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Temperature dependent model for the quasi-
static stick–slip process on a soft substrate

Stefano Giordano *

The classical Prandtl–Tomlinson model is the most famous and efficient method to describe the stick–

slip phenomenon and the resulting friction between a slider and a corrugated substrate. It is widely used

in all studies of frictional physics and notably in nanotribology. However, it considers a rigid or unde-

formable substrate and therefore is hardly applicable for investigating the physics of soft matter and in

particular biophysics. For this reason, we introduce here a modified model that is capable of taking

into consideration a soft or deformable substrate. It is realized by a sequence of elastically

bound quadratic energy wells, which represent the corrugated substrate. We study the quasi-static

behavior of the system through the equilibrium statistical mechanics. We thus determine the static

friction and the deformation of the substrate as a function of temperature and substrate stiffness. The

results are of interest for the study of cell motion in biophysics and for haptic and tactile systems in

microtechnology.

1 Introduction

The friction between two contacting surfaces is often controlled
by the stick–slip phenomenon, which has been observed and
studied over a very wide range of scales.1–5 Although the deep
understanding of the underlying mechanisms is still incom-
plete, important progress has been made in the study of the
nanoscale friction,6–8 and the stick–slip effect in biological and
soft structures,9 including molecular motors,10 cells spreading,11

and articular joints motion,12,13 just to name a few.
From the experimental point of view, a strong momentum

for understanding the nanoscale friction and the stick–slip
phenomenon has been provided by the introduction of the
atomic force microscope,14 and the surface force apparatus.15

In parallel, computational investigations have been made pos-
sible by the development of efficient molecular dynamics
algorithms and multiscale approaches.16–18

These experimental and numerical devices allowed the
observation and the study of the characteristic stick–slip
motion of a slider, interacting with a corrugated substrate.
The latter can be thought of as a periodic potential composed
of a sequence of energy wells (a sinusoidal potential is typically
adopted). This conceptual scheme exactly corresponds to the
so-called Prandtl–Tomlinson model,19,20 pioneered in the early
20th century. Despite its age, it is still currently the most
efficient model to describe stick–slip motion and nanoscale

friction. It has therefore been studied intensively and its
outcomes have often been compared with experiments and
simulations.21,22 A careful analysis of this model led to the
discovery of different operating regimes of temperature and
velocity and these theoretical conclusions have contributed
to the interpretation of many atomic force microscope
experiments.23–33 Since the Prandtl–Tomlinson model consid-
ers only one particle sliding on the substrate, its natural
generalization is to take into account a one-dimensional elastic
chain of interacting particles moving over the periodic
potential mimicking the substrate. This scheme, originally
introduced to study the dislocations motion and explain the
plastic deformation in crystals, is known as Frenkel–Kontorova
model and perfectly describes the mutual sliding of two differ-
ent crystalline surfaces.34,35

All earlier approaches based on the Prandtl–Tomlinson or
Frenkel–Kontorova models have mostly considered a rigid or
undeformable substrate and therefore are hardly applicable to
soft matter systems or biological structures. To fill this gap, we
develop here a theory for the rate-independent stick–slip phe-
nomenon on a soft substrate, based on equilibrium statistical
mechanics. It represents a sort of generalization of the Prandtl–
Tomlinson model, able to take into consideration both the
temperature effect and the influence of the deformable sub-
strate stiffness. The model is developed here for a single sliding
particle but can be easily generalized to the case of a Frenkel–
Kontorova chain.

The possibility of determining the effects of substrate
deformability on the properties of stick–slip motion and fric-
tion with a simple theoretical model is particularly important
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for studying the collective motion of cells. Understanding this
phenomenon is essential to elucidate the mechanisms involved
in wound healing, cancerous metastases evolution, and tissues
development.36,37 These processes are extremely complex and
therefore knowing the effects of the substrate stiffness in an
oversimplified configuration can help to understand the con-
tribution of the many factors involved in the real problems
(intracellular adhesion and signaling, cell polarization, and so
on). It is first important to note that the movement of cells on a
substrate is actually characterized by stick–slip motion, as
recently observed.38–40 Then, frictional phenomena between
cells and substrate are essential to regulate cells motion and
related mechanosensitive processes.41 It has been observed
that isolated cells exhibit a direction of migration aligned with
the gradient of the substrate stiffness (durotaxis),42–44 and
groups of interacting cells also follow the same principle
(collective durotaxis).45 This is consistent with the fact that
the traction force increases with the stiffness of the
substrate.41,46 Correspondingly, evidence has been provided
that the friction experienced by cells is an increasing function
of substrate stiffness.47–49 Interestingly, this observation is in
perfect agreement with the results obtained by means of
the model here proposed for the stick–slip phenomenon on
soft substrate, as discussed below. Anyway, a complete view on
the motion of cells is not yet available, and many points remain
to be clarified: cells propagate faster with increasing stiffness
only up to optimal stiffness,50 there are different cells migra-
tion modes to investigate,51 wrinkles appear in bacterial bio-
films growing on soft substrates,52 and the cells motion shows
a biphasic relation with substrate stiffness and friction.53 It is
interesting to remember that, from the experimental point of
view, ad hoc soft substrates are used to measure the field of
forces applied on the substrate itself by cells. This is done
through the so-called Traction Force Microscopy,54 which is
particularly useful to correlate the mechanical features of
cancer cells to metastatic phenomena, which are, in turn,
strongly influenced by temperature.55 The stick–slip phenom-
enon is also artificially induced in several bioinspired micro-

and nano-structured materials in order to mimic, for example,
the remarkable mechanical properties of geckos feet.56–58 At a
larger scale, stick–slip and wear are largely studied, by means of
the Surface Forces Apparatus,15 in articular cartilage, with the
aim of detecting and tracking the progression of articular joints
diseases.59 These approaches proved that prolonged stick–slip
sliding of cartilage can increase the surface roughness, even-
tually inducing damage.60 Although our model is extremely
simple with respect to these complex systems, it represents a
first step in modeling thermal effects on friction phenomena
with soft substrates and can provide the first general insights
into stick–slip behavior in these structures. Of course, in the
near future it can be generalized to take into account all the
more realistic elements that are neglected here.

In a rather different field of study, the modeling of the stick–
slip processes on soft substrate is important to better under-
stand the friction behavior on artificial elastomeric wrinkled or
micropatterned surfaces with applications to haptic technologies,
augmented reality and tactile robotics.61–65

The proposed model is based on equilibrium statistical
mechanics and it is implemented by means of the spin variable
approach, useful to deal with arbitrarily nonconvex potential
energies.66 This method has been largely applied to several
situations including the physics of muscles,67,68 the folding of
macromolecules,69–73 the adhesion/deadhesion processes,74,75

the phase transformations in solids,76,77 and the stick–slip on
rigid substrate.78 Essentially, this technique made it possible
to complement the methods typically used to study the beha-
vior of physical systems with multiple stable and metastable
states.79–82 In this study, we consider a moving slider in contact
with a substrate described by a sequence of elastically bound
quadratic energy wells (see Fig. 1). The spin variables approach
is particularly useful since allows a direct calculation of the
partition function for our system with soft substrate. We can
therefore efficiently determine all thermodynamic variables of
interest (when the energy barrier between the wells is sufficiently
larger than KBT). The method is based on the introduction
of a discrete or spin variable, able to identify the energy well

Fig. 1 Scheme of the soft corrugated substrate with a moving slider placed at x, pulled by a traction device placed at c and with an intrinsic stiffness kD.
The deformable substrate is composed of a sequence of quadratic energy potential wells with stiffness kW and separated by an energy barrier W = kWd2/8
c KBT. The positions of the centers of these potential wells are identified by the variables yj with �N r j r +N, which can be shifted with respect to their
equilibrium positions jd for�N r j r +N, being d the lattice constant of the substrate. The deformability of the substrate is controlled by an elastic ladder
network composed of longitudinal springs kL and shear springs kS. As an example, in this plot the slider is placed within the well centered in y1 and
therefore we have the value s = 1 for the discrete spin variable.
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explored by the sliding particle. Firstly, a finite length substrate
is considered and the statistical behavior of the system is
investigated. Then, the obtained results have been simplified
from the mathematical point of view, enabling an efficient
implementation of the model. The underlying physics has been
taken into consideration by discussing the average spin variable
(average position of the slider), the average stick–slip or static
friction force, the average substrate deformation, and the prob-
ability density of the variable slider position. These quantities have
been studied for a variable temperature and substrate stiffness. To
conclude, the limiting case of an infinitely long soft substrate has
been analyzed, eventually obtaining closed form expressions for all
relevant thermodynamic quantities. Interestingly, these expressions
were written in terms of a Jacoby’s Theta function. The most
striking results represent the increase in stick–slip force with
substrate stiffness (relevant for the cells motion understanding),
and its decrease with temperature (relevant for thermolubricity
applications).

The paper is organized as follows. In Section 2, we introduce
the thermal model for the stick–slip phenomenon on soft
substrate. Then, in Section 3, we describe a mathematical
simplification allowing for an efficient implementation of the
model. We discuss here the physics underlyng the behavior of
the system. In the following Section 4, we perform the limit of the
theory with an infinite long substrate. Finally, the Conclusions
and two Appendixes close the manuscript.

2 Thermal model for stick–slip on soft
substrate

We consider a particle identified with the position x, sliding
over a one-dimensional soft or deformable corrugated substrate
(see Fig. 1). This substrate is characterized by a sequence of
quadratic potential wells centered at positions yj with�N r j r +N,
and having an elastic coefficient equal to kW. When the
substrate is in equilibrium, i.e. there is no action of the sliding
particle, the wells centers are equispaced (on the x-axis) with yj = jd
for �N r j r +N, being d the lattice constant of the substrate. In
this condition, we have the energy barrier W = kWd2/8 between
adjacent wells. This is reminiscent of the periodic substrate of the
Prandtl–Tomlinson model.19–22 However, when the particle slides
on the substrate, the wells centers yj show a displacement
yj � jd a 0 induced by the interaction between slider and
substrate. The soft substrate is modeled by means of a springs
ladder network composed of longitudinal springs of elastic con-
stant kL and shear springs with elastic constant kS (see Fig. 1). It
means that a spring kL (with equilibrium length d) links all pairs
of adjacent wells centers, placed at yj and yj�1. Moreover, each well
center at yj is linked to the fixed position jd through a spring
kS (with zero equilibrium length). While kL controls the spatial
extent of the displacement perturbation as the particle slides
on the substrate, kS controls the stiffness of the substrate itself.
In addition, the particle is moved by a traction device placed
at position c (which is variable) and with elastic constant kD.
Eventually, the total potential energy of the system can be

written as

Uðx; s;~yÞ ¼ 1

2
kW x� ysð Þ2þ1

2
kDð‘� xÞ2

þ 1

2
kL

XþN
j¼�Nþ1

yj � yj�1 � d
� �2 þ 1

2
kS
XþN
j¼�N

yj � jd
� �2

þ 1

2
kL y�N þNdð Þ2þ1

2
kL Nd � yþNð Þ2;

(1)

where the discrete or spin variable �N r s r +N represents the
potential well explored by the slider and -

y is the vector of wells
centers positions y�N,. . .,y+N. The last two terms represent the
energy contributions of the two outermost longitudinal springs kL

that connect y�N with the fixed position � (N + 1)d, and y+N

with the fixed position (N + 1)d. Here, the elastic springs are
named following the identifications: W - well, D - device,
L - longitudinal, and S - shear.

We suppose that the system is in contact with a thermal
bath at temperature T and that the velocity of the sliding
particle is low enough to be able to neglect dynamical effects.
It means that we study the thermal behavior of the static or
quasi-static stick–slip phenomenon on a soft substrate. To
approach the problem, we can therefore apply the equilibrium
statistical mechanics characterized by the classical canonical
distribution. In order to calculate the corresponding parti-
tion function, we can sum over the spins variables and
integrate over the continuous variables independently.
This allows the partition function to be written in the following
form

Z ¼
XþN
s¼�N

ð
R2Nþ1

ðþ1
�1

e
�Uðx;s;~yÞ

KBT dx d~y; (2)

where KB is the Boltzmann constant and T is the temperature.
Of course, the application of the spins method intro-
duces an approximation and therefore there are physical
limitations to the use of the model. In fact, each continuous
variable is integrated over the whole span of real values
and not only over the range it would be allowed in the
exact model. This introduces an error in the regions where
the tails of the Gaussian functions overlap. However,
this error is negligible when the energy barrier W between
the elastic substrate wells is sufficiently larger than the
thermal energy KBT. This means that we are led to assume
that W = kWd2/8 c KBT.

The partition function defined in eqn (2) can be elaborated
as follows, by first performing the integral on x and then on -

y.
To begin with, in order to separate the terms depending
on x from the others, the total energy U can be rewritten as
follows

Uðx; s;~yÞ ¼ 1

2
kW þ kDð Þx2 � kWys þ kD‘ð ÞxþYðs;~yÞ; (3)
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where Y is independent of x and reads

Yðs;~yÞ ¼ 1

2
kWys

2 þ 1

2
kD‘

2

þ 1

2
kL
XN
j¼�N

yj � yj�1 � d
� �2 þ 1

2
kS
XN
j¼�N

yj � jd
� �2

þ 1

2
kL y�N þNdð Þ2þ1

2
kL Nd � yþNð Þ2:

(4)

Hence, this separation allows to write the partition function in
the form

Z ¼
XþN
s¼�N

ð
R2Nþ1

e
�Yðs;~yÞ

KBT

ðþ1
�1

e
�kWþkD

2KBT
x2þkWysþkD‘

KBT
x
dx d~y; (5)

where the integration over x can be performed in closed form
by means of the well-known expressionðþ1

�1
e�ax

2
ebxdx ¼

ffiffiffi
p
a

r
e
b2

4a ða4 0Þ: (6)

Then, we get

Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pKBT

kW þ kD

s XþN
s¼�N

ð
R2Nþ1

e
�Yðs;~yÞ

KBT e
kWysþkD‘ð Þ2

2 kWþkDð ÞKBTd~y

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pKBT

kW þ kD

s XþN
s¼�N

ð
R2Nþ1

e
�Oðs;~yÞ

KBT d~y;

(7)

where we introduced the quantity

Oðs;~yÞ ¼ Yðs;~yÞ � kWys þ kD‘ð Þ2

2 kW þ kDð Þ : (8)

This is a quadratic function in the variable -
y that can be

developed by means of a long but straightforward calculation
based on eqn (4). The result is

Oðs;~yÞ ¼ 1

2
‘2

kWkD

kW þ kD
þNðN þ 1ÞkLd2

þ 1

6
NðN þ 1Þð2N þ 1ÞkSd2

þ kL‘~xs �~yþ
1

2
kL~y �As~y;

(9)

where we used the relation
PþN

j¼�N
j2 ¼ NðN þ 1Þð2N þ 1Þ=3. In

this expression, the tridiagonal matrix As is defined as

As ¼

a�N �1 0 . . . 0

�1 a�Nþ1 �1 . .
. ..

.

0 �1 . .
. . .

.
0

..

. . .
. . .

.
aN�1 �1

0 . . . 0 �1 aN

2
6666666666664

3
7777777777775
2M2Nþ1;2Nþ1ðRÞ;

(10)

with all the subdiagonal and superdiagonal elements equal to
�1 and the diagonal elements given by

aj ¼ 2þ kS

kL
þ dj;s

kWkD

kL kW þ kDð Þ; (11)

with �N r j r +N, �N r s r +N, and where da,b is the
Kronecker delta, assuming the value 1 when a = b, and the value

zero when aab. It means that the term
kWkD

kL kW þ kDð Þ is added to

the element as of the diagonal of As. In particular, if s = �N, it
is added to the first element and, if s = +N, to the last one. This
means that the matrix As is dependent on s since this term

shifts as s varies. Moreover, the vector ~xs 2 R2Nþ1 in eqn (9) is
defined as

~xs ¼ xs;�N ; xs;�Nþ1; :::; xs;N�1; xs;N
� �

; (12)

where

xs; j ¼
ðN þ 1Þd

‘
dj;�N � dj;þN
� �

� j
d

‘

kS

kL
� dj;s

kWkD

kL kW þ kDð Þ;

(13)

again with �N r j r +N, �N r s r +N. In this case, the term
kWkD

kL kW þ kDð Þ is subtracted from the element xs,s of the vector ~xs.

Again, the vector ~xs depends on s because of the shift of this
term as s varies.

At the end of this development, we observe that O(s,-y) is
written in eqn (9) as a quadratic function in the vector -

y,
composed of three contributions: a constant term with respect
to -

y (first line of eqn (9)), a term of first degree in -
y (controlled

by the vector~xs), and a term of second degree in -
y (controlled by

the matrix As). We can substitute this expression of O(s,-y) into
the partition function defined in eqn (7). Importantly, the
integral can now be performed by using the Gaussian property

ð
RM

e�
1
2
~y�B~ye

~b�~yd~y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞM
detB

s
e
1
2
~b�B�1~b; (14)

holding for any symmetric and positive definite matrix B 2
MM;MðRÞ and for any vector ~b 2 RM . The explicit form of the
partition function is then delivered as follows

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pKBTÞ2Nþ2

kW þ kDð Þk2Nþ1L

s
e
�NðNþ1ÞkLd

2

KBT e
�NðNþ1Þð2Nþ1ÞkSd

2

6KBT

�
XþN
s¼�N

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detAs

p e
kL‘

2

2KBT
~xs �As

�1~xs�
kWkD

kL kWþkDð Þ

h i
:

(15)

Therefore, the joint probability density of all the variables
belonging to the phase space of the system is readily written
in the canonical form

rðx; s;~yÞ ¼ 1

Z
e
�Uðx;s;~yÞ

KBT ; (16)
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with the normalization property

XþN
s¼�N

ð
R2Nþ1

ðþ1
�1

rðx; s;~yÞdx d~y ¼ 1: (17)

In particular, the knowledge of the partition function allows us
to obtain the average value of the static or quasi-static friction
force, or stick–slip force, by means of the thermodynamic
relation

fh i ¼ �KBT
@ logZ

@‘
¼ �KBT

1

Z

@Z

@‘
: (18)

This is true within the Helmholtz statistical ensemble of the
statistical mechanics.83,84 Moreover, this can be easily seen by
deriving Z in eqn (2) with respect to c, by considering the total
energy in eqn (1), and by observing that h f i = kD(c � hxi). A
straightforward development of the derivative yields the follow-
ing explicit result

fh i ¼ ‘ kWkD

kW þ kD

PþN
s¼�N

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detAs

p e
kL‘

2

2KBT
~xs�As

�1~xs 1þ~es �As
�1~xs

� �
PþN

s¼�N

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detAs

p e
kL‘

2

2KBT
~xs �As

�1~xs

;

(19)

where -
es is the (s + N + 1)-th element of the canonical basis of

the space R2Nþ1, i.e.
-
es = (0,0,. . .,1,. . .,0,0) where the one is at

position s + N + 1 with �N r s r +N. Importantly, this value of
the rate-independent stick–slip force takes into consideration the
deformation of the substrate and indeed depends on the elastic
properties of the substrate itself. We will thoroughly explore the
effect of the substrate deformability on the rate-independent
stick–slip force force. Of course, since h f i = kD(c � hxi), the
knowledge of h f i also makes it easy to determine the value of hxi.
We do not report formulas and graphs for hxi so as not to
lengthen the article further.

Another important macroscopic observable is given by the
average value of the spin variable s. It has a similar meaning as
hxi but allows for better identification of jumps between wells.
It can be simply determined through the following expression,
directly derived from the probability density in eqn (16)

sh i ¼
XþN
s¼�N

s

ð
R2Nþ1

ðþ1
�1

rðx; s;~yÞdx d~y: (20)

A not difficult elaboration leads to the explicit result

sh i ¼

PþN
s¼�N

sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detAs

p e
kL‘

2

2KBT
~xs�As

�1~xs

PþN
s¼�N

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detAs

p e
kL‘

2

2KBT
~xs�As

�1~xs

; (21)

representing the average value of the discrete variable identify-
ing the energy well locally explored by the moving slider. It is
useful to determine the average number hsi corresponding to
the energy well in which the slider is located in terms of the
position c of the traction device.

The most original quantity obtained in this work represents
the deformation induced in the corrugated substrate by the

sliding particle. It is quantified by the average value of position
vector -y, which can be calculated as

~yh i ¼
XþN
s¼�N

ð
R2Nþ1

ðþ1
�1

rðx; s;~yÞ~ydxd~y: (22)

The integration can be performed by means of a generalization
of eqn (14), given by

ð
RM

e�
1
2
~y�B~ye

~b�~y~y d~y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞM
detB

s
e
1
2
~b�B�1~bB�1~b; (23)

holding again for any symmetric and positive definite matrix

B 2MM;MðRÞ and for any vector ~b 2 RM . With the application
of eqn (23), the definition in eqn (22) eventually delivers the
explicit expression

~yh i ¼ �‘

PþN
s¼�N

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detAs

p e
kL‘

2

2KBT
~xs �As

�1~xsAs
�1~xs

PþN
s¼�N

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detAs

p e
kL‘

2

2KBT
~xs�As

�1~xs

: (24)

This result represents the positions (on the x-axis) of the
centers of the energy wells (constituting the deformable sub-
strate) as function of the position c of the moving slider.

An additional quantity, which will be useful to better under-
stand the behavior of the system, consists in the probability
density r(x) of the single variable x. Of course, it is defined as

rðxÞ¼
XþN
s¼�N

ð
R2Nþ1

rðx;s;~yÞd~y¼ 1

Z

XþN
s¼�N

ð
R2Nþ1

e
�Uðx;s;~yÞ

KBT d~y; (25)

and it is subjected to the normalization condition

ðþ1
�1

rðxÞdx¼1: (26)

We use the same symbol for r(x) and for r(x,s,-y) but always
indicate the variables to avoid any ambiguity. In order to
perform the calculation of r(x), we need to rewrite the total
energy U by identifying the terms independent of -y, and those
representing a quadratic function in -

y. So doing, we obtain the
expression

Uðx;s;~yÞ ¼ 1

2
kWx2þ1

2
kDx

2�kD‘xþ
1

2
kD‘

2

þNðNþ1ÞkLd2þ1

6
NðNþ1Þð2Nþ1ÞkSd2

þ1

2
kL~y �Cs~yþkL‘~zs �~y;

(27)

where the last two terms represent the second order contribu-
tion in -

y (controlled by Cs2M2Nþ1;2Nþ1ðRÞ) and the first order

contribution (controlled by ~zs 2R2Nþ1). Here, the tridiagonal
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matrix Cs is given by

Cs¼

c�N �1 0 . . . 0

�1 c�Nþ1 �1 . .
. ..

.

0 �1 . .
. . .

.
0

..

. . .
. . .

.
cN�1 �1

0 . . . 0 �1 cN

2
6666666666664

3
7777777777775
2M2Nþ1;2Nþ1ðRÞ; (28)

with all the subdiagonal and superdiagonal elements equal to
�1 and the diagonal elements given by

cj¼2þkS

kL
þdj;s

kW

kL
: (29)

The last term in eqn (29) means that the quantity
kW

kL
is added

only to the element cs of the main diagonal of Cs. Similarly, we

find that the vector~zs is defined as

~zs¼ðzs;�N ;zs;�Nþ1; :::;zs;N�1;zs;NÞ; (30)

where one must consider the following components

zs;j¼
ðNþ1Þd

‘
dj;�N�dj;þN
� �

� j
d

‘

kS

kL
�dj;s

kW

kL

x

‘
; (31)

always with �N r j r +N, �N r s r +N. As before, the last

term means that the quantity
kW

kL

x

‘
is subtracted only from the

element zs,s of the vector ~zs. To conclude, the substitution of
the total energy written as in eqn (27) into eqn (25), and the
application of the property stated in eqn (14), yields the prob-
ability density r(x) in the form

rðxÞ¼
e
�kWþkD

2KBT
x� kD‘

kWþkD

� �2 PþN
s¼�N

1ffiffiffiffiffiffiffiffiffiffiffiffi
detCs

p e
kL‘

2

2KBT
~zs�Cs

�1~zs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pKBT

kWþkD

r PþN
s¼�N

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detAs

p e
kL‘

2

2KBT
~xs �As

�1~xs

; (32)

where all the quantities As, ~xs, Cs, and~zs have been previously
defined, see eqn (10), (13), (28) and (31). It is possible to prove
that the obtained form for r(x) in eqn (32) exactly satisfies
the normalization condition in eqn (26). This concludes the
mathematical analysis of the system. We obtained the average
stick–slip force in eqn (19), the expectation value of the spin
variable in eqn (21), the average value of the substrate displace-
ment in eqn (24), and the density of probability of x in eqn (32).
However, it is important to remark that the sums indicated in
all these results are quite costly from the numerical point of
view since we need to determine the determinant and the
inverse matrix of As and Cs for any value of s in the range
�N r s r +N. If the number 2N + 1 of binding sites of the
corrugated substrate is large, the procedure is rather demanding
especially if we are interested in performing a parametric
analysis of the system behavior. For this reason, we show in
the next Section a further simplification of these results, based
on specific matrix properties.

3 Efficient implementation of the model

All results obtained in the previous Section can be further
simplified (without approximations) in view of an efficient
numerical implementation. To this aim, we can prove the two
following mathematical properties. First of all, we define the
Kronecker product of two vectors~v 2 RM and ~w 2 RM such that
~v� ~w 2MM;MðRÞ and ð~v� ~wÞij ¼ viwj . Then, we introduce a

matrix B 2MM;MðRÞ and a vector ~b 2 RM such that B�1 and

Bþ x~b� ~b
� ��1

exist for some x 2 R. Under these assumptions,

the two following relations can be proved (see Appendix A)

Bþ x~b� ~b
� ��1

¼ B�1 � x
B�1~b� ~bB�1

1þ x~b �B�1~b
; (33)

det Bþ x~b� ~b
� �

¼ detB 1þ x~b �B�1~b
� �

: (34)

These results allow the determination of the inverse and the

determinant of Bþ x~b� ~b by means of the calculation of B�1

and det B. So, B�1 and det can be calculated once and for all
regardless of the value of x. Interestingly, these properties can be
directly applied to our previous formulas by observing that

As ¼Nþ ag~es �~es; (35)

Cs ¼Nþ a~es �~es; (36)

~xs = ~Z � ag-es, (37)

~zs ¼~Z� a~es
x

‘
; (38)

g ¼ kD

kW þ kD
; (39)

a ¼ kW

kL
: (40)

For the sake of clarity, we underline that eqn (35) comes from
eqn (10), (11) and (36) comes from eqn (28), (29) and (37) comes
from eqn (12) and (13), and finally eqn (38) comes from eqn (30)
and (31). Here, the matrix N is defined as

N ¼

n�N �1 0 . . . 0

�1 n�Nþ1 �1 . .
. ..

.

0 �1 . .
. . .

.
0

..

. . .
. . .

.
nN�1 �1

0 . . . 0 �1 nN

2
6666666666664

3
7777777777775
2M2Nþ1;2Nþ1ðRÞ;

(41)

with all the subdiagonal and superdiagonal elements equal to
�1 and the diagonal elements given by

nj ¼ 2þ kS

kL
¼ 2þ l 8j; (42)
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where l = kS/kL. Hence, N is a tridiagonal matrix with all
elements on the main diagonal assuming the same value 2 + kS/
kL = 2 + l. Moreover, the vector ~Z is defined as

~Z = (Z�N, Z�N+1,. . ., ZN�1, ZN), (43)

and has the following components

Zj ¼
ðN þ 1Þd

‘
dj;�N � dj;þN
� �

� j
d

‘

kS

kL
: (44)

for �N r j r +N. The important result is that neither N nor~Z
are dependent on s. Then we can use eqn (33) and (34) in order
to further elaborate the main results of the previous Section.
A straightforward algebraic development yields the following
expressions

~xs �As
�1~xs ¼~Z �N�1~Zþ ag� ag

ð1þ zsÞ2
1þ agNss

�1; (45)

As
�1~xs ¼N�1~Z� agN�1~es

1þ zs

1þ agNss
�1; (46)

1þ~es �As
�1~xs ¼

1þ zs

1þ agNss
�1; (47)

~zs � C�1s
~zs ¼~Z �N�1~Zþ a

x2

‘2
� a

x

‘
þ zs

� �2
1þ aNss

�1; (48)

detAs ¼ detN 1þ agNss
�1� �

; (49)

detCs ¼ detN 1þ aNss
�1� �

; (50)

where Nss
�1 ¼~es �N�1~es, i.e. it is the (s + N + 1)-th element on

the main diagonal of the matrix N�1, and zs ¼~es �N�1~Z. We
remember that -

es is the (s + N + 1)-th element of the canonical
basis of the space R2Nþ1, i.e.

-
es = (0,0,. . .,1,. . .,0,0) where the one

is at position s + N + 1 with �N r s r + N. In conclusion, these
expressions, easily derived by the properties in eqn (33) and
(34), allow us to implement all results obtained in previous
Section by calculating only one inverse matrix, namely of
N 2M2Nþ1;2Nþ1ðRÞ.

All these results can be written by introducing the following
parameter

b ¼ kWd2

2KBT
; (51)

which perfectly describes the compromise between the depth of
the energy wells of the soft corrugated substrate and the
thermal fluctuations. For the spin variable approach considered
to work properly, the barrier W = kWd2/8 between two adjacent
wells must be sufficiently larger than the thermal energy KBT, as
previously discussed. It means that we will consider b c 4.
Anyway, the previous results can be rewritten in a more effective
form. Concerning the rate-independent stick–slip force, from

eqn (19), we get

fh i
kwd
¼ ‘

d

PþN
s¼�N

gð1þ zsÞ
1þ agNss

�1ð Þ3=2
e
�bg‘

2

d2
1þzsð Þ2

1þagNss
�1

PþN
s¼�N

1

1þ agNss
�1ð Þ1=2

e
�bg‘

2

d2
1þzsð Þ2

1þagNss
�1

: (52)

The average value of the spin variable, from eqn (21), assumes
the form

sh i ¼

PþN
s¼�N

s

1þ agNss
�1ð Þ1=2

e
�bg‘

2

d2
1þzsð Þ2

1þagNss
�1

PþN
s¼�N

1

1þ agNss
�1ð Þ1=2

e
�bg‘

2

d2
1þzsð Þ2

1þagNss
�1

: (53)

The positions of the moving substrate wells, from eqn (24), are
given by

~yh i
d
¼ ‘

d

PþN
s¼�N

agð1þ zsÞN�1~es

1þ agNss
�1ð Þ3=2

e
�bg‘

2

d2
1þzsð Þ2

1þagNss
�1

PþN
s¼�N

1

1þ agNss
�1ð Þ1=2

e
�bg‘

2

d2
1þzsð Þ2

1þagNss
�1

� ‘

d
N�1~Z: (54)

And finally, the probability density of the slider position is
derived from eqn (32) and is written as

rðxÞ ¼ 1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

pð1� gÞ

s
e
�b

g
1� g

‘2

d2
1�x‘ð Þ2

�

PþN
s¼�N

1

1þ aNss
�1ð Þ1=2

e
�b‘

2

d2

x
‘þzsð Þ2

1þaNss
�1

PþN
s¼�N

1

1þ agNss
�1ð Þ1=2

e
�bg‘

2

d2
1þzsð Þ2

1þagNss
�1

:

(55)

As already mentioned, these formulas are particularly effective
because they can be implemented by means of a single inverse
matrix. This means that the sums appearing in these results are
performed on terms that are immediately available and do not
require any further computational cost.

Examples of applications of these results can be found in
Fig. 2–5. We consider a system with N = 5, thus composed of
2N + 1 = 11 potential wells in the corrugated substrate, and we
move the slider from c/d = �N to c/d = N. We are interested in
exploring the behavior of the system in terms of temperature
and substrate stiffness. On the one hand, in Fig. 2 and 3, we
analyse the system with a varying temperature, i.e. with a
parameter b = kWd2/(2KBT) variable in the range from 10 to
200. On the other hand, in Fig. 4 and 5, we analyse the system
with a varying substrate stiffness, i.e. with a parameter l = kS/kL

variable in the range from 0.083 to 7.5.
In Fig. 2, one finds the average value of the spin variable hsi,

the average value of the normalized stick–slip force h f i/(kwd),
and the substrate positions vector h-yi/d. The behavior of hsi
simply shows that, as c increases, the cursor hops from one
energy well to the next. Due to thermal fluctuations, these
transitions are sharper at low temperatures and smoother at
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high temperatures. Moreover, the plot of h f i/(kwd) represents
the stick–slip force versus the device position c. We clearly see
that the maximum of the force is increasing with b and there-
fore decreasing with the temperature T. This behavior explains the
thermolubricity phenomenon as follows: the thermal fluctuations
promote the crossing of energy barriers between wells and
ultimately reduce static friction. Concerning h-yi/d, we observe
that the motion of the slider affects the positions of the substrate
wells and therefore generates a substrate deformation. The effect
of this deformation is stronger for sites close to the moving cursor
and negligible in distant areas. The extent of the deformed area
depends on the longitudinal elastic constant kL whereas the
intensity of the deformation depends on the shear elastic constant
kS. Furthermore, this deformation is very small when the slider is
in the center of the potential wells or on top of the barriers.
Concerning the temperature effects, we observe that the substrate
deformation is reduced with an increasing temperature since the
thermal fluctuations facilitate the crossing of barriers reducing
the interaction force between slider and substrate (coherently with
the reduction of the static friction).

The average normalized position hy0i/d of the central energy
well is plotted versus c/d in Fig. 3 in order to better discuss
some details. We suppose to start the sliding process with the
device at c/d = 0 and we move it rightwards. For 0 r c/d o 1/2,
we observe a positive value for hy0i/d, which is justified by the
fact that to try to exit the central energy well we apply a positive
force that tends to move the well itself to the right: this is at the
origin of the deformation of the substrate. When we reach the
potential barrier with the device at c/d = 1/2, we observe a rather
complex phenomenon. The quantity hy0i/d is not zero as one
might expect but takes on a positive value. A zero deformation
should be expected as the maximum of the potential barrier is an
unstable but stationary point with presumed zero interaction
force between slider and substrate. Nevertheless, we must con-
sider that the position c of the device is deterministic but the
position x of the slider is random and described by statistical
mechanics as seen above. We know in fact its probability density
given in eqn (55), and represented in Fig. 3 for c = d/2 (the first
energy barrier on the right of the central well) and for c = d
(the center of the first energy well after the central one). It is

Fig. 2 Effect of the temperature on the stick–slip process. We show the average value of the spin variable hsi, the average value of the normalized stick–
slip force hfi/(kwd), and the substrate positions vector hy-i/d as function of c/d for a chain with N = 5 and for different values of b. We adopted the
parameters kL = 4, kS = 3, kW = 8, kD = 5, d = 1, KBT = 2/5, 1/5, 1/10, 1/20, 1/50 in arbitrary units, corresponding to the following adimensional quantities:
g = 5/13, l = 3/4, a = 2, b = 10, 20, 40, 80, 200. In order to better visualize the behavior of the normalized positions hyji/d, �N r j r +N, we plotted the
curves ðhyji=d � jÞAþ j, �N r j r +N, where we adopted the amplification factor A ¼ 5.
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important to observe that the instability corresponding to the
energy barrier at c = d/2 generates a bimodal density for the
variable x. It means that the slider is statistically split into two
equivalent sliders, each residing in one of two adjacent wells
centered at x = 0 and x = d. These two virtual sliders apply two
opposite forces to the centers of the wells centered at x = 0 and
x = d. Then, the bimodal distribution induces a decrease in the
distance of the two centers and thus an increase of hy0i/d and a
decrease of hy1i/d, for c = d/2. This phenomenon is larger when
the temperature is larger (see the case with b = 10 in Fig. 3) since
the two virtual sliders are closer to the barrier for higher
temperature. Therefore, they apply a larger force that brings
the two wells closer together, sensibly increasing hy0i/d. The
same process can be also observed for the successive energy
barriers placed at c = 3d/2, 5d/2,. . . and so on. Indeed, we see a
positive value of hy0i/d for these values of c.

If we now look at the probability density of x for c = d, i.e.
when the position of the traction device corresponds to the
center of first potential well after the central one, we observe a
monomodal distribution. However, for large temperatures, this

density can be sensibly different from zero outside the region of
the first potential well, representing a statistical dispersion of
the slider over more than one potential well (in Fig. 3, it is true
for the case with b = 10). It means that we can have hy0i/d 4 0
at c/d = 1, 2, 3,. . . for large values of the temperature. This
particular effect, giving hy0i/d 4 0 for c = d/2, 3d/2, 5d/2,. . . and
c = d, 2d, 3d,. . ., has been carefully checked and confirmed also
without taking into consideration the approximation intro-
duced by the spin variable approach. In fact, a numerical
approach to the problem provided the same results. For the
sake of brevity we do not report here the details of this
calculation.

In Fig. 4, we can observe the effect of the substrate stiffness,
quantified by l = kS/kL, on the average value of the spin variable
hsi, on the average value of the normalized stick–slip force h f i/
(kwd), and on the substrate positions vector h-yi/d. We consid-
ered here a fixed value for the temperature. We can see that the
substrate stiffness slightly modifies the hopping among the
potential wells described by hsi. Instead, the stick–slip force
and the substrate deformation are sensibly influenced by the

Fig. 3 Effect of the temperature on the substrate deformation and the probability density of x. We show the average substrate position hy0i/d as function
of c/d for a chain with N = 5 and for different values of b. Moreover, dr(x) is plotted versus x/d for c = d/2 (bimodal distribution) and c = d (monomodal
distribution). We used the abscissa x/d and the ordinate dr(x) in order to show a normalized curve with adimensional quantities. We adopted the
parameters kL = 4, kS = 3, kW = 8, kD = 5, d = 1, KBT = 2/5, 1/5, 1/10, 1/20, 1/50 in arbitrary units, corresponding to the following adimensional quantities:
g = 5/13, l = 3/4, a = 2, b = 10, 20, 40, 80, 200.
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substrate stiffness. We observe that with an increasing sub-
strate stiffness, we have an increasing stick–slip force and a
decreasing substrate deformation. We emphasize the fact that
the behavior with a variable temperature was different. Indeed,
as the temperature increased, both stick–slip force and sub-
strate deformation were found to decrease.

In Fig. 5, we show the zoom of the normalized position hy0i/
d versus the slider position c/d. As before, we can observe the
oscillatory variation of hy0i/d with a decrease of its intensity as
the distance from the central point increases. Moreover, we see
that hy0i/d is slightly larger than zero for c = d/2, 3d/2, 5d/2,. . .

and it is explained by the probability density of the variable x,
which is bimodal in correspondance to the energy barriers, as
one can find in Fig. 5. In the plot of hy0i/d, we observe that
for c = d/2, 3d/2, 5d/2,. . . the value of hy0i/d increases with the
decrease of l. This exactly corresponds to the increasing dis-
tance between the two peaks in the probability density of x as
the stiffness l of the substrate increases. In fact if the two peaks
are very close, they correspond to points with a high slope of the

potential energy and apply a high force that produces a strong
approaching of the energy wells. On the contrary, if the peaks
are farther apart, they correspond to points having a lower
slope of the potential energy and apply a lower force that tends
to bring the energy wells closer to each other. Concerning the
probability density of x for c = d, we observe that its value is
nearly zero outside the energy well and therefore we see that
hy0i/d = 0 for c = d, 2d, 3d,. . .. This value can be increased only
for larger values of the temperature.

Our model is based on equilibrium statistical mechanics
and therefore we neglected frictional memory induced by finite
speed, thermodynamic non-reversibility and substrate plasti-
city. For this reason, we cannot observe hysteresis in our
frictional behaviour, an important feature present in several
applications.85,86 In addition, we completely neglected any
nonlinear and/or nonlocal behaviour of the soft substrate in
order to simplify the application of statistical mechanics.
Some theoretical work in this direction can be found in the
literature.87,88

Fig. 4 Effect of the substrate stiffness on the stick–slip process. We show the average value of the spin variable hsi, the average value of the normalized
stick–slip force hfi/(kwd), and the substrate positions vector hy-i/d as function of c/d for a chain with N = 5 and for different values of l. We adopted the
parameters kL = 4, kS = 1/3, 1, 3, 10, 30, kW = 8, kD = 5, d = 1, KBT = 1/10 in arbitrary units, corresponding to the following adimensional quantities: g = 5/13,
l = 1/12, 1/4, 3/4, 5/2, 15/2, a = 2, b = 40. In order to better visualize the behavior of the normalized positions hyji/d, �N r j r +N, we plotted the curves
ðhyji=d � jÞAþ j, �N r j r + N, where we adopted the amplification factor A ¼ 5.
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4 The limit of the theory with an
infinitely long substrate

We want to study here the behavior of the system with
an infinitely long substrate (N - N). To do this, we use
some specific properties of tridiagonal matrices,89,90 fully dis-
cussed in Appendix B. There, one can find an algorithm giving
the closed form expressions for the elements of N�1. In
particular, by means of this result, we can write the explicit
expressions for the elements Nss

�1, representing the main
diagonal of N�1. Indeed, by using eqn (106), (110) and (112)
of Appendix B, we easily get Nii

�1 ¼ GðiÞGðM þ 1� iÞ=GðM þ 1Þ
with 1 r i r M. By substituting M = 2N + 1 and i = s + N + 1
we obtain

Nss
�1 ¼ GðsþN þ 1ÞGðN þ 1� sÞ

Gð2N þ 2Þ ; (56)

where �N r s r +N. Here, the function G is defined as follows

(see eqn (111) in Appendix B)

GðzÞ ¼ 1ffiffiffiffi
D
p 2þ lþ

ffiffiffiffi
D
p

2

 !z

� 1ffiffiffiffi
D
p 2þ l�

ffiffiffiffi
D
p

2

 !z

; (57)

where D = l2 + 4l (see Appendix B) and l = kS/kL. We observe that
in this function, the two fractions raised to the power z have the
following properties: the first is larger than one, and the second is
between zero and one. Since z is a function that grows linearly
with N in the three G functions used in eqn (56), if N is large, in
eqn (57) we can neglect the second power that tends to zero (the
base is between zero and one) and we can keep only the first one
(the base is larger than one). From eqn (56), these premises deliver

lim
N!1

Nss
�1 ¼ 1ffiffiffiffi

D
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ 4l
p ; (58)

showing that the diagonal of the inverse matrix of N is homo-
geneous in the limit of N - N (Nss

�1 does not depend on s).
This is the first important result, which strongly simplifies the
structures of previous results for large values of N. Second, we

Fig. 5 Effect of the substrate stiffness on the substrate deformation and the probability density of x. We show the average substrate position hy0i/d as
function of c/d for a chain with N = 5 and for different values of l. Moreover, dr(x) is plotted versus x/d for c = d/2 (bimodal distribution) and c = d
(monomodal distribution). We used the abscissa x/d and the ordinate dr(x) in order to show a normalized curve with adimensional quantities. We adopted
the parameters kL = 4, kS = 1/3, 1, 3, 10, 30, kW = 8, kD = 5, d = 1, KBT = 1/10 in arbitrary units, corresponding to the following adimensional quantities:
g = 5/13, l = 1/12, 1/4, 3/4, 5/2, 15/2, a = 2, b = 40.
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search for an explicit expression for zs. By definition, it is given by
zs ¼~es �N�1~Z. Hence, since ð~esÞi ¼ dsþNþ1;i, we can write

zs ¼
X2Nþ1
j¼1

NsþNþ1;j
�1Zj ¼

XsþN
j¼1

NsþNþ1;j
�1Zj

þNsþNþ1;sþNþ1
�1ZsþNþ1 þ

Xþ2Nþ1N
j¼sþNþ2

NsþNþ1;j
�1Zj ;

(59)

where the first sum is split into three parts, consistent with the
expression of the inverse matrix given in eqn (106) of the Appendix B.
Therefore, in the first term we can substitute the values

NsþNþ1;j
�1 ¼ Gð jÞGðN þ 1� sÞ

Gð2N þ 2Þ ; ðsþN þ 14 jÞ; (60)

in the second one the following

NsþNþ1;sþNþ1
�1 ¼ GðsþN þ 1ÞGðN þ 1� sÞ

Gð2N þ 2Þ ; (61)

and in the third one

NsþNþ1;j
�1 ¼ GðsþN þ 1ÞGð2N þ 2� jÞ

Gð2N þ 2Þ ;

ðsþN þ 1o jÞ:
(62)

To sum up, we obtain the expression

zs ¼
XsþN
j¼1

Gð jÞGðN þ 1� sÞ
Gð2N þ 2Þ Zj

þ GðsþN þ 1ÞGðN þ 1� sÞ
Gð2N þ 2Þ ZsþNþ1

þ
X2Nþ1

j¼sþNþ2

GðsþN þ 1ÞGð2N þ 2� jÞ
Gð2N þ 2Þ Zj ;

(63)

where we must consider the components of the vector ~Z

Zj ¼ ðN þ 1Þd
‘
dj;1 � dj;Nþ1
� �

� ð j �N � 1Þd
‘
l: (64)

Developing eqn (63) with a long but straightforward calcula-
tion, we eventually obtain the following asymptotic behavior

lim
N!1

zs ¼ �s
d

‘
; (65)

where �N r s r +N. It means that zs depends linearly on s
through the simple coefficient �d/c when N - N. The two
results in eqn (58) and (65) are essential to obtain the explicit
solutions describing the behaviour of the model with an
infinitely long soft substrate.

We start from eqn (53) giving the average value of the spin
variable and we perform the limit for N -N. By using eqn (58)
and (65), we can rewrite eqn (53) as follows

sh i ¼

Pþ1
s¼�1

se�m
‘
d
�s

� �2
Pþ1

s¼�1
e�m

‘
d
�s

� �2 ; (66)

where we introduced

m ¼ bg

1þ ag
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ 4l
p

¼ bg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4l
p

agþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4l
p 4 0: (67)

The sum in the denominator can be easily written in the
following closed form

Xþ1
s¼�1

e�m
‘
d
�s

� �2
¼ e

�m‘
2

d2W3 �im
‘

d
; i
m
p

� �
; (68)

by using the third Jacobi theta function W3(z,t) defined
below

W3 z; tð Þ ¼
Xþ1
n¼�1

epin
2te2inz ¼ 1þ 2

Xþ1
n¼1

epin
2t cosð2nzÞ: (69)

Here z ¼ �im‘=d 2 C is the argument, and t ¼ im=p 2 C is the so-
called lattice parameter satisfying the condition =mðtÞ4 0.91–95

Sometimes, also the nome q = eipt = e�m is introduced with the
assumption |q| o 1, assuring the series convergence. This func-
tion satisfies the two relations

W3(z + p,t) = W3(z,t), (70)

W3 zþ pt; tð Þ ¼ e�2iz

q
W3 z; tð Þ; (71)

stating that it is determined in the entire complex plane by the

values it assumes in the parallelogram identified by the four

points z0,z0 + pt,z0 + p + pt and z0 + p 8z0 2 C (the fundamental

domain).91–95 To write eqn (68) in a more useful form, we can

also introduce the following Jacobi functional identity for the

third Jacobi theta function94,95

W3 z; tð Þ ¼ 1ffiffiffiffiffiffiffiffi
�it
p e

z2

pitW3
z

t
;�1

t

� �
; (72)

where the square root is to be interpreted as the principal

value.94,95 If we apply this identity to eqn (68), we easily

obtain

Xþ1
s¼�1

e�m
‘
d
�s

� �2
¼

ffiffiffi
p
m

r
W3 �p

‘

d
; i
p
m

� �
: (73)

Returning to eqn (66), we note that the sum in the nume-

rator can be written as function of the sum in the

denominator as

Xþ1
s¼�1

se�m
‘
d
�s

� �2
¼ d

2m
@

@‘

Xþ1
s¼�1

e�m
‘
d
�s

� �2
þ ‘

d

Xþ1
s¼�1

e�m
‘
d
�s

� �2
;

(74)

and therefore we eventually obtain

sh i ¼ ‘

d
� p
2m

W03 �p
‘

d
; i
p
m

� �

W3 �p
‘

d
; i
p
m

� �; (75)

where W03 ¼
@W3
@z

. By using the following relation giving the
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logarithmic derivative of the third theta function91–95

W03 z; tð Þ
W3 z; tð Þ ¼ 4

Xþ1
n¼1
ð�1Þn qn

1� q2n
sinð2nzÞ; (76)

which is valid for j=mðzÞjop
2
=mðtÞ and where q = eipt, we

finally obtain

sh i ¼ ‘

d
þ 2p

m

Xþ1
n¼1
ð�1Þn e

�np
2

m

1� e
�np

2

m

sin 2pn
‘

d

� �
: (77)

This relationship is particularly clear from a physical point of

view as the first term, linear in c, represents the movement of

the slider and the second term, described by a Fourier series,

represents the periodicity of the infinite substrate. The resulting

stepped curve is easily interpreted as a succession of jumps

between the potential wells of the substrate. Interestingly

enough, this process is controlled by only one parameter, namely

m defined in eqn (67), taking into account the compromise

between temperature (i.e. b), substrate elasticity (i.e. l) and

device elasticity (i.e. g). In the case with l - N, we obtain

an infinite rigid substrate. Under this condition, m - bg and

eqn (77) becomes coincident with recent results obtained

for undeformable substrates.78 This comparison confers even

more meaning to the expression of m given in eqn (67), which

takes a modified form for finite values of substrate elasticity

with respect to the value m = bg, already known for rigid

substrates.78

Concerning the stick–slip force on the soft substrate,
by using eqn (58) and (65), we can rewrite eqn (52) as
follows

fh i
kwd
¼ g

1þ ag
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ 4l
p

Pþ1
s¼�1

‘

d
� s

� �
e�m

‘
d
�s

� �2
Pþ1

s¼�1
e�m

‘
d
�s

� �2 ; (78)

which can be simply written as

fh i
kwd

¼ g

1þ ag
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ 4l
p

‘

d
� sh i

� �
¼ p

2b

W03 �p
‘

d
; i
p
m

� �

W3 �p
‘

d
; i
p
m

� �

¼ 2p
b

Xþ1
n¼1
ð�1Þnþ1 e

�np
2

m

1� e
�2np

2

m

sin 2pn
‘

d

� �
;

(79)

which is a Fourier series representing the periodic rate-
independent stick–slip force on the infinitely long soft sub-
strate. This result, too, has an explicit physical significance in
that the Fourier series makes it possible to evaluate the exact
profile of the static friction force during the motion of the
slider, and in particular its maximum value, which represents
the threshold of force to be overcome in order to allow motion.
The force shape during the slider motion is completely con-
trolled by the two parameters b and m. The important issue is

that the force is highly dependent on the deformability of the
substrate and on the system temperature. This can be easily
seen for low values of the temperatures. Indeed, eqn (79) allows
a simple analysis for T - 0. Indeed, by using the limit
limz!0 z=ð1� e�azÞ ¼ 1=a, eqn (79) delivers

lim
T!0

fh i
kwd
¼ 1

2p
g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4l
p

agþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4l
p

Xþ1
n¼1
ð�1Þnþ12

n
sin 2pn

‘

d

� �
; (80)

where we can recognize the Fourier series of a sawtooth wave

r ¼
Xþ1
n¼1
ð�1Þnþ12

n
sin nr; r 2 ð�p;þpÞ; (81)

thus obtaining

lim
T!0

fh i
kwd
¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4l
p

agþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4l
p ‘

d
¼

kD

kW þ kD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS

2

kL2
þ 4

kS

kL

s

kW

kL

kD

kW þ kD
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS

2

kL2
þ 4

kS

kL

s ‘

d
;

(82)

or

lim
T!0

fh i¼

kWkD

kWþkD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS2þ4kSkL

p
kWkD

kWþkD
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS2þ4kSkL

p ‘¼ 1

1

kD
þ 1

kW
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kS2þ4kSkL
p ‘;

(83)

for any c such that �1/2 o c/d o 1/2, i.e. in the central energy
well with undeformed position at x = 0. This result represents
the purely mechanical force (without temperature effects)
necessary to maintain the particle at position c when it is
pulled by the device with elastic constant kD and attracted by
the central well (elastic constant kW) placed within the corru-
gated substrate with elastic properties kS (shear) and kL (long-
itudinal). From eqn (83) we can deduce that the stick–slip force
increases with an increasing device stiffness, with an increasing
well stiffness, and with an increasing substrate stiffness. If the
substrate is non-deformable (i.e. kS/kL), we get

lim
kS=kL!1

lim
T!0

fh i
kwd
¼ g

‘

d
¼ kD

kWþkD

‘

d
; (84)

which exactly corresponds to the purely mechanical force
necessary to maintain the particle at position c in the well with
elastic constant k0 and pulled by the spring with constant k. The
theory is therefore perfectly consistent with the pure mechanics
at T = 0. Moreover, if we consider a rigid substrate in eqn (79),
i.e. with l - N or m - bg, we obtain the stick–slip force for a
slider on an infinite undeformable substrate, as obtained in
recent literature.78

We can now study the deformation of the infinite substrate
induced by the slider motion. To do this, we use eqn (54) and
we can only focus on y0 (coordinate of the central particle in
Fig. 1) since all components yi have the same behaviour when
the substrate is infinitely long. In order to develop eqn (54) for
y0, we observe that the contribution of N�1~Z is zero (last term
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of eqn (54)), and then we only need to evaluate N�1~es (in the
numerator of eqn (54)). We note that the central component of

N�1~es is given by N�1
Nþ1;j with 1 r j r 2N + 1. Hence, through

eqn (106), we calculate N�1
Nþ1;j for large values of N as

follows

NNþ1;j�1 ¼
Gð jÞGðN þ 1Þ
Gð2N þ 2Þ

’ 1ffiffiffiffi
D
p 2þ lþ

ffiffiffiffi
D
p

2

 !Nþ1�j

; 8j � N þ 1;

(85)

N�1
Nþ1;j ¼

GðN þ 1ÞGð2N þ 2� jÞ
Gð2N þ 2Þ

’ 1ffiffiffiffi
D
p 2þ lþ

ffiffiffiffi
D
p

2

 !j�N�1

; 8j4N þ 1;

(86)

or, equivalently,

lim
N!1

NNþ1;j
�1 ¼ 1ffiffiffiffi

D
p 2þ lþ

ffiffiffiffi
D
p

2

 !�jj�N�1j
; 81 � j � 2N þ 1:

(87)

Therefore, we have that N�1~es simply provides a contribution

equal to
1ffiffiffiffi
D
p ½ð2þ lþ

ffiffiffiffi
D
p
Þ=2��jsj for the position y0 in eqn (54)

(here �N r s r +N). Then, we obtain

y0h i
d
¼ ag

agþ
ffiffiffiffi
D
p

Pþ1
s¼�1

‘

d
�s

� �
2þlþ

ffiffiffiffi
D
p

2

 !�jsj
e�m

‘
d
�s

� �2
Pþ1

s¼�1
e�m

‘
d
�s

� �2 : (88)

While the sum in the denominator has been already calcu-
lated in eqn (68) or in eqn (73), to evaluate the sum in the
numerator we need to introduce the so-called partial theta
function

WP3 z;tð Þ¼
Xþ1
n¼0

epin
2te2inz; (89)

where the exponent P means partial. As there are many rather
heterogeneous notations for this function,96–98 we prefer to
define it as the complete theta function given in eqn (69) but
summing only over values of n greater than or equal to zero
(n Z 0). A long but straightforward elaboration of eqn (88) leads
to the explicit result

y0h i
d
¼ ag

agþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ4l
p M

W3 �im
‘

d
; i
m
p

� �; (90)

where

M ¼ ‘
d
WP3 i log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þlþ

ffiffiffiffi
D
p

2

s
�m

‘

d

0
@

1
A; i m

p

2
4

3
5

þ ‘
d
WP3 i log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þlþ

ffiffiffiffi
D
p

2

s
þm

‘

d

0
@

1
A; i m

p

2
4

3
5

� 1

2i
WP3
� � 0

i log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þlþ

ffiffiffiffi
D
p

2

s
�m

‘

d

0
@

1
A; i m

p

2
4

3
5

þ 1

2i
WP3
� � 0

i log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þlþ

ffiffiffiffi
D
p

2

s
þm

‘

d

0
@

1
A; i m

p

2
4

3
5� ‘

d
;

(91)

with WP3
� � 0

z;tð Þ¼ @

@z
WP3 z;tð Þ. Unfortunately, no particular proper-

ties of the partial theta function are available to further simplify
the structure of this result.

To conclude, we can evaluate the probability density r(x) for
a system with an infinitely long substrate. We use eqn (55)
where we apply eqn (58) and (65) and we obtain

rðxÞ ¼ 1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

pð1� gÞ

s
e
�b g

1�g
‘
d
�x
d

� �2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
agþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4l
p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4l
p

s Pþ1
s¼�1

e�n
x
d
�sð Þ2

Pþ1
s¼�1

e�m
‘
d
�s

� �2 ;
(92)

where n is defined as follows

n ¼ b

1þ a
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ 4l
p

¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4l
p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4l
p 4 0; (93)

in a similar way to what we did with m in eqn (67). Now, we can
use the sum calculated in eqn (73), finally obtaining the
probability density

rðxÞ ¼ 1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gb

pð1� gÞ

s
e
�b g

1�g
‘
d
�x
d

� �2 W3 �px
d
; i
p
n

� �
W3 �p

‘

d
; i
p
m

� �: (94)

Interestingly enough, we can check the normalization condi-
tion stated in eqn (26). To do this, it is possible to prove by a
direct calculation the following propertyðþ1

�1
e�e

‘
d
�x
d

� �2
W3 �p

x

d
; i
p
n

� �
dx

¼ d

ffiffiffi
p
e

r
W3 �p

‘

d
; ip

1

n
þ 1

e

� �	 

;

(95)

which is valid for any positive value of e. If we suppose that e =
gb/(1 � g), we simply have that 1/n + 1/e = 1/m (it is sufficient to
use eqn (67) and (93)), and then eqn (95) immediately proves
the normalization condition for eqn (94), stated in eqn (26).
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To conclude, the infinitely long substrate is described by the
solutions given in eqn (77), (79), (90) and (94), representing the
average spin variable, the average stick–slip force, the average
substrate deformation, and the probability density of the x
variable, respectively. These results, in addition to being parti-
cularly elegant in that they disclose a connection between the
stick–slip problem with the third Jacobi theta function W3(z,t)
theory, are useful for obtaining a summary of the behavior of
the system composed of slider and soft substrate. In Fig. 6, we
show the infinite system behavior with a varying substrate
stiffness, and in Fig. 7 its behavior with a varying device
stiffness. It can be seen from Fig. 6 that while the average static
friction force increases with increasing substrate stiffness, the
deformation of the substrate itself decreases with its stiffness.

This corresponds with what is observed in Fig. 4, and this is
also in good agreement with the recent results obtained for the
stochastic sliding friction (for low velocities of the slider).47

Moreover, we also see that the average static friction force and
the deformation of the substrate decrease as temperature
increases, as already observed in Fig. 2. Similarly, we see in
Fig. 7 the effect of the device stiffness. We directly deduce that
both the average static friction force and the deformation of the
substrate increase with the parameter g and decrease with the
temperature.

We observed that the temperature is always able to reduce
the stick–slip force or, equivalently, the static friction. This
behaviour falls into the class of superlubricity phenomena, and
is tipically referred to as thermolubricity.99,100 Of course, the

Fig. 6 Effect of the substrate stiffness on the stick–slip force, represented by maxhfi/(kWd), and on the substrate deformation, represented by maxhy0i/d.
We considered an infinitely long substrate described by eqn (77), (79), (90) and (94). We adopted the parameters kL = 4, kS A (0.8, 60), kW = 8, kD = 5, d = 1,
KBT = 1/5, 1/10, 1/20, 1/40, 1/80 in arbitrary units, corresponding to the following adimensional quantities: g = 5/13, a = 2, b = 20, 40, 80, 160, 320,
l A (0.2, 15).

Fig. 7 Effect of the device stiffness on the stick–slip force, represented by maxhfi/(kWd), and on the substrate deformation, represented by maxhy0i/d.
We considered an infinitely long substrate described by eqn (77), (79), (90) and (94). We adopted the parameters kL = 4, kS = 3, kW = 8, kD A (8/9, 72), d = 1,
KBT = 1/5, 1/10, 1/20, 1/40, 1/80 in arbitrary units, corresponding to the following adimensional quantities: g A (0.1, 0.9), a = 2, b = 20, 40, 80, 160, 320,
l = 3/4.
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decrease of friction with temperature is also predicted in the
original Prandtl–Tomlinson model with rigid substrate since
thermal energy fosters the crossing of energy barriers.23–33

Interestingly, this behavior has been confirmed by experiments
conducted on various materials using the atomic force
microscope.101,102

To conclude the discussion concerning the infinitely long
substrate, we show in Fig. 8 some plots of the probability
density of the variable x. More specifically, one can see the
surface representing dr(x) in terms of the variable x/d and of
the parameter c/d. Of course, the curve of dr(x) versus x/d is
normalized (the underlying area is unitary) for any value of c/d,
as stated in eqn (26). We considered different values of the
temperature and of the substrate stiffness, in order to better
show the system behavior. First of all, we remark that the
character of the curve dr(x) versus x/d is monomodal for c/d = 0
or c/d = 1, where the slider is in a stable configuration placed at
the center of the quadratic wells of the corrugated substrate.
Differently, the curve dr(x) versus x/d is bimodal for c/d = 1/2,
when the slider is in the unstable position at the top of the
energy barrier between two adjacent potential wells. Hence, the
three-dimensional plots in Fig. 8 explain two peculiar behaviors
of the system. Firstly, the bimodal character of the density for
c/d = 1/2 induces a positive value of the substrate deformation,
i.e. hy0i 4 0 for c/d = 1/2. Indeed, the slider is statistically
equivalent to a couple of virtual sliders placed at the sides of
the barrier and therefore these ones try to bring the two
potential wells closer together (hy0i 4 0 and hy1i o 0).
Secondly, the monomodal character of the density, say for
c/d = 1, explains the positive value of hy0i for c/d = 1 and for
large values of the temperature. Indeed, if the temperature is

sufficiently high, the tails of the probability density are non-
negligible in the side wells centered in x/d = 0 and x/d = 2. These
tails correspond to two virtual sliders that try to compress the
central well, inducing hy0i 4 0 and hy2i o 0. Of course, these
phenomena are controlled by temperature and substrate stiff-
ness, as one can appreciate from Fig. 8.

We finally remark that the solutions given in eqn (77), (79),
(90) and (94) fully describe the behavior of an infinitely long
soft substrate and they represent the direct generalization of
the results recently obtained for a rigid substrate,78 performed
by simlply substituting the product bg with the parameter m
defined in eqn (67).

5 Conclusions

In this work we elaborated a modified Prandtl–Tomlinson
model for describing the stick–slip phenomenon on a soft or
deformable substrate. Instead of considering a sinusoidal
corrugated substrate as in the original model, we introduced
here a sequence of quadratic energy wells, which represent a
more appropriate structure for the analytical development of
the model. Importantly, we introduced the substrate elasticity
by means of a spring ladder network, enabling the displace-
ment of the substrate energy wells. On the one hand, the
quadratic wells allow us to consider this structure to mimic
the elasticity of the substrate, and on the other hand, they allow
us to use the spin variable technique that enables us to work
with complex, nonconcave potential energy. Indeed, we ana-
lyzed the quasi-static behavior of the stick–slip by means of the
equilibrium statistical mechanics. It means that we suppose
the system in contact with a thermal bath at a given

Fig. 8 Evolution of the probability density of the variable x with different values of the temperature and of the substrate stiffness. We used the abscissae
x/d and c/d and the ordinate dr(x) in order to show a normalized curve on the plane (x/d,dr), with adimensional quantities. We adopted the parameters
kL = 4, kS = 1/3, 48, kW = 8, kD = 5, d = 1, KBT = 2/5, 1/10, 1/50 in arbitrary units, corresponding to the following adimensional quantities: g = 5/13, a = 2,
b = 10, 40, 200, l = 1/12, 12.
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temperature and we coherently use the canonical distribution
of the statistical mechanics. As discussed, its partition function
can be evaluated in closed form for our system. Hence, the
model permits the determination of the static friction and the
deformation of the substrate in terms of the thermal fluctua-
tions and of the substrate stiffness. Moreover, we also analyze
the average value of the spin variable representing the energy
well explored during the slider motion, and the probability
density of the slider position, which is useful to better under-
stand the system behavior. Firstly, we proved that the stick–slip
force (or quasi-static friction force) increases with the substrate
stiffness and decreases with the temperature. Secondly, we
provided evidence that the deformation of the substrate
decreases with both substrate stiffness and temperature. These
results briefly summarize the behavior of the stick–slip on a
soft substrate. However, we show that refined phenomena can
be noticed when the slider passes to the unstable position
corresponding to the top of the barrier or to the stable position
in the middle of the wells. Indeed, especially for nanoscopic
systems, one must consider the probability density of the slider
position, which can be nonnegligible in a spatial region of the
same order as the extent of each energy well. Thus, this leads to
observable effects on substrate deformation, which can be
different from zero both with the slider at the tops of the
barriers and with the slider in the potential minima. This again
explains the complexity of the stick–slip phenomenon at the
nanoscale where the effects of thermal fluctuations can be
crucial.

While being a paradigmatic model for the description of the
stick–slip process on a soft substrate, our structure should be
improved to better represent more realistic situations. One
drawback concerns the particular shape of the corrugated
substrate. Although the sequence of parabolas is qualitatively
similar to the Prandtl–Tomlinson model, other geometries can
be imagined to achieve greater similarity with the original
sinusoidal profile. For example, one could consider two or
more energy levels for the intercalated wells. Another improve-
ment concerns the dynamics of the frictional processes, which
should be studied in the context of the out-of-equilibrium
statistical mechanics.103,104 There is in fact a complex interplay
between the traction speed applied to the slider, the character-
istic times induced by the stiffness of each well of the potential
energy, and the times induced by the transition rates between
the adjacent wells, which depend on the energy barrier as
classically described by the Kramers theory.105,106 In order to
introduce non-equilibrium thermodynamics and irreversibility
we can add to the conservative potential energy two terms (as
done by Langevin for a single particle in a thermal bath): a
dissipative term which can be considered as a viscous force
(opposite and proportional to the velocity) and a noise term
(with white Gaussian behaviour for simplicity). This scheme
converges to the equilibrium solution for long time but is able
to reproduce all the out-of-equilibrium thermodynamics in an
arbitrary time regime.107,108

To conclude, we can affirm that our proposed method to
take into account the temperature effect and the soft substrate

in stick–slip and frictional phenomena can be adopted for
several problems, including the study of the cells motion and
the development of new haptic and tactile technologies.
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Appendix A: The inverse and the
determinant of the matrix Bþ x~b� ~b
We consider a matrix B 2MM;MðRÞ and a vector ~b 2 RM such

that B�1 and Bþ x~b� ~b
� ��1

exist for some x 2 R. First of all,

we prove eqn (33) of the main text. To do this, we develop the
matrix product

Bþ x~b� ~b
� �

B�1 � x
B�1~b� ~bB�1

1þ x~b �B�1~b

 !

¼ I� x
~b� ~bB�1

1þ x~b �B�1~b
þ x~b� ~bB�1 � x2

~b� ~bB�1~b� ~bB�1

1þ x~b �B�1~b

¼ I� x
~b� ~bB�1
1þ xy

þ x~b� ~bB�1 � x2y
~b� ~bB�1
1þ xy

;

(96)

where y ¼ ~b �B�1~b. By simplifying the last sum, we obtain the
result coinciding with the identical matrix, finally proving the
first property stated in eqn (33). Concerning the second prop-
erty, we use the following theorem

d

dx
detA ¼ detA tr A�1dA

dx

� �
; (97)

which is valid for any non-singular x-dependent matrix

A 2MM;MðRÞ. We suppose now that A ¼ Bþ x~b� ~b and
we obtain

d

dx
log det Bþ x~b� ~b

� �h i
¼ tr Bþ x~b� ~b

� ��1
~b� ~b

	 

: (98)

From the first property just demonstrated we easily obtain

d

dx
log det Bþ x~b� ~b

� �h i
¼ y

1þ xy
; (99)

where y ¼ ~b �B�1~b, as before. By integrating this relation over
x, we get

log det Bþ x~b� ~b
� �h i

� log det Bð Þ½ � ¼ logð1þ xyÞ: (100)

To conclude, applying the exponential function we prove the
relation

det Bþ x~b� ~b
� �

¼ detB 1þ x~b �B�1~b
� �

; (101)

corresponding to eqn (34) of the main text.
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Appendix B: Properties of the matrix N

We prove here some properties concerning the tridiagonal
matrices. To begin, we consider the following arbitrary tridia-
gonal matrix T

T ¼

a1 b1 0 � � � 0

c1 a2 b2
. .

. ..
.

0 c2
. .

. . .
.

0

..

. . .
. . .

.
aM�1 bM�1

0 � � � 0 cM�1 aM

2
6666666666664

3
7777777777775
2MM;MðRÞ; (102)

where the diagonal is composed by the elements (a1,. . .,aM),
the superdiagonal by (b1,. . .,bM�1) and the subdiagonal by
(c1,. . .,cM�1). It has been proved89,90 that the elements of the
inverse matrix T�1 can be represented as

T�1
� �

ij
¼

1

WM
ð�1Þiþjbi � :::� bj�1Wi�1jjþ1; io j

1

WM
Wi�1jiþ1; i ¼ j

1

WM
ð�1Þiþjcj � :::� ci�1Wj�1jiþ1; i4 j

8>>>>>>>><
>>>>>>>>:

(103)

where the sequences Wi and ji are given by the recursive laws

Wi ¼ aiWi�1 � bi�1ci�1Wi�2; 8i ¼ 1; :::;M;

W�1 ¼ 0; W0 ¼ 1; ðW1 ¼ a1Þ;

(
(104)

and

ji ¼ aijiþ1 � bicijiþ2; 8i ¼M; :::; 1;

jMþ2 ¼ 0;jMþ1 ¼ 1; ðjM ¼ aMÞ:

(
(105)

While eqn (104) is an increasing recursive law going from i = 1
to i = M, eqn (105) is a decreasing recursive law going from i = M
to i = 1. We also remember that detT ¼ WM .89,90 In the case of
the matrix N, we have that bi =�1 8i, ci =�1 8i, and ai = 2 + l8i.
Under this hypothesis, the general result can be simplified as
follows

T�1
� �

ij
¼

1

WM
Wi�1jjþ1; io j

1

WM
Wi�1jiþ1; i ¼ j

1

WM
Wj�1jiþ1; i4 j

8>>>>>>>><
>>>>>>>>:

(106)

where the sequences Wi and ji are given by the reduced
recursive laws

Wi ¼ ð2þ lÞWi�1 � Wi�2; 8i ¼ 1; :::;M

W�1 ¼ 0; W0 ¼ 1;

(
(107)

and

ji ¼ ð2þ lÞjiþ1 � jiþ2; 8i ¼M; :::; 1

jMþ2 ¼ 0;jMþ1 ¼ 1:

(
(108)

To begin, we consider eqn (107) whose general solution can be
written as

Wi ¼ p
2þ lþ

ffiffiffiffi
D
p

2

 !i

þq 2þ l�
ffiffiffiffi
D
p

2

 !i

; (109)

with D = l2 + 4l and where the coefficients p and q must be fixed
through the conditions W�1 = 0 and W0 = 1. A straightforward
calculation leads to the explicit solution

Wi ¼ Gði þ 1Þ; (110)

where the function GðzÞ is defined as follows

GðzÞ ¼ 1ffiffiffiffi
D
p 2þ lþ

ffiffiffiffi
D
p

2

 !z

� 1ffiffiffiffi
D
p 2þ l�

ffiffiffiffi
D
p

2

 !z

: (111)

A similar calculation leads to the solution of eqn (108) in
the form

ji ¼ GðM þ 2� iÞ: (112)

Finally, eqn (110) and (112) allow for the calculation of the
inverse matrix when combined with eqn (106).
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subtle relationship between substrate stiffness and collec-
tive migration of cell clusters, Soft Matter, 2020, 16, 1825.

51 D. A. Vargas, I. G. Gonçalves, T. Heck, B. Smeets,
L. Lafuente-Gracia, H. Ramon and H. Van, Oosterwyck,
Modeling of Mechanosensing Mechanisms Reveals Dis-
tinct Cell Migration Modes to Emerge From Combinations
of Substrate Stiffness and Adhesion Receptor-Ligand Affi-
nity, Front. Bioeng. Biotechnol., 2020, 8, 459.

52 C. Fei, S. Mao, J. Yan, R. Alert, H. A. Stone, B. L. Bassler,
N. S. Wingreen and A. Kosmrlj, Nonuniform growth and
surface friction determine bacterial biofilm morphology
on soft substrates, Proc. Natl. Acad. Sci. U. S. A., 2020, 117,
7622–7632.

53 H. Chelly, A. Jahangiri, M. Mireux, J. Étienne, D. K. Dysthe,
C. Verdier and P. Recho, Cell crawling on a compliant
substrate: a biphasic relation with linear friction, Int.
J. Non-Lin. Mech., 2022, 139, 103897.

54 S. Makarchuk, N. Beyer, C. Gaiddon, W. Grange and
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