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Abstract: Multi-stable behavior at the microscopic length-scale is fundamental for phase transforma-
tion phenomena observed in many materials. These phenomena can be driven not only by external
mechanical forces but are also crucially influenced by disorder and thermal fluctuations. Disorder,
arising from structural defects or fluctuations in external stimuli, disrupts the homogeneity of the
material and can significantly alter the system’s response, often leading to the suppression of cooper-
ativity in the phase transition. Temperature can further introduce novel effects, modifying energy
barriers and transition rates. The study of the effects of fluctuations requires the use of a framework
that naturally incorporates the interaction of the system with the environment, such as Statistical
Mechanics to account for the role of temperature. In the case of complex phenomena induced by
disorder, advanced methods such as the replica method (to derive analytical formulas) or refined
numerical methods based, for instance, on Monte Carlo techniques, may be needed. In particular,
employing models that incorporate the main features of the physical system under investigation and
allow for analytical results that can be compared with experimental data is of paramount importance
for describing many realistic physical phenomena, which are often studied while neglecting the
critical effect of randomness or by utilizing numerical techniques. Additionally, it is fundamental to
efficiently derive the macroscopic material behavior from microscale properties, rather than relying
solely on phenomenological approaches. In this perspective, we focus on a paradigmatic model
that includes both nearest-neighbor interactions with multi-stable (elastic) energy terms and linear
long-range interactions, capable of ensuring the presence of an ordered phase. Specifically, to study
the effect of environmental noise on the control of the system, we include random fluctuation in
external forces. We numerically analyze, on a small-size system, how the interplay of temperature
and disorder can significantly alter the system’s phase transition behavior. Moreover, by mapping
the model onto a modified version of the Random Field Ising Model, we utilize the replica method
approach in the thermodynamic limit to justify the numerical results through analytical insights.

Keywords: random forces; multi-stable systems; replica trick; Ising model in a random field

1. Introduction

The study of the effects of fluctuations and randomness in materials, for instance due
to unavoidable interaction of the sample with the environment or because of the presence
of defects, is an important area of research in material science both theoretical and tech-
nological [1-12]. Extensive research activities in this field is driven by the possibility to
uncover new phenomena and improve the capability to design innovative materials with
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improved performance and novel functionalities. In particular, disorder can play a funda-
mental role in determining physical properties of materials, also influencing the electronic
behavior and the response to mechanical action. These effects are particularly pronounced
in systems where the assumptions of perfect (crystalline) order is no longer valid, or where
external stimuli are subject to random fluctuations, leading to complex behaviors that are
challenging to predict. Thus, the comprehension and description of the effects of disorder
are of paramount importance to comprehend and control the behavior of a material under
various real-world physical conditions or design devices with innovative properties.

Phase transformations, phase transitions, and configurational transformations, such
as the passage among different crystal structures, change from a solid to a liquid phase
or in folded/unfolded conformational changes in macromolecules, are typically influ-
enced by external actions, including mechanical stress, thermal fluctuations, and internal
environmental heterogeneities. As a matter of fact, fluctuations and disorder can lead
to deviations from the ideal behavior introducing complexities that are crucial for both
theoretical models and practical applications. They induce modifications in materials, also
affecting phenomena such as nucleation and growth [13,14]. For instance, in solid-state
phase transformations, thermal fluctuations play a fundamental role in nucleation processes
where a new phase forms in a small region of the material. The energy barrier for nucleation
is typically high, but thermal fluctuations can provide the necessary energy to overcome
it [15]. In crystalline materials, disorder can manifest as point defects or dislocations, thus
altering the periodic potential and leading to different effects such as the modification of
electrical resistivity [16]. Moreover, the role of disorder is gaining attention in the study of
advanced materials such as high-entropy alloys (HEA), consisting of multiple elements
mixed in near-equal proportions that exhibit a high degree of configurational disorder. This
disorder can lead to enhanced mechanical properties, such as increased strength and tough-
ness, due to the complex interaction of different atomic species, which hinders dislocation
motion and crack propagation [17,18]. In amorphous materials, the absence of periodicity
leads to phenomena such as Anderson localization where the system can change from
conductor to insulator as disorder increases [19]. The effects of disorder are also significant
in the context of magnetic materials. In spin glasses, for example, the random distribution
of ferromagnetic and antiferromagnetic interactions leads to frustration, where not all
magnetic interactions can be satisfied simultaneously. This results in a highly degenerate
ground state with a complex, non-trivial magnetic ordering, characterized by slow relax-
ation and memory effects [7,20]. Finally, the random arrangement of atoms or molecules in
glasses can contribute to the thermal and mechanical properties of the material, such as
its low thermal conductivity and high fracture toughness [21]. Mechanical forces, which
can also exhibit randomness, further complicate phase transformations. As a matter of fact,
the intensity of forces is critical in understanding processes at small scales where they may
compete with the effects of thermal fluctuations. Random forces are a fundamental aspect
of polymer unfolding, influencing the pathways, kinetics, and thermodynamics of the
process. When polymers are subjected to mechanical stress, such as stretching or pulling,
the presence of random forces arising from environmental heterogeneities or molecular in-
teractions can significantly impact the folding/unfolding conformational transition. These
effects are particularly evident in single-molecule force spectroscopy experiments, where
individual proteins are subject to controlled mechanical forces. In this case the resulting
force—extension curves often exhibit characteristics, such as force peaks and intermediate
plateaus, which are directly influenced by thermal fluctuations, applied force fluctuations,
and disorder in the macromolecule structure. This corresponds to a complex energy land-
scape that can be modified by the randomness affecting the barriers separating different
configurations or inducing the formation of metastable states that can act as intermediate
steps in the unfolding process [22-25].

In order to investigate the role, interplay, and competition of the environment tem-
perature and the disorder in the external forces, in this paper, we consider a prototypical
one-dimensional system where the units interact by a two-well elastic potential (nearest-
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neighbor interaction). We also include long-range energy terms modeled as Ising interac-
tions. These non-local interactions among the elements favor the creation or suppression
of domain walls with the nucleation and propagation of interfaces in the material. Our
approach is based on the use of spin variables, a methodology that has been recently used
to analyze folded/unfolded conformational changes in macromolecules, denaturation
phenomena in nucleic acids, and decohesion phenomena from a substrate [26-33]. In these
contexts, each value of the variable corresponds to a different phase. Here, we consider
an extension of the model adding the effect of disorder in the force applied on a system of
multi-stable elements. In particular, this disorder is represented as a random force acting
on each element with a Gaussian probability distribution characterized by a fixed average
and standard deviation. The model of the system is then mapped on the Random Field
Ising Model (RFIM) [34—46]. Thus, we analyze the system in the thermodynamical limit by
obtaining the expectation value (averaged on the quenched disorder) and the self-consistent
equation for the order parameter by making use of the replica approach introduced in the
context of the study of spin glasses [7]. By using the methods of Statistical Mechanics, in
Section 2, we obtain the partition function for assigned random forces, and we derive the
(disorder-averaged) force-displacement relation. In Section 3, we then analyze the phe-
nomenology for a system with a small number of elements. We obtain numerical evidence
of the effect of the thermal fluctuations, interaction strength among the spins, and the role of
the force fluctuations among different realizations. In Section 4, we justify these numerical
results in the thermodynamical limit by considering the case of quenched disorder [7] and
evaluating the partition function, the free energy, and the self-consistent equation for the
order parameter and phase diagram of the model. In particular, we obtain that even in
the limit of zero temperature, the ordered phase can be destroyed by the disorder in the
force. At the same time, in the limit of small force fluctuations, it is possible to identify, in
the framework of replica symmetric solutions, the critical temperature between ordered
and disordered configurations. In terms of the force—strain relations, this corresponds to
the disappearance of the Maxwell line between the different elastic branches of the system.
Finally, in Section 5, we draw the conclusions and foresee possible extensions.

2. Model

Consider a one-dimensional system of N + 1 units interacting via nearest-neighbor
bistable springs. Each spring link is characterized by a two-well energy, corresponding
to two different material phases. In order to properly introduce the thermodynamics on
non-convex, non-local systems, we adopt a method based on spin variables, by extend-
ing classical one-dimensional schemes to consider the fundamental effect of stiffness and
elasticity of the different states. Thus, we introduce a series of discrete (spin) variables,
which are able to identify the phase of the units. In so doing, with the aim of attaining
analytical results, we can consider two separated and different quadratic functions each
representing a well of the potential energy, instead of more complicated bistable energy
densities. The introduction of the spin variables strongly simplifies the calculation of the
partition functions and consequently, the analysis of the macroscopic thermodynamic quan-
tities. Indeed, in order to compute the partition function, we sum over the spin variables,
and we integrate the classical continuous variables (thus obtaining a classical spin model
approach but with the important effect of the deformability of the domains due to the
elastic energy). This simplification let us obtain analytical solutions as compared with the
numerical results. This is important both for the interpretation of the thermo-mechanical
effect and for deducing macroscale homogenized effects of a continuum material consti-
tuted by unfolding or breakable macromolecules. We can thus derive analytical formulas
for the partition function, free energy, and the relation between the fixed applied force and
total average strain. On the other hand, the presence of the disorder makes the analysis
more complicated. As a matter of fact, the presence of a different force acting on each
element, sampled from a normal distribution characterized by an average f and a standard
deviation o, does not allow us to derive a closed simple form of the constitutive relation
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between force and average strain. At the same time, it is possible to obtain an expression in
terms of average values over the disorder probability density function.

The aim of the model is the description of the joint effect of disorder and temperature
on the transformation between different phases of each domain of the material system
subjected to an assigned force acting on one end. Thus, we may think of a chain of units
undergoing a conformational transition under the effect of an external force (see Figure 1a).
Each spring is characterized by a bi-parabolic energy (see Figure 1b)

kI
9= (e-euS), (1)

where ¢ is the spring strain, / its natural length, k its stiffness, and S = {-1,1} the internal
discrete variable denoting the different phases (so that —¢, and +¢,, represent the reference
strains of the first and second well, respectively). We considered springs with the same
value of stiffness k in both branches. Moreover, the minimum of both energy wells was
set to zero. The generalization to more general cases is straightforward. In more detail,
since the separated wells are represented by quadratic terms, the integration to obtain the
partition function can be performed straightforwardly since it acts on Gaussian functions.
The total energy (including the force f acting on the final element) is

kL& 2 ] l
4’252(81’—&451‘) _N%Sisj_ﬂ;si- 2)

In the following, without loss of generality, we consider [ = 1. In the energy, we include non-
local interaction terms. In particular, these energetic terms are used to introduce the effect
of interfaces between domains that exhibit different phases, thus allowing us to describe
fundamental features of a material at the microscale. In particular, by following [31], we
introduce the non-local, long-range, interaction by using an Ising-type model penalizing
the interface formation, i.e., considering | > 0, corresponding to favoring phase coalescence
(ferromagnetic case). We notice that the Ising long-range interaction allows each unit to
interact with all other elements of the system. This allows us to consider a mean-field
approximation in the thermodynamical limit. These terms approximate the presence of non-
local springs if the non-local terms have negligible stiffness as compared to local terms [47].
In that case, it is possible to show that the non-local energy term can be simplified by
assuming that the lengths of the units are approximated by the equilibrium lengths of the
explored wells and the behavior of the system is described by the classical Ising interaction.
The solution of this problem can be found in [27] without non-local effects and in [28] for
non-local effects. The case with non-identical wells is studied in [31]. We notice that the
interaction term in Equation (2) allows the possibility that different domains can interact
even if at large distance. This approach allows the use of the mean-field approximation in
the thermodynamical limit N — co.

Here, we generalize the previous model by assuming that, besides the elastic force
acting on each spring and the external force f, there is an external random force f; due to
the action of the environment. In particular, we assume that the force f; acting on the ith
spring is assigned as a random variable with 0 average value and variance ¢ of a Gaussian
probability distribution
e 22 . 3)

1
p(fi) =
Y V2re?
It is important to point out that here, we consider the case of quenched disorder. In other
words, we consider slow noise [7] characterized by time scales much larger than the ones
regulating loading rate and relaxation to the equilibrium. As a consequence, we evaluate
the statistical averages of physical observables at fixed disorder, and then we average the
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quantities over the force probability distribution. Thus, we consider the energy (depending
on the realization of the disorder)

k N ) I N
o({fi} ASi}) = 5 2 (ei—euSi)* == > SiSj = . fii, (4)
24 N i=1
where

fi=f+f, ()

represents the total force acting at equilibrium on the ith spring.
We can evaluate the partition function Z({f7}) for a fixed configuration of forces

{fi}as
z

Z({fi})
3 / Hds e P - Z PR Zij SiS) fRN Hdgie‘ﬁ[ngiﬂﬁi—fu s*-Tihi fieil (p)
{si} i

{Si}

where B = kp/T, with kp the Boltzmann constant. In the following, we adopt the convention
of setting kp = 1. By the classical Gaussian integration, we obtain

27‘[&‘%[ NP2 £ $N Vi B(L 3 :8:5+5N. £:5)
7z = 7 e2k ~i=1Ji Z eP\N &ij2io] i=1Ji°1 , (7)
P (s)

where, with a slight abuse of notation, we performed the substitution e, - B, ke, — k,
J/eu — J. In order to evaluate the relation of the applied force and the strain of the system,
we can compute the expectation value of ¢; and its dependence on the fluctuating force f;
(with variance ¢?) and temperature. Using the same abuse of notation, we find

@>:,ZJﬁWS/%“ﬁ@mmﬁdkaﬁ(mﬁwm
{si} i#]
S
- S, ®)

where we introduced the phase state expectation value for the ith element

(s 5‘8’5(% Tij SiSi+ iy fiS)

S.) = 9
! S5y PR Ty SIS EL S ©
Using Equation (8), the expectation value of the overall strain & = % >i{e;) reads
E= % +&,85, (10)
where we considered the mean values of the random force and of the spin variable
1 N . _ 1 N
= — 2, S=—=>(5;). 11
fryLf N (S )
Finally, the disorder-averaged force—strain relation takes the form
S (@) euld), (12

k

where (.)s denotes the disorder-averaged quantities obtained by using Equation (3).
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In the following sections, we analyze this formula numerically for a small system
and by an analytical computation based on the replica method in the thermodynamical
limit [7].

@ YIS B el |

(b)

:3 S
f1o o f
(C) e ~e ~ ,“f~ -~ ’ ’ —
TeLlIzEETT g Nlriiitrisen-- T N 41

Figure 1. (a) System of phase changing domains subjected to an external force f acting on one end
of the chain. (b) Bi-parabolic energy of a single spring. (c) Scheme of the interactions acting on the
elements of the chain: nearest-neighbor units interact by elastic springs (local interaction, continuous
lines), all units interact via non-local energy terms allowing long range interactions (dashed lines).

3. Effects of Disorder and Temperature for a Small System: Numerical Results

In order to study the effects of disorder and temperature (as well as their interplay),
we performed a numerical analysis for a small system based on Equations (10)—=(12). In
particular, we fixed the size of the system and sampled a large number of configurations for
the independent random forces acting on the system (fixing f and o). For each realization
of the random forces, we computed S and thus £ by using Equations (9)—(11). Finally, we
computed (£)s over the sampled configurations for fixed values of f and ¢.

In Figure 2, we plotted the results for a system of n = 6 elements. In the left panels,
we exhibit the important effect of noise in inducing a non-cooperative transition behavior.
In these figures, we considered a small value of T (large B) so that thermal fluctuations
were negligible and the effect of noise was enhanced by increasing ¢. Thus, large values
of disorder were able to suppress the sharp transition between the different phases. A
similar effect was obtained, as shown in panels (d) and (e), by considering a small value
of ¢ and increasing the temperature T. In panel (f), we considered the overall effect
of considering large values of temperature and ¢. This behavior was consistent with a
previous analysis performed in the absence of disorder, where the role of the temperature
was highlighted [28]. In particular, in the zero-temperature limit (mechanical limit), we
observed two elastic branches connected by a horizontal line (Maxwell line) corresponding
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to a fully cooperative phase transformation of the system. On the other hand, the effect
of temperature modified the behavior of the force-strain diagram with an increase in the
slope of the line connecting the elastic branches. From Equation (12), we can deduce that
this behavior is associated with the dependence of (S)s on ¢ and B. In order to verify
this observation, in Figure 3, we show the numerical evaluation of the dependence of the
disorder-averaged absolute value of the mean of the spin variable (|S|)s on the mean force f.
We evaluated the absolute value in order to avoid cancellations in the average and observed
if the expectation value of that quantity was drastically different from the value one. We
observed that in the almost ideal (small o) low-temperature (large ) case (panel (a)) the
value of (|S|)s was always very close to one (or equal to one) for all values of f indicating
a cooperative phase transition. On the other hand, larger values of ¢ corresponded to a
decrease in (|S|); at a fixed f indicating a non-cooperative transition between the phases
with the sharp transition between the two phases no longer observable. For a comparison,
in Figure 4, we show the numerical evaluation of the dependence of the disorder-averaged
mean value of the spin variable (S); on f. In this case, for small values of f, the cancellations
in the average did not allow us to observe a value of this quantity different from zero for
small values of temperature and strength of the disorder.

From these numerical results, we can deduce that there is a non-trivial interplay
between temperature and disorder, collectively contributing to the destruction of a clear
bistable behavior of the system. In order to get more insight into these numerical results
and obtain quantitative information about the force-strain relation for a large system, in
the following section we make use of the approach based on the replica method. That way,
we can obtain a phase diagram for the system and justify the previously obtained results.

o=005 J @Irs =005 /[ &
45— a0 10 5o 10
0.5 0.5
GR (€)s
2 A1 1 277 =2 1 2
—05 ~0.5
-1.0 ~1.0
— b
o =051 Of ® | ——505 1 0f ©
p=20|" g=01| .
0.5 0.5
(&)s (&)s
5 1 ) ~1.0 —0. 05 1.0
-0.5 -0.5
-1.0 -1.0
o= / © oc=3 / ®
5 1.0 1.0
_ —0.1
0.5 b 0.5/({{;/
s £)s -
~1.0-0 0.5 1.0 @ _ 05 1.0
Z0.5
~1.0

Figure 2. Numerical results of the relation between force and disorder-averaged strain for a system
made of n = 6 units. In the panels we chose the results for different values of the rescaled inverse
temperature  and the standard deviation ¢ of the probability density of the random force f; applied
to each element of the system. (a—f) We fixed the values | =1, k=1, and ¢, = 1. The average of (£)s
was evaluated over 10° configurations for each value of f. The procedure for the computation of (&)s
is explained in the main text.
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Figure 3. Numerical results (for a system made of n = 6 units) of the relation between the average
force f and of the disorder-averaged absolute value of the mean value of the spin variable {|S|)s.
(a—f) We fixed the values J =1,k =1,and &, = 1.

(8)s (@ (8), (d)
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Figure 4. Numerical results (for a system made of n = 6 units) of the relation between the average
force f and of the disorder-averaged mean value of the spin variable (S)s. (a—f) We fixed the values
J=1,k=1¢e,=1.
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4. Effects of Disorder and Temperature in the Thermodynamical Limit: Replica Method
Approach

In order to obtain expectation values of physical observables, one has to compute the
value of the free energy averaged over the disorder due to the random forces f7. Thus, we
need to evaluate

(G), - —é(lnzn, (13)
where, as before, (.)s denotes the disorder average obtained by using Equation (3). As a
consequence, the presence of randomness in the force term suggests we should approach
the problem of evaluating the free energy by using the techniques developed for complex
systems based on the replica method. The so-called replica trick is a mathematical method
used in Statistical Mechanics to obtain information about the free energy and other physical
observables for complex and disordered systems [7]. In this context, the approach (and its
extensions) helps in treating spin glasses, where the direct analytical computation of the
disorder-averaged free energy is intractable. By introducing replicas and averaging over
the disorder (before taking the replica limit), one can obtain results about the free-energy
landscape and the presence and features of phase transitions [7]. An important comment is
in order. Strikingly, the structure of the partition function in Equation (7) is formally similar
to the case of the so-called Random Field Ising Model (RFIM), where the coupling among
the spins is constant, and the external field linearly coupled with each spin is a random
variable [34—46]. In our case we also observe that the RFIM is generalized by the presence
of the elastic terms. Thus, in the following, we analyze how the replica-based approach
can be used to deduce the randomness-dependent expectation values even in presence of
elastic energy contributions.

4.1. Application of the Replica Method to the Model
We start from the identity
Z"-1 oZ"

InZ = lim = lim
n—-0 n n—0 8n

(14)

where 1 denotes the replica number. Due to this result, the evaluation of the disorder
average (InZ); can be reduced to the computation of (Z");. Thus, from Equation (7),
we obtain

27'(52 Nnf2 nﬂ» 2 a n N o

7N _ u ek Zi= 1f eﬁ(z\] P 12,] 15151+52a:12,-:1f15,-) 15

- .
{si}

where « is the replica index. Using the properties of Gaussian integrals, we can now
evaluate (Z"), as

(Z"%)s

[ TLan ez

27'[82 Nn/2 k N/2 B nNf2
u ezk—nﬁﬂz
Bk k- npo?
r 2,2
ﬁN Zoz 121] 1S?S]Dc+13fk nﬁ”z Zl 120( 15;3( ﬁz k— nﬁgz Z:1 1(201 =1 z)

X

, (16)
(st}

where we have imposed the condition k - n80? > 0 in order to ensure the convergence of
the Gaussian integrals. This condition is automatically fulfilled in the limit # — 0. We can
now use the identity

n N
1t =2 (8% (17)

M=
£
cn

>

a=11,j

||
—_
=
]
Juay
Il
—_
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and the Hubbard-Stratonovich transformation
J 5 N g% 2 1 a \/_Zl S?_ }/i
€ﬁN Zazl(zl:1 1) = (27_[)”/2 f;lH ]/ae 1[ 1 ], (18)
so that
(7" D / de e 1 Tia i p8UST YD)
(27-[)?1/2 {SD‘ n
19)
where
N n
s{SiHya}) = ZZ?MS“ T DI
i=1a=1 z:ltx=1
2"2 (3, (20)
2 k- HIBUZZ 1 a=1
and Nn/2 N/2 2
2 n B nNf
C, - [ 27 K =y 1)
Bk k - npo?
By using the rescaling 77, = y4/V/N, we can rewrite (Z")s as
N Vl/Z n N >
(@:=C(5x) [ Tldme ¥ =200, (22)
a=1
where
« « ;3 o2 «
Zl(ﬂ“) _ Z |:\/2.B Za 1’70‘5 +/3fk ,,ﬁgz le 1S 2 k— n,Bzrz (sz 1S ) (23)
{s*}

is the partition function of the replicas acting on one element of the chain.

4.2. Replica Symmetric Solution in the Thermodynamical Limit

In the thermodynamic limit N — +oc0, we can use the saddle-point method. In particu-
lar, we consider the replica symmetric solution where 7, = # for all «. From Equation (22),

we can see that the saddle point is obtained by the equation

o[ ny? ~
817[_2 +1nZ1(ﬂ)] =

corresponding to a solution 7 that verifies the self-consistent equation

o 2T 5 (§ st)oen,

Z1(17) {52}

with

‘322 k

O(s*,7) = Jz?nZS“ﬁfk nﬁazz i W(Z §*)2.

(24)

(25)

(26)
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The value of 7 is obtained by solving the following equation
7 1 ( 13 tx) Q(S*,m)
m = = - S e ’ 7 (27)
V2B]  Zi(m) {sza:} n a;
where
Zi(m) = Y 6D, (28)

{s*3
o ﬁz : k a2
ZﬁImZS +Bf = ,WZ i nﬁaz@m 29)

Q(S*,m)

Thus, m represents the average phase parameter obtained from the replicas on a site of
the chain. We can evaluate (Z"); in the thermodynamic limit with the replica symmetric
solution in the saddle-point approximation as

N 71/2 _ 2
(2" =Col ) ez ). (30)

Finally, we can write

L f dxe” ﬁ e(x\/ pro kfnkﬁgz +2/5]m+5fﬁ)s“
V2t JR acl

S*="1,1

Il
M‘*

Z1(m)

- \/;_n[Rdxe Elzcosh( ﬁZUZk_:ﬁ 5 +2BJm+ B, 502)1 . (31)

An analogous calculation for the self-consistent equation gives

1 22 k !
= mfRdxe 2l2cosh(x\ /32(72]( npo o /3]7”+/3fk ﬂﬁﬂz)l

x tanh(x B?0?

k k
k—nﬁ02+2ﬁ]m+’8fk—n/302)‘ (32)

Form Equation (14), we can evaluate (G)s as

(33)

S
By considering x = f;, we obtain

(@) = -NS(P+e?)
+ N{]m ——fdf p(f)1n[2cosh(2ﬁ]m+ﬁ(f+f))]} zﬁhm (34)

where

N (272 \?
Zn( kp ) )

and m is given (considering the limit n - 0) by

m= [ dFp(f)tanh(2pjm + B(f + F)). (36)
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We can find the condition for the transition between a disordered (m = 0) and ordered phase
(m # 0) from Equation (36) by imposing that

1 arptr)anhpm g )] -1 )

dm m=
We then use the rescaling J = J /o, B = Bo, f = fB, f* = f°B and find the transition relation

fs _(522
1 _lo_|r4f ezf __|. (38)
2] 2] R \/27 cosh®(f + f5)

We also notice that if B - +oco (which means zero temperature or infinite variance of the
random force), the condition simplifies to

1_o_ /8 1506 (39)
] e

and it is independent from the (average) rescaled applied force f. As previously pointed
out, the obtained results have formal similarities with the RFIM.

In Figure 5, we plotted the phase diagram of the system (mean value of the rescaled
force f = 0) with ordered and disordered phase (above and below the line, respectively).
In particular, for larger values of temperature and randomness, the system underwent a
transition from the ordered to the disordered phase. As obtained in the discrete case, we
observed the possibility of attaining the phase transition at small temperature by increasing
the disorder or at small disorder by increasing the temperature. Interestingly, we were able
to determine the combined effect thanks to the analytical results obtained above. The phase
diagram allowed us to justify the numerical results obtained in Section 3. As a matter of
fact, there, we observed a smearing of the transition between phases for values of ¢ and
that could be compared to Figure 5. In particular, we noticed that the suppression of the
sharp transition was obtained for values of o > 1.596 (previously obtained) and T/] > 2.

<19

05 10 15 207

Figure 5. Phase diagram (mean value of the rescaled force f = 0) between disordered and ordered
phase (above and below the line, respectively).

In order to directly compare the results obtained in this section with the numerical
results for a small system, we plotted the force-strain relation obtained in the mean-field
approximation. In particular, we obtained m by solving numerically Equation (36) and
defined the mean-field strain solution

Emf = {"'Sumr (40)

that should be compared with the result obtained from Equation (12). In Figure 6, we
considered this relation for different values of o and B = 1/kpT, fixingkg=1,k=1,¢, =1,
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and | = 1. We noticed that the behavior of the curves was clearly consistent with the T — ¢
phase diagram in Figure 5. For small values of temperatures (large values of ) and small
values of ¢ the behavior displayed corresponded to a sharp transition between the two
phases of the system, Figure 6a,b. On the other hand, even if the value of temperature was
below the critical threshold, a large value of ¢ corresponded to a smearing of the bistable
behavior of the system (Figure 6¢). In order to compare the results, we superposed the
curves obtained in Section 3 for a small-size system (numerical results) with the analytical
curves. We observed that the behavior was consistent and thus, even if one must take
into account the differences due to the small-size corrections, the analytical results in the
thermodynamical limit can be used, as previously pointed out, to justify the numerical
results obtained.

f (a) f (b)
7=005| 10 =
B =20
0.5
Emf Emf
1 2
oc=4 f (©)

B=25 1.0

0.5

Emf

0.5 1.0

—-1.0

Figure 6. Relation between the mean-field strain and average applied force (dashed red) for different
values of § and ¢. For a comparison, we have included numerical results obtained for a small-size
(N = 6) system as described in Section 3.

5. Conclusions

In this paper, we considered the problem of describing the phenomenon of phase
transformation in a material in the presence of randomness in the external mechanical action.
In particular, we investigated the effects of disorder and thermal fluctuations (and their
interplay) in a prototypical one-dimensional model used to describe multi-stable materials.
Through a combination of numerical results and analytical methods, we showed that the
presence of disorder, here introduced in the form of fluctuations in the mechanical forces
acting on each element of the system, fundamentally altered the response of the material.

In order to take into account the multi-stable behavior of the elastic springs, we
used a discrete (spin) variable approach that was recently used in the context of phase
transformations phenomena, conformational transition in macromolecular unfolding, and
decohesion phenomena [26-33]. In order to go beyond the nearest-neighbor interaction of
the units of the system, we considered the case of long-range interactions, responsible for
the generation of walls between different phases, and used a mean-field approach to derive
the solution in the thermodynamical limit. By using this methodology, the model could be
naturally mapped onto a generalization of the Random Field Ising Model (RFIM) that also
included elastic interactions.

In order to include the effect of disorder, we based the analysis on the so-called replica
method. In particular, we showed that the approach could also be used in this case in order
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to obtain the analytical expression of the disorder-averaged free energy and force—strain
relation in terms of the applied mean force and the expectation value of the mean strain.
The replica trick allowed us to show that by considering long range interactions, it was
possible to separate the role of the elastic energy and the generation of interfaces due to the
spin interaction.

By numerical computation, we deduced the qualitative properties of the force—strain
relation and its dependence on the temperature and standard deviation of the random
forces’ probability distribution. We compared these results obtained for a small-scale
system with the formulas obtained for a large system in the thermodynamic limit. That
way, we were able to justify the numerical results in terms of the phase diagram for a large
system, adapting the classical results related to the existence of a critical temperature and
strength of the disorder (in terms of the standard deviation of the random force probability
distribution) of the RFIM.

As a matter of fact, future work should aim to deepen our understanding of how
different types of disorder interact with each other and with external fields (such as me-
chanical forces, thermal loads, and chemical reactions) to predict, control, and exploit
phase transformations in technological applications. Additionally, the development of
more sophisticated theoretical models that incorporate and allow one to study the interplay
of disorder, external fields, and elastic interaction could provide further insight into the
behavior of materials. The exploration of non-equilibrium dynamics and rate effects in
disordered systems could also represent an important extension, particularly in materials
where phase transformations occur far from equilibrium, such as in glasses [48].

In conclusion, the effects of disorder and randomness in a system that exhibits phe-
nomena of phase transformations are profound and multifaceted. Our results, even applied
in the context of long-range interaction allowing us to obtain analytical results including the
effects of elastic interactions, indicate that disorder significantly impacts on the response of
the system to external loading, for instance suppressing the critical behavior and playing
a central role in determining the modified response of a material in view of real-world
applications. It is possible to imagine generalizing the obtained results. In particular, one
could consider a system with short-range interactions also including the disorder in the
coupling constant of the interaction terms. From a technical point of view, in these cases,
one should expect to be able to apply the methodology developed for spin glasses such as
the replica symmetry-breaking technique and the cavity method [7]. These generalizations
would be interesting for a comparison with experimental results and to study the role
of engineered disorder to obtain novel features of a material and innovative responses
to external action. The possibility of deducing fully analytical relations could result in a
proper design of new materials and metamaterials.
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