second boundary condition.
We get

π∫
0

dθ√
C2 + sin2 θ

= 2

π
2∫

0

dθ√
C2 + sin2 θ

= L

√
Ku

A
. (C.7)

We now introduce the integral [64]

∫
dx√

1 + p2 sin2 x
=

1√
1 + p2

F

(
α,

p√
1 + p2

)
, (C.8)

where α = arcsin
√

1+p2 sin x√
1+p2 sin x

and F (ν, q) is the incomplete

elliptic integral of the first kind, defined as [65,66]

F (ν, q) =

ν∫
0

du√
1 − q2 sin2 u

=

sin ν∫
0

dx√
(1 − x2) (1 − q2x2)

.

(C.9)
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We therefore obtain the equation for C2 in the form

1√
1 + C2

K

(
1√

1 + C2

)
=
L

2

√
Ku

A
, (C.10)

where we also used the complete elliptic integral of the
first kind K(q) [65,66]

K(q) = F
(π

2
, q
)

=

π
2∫

0

du√
1 − q2 sin2 u

. (C.11)

Similarly, we can rewrite equation (C.6) in terms of elliptic
integrals√

Ku

A

(
x+

L

2

)
=

1√
1 + C2

F

(
αθ,

1√
1 + C2

)
(C.12)

where

αθ = arcsin
√

1 + C2 sin θ√
C2 + sin2 θ

. (C.13)

Equations (C.10) and (C.12), although in implicit form,
solve the problem of the finite-length stripe with exchange
and anisotropy energies. We finally observe that by defin-
ing ξ =

√
1 + C2, these equations can be further simplified

as follows√
Ku

A

(
x+

L

2

)
=

1
ξ
F

(
arcsin

ξ sin θ√
ξ2 − cos2 θ

,
1
ξ

)
,

(C.14)

1
ξ
K

(
1
ξ

)
=
L

2

√
Ku

A
. (C.15)

It is interesting to prove that, for L → ∞, we obtain
a classical result cited in several textbooks (see, e.g.,
Ref. [39]). To begin, we note that ξ → 1+ and therefore
η ≡ 1/ξ → 1− when L → ∞. Equation (C.14), in terms
of η, becomes√

Ku

A
x+ ηK(η) = ηF

(
arcsin

sin θ√
1 − η2 cos2 θ

, η

)
.

(C.16)
Hence, the limiting case for L→ ∞ is not trivial since both
arguments of the elliptic function F in equation (C.16)
depends on η → 1−. To cope with with this problem, we
use the following property of the function F [65,66]

F (ϕ, sinα) + F (ψ, sinα) = K(sinα)
if cosα tanϕ tanψ = 1, (C.17)

with sinα = η and ϕ = arcsin sin θ√
1−η2 cos2 θ

. Then equa-

tion (C.16) can be eventually rewritten as√
Ku

A
x+ ηF (ψ, η) = 0, (C.18)

where ψ can be found through the relation

tanψ =
1

cosα tanϕ
=

√
1 − η2 cos2 θ − sin2 θ

sin θ
√

1 − η2
, (C.19)

leading to sinψ = cos θ. Consequently, equation (C.18)

reduces to
√

Ku

A x + ηF (arcsin cos θ, η) = 0. Therefore,

for L → ∞ (i.e. η → 1), we have that
√

Ku

A x +
ηF (arcsin cos θ, 1) = 0. Now, we use the property [65,66]

F (ψ, 1) = ln(secψ + tanψ), (C.20)

and we can easily obtain the result

θ(x) = 2 arctan

[
exp

(√
Ku

A
x

)]

= π − arccos

[
tanh

(√
Ku

A
x

)]
, (C.21)

which is the well-known solution for the infinitely long
stripe with exchange and anisotropy energies [39].
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51. M. Kläui, C.A.F. Vaz, J. Rothman, J.A.C. Bland, W.

Wernsdorfer, G. Faini, E. Cambril, Phys. Rev. Lett. 90,
097202 (2003)

52. D. Petit, A.-V. Jausovec, D. Read, R.P. Cowburn, J.
Appl. Phys. 103, 114307 (2008)
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