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8.1 Introduction

As the need for energy efficient data processing and data storage booms, numerous efforts are
made by research laboratories and industrials to develop the next generation of random access
memories. In a 2013 report on emerging technologies to prepare for the post-CMOS era, the
International Technology Roadmap for Semiconductors underlines the necessity to “Identify
the most promising technical approach(es) to obtain electrically accessible, high-speed, high-
density, low-power, (preferably) embeddable volatile and nonvolatile memories” [1]. In 2009,
Mark Kryder and Chang Soo Kim compared the different existing approaches and technologies
for the next generation [2]. They described the following solutions: ferroelectric random
access memory (FRAM), magnetic memory (MRAM), spin torque transfer magnetic memory
(STTRAM), phase change memory (PCRAM), carbon nanotube memory (NRAM), probe
memories, holographic memory, conductive bridge memory (CBRAM), resistive memory
(RRAM), racetrack memory, one electron memory (SEM), molecular memory and polymer
memory. Among all these, the authors argued that only RRAM, CBRAM STTRAM and
PCRAM seemed to be viable in the long run. The 2013 ITRS report confirmed this analysis
and added carbon-based devices as well as Mott memories to the list of emerging technologies.
Both studies are omitting the use of multiferroic materials, possessing coupled ferroelectric
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and ferromagnetic phases [3,4]. The interest in these materials is huge: using an electric field,
one can write the information into the magnetic system with virtually “no energy,” and read the
information via magnetoresistive structures without destroying it. One of the most important
reasons for considering multiferroic materials and structures comes from the global demand
for low-power devices. In fact, it is generally accepted that the factor limiting the down-scaling
and the high integration level in standard semiconductor electronics is power dissipation [5].
In order to circumvent this issue, a first step is the change of the physical state variable: the
energy needed for switching the state of a bit in a standard electronic device is equal to at
least NkBT ln(1∕p) where N is the numbers of electrons (weakly or noninteracting carriers)
involved in the process, kB is the Boltzmann constant, T is the temperature and p is the bit
error probability. On the other hand, if the information is encoded in the magnetization state of
a monodomain ferromagnet composed of M strongly interacting spins, the switching process
dissipates an energy equal to about kBT ln(1∕p), independently of the number M of spins [6].
Being able to control magnetization with an electric field would be the best way to reach the
theoretical limits.

To date, very few materials with sufficient intrinsic multiferroic properties at room temper-
ature were found suitable to be used in memory applications. The inclusion of multiferroic
barriers into Magnetic Tuneling Junctions (MTJ) shows interesting results but still far below
room temperature [7]. Another way is to amplify the effect of a room temperature multiferroic
such as Cr2O3 using interfacial properties in order to control the value of an exchange field.
This led to a magnetoelectric memory using electric field control and cooling through the Néel
temperature [8,9]. Further studies led to an isothermal switching memory that still requires to
be operated close to the Néel temperature @ 303 K [10]. Magnetoelectric effects can also be
observed at the interface of magnetic materials and insulators thanks to the effect of the electric
field on charge distribution [11, 12]. This phenomenon involves very high electric fields and
is limited to a few atomic layers at the interface.

On the other hand, a magnetoelectric effect can be obtained in composite structures that use
strain-coupled piezoelectric and magnetostrictive materials that can operate at room temper-
ature and offer several design possibilities [13, 14]. A few recent works [15–19] related the
effect of stress on the magnetic properties of magnetostrictive materials and some of the teams
tried to use it as a memory device but could not achieve a simple switching procedure. In fact,
due to symmetry concerns, the stress-mediated magnetoelectric effect unfortunately prevents
electrically driven magnetization reversal, except when using so-called “ballistic” switching
or using a magnetic field-assisted techniques. In both cases, the knowledge of the previous
state of the memory element is needed to write a new bit, which dramatically complicates the
writing process. Most of the proposed composite memory devices are thus toggle memories
whose initial state must be known prior to writing operation [20] and may need precisely
synchronized driving signals [21]. Other systems use the magnetocrystalline axes to obtain
several equilibrium positions [22, 23] but this requires the control of epitaxial growth.

In the present chapter the concept of a strain- or stress- mediated magnetoelectric memory
cell with unequivocal (i.e., nontoggle) switching will be detailed. First, the concept of the
memory will be presented as well as the switching procedure in the quasi-static case. The
Landau-Lifshitz-Gilbert (LLG) equation will be solved in the case of a macro-spin model in
order to assess the dynamic switching behavior of the magnetization. Then, the Eshelby for-
malism coupled with the Langevin approach will be used to study the influence of temperature
on the stability and robustness of the memory.
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Figure 8.1 Geometry of the memory element

8.2 Concept of Unequivocal Strain- or Stress-Switched
Nanomagnetic Memory

8.2.1 Magnetic Configuration and Equilibrium Positions

In order to break the symmetry, a solution is to apply a magnetic polarization on top of the
uni-axial anisotropy. Figure 8.1 shows the configuration of a magnetoelastic elliptic cylinder
lying on the xy plane. The x, y, x′ and y′ axes lie in the same plane, x′ makes a −𝜋∕4 angle
with respect to x. A static magnetic field H is applied in this plane, perpendicular to the easy
axis of magnetization that lies along the x axis. In the case of a TbFe2 (Terfenol) element, the
magnetic parameters of the material are given in Table 8.1.

As a result of the competition between the external magnetic field and the shape and/or field-
induced anisotropy (i.e., created by applying an external magnetic field during deposition), the

Table 8.1 Magnetic, magnetoelastic and elastic parameters of Terfenol used in simulations

Parameter Symbol Value

Magnetization (a) Ms 64 × 104 A/m
First magneto-elastic coefficient (a,b) 𝜆111 1.7 × 10−3

Second magneto-elastic coefficient (a,b) 𝜆100 0.1 × 10−3

Effective magneto-elastic coefficient (c) 𝜆s =
3

5
𝜆111 +

2

5
𝜆100 1.06 × 10−3

Young modulus of the particle (b) E 110 GPa
Poisson ratio of the particle (b) 𝜈 0.35
Exchange stiffness constant (d) A 10−11 J/m
Gilbert damping coefficient (e) |𝛼| 0.3
Landé g-factor g 2
Bohr magneton 𝜇B = eℏ

2me
9.274 × 10−24 J T−1

Gyromagnetic ratio || = g𝜇B

ℏ

1.76 × 1011 rad s−1 T−1

(a) [24] (b) [25] (c) [26] (d) [27, 28] (e) [29, 30].
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ellipsoidal element exhibits two stable equilibrium positions, which, unlike usual magnetic
memory elements, are not directed along the easy axis of magnetization (EA). If no stress is
applied, the magnetic free energy density can be written as

w̃m = −𝜇0MsH sin(𝜑) sin(𝜗) − 1
2
𝜇0MsHa,eq cos2(𝜑) sin2(𝜗), (8.1)

where 𝜇0 is the vacuum permeability, Ms the saturation magnetization, H the external applied
field, 𝜑 and 𝜗 are the angles of magnetization in spherical coordinates as specified on Fig-
ure 8.1(a) and (b), and Ha,eq is the effective anisotropy field, which takes into account all
the quadratic anisotropies, namely shape, magnetocrystalline and field induced magnetoelas-
tic anisotropy. Higher-order anisotropies are neglected here. We first consider a disc-shaped
element and henceforth suppose that magnetization remains in the (x, y) plane, that is, that
sin(𝜗) = 1. Equation (8.1) simplifies into

w̃m = −𝜇0MsH sin(𝜑) − 1
2
𝜇0MsHa,eq cos2(𝜑). (8.2)

For H < Ha,eq, the equilibrium condition, 𝜕w̃m∕𝜕𝜑 = 0 gives 𝜑0 = arcsin(H∕Ha,eq). With

H = (
√

2∕2)Ha,eq, we obtain two distinct perpendicular equilibrium positions for 𝜑 = 3𝜋∕4
(arbitrarily named state “1”) or 𝜑 = 𝜋∕4 (state “0”), as illustrated in Figure 8.1(c).

Given the studied geometry and magnetic configuration, the energy barrier Eb is given as the
difference of the free energy for 𝜑 = 𝜋∕2 (lowest local energy maximum in the energy profile,
see Figure 8.2) and 𝜑 = 𝜋∕4 or 𝜑 = 3𝜋∕4 (symmetrical local energy minima). Therefore, with
the volume 𝜋abh, Eb = 𝜋abh[w̃m(𝜑 = 𝜋∕2) − w̃m(𝜑 = 𝜋∕4)].

With the condition H = (
√

2∕2)Ha,eq, this expression leads to:

Eb =
3 − 2

√
2

4
𝜋abh𝜇0MSHa,eq. (8.3)

For a structure allowing decent storage densities, such as the one described in Figure 8.6
with a = 25 nm, b = 15 nm, h = 20 nm, and considering a saturation magnetization Ms =
640 kA.m−1, it is possible to induce a sufficient anisotropy to ensure a good stability of the
stored information over time. For Ha,eq ≈ 300 kA.m−1, Eb ≈ 60 kBT. According to the Néel-
Brown relaxation law [31,32], the error probability over a period t is given by P = (1 − e−t∕𝜏 )
where 𝜏 = 𝜏0 exp(Eb∕(kBT)). For typical values of 𝜏0 ≈ 10−9 s this energy barrier is sufficient
to ensure thermal stability over ten years at room temperature (293 K), making it usable for
long-term data storage applications. A thorough discussion about the thermal stability will be
led in Section 8.5.

Now that the existence of two stable positions is demonstrated, the question of the control of
magnetization between these states arises. As explained in the following section, the application
of uniaxial stress on the magnetostrictive material allows the deterministic selection of the
final state, that is, without prior knowledge of the initial state.
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Figure 8.2 Quasi-static evolution of the free energy profiles and equilibrium positions of magneti-
zation: (a) tensile stress, 𝜑0 = 𝜋∕4; (b) compressive stress, 𝜑0 = 3𝜋∕4; (c) tensile stress, 𝜑0 = 3𝜋∕4;
(d) compressive stress, 𝜑0 = 𝜋∕4. Dots indicate the position of magnetization and arrows indicate the
evolution of the equilibrium as the absolute value of stress increases.

8.2.2 Quasi-Static Stress-Mediated Switching

Let us assume that an in-plane stress 𝜎ij is applied to the magnetoelastic element, in the x′,y′,
z′ reference. The resulting magnetoelastic energy can be written as follows:

w̃me = −3
2
𝜆S(𝜎x′x′ − 𝜎y′y′) cos2

(
𝜑 + 𝜋

4

)
− 3

2
𝜆S𝜎x′y′ cos

(
𝜑 + 𝜋

4

)
sin

(
𝜑 + 𝜋

4

)
. (8.4)

For purely tensile/compressive stress, that is, 𝜎x′y′ = 0, this quadratic expression shows that
stress can be used to control the anisotropy and consequently to rotate magnetization.

A positive stress 𝜎 = 𝜎x′x′ − 𝜎y′y′ > 0 creates a magnetic easy axis along the x′ axis whereas
negative 𝜎 < 0 stress creates an easy plane of magnetization perpendicular to the x′ axis.
In the case of a piezoelectric or electrostrictive generation of stress, the stable position of
magnetization can therefore be unequivocally controlled by voltage, depending on its sign.
Using the same approach as introduced in recent literature [33], it is possible to numerically
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simulate the quasi-static rotation of magnetization under extrinsic stress. At each iteration, the
algorithm computes the local minimum of the free energy for 𝜎i+1 = 𝜎

i + 𝛿𝜎, starting from
the previous equilibrium position at 𝜑0. Figure 8.2 shows the magnetic free energy profile of
the particle as well as the equilibrium position of magnetization for compressive and tensile
stresses and for different initial positions.

As shown in Figure 8.2, for a given initial state, the final state is an univocal func-
tion of the applied stress, when |𝜎| reaches a critical value |𝜎min|. This critical value is
defined as the value for which the initial equilibrium position becomes unstable, that is, when
𝜕

2(w̃m + w̃me)∕𝜕𝜑2 = 0 and 𝜕(w̃m + w̃me)∕𝜕𝜑 = 0. In the example defined earlier, this value
is numerically found to be |𝜎min| = 26.5 MPa for both tensile and compressive stress. If we
neglect the rotation of magnetization for |𝜎| < |𝜎min|, a straightforward analysis shows that|𝜎min| ≈ 𝜇0MsHa,eq∕(6𝜆s). This quasi-static approach is not sufficient to assess the capabilities
of the system with regards to switching speed and dissipated power. The following section
adresses these concerns through the use of the macrospin model and the Landau-Lifshitz-
Gilbert (LLG) equation.

8.3 LLG Simulations – Macrospin Model

8.3.1 Landau-Lifshitz-Gilbert Equation and Effective Magnetic Field

Given the size of the magnetic particle, the strength of the exchange interaction for Terfenol
and the anisotropy (see Table 8.1), the magnetic system is monodomain and all the spins
behave collectively, as demonstrated through simulations using the open source micromagnetic
software Magpar [34] with typical mesh cells sizes below 10 nm. The internal magnetization
M⃗ = Ms𝛾 is then considered as uniform. Ms is its constant intensity and 𝛾 is a unit vector.
Therefore, using the macrospin aproximation, the dynamic behavior of the memory element
can also be investigated thanks to the well-known Landau-Lifshitz-Gilbert (LLG) equation
[35–37]:

d𝛾
dt

= − 

Ms(1 + 𝛼2)

[
𝛾 × 𝜕w̃

𝜕𝛾

− 𝛼𝛾 ×
(
𝛾 × 𝜕w̃

𝜕𝛾

)]
, (8.5)

where  is the gyromagnetic ratio, 𝛼 is the Gilbert damping parameter. Note that here,  < 0
and 𝛼 < 0 to represent electrons precession.

The term 𝜕w̃
𝜕𝛾

is equivalent to an effective magnetic field H⃗eff taking into account the various
interactions on the magnetization.

H⃗eff = − 1
𝜇0MS

𝜕w̃
𝜕𝛾

, (8.6)

H⃗eff = H⃗ + H⃗a + H⃗d + H⃗me with H⃗ being the contribution of the external field, H⃗a the uni-axial

anisotropy, H⃗d the shape anisotropy, and H⃗me the magnetoelastic effects.

The demagnetizing field is given by H⃗d = −MsN𝛾 , where N = (Nij) is the demagnetizing
tensor depending on the geometry. In the case of the elliptical cylinder described in Figure 8.6
with parameters given in Table 8.2, the values of the components of the demagnetizing tensor
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Table 8.2 Parameters used in simulations for the elliptic cylinder in
a piezoelectric matrix (Figure 8.6)

Parameter Symbol Value

Axis along x 2a 50 nm
Axis along y 2b 30 nm
Height along z h 20 nm
Distance between electrodes d 130 nm
Electrode length le 120 nm
Electrode height he 50 nm
PZT relative dielectric constant 𝜀r 3000
Approximate Capacitance C = lehe𝜀∕d 1.22 fF

can be calculated [38] and in our case, Nxx ≈ 0.2, Nyy ≈ 0.35 and Nzz ≈ 0.45. Assuming
uniaxial stress, the following expression can therefore be obtained in basis (x, y, z):

H⃗eff =
(

1
2

Ha𝛾x − MsNxx𝛾x +
3𝜆s𝜎

2𝜇0Ms
(𝛾x − 𝛾y),

H − 1
2

Ha𝛾y − MsNyy𝛾y −
3𝜆s𝜎

2𝜇0Ms
(𝛾x − 𝛾y),

−MsNzz𝛾z

)
. (8.7)

8.3.2 Memory Parameters

The parameters used for the magnetoelastic particle are presented in Table 8.1. As it is
supposed amorphous, its effective magnetostriction coefficient can be evaluated using 𝜆111
and 𝜆100 through the following formula [26]:

𝜆s =
3
5
𝜆111 +

2
5
𝜆100 ≈ 1.06 × 10−3 (8.8)

We assumed a damping coefficient equal to 𝛼 = 0.3 which is a reasonable value for
ferrimagnetic Rare Earth-Transition Metal (RE-TM) alloys, and a gyromagnetic ratio  =
g𝜇B∕ℏ ≈ 1.76 × 1011 rad.s−1.T−1 with g = 2 the Lande factor of the electron and 𝜇B the Bohr
magneton.

The geometry parameters used for the simulations are given in Table 8.2. The external
magnetic field was chosen equal to H = 150 kA.m−1. Taking into account the shape anisotropy,
the additional field-induced anisotropy is chosen equal to Ha = 93 750 A.m−1, so that the
equilibrium positions are perpendicular. Such an anisotropy can be obtained in nanostructured
magnetostrictive thin films, as demonstrated in [39] or [40]. In this model, we assume that
stress reaches instantly its set-point value and remains constant hereafter. Nonetheless, as
illustrated in [20], more complex schemes can be envisioned and studied, in particular in the
case of adiabatic charge of a piezoeletric capacitor.
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Figure 8.3 Trajectories of magnetization 𝛾 from state “0” for 𝜎 = 20 MPa (a), 𝜎 = 100 MPa (b) and
𝜎 = 120 MPa (c). Top: in the x′, y′, z′ reference; Bottom: 𝛾 components in the x, y, z reference.

8.3.3 Results of the Macrospin Model

8.3.3.1 Trajectories

Equation 8.5 can be solved for various stress values using a standard numerical routine [41].
The initial positions of magnetization are determined by preliminary simulations.

Figure 8.3 and 8.4 present the trajectories and the temporal evolution of 𝛾 for tensile
(Figure 8.3) and compressive (Figure 8.4) stress along x′. For tensile stress, the trajectories of
𝛾 remain similar, irrespective of the value of |𝜎| is. The vector 𝛾 leaves its initial equilibrium
position before precessing around the new stable position defined by the magnetoelastically
induced easy axis. In the case of compressive stress, the behavior of 𝛾 changes dramatically. For
values of |𝜎| ranging approximately from 7 to 100 MPa, magnetization dynamics exhibit the
same behavior as in the previous case. For very high values of stress (>110 MPa), the ringing
phenomenon occurs around both the initial equilibrium position and the final equilibrium
position. An intermediate case, in which 𝛾 reaches a wrong equilibrium position can also be
observed, as shown on Figure 8.4(b). Nonetheless, numerical simulations show that when stress
is removed, magnetization reaches the correct desired position. These discrepancies originate
from the nature of the magnetoelastic anisotropy. In the case of tensile stress, magnetoelastic
coupling creates an easy axis of magnetization whereas compressive stress creates an easy
plane of magnetization. In any case, deterministic switching can occur.
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Figure 8.4 Trajectories of magnetization 𝛾 from state “1” for 𝜎 = −20 MPa (a), 𝜎 = −100 MPa (b) and
𝜎 = −120 MPa (c). Top: in the x′, y′, z′ reference; Bottom: 𝛾 components in the x, y, z reference.

It can be noted that even if simulation have been performed for very large stress values,
the minimal stress required to induce switching has been numerically evaluated to |𝜎min| ≈ 7
MPa in both tensile and compressive case. For practical applications, the values of required
stress will remain in the 20 MPa range. Let us also note here that a lower energy barrier leads
to a decrease of the minimal stress, at the expense of retention time.

8.3.3.2 Switching Time

The switching time t1% of the system is defined as the time by which 𝛾y′ is comprised between
0.99 and 1.01 times its equilibrium value. This choice for t1% is arbitrary and does not account
for the maximum clock frequency of the system, but only stands for an image of the time
needed to reach the equilibrium under extrinsic stress. Figure 8.5 presents the value of t1% as
a function of the modulus of the applied stress for tensile and compressive stress.

In any case, for values of stress above |𝜎| ≈ 15 MPa, switching time can be made inferior
to 0.5 ns, thus allowing at least clock frequencies up to around 1 GHz.

8.3.3.3 Dissipated Energy

Let us now consider the embedding of a magnetostrictive element in a Lead-Zirconate-Titanium
(PZT) piezoelectric matrix, as illustrated on Figure 8.6. As shown in [42], such a configuration
allows the generation of uniaxial stress in the magnetostrictive element.
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While considering the dynamic switching of the memory element, it is necessary to consider
the energy dissipation inside the PZT element regarded as a capacitor. Indeed, each set or
reset cycle is composed of nonadiabatic charge and discharge of the capacitor and therefore
dissipates an amount of energy equal to Ed,e = CV2. From an electrical point of view, the system
can be considered in first approximation as a parallel plate capacitor. Hence, C ≈ 𝜀S∕d, where
𝜀 = 𝜀r𝜀0 is the dielectric constant of PZT, S is the surface of the electrodes and d the distance
between them. With the geometric parameters specified in Figure 8.6 and Table 8.2, we find
C ≈ 1.22 fF. With V = 0.4 V, we find Ed,e = CV2 ≈ 0.2 fJ. Please note that the capacitance
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H

Figure 8.6 Geometry of the piezoelectric matrix.
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Figure 8.7 Dissipated magnetic energy versus switching time.

of the interconnections is not taken into account here. Compared to CMOS based devices,
the advantage of the magnetoelectric system is that only low voltages are required to induce
switching, thanks to coupled high magnetostrictive and piezoelectric coefficients.

The other source of dissipation lies in the precession of magnetization and its interactions
with the surrounding lattice. The energy dissipated during the precession of magnetization can
be evaluated by the following expression [43]:

Ed,m = −
∫

∞

0

vd�̃�
dt

dt = v
𝛼Ms

 ∫

∞

0

(
d𝛾
dt

)2

dt. (8.9)

with v being the volume of the magnetic element. This dissipated energy has been computed
for different values of stress and, as expected, this energy decreases as the switching time
increases, as illustrated in Figure 8.7.

For 𝜎 up to 100 MPa, which corresponds to voltages lower than 0.4 V as shown in [42],
the total energetic writing cost is inferior to Ed = Ed,m + Ed,e ≈ 0.21 fJ/bit. Compared to other
switching methods, this energy is still 3 orders of magnitude below [2].

8.4 LLG Simulations – Eshelby Approach

We present in this section a different methodology introduced to obtain a simple model, able
to take into account all the coupling phenomena through a single energy function for the



232 Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing

Figure 8.8 Magnetoelastic particle inserted between two electrodes in a piezoelectric matrix: three-
dimensional scheme (a) and top view (b). The easy axis and the hard axis of the particle are along the x
and y axis, respectively. The electrodes generate the electric field E⃗∞ at 𝜑 = 3𝜋∕4 while the magnetic
field H⃗∞ is applied at 𝜑 = 𝜋∕2. Source: Giordano et al., 2013b [48]. Reproduced by permission of IOP
Publishing.

particle. So doing, this energy function can easily be coupled with the LLG equation (see
Equation (8.5)) in order to analyze the dynamics of the system. To do this, we introduce the
hypothesis of an ellipsoidal magnetoelastic particle embedded in a piezoelectric matrix (see
Figure 8.8). This assumption on the geometry allows us to exploit the Eshelby theory, applied
to the fully coupled magneto-electro-elastic case. As a matter of fact, it is well known that
an elastic ellispoidal particle embedded in a different matrix, when subjected to a remotely
applied mechanical load, exhibits uniform stress and strain inside it [44]. The uniformity of
the physical fields is also confirmed to the general case with a linear magneto-electro-elastic
coupling [45–47] and is relevant to our memory structure. As previously discussed in this
chapter, we elaborate the energy function by considering the Zeeman term, the magnetic
anisotropy and the magnetostriction. By analysing the coupling with the external magnetic
and electric fields, we provide a general form for the energy function that is able to describe
the magnetostriction orientation in terms of the applied fields and is useful for studying the
static and dynamic behaviors of the memory.

8.4.1 Geometry of the Memory Element

We consider a magnetoelastic ellipsoidal particle embedded in a piezoelectric matrix (see
Figure 8.8 for details) and we briefly introduce the formalism developed for modeling its
behavior. As earlier, the polarizing field H⃗∞ is applied along the y axis in order to define the
two equilibrium positions “1” and “0.” A more general case is described by this model since
we do not consider the applied stress but the electric field E⃗∞ created upon application of
a voltage across the electrodes. The piezoelectric matrix is used to change the state of the
memory: depending on its sign, the electric field E⃗∞ induces a tension or a compression along
the direction perpendicular to the planes of the parallel electrodes. Again, a tensile stress stores
the bit “1” while a compressive stress stores “0.”

As a typical example, we adopt a nanoparticle made of TbFe2 (Terfenol) with semi-axes a1,
a2, and a3 inserted in a Lead Zirconate Titanate (PZT-5H) matrix. The internal magnetization
M⃗ = Ms𝛾 is uniform (Ms is its constant intensity and 𝛾 is a unit vector) because of the small
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Table 8.3 Parameters used in simulations for the elliptic cylinder in a piezoelectric matrix (Figure 8.5)

Parameter Symbol Value

Axis along x 2a1 45 nm
Axis along y 2a2 25 nm
Axis along z 2a3 20 nm
Electrode length le 70 nm
Electrode height he 20 nm
PZT relative dielectric constant 𝜀r 3000
Approximate capacitance C = lehe𝜀∕d 0.3 fF

size of the particle. The direction 𝛾 can be determined by minimizing the following energy
function [49]

w(𝛾) = −𝜇0Ms𝛾 ⋅ H⃗ + 𝜑a(𝛾) − T̂ : �̂�
𝜇

(𝛾). (8.10)

The first term (Zeemann energy) describes the effect of the local magnetic field H⃗. The
second term 𝜑a(𝛾) represents the anisotropic energy [42]. In our case we assume the usual
uniaxial form 𝜑a(𝛾) = −(1∕2)𝜇0MsHa𝛾

2
x . Finally, the third term represents the elastic and

magnetoelastic energy, where T̂ is the local stress and �̂�
𝜇

(𝛾) is the strain describing the
magnetostriction. We use the standard expression �̂�

𝜇
(𝛾) = (𝜆s∕2)(3𝛾 ⊗ 𝛾 − Î) where Î is the

identity tensor and the effective magnetostriction coefficient 𝜆s can be evaluated as in Table
8.1 where one can find the main parameters of Terfenol. Similarly, in Table 8.3 one can find
the main parameters of the system.

To conclude, we summarize the constitutive equations of the particle: the magnetic behavior
is governed by B⃗ = 𝜇0[H⃗ + Ms𝛾] where B⃗ is the magnetic induction and the elastic one by
T̂ = L̂2{�̂�0 − �̂�

𝜇
(𝛾)} where �̂�0 is the local strain tensor (referred to the demagnetized particle)

and L̂2 is the stiffness tensor of the particle. Here 𝛾 = 𝛾(H⃗, T̂) can be found through the
nonlinear minimization of Equation (8.10).

8.4.2 Coupling with the External Magnetic Field

It is important to know the relationship between the local magnetic field H⃗ and the externally
applied magnetic field H⃗∞. As recently discussed [50], the solution of this problem is given by

H⃗ = [Î − Ŝm(Î − �̂�
−1
1 𝜇0)]−1[H⃗∞ − Ŝm�̂�

−1
1 𝜇0Ms𝛾

]
= ÂH⃗∞ + N̂𝛾 , (8.11)

where the tensor Ŝm is the magnetic Eshelby tensor [51, 52], 𝜇0 is the vacuum magnetic
permeability and �̂�1 is the magnetic permeability tensor of the piezoelectric matrix. Tensors Â
and N̂ can be directly identified by the first line of Equation (8.11). The local magnetic field is
therefore explicitly written in terms of the remotely applied magnetic field and of the internal
magnetization orientation.
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8.4.3 Coupling with the External Electric Field and Elastic Stress

The coupling with the external electric and elastic fields is mediated by the piezoelectric matrix,
representing the environment where the particle is inserted. We search for the relationship
between the local stress T̂ and the applied electric field E⃗∞ and the remote elastic strain �̂�

∞.
We remember that the constitutive equation of the matrix can be written as T̂ = L̂1�̂� + Q̂1E⃗
and D⃗ = R̂1�̂� + �̂�1E⃗ where L̂1 is the elastic stiffness tensor, �̂�1 is the permittivity tensor and
Q̂1 and R̂1 = −Q̂T

1 are the piezoelectric tensors of the matrix. The tensor properties of the
PZT-5H matrix can be found in literature [53]. The magnetoelastic particle is inserted into
the piezoelectric matrix with a specific initial magnetization direction 𝛾0 and a corresponding
magnetostriction �̂�

𝜇
(𝛾0). We measure the local strain (within the particle) with respect to such

an initial state and we therefore define �̂� = �̂�0 − �̂�
𝜇

(𝛾0). Here, �̂�0 is the local strain tensor
referred to the demagnetized particle. Practically, we observe that 𝛾0 is aligned with the x-axis
and therefore 𝛾0 = ±e⃗1 (where e⃗i is the unit vector along the i-th axis). Hence, the constitutive
equations of the particle in the new reference frame read T̂ = L̂2{�̂� − [�̂�

𝜇
(𝛾) − �̂�

𝜇
(𝛾0)]} and

D⃗ = �̂�2E⃗ where L̂2 and �̂�2 are the elastic stiffness and the permittivity tensor of the particle,
respectively.

The coupling problem can be approached and solved by means of the multiphysics Eshelby
formalism [44, 50, 54, 55]. The local stress depends on the external electric field, the external
elastic stress and on the magnetization direction. In fact, we proved the explicit relation

T̂ = Ĉ�̂�
∞ + D̂E⃗∞ + F̂[�̂�

𝜇
(𝛾) − �̂�

𝜇
(𝛾0)], (8.12)

where the tensors Ĉ, D̂ and F̂ can be calculated through the refined procedures described
in literature [50]. They depend on the physical properties of the two phases and on the
piezoelectric Eshelby tensor [45–47].

8.4.4 Static Behavior of the System

We can now combine previous results in order to obtain a generalized energy function describ-
ing the static behavior of the memory system. The set of equations describing the system
is constituted of the energy minimization, Equation (8.10), the coupling with the external
magnetic field H⃗ = H⃗(H⃗∞, 𝛾), Equation (8.11), and the coupling with the external electric and
elastic fields T̂ = T̂(�̂�∞, E⃗∞, 𝛾), Equation (8.12). This problem corresponds to the minimiza-
tion of a new energy function defined as

w̃ = −𝜇0Ms𝛾 ⋅ ÂH⃗∞ − 1
2
𝜇0Ms𝛾 ⋅ N̂𝛾 + 𝜑a(𝛾)

−Ĉ�̂�
∞ : �̂�

𝜇
(𝛾) − D̂E⃗∞ : �̂�

𝜇
(𝛾)

−1
2

F̂�̂�
𝜇

(𝛾) : �̂�
𝜇

(𝛾) + F̂�̂�
𝜇

(𝛾0) : �̂�
𝜇

(𝛾). (8.13)

Such an expression provides the final magnetization orientation in terms of the external
fields applied to the structure. This procedure assumes a quite perfect particle-matrix interface.
Nevertheless, we remember that nanostructures bahavior is deeply affected by interface defects
occurring at the boundary between different phases [56–58]. We can directly apply Equation
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(8.13) to investigate the behavior of the memory element by letting �̂�
∞ = 0, H⃗∞ along the

y-axis and E⃗∞ along the direction identified by 𝜑 = 𝜋∕4, 𝜗 = 0 (where 𝜑 and 𝜗 are the
standard spherical coordinates). As an example, calculations are led using the parameters
summarized in Table 8.3. The effective anisotropic field Ha of the magnetoelastic element is
set at 18 × 104 A/m, whereas the external magnetic field H∞ is 50 × 104 A/m. When E⃗∞ =
0 we observe two equivalent stable positions around 𝜑 = 𝜋∕4, 𝜗 = 0 and 𝜑 = 3𝜋∕4, 𝜗 = 0
corresponding to the arrows in Figure 8.8. This is shown in Figure 8.9(b) where w̃ is represented
through a polar plot (in terms of 𝜑 and 𝜗). The solid curve corresponds to 𝜗 = 0 and shows two
minima (points A and B). In Figure 8.9(a) we have an applied compressive stress (V = +0.5 V
and E⃗∞ = −3.85 ×106 V/m) generating a single minimum point A (bit “0”). Conversely, in
Figure 8.9(c) we have an applied tensile stress (V = −0.5 V and E⃗∞ = +3.85 ×106 V/m)
corresponding to the minimum point B (bit “1”). This behavior is consistent with the quasi-
static evolution of the magnetoelastic particle submitted to stress that was descibed in Section
8.2.2. It is again evident that the form of the energy function allows us to obtain a non-toggle
switching scheme for the memory element.

8.4.5 Dynamic Behavior of the System

As already explained in Section 8.3, the magnetic system is assumed to be monodomain and
the dynamics of the magnetization are described by the LLG equation (see Equation (8.5)).
The results of the integration of this equation are shown in Figure 8.10 for two different values
of the applied voltage: ±0.3 V (which means E∞ = ±2.3 ⋅ 106 V/m) and ±0.5 V (which means
E∞ = ±3.85 ⋅ 106 V/m). A complete cycle with the two switching phases is represented and
reveals two important properties: (i) the transition times are always in the sub-nanosecond
scale (<0.4 ns) and (ii) such times decrease with larger applied voltages (in a given range,
see later). As already seen in Section 8.3, and while in the static analysis of the system
we have described the commutation strategy on the plane, the actual dynamic case is more
complex. The general behavior is the result of the interplay between the in-plane and the out-
of-plane motion of ⃖⃖⃖⃖⃖⃗𝛾(t). This point becomes evident by the observation of the component 𝛾z in
Figure 8.10(b).

In Figure 8.10(c) we can also find the behavior of the local stress during the complete cycle.

We have defined the quantities Tn⃗ = n⃗ ⋅ T̂n⃗ and Tm⃗ = m⃗ ⋅ T̂m⃗ where n⃗ = (
√

2∕2,
√

2∕2, 0)

and m⃗ = (−
√

2∕2,
√

2∕2, 0). They represent the specific force [N/m2] along the directions
at 𝜑 = 𝜋∕4 and 𝜑 = 3𝜋∕4, respectively. We remark that when these quantities are positive
we have a traction and when they are negative a compression. In the phase D (writing of
the bit “1”) we find a traction along m⃗ (Tm⃗ ≃ 90 MPa with −0.5 V and Tm⃗ ≃ 55 MPa with
−0.3 V) induced by the positive electric field applied to the piezoelectric matrix. Conversely,
in the phase C (writing of the bit “0”) a compression along m⃗ (Tm⃗ ≃ −60 MPa with +0.5 V
and Tm⃗ ≃ −20 MPa with +0.3 V) is generated by the negative electric field. It is important
to observe that the stable points A and B are characterized by a nonzero state of stress since
the tractions or compressions are absent only when the magnetization is oriented along the
x-axis (in both directions). Therefore, the state of stress in A and B is maintained at the levels
indicated in Figure 8.10(c) by the magnetic field H⃗∞. Interestingly enough, we observe that the
values of Tn⃗ and Tm⃗ are inverted passing from point A to point B because of the symmetry of
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Figure 8.9 Representation of w̃(𝛾) [J/m3] through polar plots for different values of the applied voltage:
(a) V = +0.5 V or E∞ =−3.85 × 106 V/m (compression), (b) V = 0 V, and (c) V = −0.5 V or E∞ = +
3.85 × 106 V/m (traction). The solid curve corresponds to 𝜗 = 0 and shows the positions of points A
and B for the three different cases. We used w̃0 = 2.7 × 105 J/m3 for obtaining w̃(𝛾) + w̃0 > 0 for any
direction 𝛾 .
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Figure 8.10 (a) Time behavior of the imposed electric field E∞ [V/m] and (b) the corresponding
evolution of the magnetization direction 𝛾 for a voltage equals to ±0.5 V (solid lines) and ±0.3 V (dashed
lines). (c) Dynamic behavior of the local stress [N/m2]. The tractions Tn⃗ = n⃗ ⋅ T̂n⃗ and Tm⃗ = m⃗ ⋅ T̂m⃗ along

the directions n⃗ = (
√

2∕2,
√

2∕2, 0) and m⃗ = (−
√

2∕2,
√

2∕2, 0) are shown. Source: Giordano et al.,
2012 [50]. Reproduced with permission of the American Physical Society.
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the system. Nevertheless, such a geometrical symmetry does not lead to the same dynamical
features of the switching phases B–C and A–D. In fact, the phase B–C is characterized by
a compression inducing a planar anisotropy from the magnetic point of view (on the plane
perpendicular to m⃗). On the other hand, the phase A–D is characterized by inducing an axial
anisotropy for the magnetization (along the direction m⃗).

In particular, the differences between the physical phenomena involved in phases B–C
and A–D are reflected in the switching times as reported in Figure 8.11. We consider the
magnetization direction 𝛾 = (𝛾x, 𝛾y, 𝛾z) and the scalar quantity G = 𝛾x + 𝛾y + 𝛾z as functions
of the time during the commutation phases. We define the switching time as the first instant of
time tm (of the commutation phase) satisfying the condition G(t) − G(∞) < 𝜚 for any t > tm.
Here, the parameter 𝜚 represents the precision requested, which of course modifies the resulting
switching time. In Figure 8.11 we have used the values 𝜚 = 1/1000, 1/300, 1/100, 1/30 and
1/10 and they correspond to the curves from the top to the bottom for both panels. While
the switching time of the phase A–D is a monotonically decreasing function of the applied
electric field (Figure 8.11(b)), the switching time of the phase B–C reveals a more complex
scenario (Figure 8.11(a)). In particular, we observe that in correspondence to the electric field
E∞ = 9.5 × 106 V/m there is a transition where the B–C switching time increases considerably.
Therefore, the region where E∞

> 9.5 × 106 V/m is not convenient for the memory element.
We conclude that the optimal working region (from the switching time point of view) is defined
by an electric potential ranging from 0.25 V to 1 V. In fact, in this interval we have tm < 0.4 ns
with the better precision defined by 𝜚 = 1/1000.

8.5 Stochastic Error Analysis

We introduce here the statistical mechanics of the magnetization for a single particle by
means of the Langevin approach and the Fokker-Planck methodology. We therefore apply
these techniques to analyze the thermal effects on the magnetoelectric switching processes of
magnetization.

8.5.1 Statistical Mechanics of Magnetization in
a Single-Domain Particle

The LLG Equation (8.5) is valid for a system at T = 0◦ K. It means that it does not consider
the effects of the temperature and it must be generalized to implement the nonequilibrium
statistical mechanics of the magnetization. We begin by defining a mobile reference frame
rigidly connected with the magnetization vector

𝛿 = (cos𝜑 cos 𝜗, sin𝜑 cos 𝜗,− sin 𝜗) ,
𝛽 = (− sin𝜑, cos𝜑, 0) ,
𝛾 = (cos𝜑 sin 𝜗, sin𝜑 sin 𝜗, cos 𝜗) ,

(8.14)

where 𝜗 and 𝜑 are the standard nutation and precession angles, respectively. Moreover, we
observe that 𝛿 and 𝛽 are orthogonal unit vectors lying on the plane perpendicular to 𝛾 . We
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Figure 8.11 Switching times of the commutation phases B–C (a) and A–D (b) as function of the
applied electric field E∞ in the range 1.7 × 106 V/m-11.5 × 106 V/m (corresponding to the electric
potential between 0.22 V and 1.5 V). The different curves (from the top to the bottom) correspond to the
values 𝜚 = 1/1000, 1/300, 1/100, 1/30 and 1/10 of the precision parameter. Source: Giordano et al., 2012
[50]. Reproduced with permission of the American Physical Society.

can easily prove that Equation (8.5) is equivalent to the following system of differential
equations

�̇� sin 𝜗 = − 

Ms(1 + 𝛼2)

(
𝛿 ⋅

𝜕w̃
𝜕𝛾

+ 𝛼𝛽 ⋅
𝜕w̃
𝜕𝛾

)
,

�̇� = − 

Ms(1 + 𝛼2)

(
−𝛽 ⋅

𝜕w̃
𝜕𝛾

+ 𝛼𝛿 ⋅
𝜕w̃
𝜕𝛾

)
. (8.15)
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Now, since 𝜕𝛾∕𝜕𝜗 = 𝛿 and 𝜕𝛾∕𝜕𝜑 = sin𝜗𝛽 we obtain a simpler form where the partial
derivatives 𝜕w̃

𝜕𝜗
and 𝜕w̃

𝜕𝜑
appear explicitly:

�̇� sin𝜗 = − 

Ms(1 + 𝛼2)

(
𝜕w̃
𝜕𝜗

+ 𝛼

sin 𝜗
𝜕w̃
𝜕𝜑

)
,

�̇� = − 

Ms(1 + 𝛼2)

(
− 1

sin𝜗
𝜕w̃
𝜕𝜑

+ 𝛼
𝜕w̃
𝜕𝜗

)
. (8.16)

In order to introduce thermal fluctuations we assume the Brown hypothesis affirming that
the effects of the temperature can be mimicked by an addictive random field acting on the
magnetization [59–62]. It means that we substitute 𝜕w̃

𝜕𝛾
with 𝜕w̃

𝜕𝛾
+n⃗ where n⃗ is a stochastic

process with three main properties: its average value is zero at any time, ⟨n⃗(t)⟩ = 0, it is
completely uncorrelated (white), ⟨ni(t)nj(𝜏)⟩ = 2𝛿ij𝛿(t − 𝜏), and it is Gaussian. So, Equation
(8.16) has been generalized by obtaining the Langevin LLG system

�̇� sin 𝜗 = − 

Ms(1 + 𝛼2)

[
𝜕w̃
𝜕𝜗

+ 𝛼

sin𝜗
𝜕w̃
𝜕𝜑

+

(
𝛿 + 𝛼𝛽

)
⋅ n⃗

]
,

�̇� = − 

Ms(1 + 𝛼2)

[
− 1

sin 𝜗
𝜕w̃
𝜕𝜑

+ 𝛼
𝜕w̃
𝜕𝜗

+

(
𝛼𝛿 − 𝛽

)
⋅ n⃗

]
. (8.17)

It is well known that the combination of dissipation (friction controlled by the Gilbert
damping constant 𝛼) and fluctuation (described by the diffusion coefficient ) is able to
describe the dynamic transient state leading to the equilibrium thermodynamics for long time
[63, 64]. It is a general concept valid both in classical mechanics [65, 66] and in quantum
one [67, 68]. The system obtained in Equation (8.17) is a stochastic differential equation
(SDE): from the mathematical point of view there are two different approaches for defining
the meaning of a SDE, namely, the Itô stochastic calculus and the Stratonovich one [69, 70].
Throughout this chapter we use the Stratonovich approach for two main reasons: first, the
usual rules of calculus (for derivatives and integrals) remain unchanged and, second, the
Stratonovich approach is the most convenient interpretation within the physical sciences since
it can be obtained as the limiting process of a colored noise toward an uncorrelated (white)
one [63]. The typical tool for studying SDEs is the Fokker-Planck methodology based on a
partial differential equation describing the dynamic of the density probability of the state of
the system [63]. In our case the state of the system is given by the couple (𝜑,𝜗) and, therefore,
the density probability can be written as 𝜌 = 𝜌(𝜑, 𝜗, t). The related Fokker-Planck equation
assumes the form

𝜕𝜌

𝜕t
= 

Ms(1 + 𝛼2) sin𝜗
𝜕

𝜕𝜑

{[
𝜕w̃
𝜕𝜗

+ 𝛼

sin 𝜗
𝜕w̃
𝜕𝜑

]
𝜌

}

+ 

Ms(1 + 𝛼2)
𝜕

𝜕𝜗

{[
− 1

sin𝜗
𝜕w̃
𝜕𝜑

+ 𝛼
𝜕w̃
𝜕𝜗

]
𝜌

}

− 22

M2
s (1 + 𝛼2)

𝜕

𝜕𝜗

{cos 𝜗
sin 𝜗

𝜌

}
+ 22

M2
s (1 + 𝛼2)

{
1

sin2 𝜃

𝜕
2
𝜌

𝜕𝜑2
+ 𝜕

2
𝜌

𝜕𝜗2

}
. (8.18)
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As mentioned above, this equation should have an asymptotic solution coherent with the
equilibrium thermodynamics and, therefore, we can verify that

lim
t→∞

𝜌 (𝜑,𝜗, t) = sin𝜗


exp

[
− w̃(𝜑, 𝜗)v

kBT

]
, (8.19)

where the partition function  is given by

 =
∫

𝜋

0 ∫

2𝜋

0
sin𝜗 exp

[
− w̃(𝜑, 𝜗)v

kBT

]
d𝜑d𝜗. (8.20)

Here kB is the Boltzmann constant and T is the absolute temperature. Note that the term
sin𝜗 in previous expressions is due to the (non-Cartesian) spherical system (it corresponds
to the Jacobian of the coordinates transformation). Moreover, v represents the volume of the
magnetic particle (w̃v is the total energy being w̃ the energy density). The value of the diffusion
constant  can be found by substituting Equation (8.19) in Equation (8.18) and by observing
that we obtain an identity if and only if

2 =
𝛼MskBT

v
, (8.21)

an equation representing the specific fluctuation-dissipation property. Once the value of  is
known, we can rewrite the Fokker-Planck equation for 𝜌(𝜑, 𝜗, t) as follows:
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2
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𝜕𝜗2
, (8.22)

where we have introduced to so-called Néel time

𝜏N =
Ms(1 + 𝛼

2)v

2𝛼kBT
, (8.23)

representing the characteristic response time of a particle without external fields (see below
for details). Since we are working in spherical coordinates it is useful to define another density
℘(𝜑,𝜗, t) through the relation 𝜌(𝜑, 𝜗, t) = sin𝜗℘(𝜑,𝜗, t) (see Equation (8.19) for comparison).
So, it is not difficult to obtain the evolution equation of this new function
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S℘, (8.24)
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where we have defined the surface Laplacian ∇2
S (or Laplace-Beltrami operator on a spherical

surface) as

∇2
Sf = 1

sin𝜗
𝜕

𝜕𝜗

[
sin 𝜗

𝜕f

𝜕𝜗

]
+ 1

sin2 𝜗

𝜕
2f

𝜕𝜑2
. (8.25)

The obtained Fokker-Planck equations (Equation (8.22) for 𝜌 and Equation (8.24) for ℘)
are particularly useful for obtaining a simplified version of the Langevin LLG system given
in Equation (8.17): in fact, in Equation (8.17) a three-dimensional random vector has been
added in order to introduce the fluctuations in a system with two variables (𝜑 and 𝜗). There is
no need to embed the system in a three-dimensional space and, moreover, there are important
reasons for not doing so, such as concerns about the coherence and elegance of the theory and
saving of computational resources. We consider the following new version of the Langevin
LLG system where only two noise terms are considered [71]
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. (8.26)

If the noises have the standard properties for the average values ⟨n
𝜙

(t)⟩ = 0, ⟨n
𝜃
(t)⟩ = 0, and

for the correlation s ⟨n
𝜙

(t)n
𝜃
(𝜏)⟩ = 0, ⟨n

𝜙
(t)n

𝜙
(𝜏)⟩ = 2𝛿(t − 𝜏), ⟨n

𝜃
(t)n

𝜃
(𝜏)⟩ = 2𝛿(t − 𝜏) and

they are Gaussian, we can prove that the Fokker-Planck equations established starting from
Equation (8.26) are exactly coincident to Equation (8.22) for 𝜌 and to Equation (8.24) for ℘.
From the theoretical point of view Equation (8.26) is more coherent and elegant since the SDE
lives completely on the spherical surface without the need for a three-dimensional embedding:
it represents the covariant formulation of the SDE on the spherical manifold [72,73]. Moreover,
from the computational point of view Equation (8.26) is convenient since two random numbers
must be generated at any time step, instead of the three ones needed for the implementation
of Equation (8.17). They can be directly obtained by means of the Box-Muller theorem [74].
Another remarkable advantage of Equation (8.26) is that the noise induced drift term is always
zero, yielding exactly the same SDE both for the Itô and the Stratonovich approach. This fact
allows us to apply indifferently numerical techniques specifically developed for either the Itô
or the Stratonovich interpretation of SDEs.

To conclude, when we approach the problem of studying the thermal effects on the magne-
tization dynamics of a single particle we can adopt one of the three following methodologies.
First, we can take into consideration the Fokker-Planck equation and we can search its solu-
tion through the finite difference method or the finite element method. Such a technique has
been used to investigate the dependence of the magnetization reversal on temperature, damp-
ing and applied fields [75–77]. As a second approach, it is possible to develop the density

℘(𝜑,𝜗, t) in a series of harmonic functions, ℘(𝜑,𝜗, t) =
∞∑

n=0

n∑
m=−n

cnm(t)Ynm(𝜑, 𝜗), and to ana-

lyze the dynamics of the coefficients cnm(t). The kinetic equation for these coefficients has
been obtained [78–80] and it has been largely used for determining the relaxation time of the
Fokker Planck operator [81–84]. Finally, the third approach consists in numerically solving
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the Langevin equation and in calculating the relevant average values through the Monte Carlo
method [85].

8.5.2 Switching Process within the Magnetoelectric Memory

We can now approach the problem of evaluating the temperature effects on the memory
element introduced in Section 8.4.1. As one can find in Table 8.3, at the beginning we have
considered an ellipsoidal particle with axes 45, 25 and 20 nm. Nevertheless, we may now
consider an arbitrary size of the particle. To explain this point we recall an important property
of the Eshelby theory that is valid in any case of coupling: when an ellipsoidal particle is
embedded in an infinite matrix and subjected to uniform external actions, the physical fields
(electric, magnetic and elastic) induced within the particle itself are always uniform and they
depend on the material properties of the two phases and on the ratios a1∕a2 and a2∕a3 [44–47,
50, 54, 55]. The internal fields do not depend on the actual size of the particle: only the shape
of the ellipsoid may influence the particle response. Therefore, also the results based on the
energy function defined in Equation (8.13) are scale invariant and depend only on the ratio
between the axes lengths. We conclude that the numerical evaluation of w̃ described in Section
8.4 can be used for any rescaled version of the particle.

The only effect of the real size of the particle is introduced in the Langevin system (see
Equation (8.26)) through the Néel time 𝜏N defined in Equation (8.23). Since 1∕𝜏N is directly
proportional to kBT∕v with a coefficient that is simply material dependent, we can analyze the
thermal effects in terms of the ratio kBT∕v, describing the compromise between temperature
and particle size. We remark that one of the most important parameter of the system is the
energy barrier between the metastable states A and B, which can be observed on Figure 8.9(b),
in the absence of an electric field. It is an intrinsic property of the structure depending only on
the geometrical and physical anisotropies of the particle and on the externally applied magnetic
field creating the quite orthogonal states: with the set of parameters defined in Tables 8.1 and
8.3, for an effective anisotropic field Ha set at 18 × 104 A/m and an external magnetic field
H∞ equal to 50 × 104 A/m, we obtain an energy barrier equal to Δe = 2.5 × 104 J/m3. It is
evident that the memory can work only if the density of thermal energy kBT∕v is much lower
than Δe (for avoiding unwanted switching between the states). For example, for the initially
proposed structure (v ≃ 10−22 m3) at room temperature (T= 300 ◦K) we have kBT∕v = 40 J/m3

≪ Δe and, therefore, the system should work correctly. In this case the total energy barrier
between the states A and B corresponds to vΔe = 1.7 ⋅ 10−18J ≃ 400kBT . It is interesting to
know how much we can increase the temperature or, on the other hand, decrease the volume
of the particle, without modifying the regular operation of the device. In other words, we
search for the maximum value of kBT∕v admissible for our structure. In order to do this,
we consider the system without an electric field applied to the piezoelectric matrix and we
suppose to have an initial magnetization in the state A or B. We observe that the state A is
represented by 𝛾 = v⃗A = (cos𝜑A, sin𝜑A, 0) where 𝜑A ≃ 0.892 while for the state B we have
𝛾 = v⃗B = (cos𝜑B, sin𝜑B, 0) where 𝜑B ≃ 2.277. We determine the trajectories of 𝛾 starting
from these points in order to analyze the stability of the stored bit. It means that we simulate
the transition A → A generated by the electric potential change V = +0.5 V → V = 0 V and
the transition B → B generated by the electric potential change V = −0.5 V → V = 0 V. For
any value of the ratio kBT∕v (in the range from 10 J/m3 to 2 × 104 J/m3) we generate 10 000
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trajectories 𝛾(t) by solving Equation (8.26) (with E∞ = 0 and 𝛾(0) = v⃗A or 𝛾(0) = v⃗B) and
we determine the average values through the Monte Carlo method. The numerical solution of
Equation (8.26) has been performed through a standard integration scheme with a time step
𝛿t = 2.4 × 10−13 sec.

The results are reported in Figure 8.12. In Figure 8.12(a) we show the time evolution of
the three components of ⟨𝛾(t)⟩ for 100 different values of the ratio kBT∕v. In Figure 8.12(b)
one can find the trajectories of the projections 𝛾 ⋅ v⃗A and 𝛾 ⋅ v⃗B, showing more clearly the
possible escape from the initial potential well. It is evident that for the larger values of kBT∕v
we observe a vector ⟨𝛾⟩ rapidly aligned to the y-axis, indicating the complete information
loss (in this situation we have 𝛾 ⋅ v⃗A ≃ 𝛾 ⋅ v⃗B). A measure of this effect is given by the error
probability, shown in Figure 8.12(c). For any value of kBT∕v we follow 10 000 trajectories for
a long time and we determine the number of unwanted switching towards the other metastable
state. The error probability is given by the ratio between this number and the total number of
trajectories (10 000 in our case). We obtained quite the same curve of Perr versus log10(kBT∕v)
for both transitions A–A and B–B. It means that the error probability is a symmetric quantity
for our system. Moreover, we observe that if kBT∕v → +∞ then Perr → 1∕2, a value exactly
quantifying the total information loss. We can identify the maximum value admissible for
kBT∕v in order to have a negligible error probability (< 10−8): we obtain (kBT∕v)max ≃
103 J/m3 [48], which is much larger than our initial proposition (40 J/m3) and, at the same
time, much smaller than the fixed energy barrier between the states (Δe = 2.5 × 104 J/m3).

Once determined the restriction on the ratio kBT∕v we may analyze the dynamics of the
transitions A–B and B–A. Since we want to analyze the real dynamics at a given temperature
we cannot start our simulations at 𝛾(0) = v⃗A or 𝛾(0) = v⃗B. Instead, we must start with a random
initial condition coherent with the statistical distribution within the initial potential well. For
any value of kBT∕v in the range from 10 J/m3 to 4 × 103 J/m3 we generate 10 000 trajectories
of the magnetization and we evaluate their average values. On the left-hand side of Figure 8.13
we show the results for the switching A–B corresponding to the applied traction at V =−0.5 V.
Similarly, on the right-hand side of Figure 8.13 we show the results for the switching B–A
corresponding to the applied compression at V = +0.5 V. In Figure 8.13(a) we present the
time behavior of the components of ⟨𝛾⟩ and in Figure 8.13(b) the projections 𝛾 ⋅ v⃗A and 𝛾 ⋅ v⃗B.
The good switching behavior is evident in all whole range of variation of kBT∕v. In particular,
the regular accomplishment of transitions is well described by the limit lim

t→∞
𝛾 ⋅ v⃗B = 1 for the

switching A–B and by lim
t→∞

𝛾 ⋅ v⃗A = 1 for the switching B–A (see Figure 8.13(b)). We note

that 𝛾 ⋅ v⃗A during the transition A–B and 𝛾 ⋅ v⃗B during the transition B–A do not approach
zero because of the nonperfect orthogonality of the states. We use this asymptotic behavior
to introduce the switching time tm of the process. It is defined as the first instant of time tm
satisfying the condition |𝛾(t) ⋅ v⃗B − 𝛾(+∞) ⋅ v⃗B| < 𝜀

𝛾
for any t > tm (for the transition A–B).

Evidently, for the second transition B–A the inequality reads |𝛾(t) ⋅ v⃗A − 𝛾(+∞) ⋅ v⃗A| < 𝜀
𝛾
. In

Figure 8.13(c) we show the switching time in terms of the ratio kBT∕v. The three different set
of data correspond to three values of the precision parameter 𝜀

𝛾
. In all cases we observe an

increasing trend of tm versus kBT∕v. Nevertheless, the behavior of the curves for the switching
A–B and B–A is quite different because of the different physical processes involved. The
transition A–B is characterized by a traction inducing an axial anisotropy from the magnetic
point of view, while the transition B–A is characterized by a compression inducing a planar
anisotropy for the magnetization.
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Figure 8.12 Stability analysis of the switching, left: A (V = +0.5 V) − A (V = 0 V), right: B (V =
−0.5 V) − B (V = 0 V). First row: trajectories followed by the average magnetization components for
different values of kBT/v (100 equispaced values from 10 J/m3 to 20 000 J/m3). The black solid lines
correspond to the smallest ratio kBT/v while the black dashed lines to the highest one. Second row:
trajectories followed by the projections 𝛾 ⋅ v⃗A and 𝛾 ⋅ v⃗A. The black lines have the same meaning as
in the first row. Third row: error probability in the transition A–A (probability of the switching A–B
induced by the temperature) and in the transition B–B (probability of the switching B–A induced by the
temperature), in terms of the ratio kBT/v.
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To conclude, we discuss the results concerning the energy consumption during the switching
phases. This energy derives from the charge/discharge of the effective capacitor and from
the damped precession of the magnetization [20, 86]. The first contribution ΔEe represents
the so-called CV2 dissipation and it can be simply determined when the geometry of the
system is given. For example, if we consider the parameters shown in table we obtain ΔEe =
7.5 × 10−17 J. The second contribution ΔEm can be evaluated by determining the variation of
w̃(t) during the transitions phases. We can obtain the time evolution of dw̃(t)∕dt through the
expression dw̃(t)∕dt = (𝜕w̃∕𝜕𝜗)�̇� + (𝜕w̃∕𝜕𝜑)�̇� and we can use Equation (8.26) to evaluate the
terms �̇� and �̇�. This procedure can be numerically implemented within the integration scheme
of the Langevin system. As before, the average values are determined with the Monte Carlo
technique. Since w̃ is always a decreasing function during the switching phases, we show the
average value of −dw̃(t)∕dt for the transitions B–A (Figure 8.14(a)) and A–B (Figure 8.14(b)).
This is done for 100 equispaced values of kBT/v (from 10 J/m3 to 4000 J/m3). Interestingly
enough, we note that the temperature effects are stronger in the transition A–B. However,
we can determine the specific energy dissipated during a transition phase by integrating the
time derivative of w̃: ΔEm∕v = − ∫

+∞
0 (dw̃(t)∕dt)dt (see also Equation (8.9)). The numerical

integration leads to the results shown on Figure 8.14(c), where ΔEm∕v is plotted versus
kBT/v for both transitions B–A and A–B. We observe that there is only a very slight (linear)
dependence of ΔEm∕v on kBT/v. In fact, we can approximate ΔEm∕v ≃ 2 × 105 J/m3 for any
value of kBT/v. For our original particle with v = 10−22 m3 we obtain ΔEm = 2 × 10−17 J

Figure 8.14 Energy dissipation during switching phases. (a) Average value of −dw̃∕dt during the
transition B–A for different values of kBT/v (100 equispaced values from 10 J/m3 to 4000 J/m3). The
dark continuous line corresponds to the smallest ratio kBT/v while the black noisy line to the highest one.
(b) Average value of −dw̃∕dt during the transition A–B. The dark lines have the same meaning as in the
first case. (c) Magnetic dissipated energy ΔEm∕v in terms of kBT/v for both transitions A–B (triangles)
and B–A (circles). Source: Giordano et al., 2013b [48]. Reproduced by permission of IOP Publishing.
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and the total switching energy is therefore ΔE = ΔEe + ΔEm ≃ 9.5 × 10−17 J. This value is
strongly competitive when compared with most nonvolatile memory technologies [2, 50].

8.6 Preliminary Experimental Results

Besides theoretical aspects, prototypes were realized in order to validate the concept of the
stress-mediated magnetoelectric memory.

8.6.1 Piezoelectric Actuator with in-Plane Polarization

For integration purposes, and as it is technologically challenging to embed a magnetoelastic
particle in an electro-active matrix, it is better to consider magnetoelastic films that can be
deposited by conventionnal techniques such as evaporation or sputtering. In the following
devices, the film is a highly magnetostrictive 10 × (TbCo2(5nm)∕FeCo(5nm)) exchange coupled
multilayer deposited via conventional RF-sputtering. For the switching process to be effective,
the applied in-plane stress has to be anisotropic (see Equation (8.4) in Section 8.2.2). One can
consider a piezoelectric material with an in-plane polarization and electrodes perpendicular to
the x′ axis to generate an in-plane electric field [16]. A deformation is generated along x′ using
the d33 piezoelectric coefficient, and for a constant volume deformation, an opposite deforma-
tion along y′ is created. This principle is used in the prototype described on Figure 8.15(a). It
uses a commercial piezoelectric actuator composed of stacked PZT plates with electrodes per-
pendicular to x′, and coated with a nonconductive layer. The magnetic film is deposited onto
the polished side of the substrate through a shadow mask by RF sputtering using a rotary turn
table in a Leybold Z550 equipment. The deposition is made under a magnetic field generated
by permanent magnets in order to induce a magnetic easy axis (EA) in the desired direction,

Figure 8.15 (a) Schematic of the demonstrator. The magnetoelastic multilayer is deposited on top
of a PZT stack actuator generating stress along the x′ direction. (b) MOKE (solid line) evidence of
magnetization switching between the two stable states upon application of 1 millisecond positive or
negative voltage pulses (triangles) leading respectively to 𝜎 > 0 and 𝜎 < 0. Source: Tiercelin et al.,
2011a [87]. Reproduced with permission of AIP Publishing LLC.
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that is, with an angle of 45◦ with respect to the x′ axis. The obtained film magnetization was
characterized with a Vibrating Sample Magnetometer (VSM) and is characteristic of a uni-
axial behavior with an anisotropy field of about Ha = 160 000 A/m. For this kind of layer, the
magnetostriction 𝜆S is measured by laser deflectometry with the clamped beam technique and
is about 10−4. The switching was evidenced using a MOKE setup to measure the projection of
magnetization along the easy axis, while the polarizing field H was applied on the hard axis, so
as to define two stable positions. As shown on the right of Figure 8.15(b), the system behaves
as expected. When applying either positive or negative voltage pulses, tensile or compressive
stress respectively is generated leading to a switch to “1” or “0.” One can also note that the
state is kept upon removal of the voltage. Switching was obtained with 1 ms pulses, which is
the shortest time allowed by the experimental setup.

8.6.2 Ferroelectric Relaxors with out-of-Plane Polarization

The solution above is nevertheless not suitable for integrated devices where the active layer has
to be inserted into a readout structure and directly in contact with the piezoelectric material.
This approach is limited to nonconductive magnetic layers: a conductive film induces a strong
distorsion of the electric field lines which have to be perpendicular to the conductor, and
therefore leads to improper stress generation. Fortunately, recent advances in the domain
of ferroelectric relaxors offer suitable alternatives for out-of-plane polarization. For PMN-
PT compositions near the so-called morphotropic phase boundary, 011-cut and poled single
crystals exhibit suitable characteristics [88]. A schematic view of the second device is shown
on the left-hand side of Figure 8.16(a). The stress is now generated by a commercial PMN-PT
substrate that was mechanically polished prior film deposition to ensure a surface smooth
enough for MOKE measurements. This time the electric field is applied across the thickness
of the active substrate. In the x′, y′, z′ reference, the piezoelectric coefficients are d31 ≈
−1900.10−12 C∕N and d32 ≈ +1000.10−12 C∕N, which ensures the required anisotropic stress.
As in the previous device, MOKE measurements (Figure 8.16(b)) show the evidence of the

Figure 8.16 (a) Schematic of the demonstrator. The magnetoelastic multilayer is deposited on top of a
011-cut and polarized PMN-PT single crystal. (b) MOKE evidence of magnetization switching between
the two stable states upon application of positive or negative voltage pulses leading respectively to 𝜎 > 0
and 𝜎 < 0. Source: Dusch et al., 2013 [89]. Reproduced with permission of AIP Publishing LLC.
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magnetization switch triggered by voltage pulses. Switching was obtained with 250 μs pulses,
which is the shortest time allowed by the experimental setup.

8.6.3 Magnetoelastic Switching in a Magneto-Resistive Structure

The information stored in the memory cell has to be electrically readable. As it is stored
magnetically, a magnetoresistive structure is the most suitable option. For a Giant Magneto-
Resistance (GMR) or Magnetic Tunnel Junction (MTJ)-based reading strategy, the “memory”
layer has to be associated to a “reference” layer with a pinned magnetization so that the
switch from one state to the other induces a sufficient magnetoresistive contrast. Such an
approach and the influence of stress on spintronic structures have already been studied exten-
sively to assess the influence of technological hazards or the potentialities for stress/strain
sensors. In particular, Lohndorf et al. detailed the use of a magnetostrictive layer as part of
GMR or Magnetic Tunnel Junctions (MTJ) spintronic structures for applications in sensor
arrays [90, 91]. However, in our case, the external magnetic field used to define the equilib-
rium positions of magnetization influences both the free layer and the fixed layer through
the Zeeman interaction. Techniques must therefore be found to ensure the magnetoresistance
contrast between the two stable positions. We therefore developed a technique based on two
nanostructured magnetostrictive layers with exhibiting two different tailored anisotropies, for
both the memory layer and the fixed layer of a current-in-plane GMR structure (CIP-GMR).
From the theoretical work led in previous sections, we show that given the strength of the
anisotropy field Ha,eq of the memory element, the polarizing field H must have a minimum

strength of H = Ha∕
√

2 for the switch between stable positions to be possible. Thus the
principle of the proposed device: a layer with a “low” anisotropy field Ha1 will serve as the
memory layer, whereas another with a “high” anisotropy Ha2 will act as a reference. Setting

the polarizing field H at Ha1∕
√

2 and therefore much lower than Ha2 will ensure that the
reference layer will not switch during the writing operations in the memory layer. In order to
tailor the magnetic properties [92–94], elementary layers of highly magnetostrictive TbCo2
alloy are combined with layers of softer FeCo: changing the thickness ratio of these exchange
coupled layers allows an adjustment of the resulting anisotropy field. The considered stack is
thus FeCo(2nm)∕TbCo2(6nm)∕FeCo(2nm)∕Cu(3nm)∕FeCo(2nm)∕TbCo2(4nm)∕FeCo(2nm). With such
an arrangement of layers, the two magnetic trilayers that are separated by copper have different
equivalent anisotropy fields Ha1 and Ha2 that can be estimated using the VSM measurements
shown on Figure 8.17(c). The stack was submitted to stress using the device shown in Fig-
ure 8.17(a) and (b). As expected, upon tensile stress, the magnetization Mmem of the memory
layer will switch to the “1” state along the x′ axis, whereas compressive stress will force a
switch toward the “0” state along the y′ axis (Figure 8.17(d)). The reference layer Mref does
not switch, and thus a contrast in the magnetoresistance is observed [95]. It is to be noted
that the resistance contrast between “1” and “0” is inverted when reversing the direction of
the reference layer prior to the experiment, thus indicating that we don’t observe a simple
piezoresistive effect.

8.7 Conclusions

Magneto-electro-elastic materials represent a large class of structures with promising appli-
cations in modern nanoscience and nanotechnology. The cross coupling between polarization
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Figure 8.17 (a) Schematic of the magnetoresistive demonstrator. (b) A magnetoresistive stack com-
posed of two magnetoelastic trilayers with different anisotropies and separated by a copper spacer is
sputtered onto a silicon cantilever. The tip of the cantilever is displaced along the z axis to induce
compressive (𝜎 < 0) or tensile (𝜎 > 0) stress in the magnetic layer. (c) Magnetization loop along the
hard axis showing two anisotropy fields Ha1 and Ha2. (d) Resistance of the device measured between
the gold contacts. The resistance reflects the switch of the magnetization in the memory layer Mmem.
The reference layer Mref does not switch.

and magnetization can be measured in single multiferroic phases or in composites. However,
the magneto electric coupling is weak in single phase systems and therefore we turned to com-
posite structures that offer the possibility of strong interactions at room temperature. While the
magnetoelectric coupling in laminated systems has been largely studied both experimentally
[14] and theoretically in the linear [96, 97] and nonlinear [98] regimes, the exploitation of the
magnetization dynamics in single domain particles is a very recent application with important
applications in memories, spintronics and new paradigms of information processing.

In these systems, the magnetization dynamics are described by the classical Landau-Lifshitz-
Gilbert equation and, through the magnetoelasticity, are strongly influenced by external
mechanical stresses applied to the structure. Typically, such mechanical actions are gener-
ated by piezoelectric or ferroelectric relaxor based actuators coupled to the magnetic particle.
This kind of magneto-electric effect can be carefully controlled in order to obtain the desired
behavior and performances. When properly designed, magnetization of the device can be
controlled with very high efficiency. As with CMOS-based devices, the main source of energy
consumption is still due to the Joule heating during the charge and discharge of capacitances
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that lead to a loss of CV2 for every cycle. But the driving voltages reduction does not suffer
from the same limitations. With an equivalent capacitance in the femtofarrad range, a 100 mV
driving voltage offers a 50 fold reduction of consumption compared to a 700 mV CMOS
device. Research efforts are currently made on the downscaling of the concept. So far, very
few stress- or strain-mediated devices have ever been realized at a submicrometer range. It is
a necessary step to understand whether this technology is viable or not, and will also provide
a valuable tool to understand the multiphysic couplings occuring at lower scales. In fact,
when we work with structures displaying their geometry at the nanoscale, several kind of
scale effects can be observed and strongly influence the normal behavior of the system. Typi-
cally, the scale effects are mediated by the imperfect interfaces which play an important role
because of the high surface/volume ratio. Therefore, for analysing nanostructures, we cannot
assume perfect interfaces as we did throughout the chapter, but we must consider all possible
imperfections leading to considerable nanoscale effects. The concepts of such stress-mediated
magnetoelectric devices are not limited to the case of a bi-stable memory. In the past few years,
and still in the frame of the “beyond CMOS” electronics, there has been a renewed interest in
bio-inspired architectures for information processing. Current models and simulations involve
artificial neuron networks that are interconnected with synapses that exhibit plasticity and
thus present learning capabilities. Such a network requires an artificial synapse that is not
readily available so far. It has been shown, however, that a component exhibiting so called
“memristive” properties, that is, that possess an impedance that remembers its history, could
be a suitable candidate for the artificial synapse. Thanks to the inherent hysteretic behavior,
magneto-electric devices are interesting candidates to realize a memristor. In order to develop
magneto-elasto-resistive structures, it is possible to consider the embedding of magnetoelastic
materials in magneto-resistive structures such as Giant Magneto Resistance – GMR pillars
or Magnetic Tunnnel Junctions – MTJs. A possible structure is composed of a ferroelectric
relaxor substrate and a magnetoresistive multilayer. This latter can be considered as formed by
two regions separated by an oxide controlling the tunnneling effect. The first region has a fixed
magnetization, while the second one, near the ferroelectric material, has a free magnetization,
which can easily be oriented by external actions. It is well known that a current flowing in
this device feels an electric resistance depending on the angle between the magnetization
vectors in the two regions introduced above. On the other hand, the elastic strain imposed
by the piezoelectric substrate strongly influences the magnetization of the soft region, finally
modifying the overall resistance. We conclude therefore by observing that magneto-electric
coupling can also be used to produce resistive structures with possible hysteretic/memory
behavior. Magnetoelectric devices are consequently good candidates to realize memristors
mimicking the neuronal update rule found in many biological synapses [99].
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[31] Néel, L. (1949) Théorie du traı̂nage magnétique des ferromagnétiques en grains fins avec applications aux terres
cuites. Annals of Geophysics, 5, 99–136.

[32] Brown, W.F. (1963a) Thermal fluctuations of a single-domain particle. Physical Review, 130, 1677–1686.
[33] Chiba, D., Nakatani, Y., Matsukura, F., and Ohno, H. (2010) Simulation of magnetization switching by electric-

field manipulation of magnetic anisotropy. Applied Physics Letters, 96 (19), 192506-1–192506-3.
[34] Scholz, W., Fidler, J., Schrefl, T., et al. (2003) Scalable parallel micromagnetic solvers for magnetic nanostruc-

tures. Computational Materials Science, 28 (2), 366–383.
[35] Laudau, L. and Lifshitz, E. (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic

bodies. Physikalische Zeitschrift der Sowjetunion, 8, 153–169.
[36] Gilbert, T. (2004) Classics in magnetics a phenomenological theory of damping in ferromagnetic materials.

IEEE Transactions on Magnetics, 40, 3443–3449.
[37] Lakshmanan, M. (2011) The fascinating world of the landau-lifshitz-gilbert equation: an overview. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369 (1939), 1280–
1300.

[38] Beleggia, M., Graef, M.D., Millev, Y.T., et al. (2005) Demagnetization factors for elliptic cylinders. Journal of
Physics D: Applied Physics, 38 (18), 3333–3342.

[39] Quandt, E. (1997) Giant magnetostrictive thin film materials and applications. Journal of Alloys and Compounds,
258 (1–2), 126–132.

[40] Tiercelin, N., Pernod, P., Preobrazhensky, V., et al. (2000a) Non-linear actuation of cantilevers using giant
magnetostrictive thin films. Ultrasonics, 38 (1–8), 64–66.

[41] Hindmarsh, A.C. (1983) ODEPACK, A Systematized Collection of ODE Solvers, R. S. Stepleman et al. (eds.),
North-Holland, Amsterdam, (vol. 1 of ), pp. 55–64. IMACS Transactions on Scientific Computation, 1, 55–64.

[42] Tiercelin, N., Dusch, Y., Preobrazhensky, V., and Pernod, P. (2011b) Magnetoelectric memory using orthogonal
magnetization states and magnetoelastic switching. Journal of Applied Physics, 109 (7), 07D726-1–07D726-3.

[43] Miltat, J., Albuquerque, G. and Thiaville, A. 2002 An introduction to micromagnetics in the dynamic regime.
in Spin Dynamics in Confined Magnetic Structures I, Springer, pp. 1–33.

[44] Eshelby, J.D. (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems.
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241 (1226),
376–396.

[45] Li, J.Y. and Dunn, M.L. (1998) Anisotropic coupled-field inclusion and inhomogeneity problems. Philosophical
Magazine A, 77 (5), 1341–1350.

[46] Huang, J.H., Chiu, Y.H., and Liu, H.K. (1998) Magneto-electro-elastic eshelby tensors for a piezoelectric-
piezomagnetic composite reinforced by ellipsoidal inclusions. Journal of Applied Physics, 83 (10), 5364–5370.

[47] Mikata, Y. (2001) Explicit determination of piezoelectric eshelby tensors for a spheroidal inclusion. International
Journal of Solids and Structures, 38 (40–41), 7045–7063.



Strain Mediated Magnetoelectric Memory 255

[48] Giordano, S., Dusch, Y., Tiercelin, N., et al. (2013b) Thermal effects in magnetoelectric memories with stress-
mediated switching. Journal of Physics D: Applied Physics, 46 (32), 325002-1–325002-12.

[49] Daniel, L., Hubert, O., Buiron, N., and Billardon, R. (2008) Reversible magneto-elastic behavior: a multiscale
approach. Journal of the Mechanics and Physics of Solids, 56 (3), 1018–1042.

[50] Giordano, S., Dusch, Y., Tiercelin, N., et al. (2012) Combined nanomechanical and nanomagnetic analysis of
magnetoelectric memories. Physical Review B, 85 (15), 155321-1–155321-14.

[51] Giordano, S. and Palla, P.L. (2008) Dielectric behavior of anisotropic inhomogeneities: interior and exterior
point eshelby tensors. Journal of Physics A: Mathematical and Theoretical, 41 (41), 415205-1–155321-24.

[52] Giordano, S. (2003) Effective medium theory for dispersions of dielectric ellipsoids. Journal of Electrostatics,
58 (1–2), 59–76.
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[82] Déjardin, P.M., Crothers, D.S.F., Coffey, W.T., and McCarthy, D.J. (2001) Interpolation formula between very
low and intermediate-to-high damping kramers escape rates for single-domain ferromagnetic particles. Physical
Review E, 63 (2), 021102-1–021102-12.

[83] Kalmykov, Y.P., Coffey, W.T., Ouari, B., and Titov, S.V. (2005) Damping dependence of the magnetization
relaxation time of single-domain ferromagnetic particles. Journal of Magnetism and Magnetic Materials, 292
(0), 372–384.

[84] Ouari, B. and Kalmykov, Y.P. (2006) Dynamics of the magnetization of single domain particles having tri-
axial anisotropy subjected to a uniform dc magnetic field. Journal of Applied Physics, 100 (12), 123912-1–
123912-10.

[85] Garcia, V. a-Palacios, J.L. and Lazaro, F.J. (1998) Langevin-dynamics study of the dynamical properties of
small magnetic particles. Physical Review B, 58 (22), 14937–14958.

[86] Roy, K., Bandyopadhyay, S., and Atulasimha, J. (2012) Energy dissipation and switching delay in stress-induced
switching of multiferroic nanomagnets in the presence of thermal fluctuations. Journal of Applied Physics, 112
(2), 023914-1–023914-8.

[87] Tiercelin, N., Dusch, Y., Klimov, A., et al. (2011a) Room temperature magnetoelectric memory cell using
stress-mediated magnetoelastic switching in nanostructured multilayers. Applied Physics Letters, 99 (19),
192507-1–192507-3.

[88] Wang, F., Luo, L., Zhou, D., et al. (2007) Complete set of elastic, dielectric, and piezoelectric constants of
orthorhombic (0.71Pb(Mg1/3Nb2/3)O3−0.29PbTiO3) single crystal. Applied Physics Letters, 90 (21), 212903-
1–212903-3.

[89] Dusch, Y., Tiercelin, N., Klimov, A., et al. (2013) Stress-mediated magnetoelectric memory effect with uni-axial
tbco2/feco multilayer on 011-cut pmn-pt electrostrictive material. Journal of Applied Physics, 113, 17C719-1–
17C719-3.

[90] Lohndorf, M., Duenas, T., Ludwig, A., et al. (2002a) Strain sensors based on magnetostrictive gmr/tmr structures.
IEEE Transactions on Magnetics, 38 (5), 2826–2828.

[91] Lohndorf, M., Duenas, T., Tewes, M., et al. (2002b) Highly sensitive strain sensors based on magnetic tunneling
junctions. Applied Physics Letters, 81 (2), 313–315.

[92] Tiercelin, N., BenYoussef, J., Preobrazhensky, V., et al. (2002) Giant magnetostrictive superlattices: from spin
reorientation transition to mems. static and dynamical properties. Journal of Magnetism and Magnetic Materials,
249 (3), 519–523.

[93] BenYoussef, J., Tiercelin, N., Petit, F., et al. (2002) Statics and dynamics in giant magnetostrictive
TbxFe1−x−Fe0.6Co0.4 multilayers for mems. IEEE Transactions on Magnetics, 38 (5), 2817–2819. DOI:
10.1109/TMAG.2002.803568

[94] Tiercelin, N., Preobrazhensky, V., Pernod, P., et al. (2000b) Sub-harmonic excitation of a planar magneto-
mechanical system by means of giant magnetostrictive thin films. Journal of Magnetism and Magnetic Materials,
210 (1–3), 302–308.

[95] Dusch, Y., Rudenko, V., Tiercelin, N., et al. (2012) Hysteretic magnetoresistance in stress controlled magnetic
memory device. Nanomatériaux et nanostructures, 2, 44–50.



Strain Mediated Magnetoelectric Memory 257

[96] Sixto-Camacho, L.M., Bravo-Castillero, J., Brenner, R., et al. (2013) Asymptotic homogenization of periodic
thermo-magneto-electro-elastic heterogeneous media. Computers & Mathematics with Applications, 66(10),
2056–2074.

[97] Giordano, S., Goueygou, M., Tiercelin, N., et al. (2014) Magneto-electro-elastic effective properties of multi-
layered artificial multiferroics with arbitrary lamination direction. International Journal of Engineering Science,
78 (0), 134–153.

[98] Giordano, S. (2014) Explicit nonlinear homogenization for magneto-electro-elastic laminated materials.
Mechanics Research Communications, 55 (0), 18–29.

[99] Mathur, N.D. (2008) The fourth circuit element. Nature, 455 (7217), E13–E13.




