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Abstract. The mechanics of fiber bundles has been largely investigated in order to understand their com-
plex failure modes. Under a mechanical load, the fibers fail progressively while the load is redistributed
among the unbroken fibers. The classical fiber bundle model captures the most important features of
this rupture process. On the other hand, the homogenization techniques are able to evaluate the stiffness
degradation of bulk solids with a given population of cracks. However, these approaches are inadequate to
determine the effective response of a degraded bundle where breaks are induced by non-mechanical actions.
Here, we propose a method to analyze the behavior of a fiber bundle, undergoing a random distribution of
breaks, by considering the intrinsic response of the fibers and the visco-elastic interactions among them.
We obtain analytical solutions for simple configurations, while the most general cases are studied by Monte
Carlo simulations. We find that the degradation of the effective bundle stiffness can be described by two
scaling regimes: a first exponential regime for a low density of breaks, followed by a power-law regime at
increasingly higher break density. For both regimes, we find analytical effective expressions described by
specific scaling exponents.

1 Introduction

Bundle structures are present in several natural materials
and technological applications. The mechanical properties
of filamentous biopolymers, such as cytoskeletal proteins,
f -actin and microtubules, play a crucial role in several
processes of eukaryotic cells [1]. Also at a larger scale-
length, fiber bundles are ordinarily occurring biomateri-
als: one can mention collagen, spider silk, bone, tendon,
and skin, which are structures exhibiting the rare combi-
nation of large strength and high toughness [2–7]. These
materials make use of important geometrical and physical
features like the hierarchical assemblage [8], the twisted
geometry [9], the optimized equilibrium between defects
and width [10], and the beneficial disorder increasing the
overall strength [11]. On the other hand, the mechani-
cal performance of artificial materials increases progres-
sively with the development of technology. As an exam-
ple, carbon nanotube (CNT) assemblies have been pro-
duced with different geometries, such as one-dimensional
CNT fibers [12], two-dimensional CNT films/sheets [13],
and three-dimensional aligned CNT arrays [14]. These
macroarchitectures exhibit several interesting properties,
which depend on the adopted technological fabrication
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procedure [15]. For instance, the embedding of CNT fibers
in polymer matrices allow to obtain composite materials
with excellent strength and stiffness [16]. Moreover, CNT-
based macroscopic cables with different lengths and mi-
crostructures have been envisaged and several multiscale
stochastic simulations have been carried out to test their
tensile response and to optimize their design [17].

Since its paradigmatic importance, the fiber bundle ge-
ometry gained consideration over the years to study fail-
ure, rupture, creep and fatigue phenomena caused by cas-
cades in model materials [18,19]. The so-called fiber bun-
dle model (FBM) was introduced for studying the failure
of spun cotton yarns [20], and it was further elaborated by
Daniels [21] for considering a parallel arrangement of fibers
with statistically distributed strength (stress threshold be-
fore rupture). Within this model, when an external load
produces the failure of a fiber, its fraction of load is equally
distributed among the intact fibers: this is the so-called
global load sharing (GLS) rule [21]. Another redistribution
strategy is the local load sharing (LLS) rule, assuming that
the load of a broken fiber is carried only by the nearest
intact fibers [22]. This sharing rule allows to develop differ-
ent solvable models [23–25]. We remark that the GLS and
the LLS rules belong to distinct universality classes [26–
30]. Other approaches have been proposed to describe
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different properties and phenomena, such as the visco-
elasticity [31], the power-law creep compliance [32–34], the
plasticity [35,36], the continuous damage [37,38], the ef-
fects of the strain gradient [39], and the result of discon-
tinuities in the threshold distribution [40]. More recently,
also the relaxation times [41], the brittle-to-ductile transi-
tion [42], and the constrained crack growth [43] have been
investigated in the context of the FBM.

While the FBM and its modifications are useful to de-
scribe the failure as accumulation of localized breaks, gen-
erated by the application of an external mechanical load,
the classical homogenization techniques are more appro-
priate to determine the effective stiffness of a structure de-
graded by a given population of breaks [44–46]. In the first
case the distribution of breaks is a result of the model so-
lution, while in the second one it is the input leading to the
effective response. From the historical point of view, classi-
cal results in homogenization theory concern the existence
of upper and lower bounds for the effective elastic moduli
of composite materials [47,48] and expressions based on
the spatial correlation among the constituents [49,50]. As
a matter of fact, one of the most studied homogenization
theories is addressed to a dilute dispersion of spherical [44,
45] or ellipsoidal [51] inhomogeneities embedded in a solid
matrix. These results have been generalized to consider
higher concentrations of inhomogeneities through the it-
erated homogenization technique [52] and the differential
effective medium theory [53,54]. The central point of these
methods is the Eshelby theory, concerning the elastic be-
havior of a single ellipsoidal inhomogeneity embedded in
a different matrix [55]. We remark that a fracture is typ-
ically considered as a void ellipsoid of vanishing eccen-
tricity: this technique allows to develop efficient effective
medium theories for multi-cracked materials [56,57]. Re-
cent results concern the effects of the orientational distri-
bution of cracks [58,59], the effects of the anisotropy [60],
and computational methods [61].

Although the fiber bundle structure has been consid-
ered within the FBM context, this geometry has not been
investigated through homogenization techniques, which
are typically applied to bulk solid materials. The present
investigation is therefore addressed to understand the me-
chanical properties of a degraded fiber bundle by means
of the homogenization approach. This point is especially
important when breaks are not caused by a mechani-
cal load, but rather by an external action (e.g. chemical,
thermal, or electromagnetic). As prominent examples, we
may cite the degradation induced by some antibiotics in
tendon collagen [62], the lysis of muscle sarcomeres pro-
duced by some statins [63], the damage in the form of
single- and double-strand breaks in DNA irradiated by
high-energy photons [64–66], or degraded by restriction
enzymes [67,68]. At more macroscopic scales, examples in-
clude corrosion of high-voltage power cable bundles [69],
suspended-bridge steel cables [70], or meshes in concrete
structures [71], loss of cohesion in tree-root bundles with
variable soil wetness, triggering shallow landslides [72,73].

In this work, we introduce a physical model of an
interacting fiber bundle, together with a procedure able
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Fig. 1. Schemes of two different geometries of a fiber bundle
with flat (a) and circular (b) shape.

to determine the mechanical effective properties of set
of M fibers degraded by means of a distribution of N
breaks. This general scheme represents most features of
the above-cited examples. In our previous work we intro-
duced the study of the purely elastic case [74]. Here, we
develop a more complete homogenization scheme, able to
take into consideration both the intrinsic visco-elasticity of
the fibers and the possible visco-elastic interactions among
them as mediated by a surrounding matrix. From the geo-
metrical point of view, although the general scheme is able
to deal with arbitrary arrangements, the examples devel-
oped will concern flat and circular geometries (see fig. 1).
We remark that the origin of the stochastic process in
our scheme is limited to the random generation of breaks
within the bundle assembly. Indeed, we study the purely
mechanical response without considering the temperature
effects, which are classically described by the statistical
mechanics formalism [75]. The thermo-elasticity of poly-
meric structures have been largely studied but limited to
the response of a single chain [76–79].

The structure of the paper is the following. In sect. 2
we present the formalism for analysing the mechanics of
the fiber bundle with and without a population of breaks.
As a result we obtain an exact homogenization scheme,
which can be easily implemented in a software code. In
sect. 3 we present some analytical results useful to frame
the successive numerical achievements in a well-defined
picture. More specifically, we consider a first simple bun-
dle composed of just two interacting fibers and a second
case concerning M non-interacting fibers with a popula-
tion of N randomly distributed breaks. For both cases, we
obtain closed-form expressions for the effective stiffness of
the bundle, which contain almost all the features that can
be observed in more complex systems. In sect. 4 we present
the numerical results for arbitrary complex fiber and break
arrangements and their physical interpretations. In partic-
ular, we show that the degradation of the bundle response
is always nearly exponential for a low number of breaks
and it shows a shift towards a power-low behavior for a
larger number. We analyse the scaling behavior of these
two different regimes and we obtain the corresponding
asymptotic expressions described by specific scaling ex-
ponents. At the end of sect. 4, numerical results and their
interpretations are presented for both elastic and viscous
interactions among the fibers.
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2 Modelling the fiber bundle

We introduce here the mathematical description of the
fiber bundle mechanics: we start with an intact bundle,
and then we subsequently analyze a bundle with an arbi-
trary population of breaks.

2.1 Formalism for the intact bundle

To begin, we take into consideration a single elastic fiber,
with circular cross-section of area S, and length l. The
longitudinal deformation of this one-dimensional system is
described by the scalar stress T (x, t), where x is the linear
abscissa along the fiber (0 < x < l) and t is the time. If we
consider a small fiber segment of length dx located at x, we
can write the balance of forces as F (x, t) + G(x, t)Sdx =
ρSdxa(x, t), where F (x, t) = T (x + dx, t)S − T (x, t)S is
the force applied by the remaining parts of the fiber (on
the left and on the right), G(x, t) is the externally applied
body force (per unit of volume), ρ is the mass density,
and a is the acceleration of the segment of fiber itself. Of
course, we have a(x, t) = ∂2U(x, t)/∂t2, where U(x, t) is
the longitudinal displacement along the fiber. It means
that, during the deformation, the point originally located
at x, assumes the position x+U(x, t) at time t. By dividing
the above balance equation by Sdx and performing the
limit for dx → 0, we obtain the equation

∂T (x, t)

∂x
+ G(x, t) = ρ

∂2U(x, t)

∂t2
. (1)

Moreover, we have to introduce the constitutive equation
for the elasticity of the fiber. To do this, we consider a
linear relationship (Hooke law) between the stress and the
deformation, defined as ǫ(x, t) = ∂U(x, t)/∂x

T (x, t) = Eǫ(x, t) = E
∂U(x, t)

∂x
, (2)

where E is the Young modulus of the fiber. By combining
eqs. (1) and (2) one obtains the classical one-dimensional
wave equation for the displacement U(x, t). However, it is
convenient, for the development of our model, to preserve
the two-variable (T and U) approach, thus based on two
coupled equations.

Let us now consider a bundle of M fibers, which
are parallel but arbitrarily arranged on the perpendicular
plane (cross-section of the bundle). For instance, we may
consider a bundle of fibers aligned on a given plane, as in
fig. 1a, or regularly packed on a triangular lattice (with
hexagonal symmetry), as in fig. 1b. Each fiber is coupled
with other fibers of the bundle by means of a visco-elastic
interaction. Therefore, the system is described by the fol-
lowing set of equations:

∂Ti(x, t)

∂x
= −Gi(x, t) + ρi

∂2Ui(x, t)

∂t2
, (3)

∂Ui(x, t)

∂x
=

1

Ei
Ti(x, t) , (4)

for ∀i = 1, . . . , M , where

Gi(x, t) =

M
∑

j=1

(

kij + hij
∂

∂t

)

(Uj − Ui). (5)

Here, the coefficients kij represent the elastic coupling and
the hij the viscous one. The symmetrical matrices kij and
hij (with kii = 0 and hii = 0) are straightforwardly as-
sociated to the graph describing the fiber interactions on
the cross-section of the bundle.

In order to simplify the analysis of the system we as-
sume a sinusoidal time dependence of all mechanical quan-
tities. In so doing, the partial differential equations are
transformed into simpler ordinary differential equations.
We recall that an arbitrary function Ψ(x, t), in a given si-
nusoidal stationary regime (at frequency ω), can be writ-
ten in the phasor form Ψ(x, t) = Re{ψ(x)eiωt}, where
ψ(x) is a given complex function. Under these conditions,
we have the standard correspondence Ψ(x, t) → ψ(x),
∂Ψ(x, t)/∂t → iωψ(x), and ∂Ψ(x, t)/∂x → dψ(x)/dx.
Consequently, the equations of the bundle can be sim-
plified as follows:

dti(x)

dx
= −gi(x) − ρiω

2ui(x), (6)

dui(x)

dx
=

1

Ei
ti(x) , (7)

where

gi(x) =

M
∑

j=1

(kij + iωhij)(uj − ui). (8)

We observe that the capital letters (real physical quanti-
ties) have been substituted with the corresponding com-
plex phasors (here indicated with lower-case letters). The
introduction of the viscous interactions can be therefore
done by considering a frequency-dependent complex co-
efficient kij + iωhij in place of kij , used for the purely
elastic case [74]. Also, Ei can be considered as a complex
parameter, by introducing the intrinsic viscosity of each
fiber.

Defining ξ (∈ C
2M ) as the vector containing all the

variables (t1, u1, t2, u2, . . ., tM , uM ), the system of equa-
tions can be easily written in the compact form

dξ

dx
= Aξ . (9)

where A is a 2M ×2M constant complex matrix, depend-
ing on Ei, ρi, kij and hij for any i, j = 1 . . . M . There-
fore, the dynamics of the intact system (without breaks)
can be simply studied by means of the matrix exponen-
tial exp(Ax). The pertinent boundary conditions will be
discussed in the next section, where we also introduce a
method to deal with a given population of breaks dis-
tributed among the fibers.

2.2 Bundle description with an arbitrary distribution of
breaks

We now consider the fiber bundle above with a popula-
tion of breaks arbitrarily distributed within the structure.
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More precisely, we suppose to deal with N breaks located
at positions xi, i = 1, . . . , N . We also assume that the
break located at xi is applied to the ji-th fiber of the bun-
dle (it means that ji ∈ {1, 2, . . . ,M}, ∀i = 1, . . . , N). We
define for convenience x0 = 0 (left end-terminal of the
bundle) and xN+1 = l (right end-terminal of the bundle).
It is important to remark that, when a fiber is broken in
one or more points, it continues to contribute to the over-
all stiffness of the bundle through the lateral interactions
with the other fibers, controlled by the elastic coefficients
kij and the viscous ones hij . This means that the structure
of the bundle remains unchanged also with the introduc-
tion of the breaks population. If N breaks are distributed
on the structure, this defines N +1 intact segments in the
entire bundle identified by x ∈ (xi, xi+1), ∀i = 0, . . . , N .
Hence, for each of the above segments we can write

ξ(x−

i+1) = exp [A(xi+1 − xi)] ξ(x+
i ), (10)

where ξ(x) is the vector defined in eq. (9). Moreover, we
adopted the notation ξ(x±

i ) = limx→x±

i

ξ(x): x+
i means

that xi is approached from the right and, similarly, x−

i
means that xi is approached from the left. It is impor-
tant to distinguish between the left- and right-hand limits
since the presence of breaks causes the lack of continuity
of some elastic quantities. Therefore, the quantities ξ(x0),
ξ(x−

1 ), ξ(x+
1 ), ξ(x−

2 ), . . ., ξ(x+
N−1), ξ(x−

N ), ξ(x+
N ), ξ(xN+1)

will be considered independent unknowns in the follow-
ing development. In order to mimic the breaks, we must
consider the following boundary conditions for x = xi

(i = 1, . . . , N):

uk(x−

i ) = uk(x+
i ), ∀k = 1, . . . , M, k �= ji, (11)

tk(x−

i ) = tk(x+
i ), ∀k = 1, . . . , M, k �= ji, (12)

tji
(x−

i ) = 0 and tji
(x+

i ) = 0. (13)

Equations (11) e (12) represent the continuity of the
longitudinal displacement and stress in the intact fibers
(k �= ji). On the other hand, eq. (13) means that there is
no transmission of force across the broken fiber (k = ji).
In this case, the displacement shows an unknown jump,
which can be determined by the application of the present
procedure. Moreover, we consider a given displacement
prescribed to the right end of the bundle (x = l), while
the head of the bundle (x = 0) is kept fixed

uk(x0) = uk(0) = 0, ∀k = 1, . . . , M, (14)

uk(xN+1) = uk(l) = δ, ∀k = 1, . . . , M, (15)

where δ is a real parameter. It is important to observe that
the last condition, translated to the real physical quanti-
ties, reads Uk(l, t) = δ cos(ωt), representing an imposed
oscillating displacement at the right end-terminal of the
bundle. This dynamic forcing term is important to investi-
gate the effective visco-elastic behavior of the fiber bundle,
introduced in eq. (8).

We prove now that all conditions summarized are nec-
essary and sufficient to solve the problem with M fibers
and N breaks. All the unknowns can be grouped in the

following vector:

η =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ξ(x0)

ξ(x−

1 )

ξ(x+
1 )

ξ(x−

2 )

. . .

ξ(x+
N−1)

ξ(x−

N )

ξ(x+
N )

ξ(xN+1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (16)

which contains 2(N + 1) sub-vectors, each of them hav-
ing 2M complex components. As a consequence, we
have a total number of 4M(N + 1) unknowns (equiva-
lently, η ∈ C

4M(N+1)). The available equations can be
counted as follows. The N + 1 vector relationships given
in eqs. (10) (i = 0, . . . , N) correspond to 2M(N + 1)
scalar equations. Moreover, the break conditions given in
eqs. (11), (12) and (13) correspond to 2MN relations. Fi-
nally, the boundary conditions summed up in eqs. (14)
and (15) stand for 2M equalities. To conclude, we observe
that 2M(N +1)+2MN +2M = 4M(N +1), proving the
possibility to solve the problem by means of a system of
equations, which can be written as

Bη = b. (17)

Here, B is a non-singular 4M(N + 1) by 4M(N +
1) matrix representing all the conditions stated in
eqs. (10), (11), (12), (13), (14) and (15), and b ∈ C

4M(N+1)

is a vector directly depending on the prescribed displace-
ment δ. We note that, from the computational point of
view, the construction of the matrix B is rather onerous
since it is composed, among other simpler sub-matrices,
of N + 1 matrix exponentials of size 2M × 2M . We devel-
oped an efficient software code to solve the problem for an
arbitrary bundle with M fibers and N breaks. While the
algorithm for the matrix exponential has been based on
the rational Padé approximants, the solution of eq. (17)
has been approached with standard techniques for sparse
matrices. Hence, for a given distribution of breaks we can
determine the effective elastic response of the overall bun-
dle as follows: by solving eq. (17) we obtain the stresses
on the right end-terminals of the fibers tk(xn+1) = tk(l)

(∀k = 1, . . . , M); the total stress
∑M

i=1 tk(l) can be divided
by the overall strain δ/l, to obtain the effective complex
stiffness

Eeff =
l

δ

M
∑

i=1

tk(l). (18)

This represents the complex Young modulus of a single
effective fiber, which is equivalent to the whole bundle
with M fibers and N breaks. Of course, the actual value
of Eeff depends on the frequency ω, and it can be seen as
a transfer function, useful to perform the spectral analysis
of the system.
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It is interesting to observe that this computational
scheme can be used to determine the effects of a ran-
dom distribution of breaks within the bundle. In fact, we
can apply the Monte Carlo method by considering several
structures with randomly chosen breaks distribution and
by calculating the pertinent average values. We will use
this approach in the following section 4.

3 Analytical results

In order to better understand the general behavior of the
bundle model introduced above, we consider two particu-
lar cases that can be studied by means of analytical tech-
niques.

The first case deals with a simple bundle composed of
two interacting fibers. We investigate the effects of a geo-
metrically regular distribution of breaks on this structure.
The results can be applied to the case of purely elastic,
purely viscous or visco-elastic interactions.

The second case concerns a bundle composed of M
non-interacting fibers with a population of N randomly
distributed breaks. By means of a probabilistic approach,
we can analyse the stochastic mechanical degradation of
this system.

In both cases we obtain closed-form expressions for the
effective stiffness of the bundle. These results are useful to
check the general computational scheme discussed in the
previous section. Moreover, they contain almost all the
features that can be observed in more complex systems.
The combination of the random character of the breaks
distribution with an arbitrary interaction among M >
2 fibers will be investigated in the next section through
Monte Carlo simulations.

3.1 The multi-cracked bundle with two elastically
interacting fibers

To begin, we take into consideration a couple of interacting
fibers in static regime, i.e. a simple elastic system without
viscous contribution. In these conditions, the equations for
an intact segment of bundle read

dt1(x)

dx
= k[u1(x) − u2(x)], (19)

du1(x)

dx
=

t1(x)

E1
, (20)

dt2(x)

dx
= k[u2(x) − u1(x)], (21)

du2(x)

dx
=

t2(x)

E2
, (22)

where k = k12 = k21. This system can be converted into a
single, fourth-order differential equation for the displace-
ment u1, i.e.

d4u1(x)

dx4
− λ

d2u1(x)

dx2
= 0, (23)

E1

E2

k (2) (3)k k

E1 E1

E2E2

(1)

Fig. 2. Schemes of three different simple configurations of a
two-fiber bundle with stiffness E1 and E2. The fibers are em-
bedded in an elastic medium generating an interaction coeffi-
cient k.

where λ =
√

k(1/E1 + 1/E2). So, the general solutions
for u1 and u2 can be obtained as follows:

u1(x) = c1 + c2x + c3e
−λx + c4e

λx, (24)

u2(x) = c1 + c2x − c3
E1

E2
e−λx − c4

E1

E2
eλx, (25)

where c1, c2, c3 and c4 are arbitrary coefficients to be
determined through the pertinent boundary conditions.

As an elementary example, we can consider the bundle
composed of two intact fibers of length l. In this case the
boundary conditions given in eqs. (14) and (15) simply
read u1(0) = 0, u2(0) = 0, u1(l) = δ and u2(l) = δ. A
straightforward calculation immediately leads to the linear
displacements u1(x) = u2(x) = δx/l. This corresponds to
Eeff = E1+E2, meaning that the unbroken bundle behaves
as an ensemble of independent and non-interacting fibers.
Indeed, the effective stiffness is simply given by the sum
of the individual fiber contributions.

The behavior is different and more complex if we intro-
duce some breaks. We consider three basic configurations
(see fig. 2), which are useful for the following develop-
ments:

– 1) the first fiber is intact and the second one is bro-
ken in correspondence to the right end-terminal; the
boundary conditions are therefore u1(0) = 0, u2(0) =
0, u1(l) = δ and t2(l) = 0;

– 2) the first fiber is intact and the second one is bro-
ken in correspondence to both the left and right end-
terminals; the boundary conditions are now u1(0) = 0,
t2(0) = 0, u1(l) = δ and t2(l) = 0;

– 3) the first fiber is broken at x = l while the second
one at x = 0; in this case the boundary conditions are
u1(0) = 0, t2(0) = 0, t1(l) = 0 and u2(l) = δ.

For each configuration the exact displacements u1 and u2

and the effective stiffness can be easily determined. In all
cases the effective stiffness is strongly influenced by the
interaction coefficient k or, equivalently, by the parameter
λl, as indicated in table 1. This dependence underlines
the scale effects exhibited by the overall stiffness of the
bundle: in very long bundles (l ≫ 1/λ) the effects of the
interactions are stronger and, on the contrary, in shorter
bundles (l ≪ 1/λ) these effects are negligible. For this
reason, the quantity 1/λ may be named two-fiber coupling
length since it modulates the length-scale effects in this
system.

These results can be combined to analyse more gen-
eral two-fiber multi-cracked systems. In fact, if we con-
sider a sequence of adjacent bundle segments, each one
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Table 1. Effective stiffness expressions corresponding to the
three configurations introduced in fig. 2. We used the definition
λ =

p

k(1/E1 + 1/E2), as discussed in the main text.

Geometry Effective stiffness

1) E
1)
eff =

E1 + E2

1 + E2

E1

tanh(λl)
λl

2) E
2)
eff =

E1 + E2

1 + 2E2

E1

cosh(λl)−1
λl sinh(λl)

3) E
3)
eff =

E1 + E2

1 + 2
λl sinh(λl)

+
`

E1

E2
+ E2

E1

´ coth(λl)
λl

E1

E2

k

1 2 N...

Fig. 3. Scheme of a cracked two-fiber bundle of total length l.
All the N breaks (discontinuities) are localized in the second
fiber.

E1

E2

k

1

2 N

...3

4

Fig. 4. Scheme of a cracked two-fiber bundle of total length l.
There are N breaks alternately localized in each fiber.

corresponding to one of the models 1), 2) or 3) above, we
can obtain the overall stiffness through the simple mix-
ing law Eeff = l/

∑

i(li/Ei). Here, li is the length of the
i-th segment, Ei is its stiffness and l =

∑

i li. Of course,
this expression is valid only for a two-fiber bundle since
there is a single contact point between every couple of ad-
jacent segments. We consider now two multi-cracked bun-
dle structures of total length l with the following regular
distributions of breaks:

a) the first fiber is intact (without breaks) and the sec-
ond one is degraded by N equispaced breaks, as rep-
resented in fig. 3; it follows that we have a sequence
of N + 1 segments, of which 2 of the type 1) (the first
and the last), and N − 1 (the central ones) of the type
2);

b) N breaks are alternately distributed in each fiber (N
is an even integer), as represented in fig. 4; we have
therefore a sequence of N + 1 segments, of which 2 of
the type 1) (the first and the last), and N − 1 of the
type 3);

By using the previously described mixing law Eeff =
l/

∑

i(li/Ei), we obtain the following effective stiffness
(N ≥ 1) for the case a):

E
a)
eff(N) =

E1 + E2

1 + 2E2

E1

[fN (λl) − gN (λl)]
, (26)

and the following one for the case b)

E
b)
eff(N) =

E1 + E2

1 +
(

E1

E2

+ E2

E1

)

fN (λl) + 2gN (λl)
, (27)

where, to compact the notation, we have introduced the
two functions

fN (z) =
1

z

[

tanh

(

z

N + 1

)

+ (N − 1) coth

(

z

N + 1

)]

,

gN (z) =
N − 1

z
csch

(

z

N + 1

)

. (28)

We observe that, for N approaching infinity, E
a)
eff(N) con-

verges to E1, since the effects of the second fiber progres-

sively vanish, and E
b)
eff(N) converges to zero, since both

fibers are asymptotically completely degraded.
If we consider the case with E1 = E2 = E, then we

obtain the simpler results

E
a),b)
eff (N) =

2E

1 + 2

[

fN

(

l
√

2k
E

)

∓ gN

(

l
√

2k
E

)] , (29)

where the − and the + signs correspond to a) and b),

respectively. In fig. 5 we show the behavior of E
a)
eff(N) and

E
b)
eff(N) versus the number N of fiber breaks, for different

values of the dimensionless parameter kl2/E.
It is interesting to study the asymptotic behavior of

eq. (29) for N → ∞. We obtain the expansions

E
a)
eff(N) = E +

1

12

kl2

N2
+

1

3

kl2

N3

−5

4

kl2

N4
− 7

720

k2l4

EN4
+ O

(

N−5
)

(30)

for the case a), and

E
b)
eff(N) =

kl2

N2
+

kl2

N4
− 2

3

k2l4

EN4
+ O

(

N−5
)

(31)

for the case b). These developments reveal a power-law
dependence for large values of N , respectively

lim
N→∞

E
a)
eff(N) − E

kl2

12N2

= 1, (32)

lim
N→∞

E
b)
eff(N)
kl2

N2

= 1, (33)

exhibiting a degradation behavior (decrease of Eeff) evolv-
ing as fast as 1/N2.

This simple power-law response can be easily inter-
preted with the following argument. If we consider the
case b), we can subdivide the whole dimer in N segments
with length Δx = l/N and shear coefficient k. Therefore,
for each segment we can write from eqs. (19) and (21)
Δt/Δx = kΔu. Being Δt = F/S, where F is the force
and S the fiber section, we can obtain F = (Slk/N)Δu.
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Fig. 5. Behavior of the purely elastic two-fiber bundle: effec-
tive stiffness versus the number of breaks (the first panel cor-
responds to linear scales and the second one to bi-logarithmic

scales). The blue down triangles represents E
a)
eff(N), while the

black up triangles the stiffness E
b)
eff(N) (see eq. (29)). Moreover,

the continuous red and green curves correspond to the approx-
imations given in eqs. (34) and (35). The different curves have

been obtained with five different values of z = λl = l
p

2k/E,
corresponding to kl2/E = 5n, where n = 1, . . . , 5.

Hence, we identify the equivalent spring constant of each
segment Ks = Slk/N . The effective spring constant of
the dimer is then given by Keff = 1/(N/Ks) = klS/N2.
In terms of the Young modulus we can finally write the ef-

fective response as E
b)
eff = (l/S)Keff = kl2/N2, coherently

with eqs. (31) and (33). This represents a simple expla-
nation of the asymptotic behavior of the multi-cracked
dimer.

This behavior is confirmed in the second panel of fig. 5,
where the effective stiffness for the cases a) and b) is repre-
sented in bi-logarithmic scales. Moreover, it is important
to remark that, for large N , the bundle stiffness reduction
is not influenced by the Young modulus E of the fibers,
as deduced from eqs. (32) and (33). The physical mean-
ing is that, for large N , the longitudinal deformations of
the fiber fragments are not important to define the overall
stiffness, being relevant only the interactions, modulated
by k, among the adjacent broken fibers. Therefore, after
a first regime of degradation (low values of N), there is

a transition to a power-law regime, describing the loss of
importance of the Young modulus E, and the increase of
significance of the interaction coefficient k. This transi-
tion can be efficiently represented by means of the follow-
ing approximated expressions, which accurately reproduce
the behavior of eq. (29):

E
a)
eff(N)

2E
=

1

2
+

1

2

1

1 + 4N
z − 6

(

N
z

)
3

2 + 24
(

N
z

)2
, (34)

E
b)
eff(N)

2E
=

1

1 + 2N
z − 2

(

N
z

)
3

2 + 4
(

N
z

)2
. (35)

Here z = λl = l
√

2k/E, as before. For large N , only the
terms of second degree are relevant, and we obtain the
above power-laws, describing the degradation of the bun-
dle stiffness for large values of N . On the other hand, the
initial slope of the degradation (for small N) is governed
by the first order binomials 1+4z/N and 1+2z/N , for the
case a) and b), respectively. Further, the irrational terms
with power 3/2 have been introduced only to obtain a
smooth connection between the two regimes, for low and
high values of N . Although eqs. (34) and (35) are approx-
imated and heuristic results, they are interesting because
they directly show the physics underlying the bundle me-
chanical degradation. In addition, we remark that these
approximated results are not essential in this context with
two fibers because we know the exact solutions given in
eq. (29); nevertheless, this approach of developing physi-
cally educated fittings will be very useful to interpret and
understand the numerical results of next Sections. To con-
clude, we underline that the exact analytical results given
in eq. (29) have been also accurately confirmed by the ap-
plication of the general computational scheme outlined in
sect. 2.2, here applied to the present structures.

3.1.1 An example of viscous interaction

We consider here an example in which, instead of purely
elastic, viscous interactions exist among the fibers. In par-
ticular, we take into account the geometrical configuration
b) of the previous sect. 3.1, see fig. 4. However, since only
viscous interactions are introduced, the real constant k
must be replaced by the purely imaginary quantity iωh,
as discussed in sect. 2.1. It is also important to note that
the visco-elastic bundle must be characterized by a very
low mass density of the fibers in order to neglect the in-
ertial terms in eq. (6).

It is interesting to analyse the behavior for large val-
ues of N because there are some important differences
with respect to the previous, purely elastic case. Of course,
eq. (29), with the sign + corresponding to the configura-
tion b), and eq. (31) remain valid also for complex values

of k. Since E
b)
eff(N) is now a complex number, eq. (31) can

be elaborated to obtain its real and imaginary parts, as
follows:

Re

{

E
b)
eff(N)

2E

}

∼
N→∞

ω2h2l4

3E2N4
, (36)
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ℑm

{

E
b)
eff(N)

2E

}

∼
N→∞

ωhl2

2EN2
, (37)

showing that the real and the imaginary parts decrease
as 1/N4 and 1/N2, for large N , respectively. Therefore,
we have two different scaling behaviors for the two com-
ponents of the effective complex stiffness, in the case of
purely viscous interactions. In particular, the simple fit-
ting given in eq. (35) is no longer valid since it does not
take into account any power of order four in its denom-
inator. On the other hand, the behavior for small val-
ues of N is always well approximated by the relation

E
b)
eff(N)/(2E) = 1/(1 + 2N/z), where z = l

√

2iωh/E.
By separating the real and imaginary parts, we find

Re

{

E
b)
eff(N)

2E

}

∼
N→0

1 + N

l
√

ωh

E

1 + 2N

l
√

ωh

E

+ 2N2

l2 ωh

E

, (38)

ℑm

{

E
b)
eff(N)

2E

}

∼
N→0

N

l
√

ωh

E

1 + 2N

l
√

ωh

E

+ 2N2

l2 ωh

E

. (39)

In figs. 6 and 7 we show an example of viscous response for
different values of the quantity ωh. We plotted in red the
behavior for small values of N given in eqs. (38) and (39)
and, in green, the asymptotic trends defined in eqs. (36)
and (37). We remark that, in this case, it is difficult to
give simple expressions describing a good link between
the two observed regimes. This point can be explained by
observing that the imaginary part of the effective stiffness
exhibits a peak, which is not represented by any of the
approximated laws, for both low and high values on N . A
similar behavior will be described for a bundle of M > 2
fibers with population of random breaks (see sect. 4.4).

3.2 Random distribution of breaks in a bundle of
non-interacting fibers

As another interesting limiting case, we consider here a
bundle system composed of M non-interacting fibers, sub-
ject to the effect of N randomly distributed breaks. We
suppose that all fibers have the same Young modulus E,
and that the breaks are distributed with the uniform prob-
ability 1/M among the fibers. Since elastic and viscous
interactions are now absent, the position of the breaks in
the whole interval (0, l) is not relevant: when a fiber is
broken (at one or more sites) its contribution to the effec-
tive stiffness becomes zero. We approach the problem by
defining an appropriate probabilistic experiment. The cor-
responding probability space is composed of a sequence of
N numbers belonging to the set {1, . . . , M}. In fact, the se-
quence represents the ordered series of breaks distributed
on the fibers: a1, . . . , aN with ai ∈ {1, . . . , M}, i.e. the i-th
break is located on the ai-th fiber. The probability of the
simple event identified by the ordered sequence a1, . . . , aN

is given by

Pr{a1, . . . , aN} =
1

MN
, (40)
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Fig. 6. Behavior of the viscous two-fiber bundle: effective stiff-
ness (real and imaginary parts) versus the number of breaks.

The black triangles represent the exact stiffness E
b)
eff(N)/(2E).

Moreover, the continuous red (low N) and green (high N)
curves correspond to the approximations given in eqs. (36)-
(39). The different curves have been obtained with five different
values of ωh = 16 × 4n, with n = 1 . . . 5.

because of the statistical independence of the successive
generations of breaks within the bundle.

We are now interested in the probability of the fol-
lowing event: to have n1 breaks on the first fiber, n2

breaks on the second one, and so forth. The question
may be formulated in this alternative way: how many se-
quences a1, . . . , aN yield a distribution of breaks identified

by n1, . . . , nM (with
∑M

i=1 ni = N)? This number is given
by N !/(n1! · . . . · nM !) and it corresponds to the classical
multinomial distribution. Therefore, we have

Pr{n1, . . . , nM} =
N !

n1! · . . . · nM !

1

MN
. (41)

To continue our analysis, we determine the probability
Ps(N) to have s intact fibers after the occurrence of N
total breaks. When this event is realized, among the dis-
tribution numbers n1, . . . , nM there are s zeros and M −s
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Fig. 7. Behavior of the viscous two-fiber bundle: effective stiff-
ness (real and imaginary parts) versus the number of breaks
in bi-logarithmic scales. See the caption of fig. 6 for details.

strictly positive numbers. Of course, there are
(

M
s

)

com-
binations of such s zeros within the numbers n1, . . . , nM .
Therefore, we can eventually write

Ps(N) =

(

M
s

) ni>0
∑

P

M−s

i=1
ni=N

N !

n1! · · ·nM−s!

1

MN
. (42)

In appendix A, we sum the previous expression, eventually
obtaining the following closed-form result:

Ps(N) =
M !

s!MN
SM−s

N , (43)

where Sm
n represent the Stirling number of the second kind

(see details in appendix A). By using the explicit relation
giving these numbers, we can write Ps(N) in the following
form

Ps(N) =
1

MN

M−s
∑

j=0

(−1)M−s−j

(

M
s

)(

M − s
j

)

jN . (44)
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Fig. 8. Random degradation of a bundle with M = 5 fibers.
The stochastic generation of breaks distributions (each one rep-
resented by a path in the grid) creates a tree of possibilities
(the black lines correspond to Eeff), whereas the average value
〈Eeff〉 (dashed red line) corresponds to eq. (46).

In appendix B, we also prove that the probabilities Ps(N)
(∀s = 0, . . . , M) generate a complete probability space,
i.e.

M
∑

s=0

Ps(N) = 1. (45)

The most important result obtained through the
Ps(N) concerns the average value of the Young modu-
lus of the fiber bundle, in terms of the number of the
N randomly distributed breaks. Indeed, as proved in ap-
pendix B, we can write

〈Eeff〉 = E

M
∑

s=0

sPs(N) = ME

(

M − 1

M

)N

. (46)

It is interesting to note that for large values of M we have

〈Eeff〉
ME

= e−N [log(M)−log(M−1)] ∼= e−N/M . (47)

This important result means that the mechanical degra-
dation in a bundle of non-interacting fibers follows an ex-
ponential law. Moreover, the effective Young modulus de-
pends only on the single variable N/M , showing a scaling
behavior of the number of fibers M . As an example, in
fig. 8 we consider a bundle with M = 5 and we show
Eeff versus N for randomly chosen breaks: we note that
the corresponding black lines generate a sort of tree of
possibilities composed of all the paths of stiffness degra-
dation. Moreover, the average value 〈Eeff〉 (red dashed
line) corresponds to eq. (46). We remark that this curve
perfectly matches the results obtained with the computa-
tional scheme of sect. 2.2, combined with the Monte Carlo
technique.

Another important quantity describing the stochastic
behavior of our system is given by the average number of
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breaks to cut the whole bundle. To determine this value we
develop the following probabilistic argument. We search
for the probability of the event CN , defined as follows: all
fibers are broken after the generation of N breaks, while
there was still an intact fiber after the generation of N −1
breaks. This event is the intersection of the two simpler
events AN and BN : AN is the event with all fibers broken
after the generation of N breaks, and BN is the event
with only one fiber remaining intact after the generation
of N − 1 breaks. We simply have Pr{AN} = P0(N) and
Pr{BN} = P1(N−1). We use the conditional probabilities
as follows:

Pr{CN} = Pr{AN ∩ BN}
= Pr{AN | BN}Pr{BN}

=
1

M
P1(N − 1). (48)

In eq. (48) we exploited the result Pr{AN | BN} = 1/M .
This can be verified since the probability to have all fibers
broken after N breaks, with only one fiber intact after
N −1 breaks, corresponds to pick the last untouched fiber
over the whole M -fiber bundle. By using eq. (43) we have

Pr{CN} =
M !

MN
SM−1

N−1 . (49)

Also in this case the quantities Pr{CN} represent a com-
plete probability space with

∑∞

N=M Pr{CN} = 1, as
proved in Appendix C. To conclude, we can determine
the average number of breaks necessary to break all the
M fibers by means of the following expression:

〈N〉 =
∞
∑

N=M

N Pr{CN} = M
M
∑

k=1

1

k
, (50)

which is rigorously proved in appendix C. We can say
that 〈N〉 is the geometrical percolation threshold of the
M -fiber bundle (without interactions). For a large number

M of fibers we can use the asymptotic formula
∑M

k=1
1
k ∼

log M + γ (γ = 0, 5772 . . . being the Euler-Mascheroni
constant), by obtaining

〈N〉 ∼= M(log M + γ) ∼= M log M. (51)

By using this last result, we observe that the stiffness
degradation described by eq. (47), when we consider N =
〈N〉, yields 〈Eeff〉 ∼= E, representing the almost complete
loss of stiffness. In fact, the original effective stiffness is
ME and the final one, after accumulating 〈N〉 breaks, is
E, negligible with respect to ME for M ≫ 1.

4 Numerical results and their interpretation

In this section we consider a uniform, random distribu-
tion of N breaks in a bundle of M interacting fibers,
with geometries shown in fig. 9. We perform a thorough
analysis of this system by means of the general compu-
tational scheme outlined in sect. 2.2. To do this, we use

1°

2°3°
(a) (b)

Fig. 9. Cross sectional views of bundle structures considered
in our numerical investigations. In both the flat (panel a) and
in the circular (panel b) bundle, we considered 7 ≤ M ≤ 19.
For the circular bundle, M = 7 corresponds to the first shell
of fibers, M = 13 and M = 19 to the second and third ones,
as shown in panel b.

the Monte Carlo method to generate a large number of
configurations with given N and M , and to determine the
resulting average values of the effective stiffness. The nu-
merical results will be discussed and interpreted through
scaling laws described by specific scaling exponents. As a
final conclusion, we will prove that the overall degrada-
tion behavior can be summarized by means of the main
features discussed in previous sections 3.1 and 3.2, namely:
i) an exponential degradation of the effective stiffness for
a low number of breaks, as observed for a bundle of non-
interacting fibers (see, e.g. eq. (47)), and ii) a power-law
like degradation for a large number of breaks, as observed
for the two-fiber bundle (see, e.g. eq. (33)). We will there-
fore prove the existence of a transition between the expo-
nential and the power-law regimes, which can be clearly
explained through the underlying physical mechanisms, as
discussed at length in the following.

The results have been obtained through a Monte Carlo
method based on the determination of the average value
over 300 realisations of each structure. For instance, it
means that for considering N = 300 breaks within the
bundle of M = 19 fibers we determined 300 × 300 matrix
exponentials for 38×38 sized matrices. Moreover, we con-
sidered all values of M in the range 7 ≤ M ≤ 19. The
principal results of the Monte Carlo simulations are sum-
marized in figs. 10 and 11, where the effective stiffness
is represented in linear, semi- and bi-logarithmic scales.
In fig. 10 the plot of the quantity 〈Eeff〉/E versus N is
parametrized by kl2/E (with fixed M = 19) and, con-
versely, in fig. 11 the degradation curves are parametrized
by M (with a fixed kl2/E = 0.045). In our calculations, we
considered both the aligned fiber bundle shown in fig. 9a
and the circular bundle shown in fig. 9b. In both cases we
used 7 ≤ M ≤ 19: the minimum value M = 7 corresponds
to a triangular lattice based bundle with one circular layer
(centered hexagon), while the maximum value M = 19
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Fig. 10. Monte Carlo results for 〈Eeff〉/E versus N in linear, semi-logarithmic and bi-logarithmic scales. We considered a
bundle with M = 19 fibers and the following values of kl2/E: 0.045, 0.08, 0.14, 0.25, 0.45, 0.8, 1.4, 2.5, 4.5 and 8. The red
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Fig. 11. Monte Carlo results for 〈Eeff〉/E versus N in linear, semi-logarithmic and bi-logarithmic scales. We considered
kl2/E = 0.045 (the lowest interaction) and 13 values of M , from 7 to 19. As in fig. 10, the shaded areas indicate the nearly
exponential and the power-law regimes.

represents the structure with three circular layers, as in
fig. 9b. However, for sake of simplicity, in figs. 10 and 11
we report only the results for the aligned fiber bundle.
Nevertheless, we underline that the curves corresponding
to the circular bundle are very similar from both the qual-
itative and quantitative point of view.

In fig. 10 the red curves corresponds to k = 0 (absence
of interactions), i.e. to eqs. (46) and (47) of sect. 3.2. In
the same figure we also represented other curves (blue)
corresponding to an increasing elastic interaction among
the fibers. Of course, as it can be simply deduced from the
first panel, a larger value of kl2/E postpones to larger N
the mechanical degradation of the bundle for a fixed num-
ber of breaks, as expected. However, contrarily to the case
without interactions, we can identify two specific degra-
dation regimes: i) for low values of N , the straight lines
in the second panel of fig. 10 correspond to an nearly
exponential response, while, for high values of N , the
straight lines in the third panel of fig. 10 correspond to
a power-law regime. These regimes have been represented
by shaded areas in figs. 10 and 11, for the sake of clar-
ity. The transition between these regimes is very sharp for
low values of k and smoother for higher values. Indeed, for
high intensity of the interactions the initial degradation in
only approximately exponential: for this reason we named

this behavior as nearly exponential regime. By observing
fig. 11, we can finally conclude that the above behavior
is confirmed for any number of fibers composing the bun-
dle. It is therefore important to thoroughly analyse the
scaling properties of both the nearly exponential and the
power-law regimes.

Moreover, we show in fig. 10 (red dashed line) the

threshold N0 � 〈N〉 ∼= M(log M +γ), indicating the aver-
age number of breaks necessary to cut all fibers (geomet-
rical percolation threshold). The corresponding stiffness
without interactions decreases from ME (without breaks)
to E (with 〈N〉 breaks), as thoroughly discussed after
eq. (51). It is evident that N0 is not related to the tran-
sition between the nearly exponential and the power-law
regimes, defined below. The purely geometrical interpre-
tation is therefore not sufficient and we have to search for
a more physical explanation of the degradation transition.

4.1 Nearly exponential regime

We start by analysing the regime of the mechanical degra-
dation for small values of the number of breaks N . In
particular we study the initial slope of Eeff(N) versus N .
We already know from eq. (47) that, without interactions
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among the fibers, we should have

d

dN

〈Eeff〉
ME

∣

∣

∣

∣

N=0

= − 1

M
, (52)

in the limit of a large number M of fibers. Moreover,
if we consider the fiber interactions in the bundle sys-
tem, we must consider an additional variable given by
ξ =

√

kl2/E, as discussed in sect. 3.1 (see for instance
eq. (29)). Therefore, we can presuppose a generalised slope
described by the following expression

d

dN

〈Eeff〉
ME

∣

∣

∣

∣

N=0

= −ϕ

(
√

kl2

E

)

1

Mα
, (53)

where ϕ(ξ) is an arbitrary function, yet to be determined,
describing the effects of the fiber interactions, and α is
a scaling exponent. The form of ϕ(ξ) can be determined
directly from the numerical results. In order to have a
coherence between eq. (52) and eq. (53) for k = 0, it must
be ϕ(0) = 1 and α = 1. Below, we will numerically verify
these properties. It is also important to observe that, at
least for low values of k and N , we can hypothesize an
exponential degradation behavior of the effective stiffness,
given by

log
〈Eeff〉
ME

= −ϕ

(
√

kl2

E

)

N

Mα
. (54)

By using this expression we may numerically determine
the exponent α by plotting log[− log〈Eeff〉/(ME)] versus
− log(M) for low values of N . The result is a series of
straight lines with slope α, independent of N and kl2/E,
as shown in fig. 12 (for the flat bundle only, as before).
The obtained numerical values of α are shown in table 2

Table 2. Parameters and scaling exponents characterizing the
nearly exponential and the power-law regimes. All quantities
are defined in eqs. (53) and (55). They correspond to a bundle
with a large number M of fibers (we verified that M � 10 is
typically sufficient to obtain stable results).

Aligned fiber bundle Circular fiber bundle

α 0.97 ± 0.06 1.05 ± 0.12

a −0.90 ± 0.05 −0.90 ± 0.07

b 2.08 ± 0.11 2.08 ± 0.21

bβ 2.29 ± 0.19 2.60 ± 0.35

bν 1.97 ± 0.24 1.91 ± 0.37

β 1.09 ± 0.07 1.25 ± 0.08

ν 0.94 ± 0.08 0.92 ± 0.10

for the flat bundle and the circular bundle. In both cases,
the results are compatible with the value α = 1, thereby
proving the coherence with the achievements of sect. 3.2.

It is evident from eq. (54) that, if we plot 〈Eeff〉/(ME)
versus N/Mα, we must obtain the same curve for all val-
ues of M , but different curves for different values of kl2/E.
This can be seen in the first panel of fig. 13, where we con-
sidered the lowest value of kl2/E corresponding to 0.045.
All curves for M = 7 to M = 19 are perfectly superposed,
showing the peculiar scaling character of the transition be-
tween the nearly exponential and the power-law regimes.
Moreover, in the second panel of fig. 13, we added the re-
sults for all values of kl2/E. The curves are grouped for
the same M , but not for the same kl2/E, as expected.

Finally, the behavior of the system with regard to the
intensity of the interactions among the fibers (modulated
by kl2/E) is controlled by the function ϕ(ξ), introduced
in eqs. (53) and (54). We can obtain the values of this
function by plotting −(Mα/N) log[〈Eeff〉/(ME)] versus
√

kl2/E, as shown in the third panel of fig. 13 (flat and
circular bundle). We proved the universal character of this
function for high values of the number of fibers M . In prac-
tice, this function takes its asymptotic values already for
M � 10. The knowledge of this function allows the com-
plete prediction of the system behavior for small values of
N . In particular, it permits to exactly evaluate the initial
slope of the curve Eeff versus N , as defined in eq. (53).
It interesting to note that the function ϕ(ξ) exhibits an
asymptotic behavior for large ξ described by ϕ(ξ) ∼ c/ξ
where c = 1.3 for the flat bundle and c = 0.85 for the cir-
cular bundle. This is useful for directly implementing the
final equations, without the numerical evaluation of the
function ϕ(ξ), which can be simply approximated with
c/ξ for large values of ξ.

The decreasing behavior of ϕ(ξ) with ξ can be inter-
preted by observing that a large value of k (correspond-
ing to a large value of ξ), defining a strong interaction
among fibers, reduces the degradation effects induced by
fractures. Indeed, small values of ϕ(ξ) attenuate the right
hand side of eq. (54), maintaining a larger value of effec-
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Fig. 13. First panel: Monte Carlo results for 〈Eeff〉/E versus N/Mα in semi-logarithmic scales for kl2/E = 0.045. The responses
for the different values of M are perfectly grouped. Second panel: as before, but including the results for the other values of
kl2/E (0.045, 0.08, 0.14, 0.25, 0.45, 0.8, 1.4, 2.5, 4.5 and 8). Now, the curves for different kl2/E are not grouped, as expected.
Third panel: numerical determination of the function ϕ(ξ) defined in eq. (53). The black curve (flat bundle) and the red curve
(circular bundle) are asymptotically converging to ϕ(ξ) = c/ξ with c = 1.45 (flat bundle) and c = 0.85 (circular bundle).

tive stiffness. Moreover, the exponential response for low
values of k and N can be also be interpreted in terms
of eq. (35), obtained for a degraded dimer. As a mat-
ter of fact, eq. (35) with low values of k and N gives

E
b)
eff(N)/2E ≃ 1/(1 + 2N/z) ≃ 1 − 2N/z ≃ exp(−2N/z),

where z =
√

2 ξ. The asymptotic response for the dimer

is therefore given by E
b)
eff(N)/2E ≃ exp(−ϕN/M) where

M = 2 and ϕ = 2
√

2/
√

kl2/E = 2
√

2/ξ. This result can
be compared with eq. (54). Then, we have finally inter-

preted the 1/
√

k behavior of the argument in the expo-
nential, coherently with the asymptotic results proved for
the dimer degradation.

4.2 Power-law regime

In this subsection, we provide empirical fits, which intent
to capture the underlying physics of the numerical results
of Monte Carlo simulations. This can be done by using
the analytical expressions, derived in sect. 3.1 above, as a
guidance. In the degradation regime with a larger number
of breaks, we can generalise eq. (33) through the following
expression:

log
〈Eeff〉
ME

= a − b log
N

Mβ

(

√

kl2

E

)ν , (55)

where the parameters a, b, β and ν must be obtained by
fitting the numerical data. Equation (55) indicates that
the response of the system in the regime on large N should
be represented by straight lines, if we plot the quantity

〈Eeff〉/(ME) versus N/(Mβ
√

kl2/E
ν
) in bi-logarithmic

scales. In order to obtain the values of the relevant pa-
rameters, we rewrite eq. (55) as follows:

log
〈Eeff〉
ME

= a − b log N + bβ log M + bν log

√

kl2

E
. (56)

By plotting three graphs in bi-logarithmic scales of
i) 〈Eeff〉/(ME) versus N , ii) 〈Eeff〉/(ME) versus M ,

iii) 〈Eeff〉/(ME) versus
√

kl2/E, we can evaluate the
slopes −b, bβ and bν, as well as the y-intercept a. We
can therefore numerically determine all the parameters
involved in eq. (55). This power-law can also be written
in the form

〈Eeff〉
ME

= ea

M bβ

(

√

kl2

E

)bν

N b
, (57)

which allows to deduct a physical explanation of the
shift between the nearly exponential and the power-law
regimes. With two fibers (see eq. (33)) we obtained a
power-law characterized by b = 2, corresponding to a
Young modulus decreasing as 1/N2. Moreover, we ob-
tained bν = 2, a value yielding an asymptotic effective
stiffness not depending on the intrinsic Young modulus E
of the fibers for large N . The loss of importance of E was
previously associated to the increase of importance of k,
i.e. of the interactions between the small surviving frag-
ments of the broken fibers. This interpretation could be
extended to the general case with M fibers and N ran-
dom breaks only if we numerically obtain bν = 2 (we note
indeed that the symbols E appearing in the left and right
hand sides of eq. (57) cancel each other out if bν = 2). The
numerical results are reported in table 2 and they confirm
the heuristic predictions b = 2, ν = 1 (and, of course,
bν = 2) with a good accuracy.

Furthermore, we deduce from eq. (55) that, if we plot
the quantity 〈Eeff〉/(ME) versus N/Mβ , we must obtain
the same curve for all values of M , but different curves for
different values of kl2/E. This is in fact the result shown
in the first panel of fig. 14, where we have considered the
lowest value of kl2/E corresponding to 0.045. All curves
concerning the cases from M = 7 to M = 19 are perfectly
superimposed, showing again the scaling character of the
degradation process. In the second panel of fig. 14, we also
include the results related to other values of kl2/E. The
curves are grouped with the same M , but not for the same
kl2/E, as expected. Finally, in the third panel of fig. 14,

we plotted 〈Eeff〉/(ME) versus N/(Mβ
√

kl2/E
ν
) (in bi-
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Fig. 14. First panel: Monte Carlo results for 〈Eeff〉/E versus N/Mβ in bi-logarithmic scales for kl2/E = 0.045. The responses
for the different values of M are perfectly grouped. Second panel: as before, but including the results for the other values of kl2/E
(0.045, 0.08, 0.14, 0.25, 0.45, 0.8, 1.4, 2.5, 4.5 and 8). Now, the curves for different kl2/E are not grouped, as expected. Third

panel: plot of 〈Eeff〉/(ME) versus N/(Mβ
p

kl2/E
ν
). All curves for any M and any kl2/E are perfectly grouped (large N).

logarithmic scale) and we show that all curves for any M
and any kl2/E are perfectly grouped: they coincide with a
unique straight line, representing the universal asymptotic
behavior (large N) of the bundle system.

4.3 Unifying formulation

We prove now that the nearly exponential regime and the
power-law regime can be linked through a simple empir-
ical expression, which is able to completely describe the
behavior of a purely elastic bundle of M fibers with a ran-
dom population of N breaks. We propose the following
formulation:

〈Eeff〉
ME

= exp

[

−ϕ

(
√

kl2

E

)

N

Mα

]

+
1

r
N + η

, (58)

where

η =
e−aN b

M bβ

(

√

kl2

E

)bν
. (59)

The behavior of eq. (58) corresponds to eq. (54) for low
values of N , and to eq. (57) for high values of N . All pa-
rameters are therefore given in table 2 for both the flat
and the circular bundle. The link between the asymp-
totic responses is controlled by the coefficient r, which
assumes the value 1.0 × 103 for the flat bundle and the
value 3.0 × 103 for the circular one. It is evident that for
low value of N , the ratio r/N becomes very large, can-
celling out the effects of the second term in eq. (58) and
retaining the exponential term. On the other hand, for
high values of N , the exponential term and the ratio r/N
are negligible, resulting in 〈Eeff〉/(ME) to approach 1/η
(see eq. (59)), as expected. The ability of eq. (58) to repre-
sent the whole behavior of the system is shown in fig. 15,
where we considered the flat bundle with M = 19 fibers
and a large spectrum of the elastic interaction parameter.
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curves from eq. (58) (continuous violet lines) for 〈Eeff〉/(ME)
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(bottom panel) scales for different values of kl2/E (0.045, 0.08,
0.14, 0.25, 0.45, 0.8, 1.4, 2.5, 4.5 and 8) and M = 19 (flat
bundle).



Eur. Phys. J. E (2015) 38: 44 Page 15 of 21

0 100 200 300

−5

0

5

10

15

lo
g(

E
ef
f

M
E
)
+
co
n
st
.

N

Monte Carlo

nearly−exp. regime

power−law regime

unifying formulation

0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

9

k l 2 /E

N*
M

M = 5 , 10, 15, 20, 25

Fig. 16. Analysis of the transition point N∗ between the
nearly exponential and the power-law regimes. The Monte
Carlo results, the asymptotic expressions and the unifying for-
mulation have been represented for M = 19 (flat bundle) and

for six values of
p

kl2/E (top panel). The curves have been
shifted by a given constant to improve the readability. The
transition location is identified by the intersection of the curves
valid for low and high values of N . The final result shows N∗/M

versus
p

kl2/E and M (bottom panel).

Since the general response is composed of two different
regimes (nearly exponential and power-law), it is interest-
ing to identify the critical value of N number of breaks
corresponding to the shift between the two responses. It
can be observed (see fig. 16, top panel) that this transition
can be conveniently identified by the intersection point of
the two asymptotic expressions, respectively valid for low
and high values of N . We determined this threshold N∗

for any value of M and k. From the mathematical point
of view this leads to solve the following equation:

e−ϕ(ξ) N
∗

Mα = ea M bβξbν

N∗b
, (60)

where ξ =
√

kl2

E . Since we can take α = 1, b = 2 and

ν = 1, we have

e−ϕ(ξ) N
∗

M = ea M2βξ2

N∗2
, (61)

or, equivalently,

N∗ = −2

τ
log

√
θ

N∗
, (62)

where τ = ϕ(ξ)/M and θ = eaM2βξ2. In order to solve
this transcendental equation we can use the following it-
erative scheme

N∗(1) = −2

τ
log

√
θ , (63)

N∗(k) = −2

τ
log

√
θ

N∗(k − 1)
, (64)

which is convergent to the exact solution. Consequently,
we numerically proved that N∗ is approximately propor-
tional to M , while it depends on k through the function
represented in fig. 16 for the flat bundle. Interestingly
enough, we remark that N∗/M must approach infinity

when
√

kl2/E → 0 since there is no transition towards
the power-law regime in the absence of interactions among
the fibers (for k = 0 we have a purely exponential degra-
dation).

To conclude, the threshold N∗ between the exponen-
tial and the power-law regimes is a decreasing function
of the lateral coupling k. This slowing-down shift may
have therefore practical implications since the yielding of
a fiber-bundle material could be postponed by increasing
the amount of lateral coupling in the bundle. Therefore,
the lateral interaction among the fibers is the key ingre-
dient in triggering this shift as a function of the crack
density N .

4.4 Viscous interactions

To complete the picture of the mechanical degradation of
bundles, we consider here the case of purely viscous in-
teractions among the fibers. As before, we will perform a
series of Monte Carlo simulations by considering different
sizes of the bundle (7 ≤ M ≤ 19) and different values of
the viscous coefficient h (remembering that, the quantity
iωh replaces the coefficient k of the purely elastic case).
Again, we perform the analysis of both regimes, corre-
sponding to low and high break densities. For small values
of N , eq. (54) is still valid provided that we substitute k
with iωh

log
〈Eeff〉
ME

= −ϕ

(
√

iωhl2

E

)

N

Mα
. (65)

Now, the function ϕ is analytically continued in order to
consider complex arguments, and therefore its real and
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Table 3. Parameters and scaling exponents for the purely
viscous interaction among fibers. All quantities are defined in
eqs. (65) and (70).

Aligned fiber bundle Circular fiber bundle

α 1.01 ± 0.04 1.13 ± 0.21

Real part

a 0.42 ± 0.07 −0.72 ± 0.12

b 4.51 ± 0.53 4.31 ± 0.58

bβ 4.93 ± 0.59 5.71 ± 0.45

bν 3.98 ± 0.34 3.92 ± 0.47

β 1.09 ± 0.06 1.32 ± 0.05

ν 0.88 ± 0.09 0.91 ± 0.08

Imaginary part

a −0.74 ± 0.08 −0.95 ± 0.06

b 2.11 ± 0.16 2.06 ± 0.22

bβ 2.31 ± 0.23 2.66 ± 0.47

bν 1.99 ± 0.32 1.97 ± 0.31

β 1.09 ± 0.05 1.29 ± 0.07

ν 0.94 ± 0.07 0.95 ± 0.09

imaginary parts can be defined as

ϕ

(
√

iωhl2

E

)

= ϕR

(
√

ωhl2

E

)

− iϕI

(
√

ωhl2

E

)

. (66)

By combining eqs. (65) and (66) the following expression
is obtained:

log

(

− log

∣

∣

∣

∣

〈Eeff〉
ME

∣

∣

∣

∣

)

= log N + log ϕR

(
√

ωhl2

E

)

−α log M, (67)

which can be readily used to numerically determine the
value of the exponent α. Indeed, if we plot the quantity
log[− log |〈Eeff〉/(ME)|] versus log M (for low values of
N and arbitrary values of ωhl2/E) we obtain a series of
straight line having the same slope α. This value is re-
ported in table 3 for both the flat and the circular bundles.
As expected, the numerical results are compatible with the
theoretical prevision α = 1, discussed in sects. 3.2 and 4.1.

Moreover, the effects of the viscosity h among the
fibers are controlled by the complex function ϕ(ξ), in-
troduced in eq. (65). We can obtain its real and imagi-
nary parts by plotting −(Mα/N) log[〈Eeff〉/(ME)] versus
√

ωhl2/E, as shown in fig. 17 (for the flat and circular
bundle). The knowledge of this function allows to sim-
ply evaluate the initial slope of the curve Eeff versus N ,
in terms of the strength of the viscous interaction. It is
interesting to note that the functions ϕR(ξ) and ϕI(ξ) ex-
hibit the same asymptotic behavior for large ξ described
by ϕR,I(ξ) ∼ d/ξ where d = 1.05 for the flat bundle and
d = 0.65 for the circular one (see fig. 17 for details). We
conclude that the small N regime can be summed up by
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Fig. 17. Numerical determination of the functions ϕR and ϕI

defined in eq. (66) as real and imaginary parts of ϕ. The black
curves (flat bundle) and the red curves (circular bundle) are
asymptotically converging to ϕR,I(ξ) = d/ξ with d = 1.05 (flat
bundle) and d = 0.65 (circular bundle).

the following real and imaginary parts of the effective stiff-
ness:

Re

{ 〈Eeff〉
ME

}

= exp

(

−ϕR
N

Mα

)

cos

(

ϕI
N

Mα

)

≃ 1 − ϕRN

Mα
+

(

ϕ2
R − ϕ2

I

) N2

2M2α
, (68)

ℑm

{ 〈Eeff〉
ME

}

= exp

(

−ϕR
N

Mα

)

sin

(

ϕI
N

Mα

)

≃ ϕIN

Mα
− ϕRϕI

N2

M2α
, (69)

where ϕR and ϕI are implicitly considered with the argu-
ment

√

ωhl2/E.
As regards the power-law regime (large N), in this

purely viscous case, we could expect a behavior similar to
that observed in sect. 3.1.1 for a two-fiber bundle. There-
fore, we can guess a general power-law of the form given
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ones given in eqs. (68) and (69) (continuous red lines lines,
nearly exponential regime) and in eq. (70) (continuous green
lines, power-law regime) for the complex 〈Eeff〉/(ME) versus
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bundle).

in eq. (57)

Re,ℑm

{ 〈Eeff〉
ME

}

= ea

M bβ

(

√

ωhl2

E

)bν

N b
, (70)

where the parameters for the real and imaginary parts
may be different. For instance, for the two-fiber bundle
we analytically obtain b = 4 for the real part and b = 2
for the imaginary one. By means of the procedure out-
lined in sect. 4.2 we numerically obtained all parameters
(reported in table 3), which are fully compatible with the
interpretation given in sect. 3.1.1.

In fig. 18 we show the Monte Carlo results for fiber
bundles with purely viscous interactions, together with
the asymptotic representations given in eqs. (68) and (69)

(nearly exponential regime, red curves) and in eq. (70)
(power-law regime, green straight lines). It is interesting
to observe that the imaginary part of the effective stiffness
of the degraded bundle shows a maximum in correspon-
dence to a given number of breaks, as already observed in
sect. 3.1.1. This can be explained as follows. To begin, we
recognize that the stiffness is certainly real (being equal
to ME) for N = 0. Moreover, an early state of degrada-
tion allows the fiber fragments to move with respect to
the others, by experiencing the viscous interactions thus
generating a complex valued effective stiffness. While its
real part decreases with N (degradation), the imaginary
part must increase. On the other hand, when the degra-
dation is larger, both the real and imaginary part must
decrease to zero, by following the above discussed power-
laws. We finally observe in fig. 18 the good agreement
between the limiting behaviors (small N and large N)
and the numerical Monte Carlo results (similar results,
not explicitly shown here, have been obtained also for the
circular bundle).

5 Conclusions

The fiber bundle assembly is a system largely investi-
gated to better understand the failure phenomena in struc-
tured materials. For the technologically important prob-
lem of a structural degradation generated by external non-
mechanical agents, such as chemicals or radiations, no the-
oretical descriptions have been developed up to now. The
well-studied fiber bundle model in fact can only deal with
a degradation induced by an applied mechanical stress.
Therefore, in this work we developed a theoretical and
numerical scheme to analyse the mechanical properties
of a bundle structure degraded by a random population
of breaks distributed within the ensemble of interacting
fibers. Our model is able to include elastic, viscous and
visco-elastic response for the fibers and for their inter-
actions. Although the progressive damage originated by
the load redistribution is a relevant effect, widely stud-
ied through the fiber bundle model, it was not included
here in order to better isolate the statistical behavior in-
duced by the random populations of breaks. Therefore, our
problem belongs to the class of homogenization theories:
it concerns the determination of the effective mechanical
properties of a fully interacting fiber bundle with a given
distribution of breaks. We suppose that a single breaks
represents a cut of a fiber (with the total interruption of
the transmission of forces), which however does not affect
the matrix where the fibers are embedded.

The proposed theory shows a very peculiar feature,
the degradation behavior being composed of two regimes:
a first exponential degradation at small number of breaks
and a second power-law scaling at increasing number of
breaks. The shift (or transition) between these two regimes
is governed by a threshold number of breaks, which is
a decreasing function of the lateral coupling. Therefore,
the degradation behavior could be delayed, by increasing
the lateral coupling (i.e. anticipating the shift to small
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concentrations of defects). In this respect, we predict the
existence of an unprecedented exponential to power-law
slowing-down shift in the degradation of a multi-cracked
bundle. The physical origin of this transition between
exponential and power-law degradation regimes can be
summed up as follows. For a small number of cracks the
overall elasticity is governed by the Young modulus of
fibers, which can experience a sensible deformation since
they are not strongly degraded. Moreover, in this regime
the shear coupling is less important since all fibers deform
almost identically. On the other hand, when the bundle is
extremely degraded, fibers are composed of a large num-
ber of very short segments. Hence, segments do not un-
dergo a considerable deformation and the overall elastic-
ity is originated by the shear effect among them. Finally,
in this second regime, the most important parameter is
the interaction constant k, which modulate the complex
shear phenomena. Concerning possible perspectives deal-
ing with these shear effects, we can mention the analysis of
the effective behavior of heterogeneous bundles, where the
Young modulus of each fiber is a varying function of the
longitudinal coordinate. In this situation, the shear phe-
nomena are present also in the case of an intact bundle and
they could be at the origin of the improved effective elas-
tic response of several biological structures. Therefore, the
disorder arising in many natural bundles can be beneficial
for the elastic behavior. A further analysis could concern
the effects of a population of breaks in heterogeneous or
composite bundles.

The proposed model can be applied to many real sit-
uations as discussed in the Introduction. Notably, in ra-
diation (by ionizing beams) or chemical (by enzymatic
digestion) damage of DNA bundles, the knowledge of the
degradation dynamics is very useful to properly design
therapy protocols. In related experiments [65–68], a bun-
dle of DNA chains is trapped between the arms of a
silicon nano-tweezers, the external agent is applied and
the mechanical characteristics of the trapped bundle are
measured in real time. An exponential degradation has
been consistently measured in such experiments, which
exactly corresponds to the first regime found in our in-
vestigation. Moreover, a strong dependence on the viscos-
ity of the solution has been observed for the degradation
rate of the mechanical response. Although no quantita-
tive results are yet available from these experiments [80],
there are indications that larger values of the viscosity in
strongly degraded DNA bundles lead to a complex dy-
namics, which might correspond to the predicted scaling
shift.
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Appendix A. Determination of probabilities

Ps(N)

To find the exact expression for the probabilities Ps(N) we
consider eq. (42), where the numbers n1, . . . , nM−s must be
strictly positive to guarantee M − s broken fibers. Hence, we
can define ji = ni − 1 and we rewrite eq. (42) as follows:

Ps(N) =

„

M
s

«

X N !

(j1 + 1)! · · · (jM−s + 1)!

1

MN
, (A.1)

where the sum must be performed over all the integers ji such
that

PM−s

i=1 ji = N−M+s and ji ≥ 0. To approach the evalua-
tion of this sum, we remember that the multinomial coefficients
are useful to develop an arbitrary power of a polynomial, as
follows:

(x1 + . . . + xr)
n =

ni≥0
X

P

r

i=1
ni=n

N !

n1! · · ·nr!
xn1

1 · · ·xnr

r . (A.2)

From eq. (A.2) we easily obtain by integration

Ir
n �

Z 1

0

· · ·

Z 1

0

(x1 + . . . + xr)
ndx1 · · · dxr

=

ni≥0
X

P

r

i=1
ni=n

N !

(n1 + 1)! · · · (nr + 1)!
. (A.3)

Thus, by combining eq. (A.1) with eq. (A.3) we obtain an ex-
pression for the probabilities Ps(N)

Ps(N) =

„

M
s

«

N !

MN (N − M + s)!
IM−s

N−M+s, (A.4)

in terms of the integrals Ir
n. We can now study these integrals

by searching for a recursive expression useful to determine all
the Ir

n. First of all, we observe that I1
n = 1/(n + 1), as we

can easily verify by a direct calculation. Then, we perform the
integration over xr (i.e. the last variable) in Ir

n, by obtaining

Ir
n =

Z

[0,1]r
(x1 + . . . + xr)

ndx1 · · · dxr

=
1

n + 1

Z

[0,1]r−1

(x1 + . . . + xr−1 + 1)n+1dx1 · · · dxr−1

−
1

n + 1

Z

[0,1]r−1

(x1 + . . . + xr−1)
n+1dx1 · · · dxr−1

=
1

n + 1

Z

[0,1]r−1

(

n+1
X

k=0

„

n + 1
k

«

(x1 + . . . + xr−1)
k

)

×dx1 · · · dxr−1 −
1

n + 1
Ir−1

n+1

=
1

n + 1

n+1
X

k=0

„

n + 1
k

«

Ir−1
k −

1

n + 1
Ir−1

n+1

=
1

n + 1

n
X

k=0

„

n + 1
k

«

Ir−1
k (A.5)

and, hence

Ir
n =

1

n + 1

n
X

k=0

„

n + 1
k

«

Ir−1
k , (A.6)

with the initial condition I1
n = 1/(n+1). Through this iterative

solution we can now determine all the integrals Ir
n. However,
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we can also obtain a direct relationship between Ir
n and the

Stirling numbers of the second kind Sr
n [81,82]. More specifi-

cally, we can prove that

Ir
n =

n!r!

(n + r)!
Sr

n+r = B(n + 1, r + 1)Sr
n+r, (A.7)

where B(x, y) represents the Euler Beta function [82]. In fact,
the recursive formula in eq. (A.6) rewritten in terms of Sr

n (by
using eq. (A.7)) reads

Sm+1
q+1 =

1

m + 1

q
X

k=m

„

q + 1
k

«

Sm
k , (A.8)

which is exactly one recurrence equation for the Stirling num-
bers of the second kind, as reported in the Abramovitz-Stegun
handbook [81] (to prove this statement it is sufficient to use
r = 1 in the second relationship at page 825). We remark that,
incidentally, eq. (A.7) represents the finite expression of the
multiple integrals defined in eq. (A.3) in terms of the Stirling
numbers or, conversely, an interesting integral form of the Stir-
ling numbers themselves. The Stirling numbers of the second
kind Sm

n represent the number of ways of partitioning a set
of n elements into m non-empty subsets [81,82]. Their closed
form is [81,82]

Sm
n =

1

m!

m
X

k=0

(−1)m−k

„

m
k

«

kn. (A.9)

By using eqs. (A.4), (A.7) and (A.9) we finally prove eqs. (43)
and (44) of the main text.

Appendix B. Proof that
∑M

s=0
Ps(N) = 1 and

∑M

s=0
sPs(N) = (M − 1)N/M(N−1)

We verify that, for a fixed number N of breaks, the probabil-
ities Ps(N) generate a complete probability space. To begin
this proof we observe that

M
X

s=0

Ps(N) =
M !

MN

M
X

s=0

SM−s
N

s!
=

M !

MN

M
X

k=0

Sk
N

(M − k)!
. (B.1)

Now we sum the expression
PM

k=0

Sk

N

(M−k)!
by means of the fol-

lowing generating function for the Stirling numbers of the sec-
ond kind [81,82]

(ex − 1)k

k!
=

+∞
X

n=0

Sk
n

xn

n!
. (B.2)

We can multiply both sides by M !/(M − k)!

M !

k!(M − k)!
(ex − 1)k =

+∞
X

n=0

M !

(M − k)!
Sk

n

xn

n!
, (B.3)

and then we can sum over k, as follows:

M
X

k=0

„

M
k

«

(ex − 1)k =

+∞
X

n=0

M
X

k=0

M !

(M − k)!
Sk

n

xn

n!
, (B.4)

or, equivalently

eMx =

+∞
X

n=0

 

M
X

k=0

M !

(M − k)!
Sk

n

!

xn

n!
. (B.5)

Recalling the standard exponential power series eMx =
P+∞

n=0 Mnxn/n!, we obtain by comparison

M
X

k=0

Sk
N

(M − k)!
=

Mn

M !
. (B.6)

Finally, by combining eq. (B.1) with eq. (B.6), we prove that
PM

s=0 Ps(N) = 1, as requested.
To conclude, we also determine the value of the sum

PM

s=0 sPs(N), useful to study the effective Young modulus of
the degraded bundle without interactions. We preliminary ob-
serve that

M
X

s=0

sPs(N) =
M !

MN

M
X

s=1

SM−s
N

(s − 1)!

=
M !

MN

M−1
X

k=0

Sk
N

(M − k − 1)!
. (B.7)

We use again eq. (B.6) with M substituted by M −1 obtaining

M
X

s=0

sPs(N) =
(M − 1)N

M (N−1)
. (B.8)

This final relation directly proves eq. (46) of the main text.

Appendix C. Proof that
∑+∞

N=M
Pr{CN} = 1

and
∑+∞

N=M
N Pr{CN} = M

∑M

k=1
1/k

We begin by proving that the quantities Pr{CN} (for N =
M, . . . , +∞) represent a complete probability space with
P+∞

N=M
Pr{CN} = 1. First of all, by using eq. (49), we can

elaborate the sum in this way

+∞
X

N=M

Pr {CN} = (M − 1)!

+∞
X

N=M

SM−1
N−1

MN−1

= (M − 1)!

+∞
X

k=M−1

SM−1
k

Mk
. (C.1)

We try now to evaluate the last sum in eq. (C.1). To do this
we use another generating function of the Stirling numbers of
the second kind [81,82]

1

1 − x
·

1

1 − 2x
· . . . ·

1

1 − Mx
=

+∞
X

N=M

SM
N xN−M , (C.2)

which is convergent for |x| < 1/M . If we use eq. (C.2) with
x = 1/(M + 1) we obtain

M
Y

α=1

M + 1

M + 1 − α
=

+∞
X

N=M

SM
N

(M + 1)M

(M + 1)N
, (C.3)

or, after some straightforward calculation

+∞
X

N=M

SM
N

(M + 1)N
=

1

M !
. (C.4)
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If we substitute M with M −1 in previous eq. (C.4) we exactly
obtain the sum needed in eq. (C.1), eventually proving that
P+∞

N=M
Pr{CN} = 1.

We consider now the sum
P+∞

N=M
N Pr{CN} correspond-

ing to the average value of breaks necessary to cut the whole
bundle. It can be written as follows:

+∞
X

N=M

N Pr {CN} =

+∞
X

N=M

NM !

MN
SM−1

N−1

= (M − 1)!

+∞
X

k=M−1

k + 1

Mk
SM−1

k . (C.5)

To sum this expression we perform the derivative of eq. (C.2)
with respect to the variable x

d

dx

M
Y

α=1

1

1 − αx
=

+∞
X

N=M

(N − M)SM
N xN−M−1. (C.6)

The right hand side can be elaborated as follows:

d

dx

M
Y

α=1

1

1 − αx
=

+∞
X

N=M

(N + 1)SM
N xN−M−1

−

+∞
X

N=M

(M + 1)SM
N xN−M−1, (C.7)

where the second sum can be easily evaluated through the orig-
inal generating function given in eq. (C.2), yielding

„

d

dx
+

M + 1

x

« M
Y

α=1

1

1 − αx
=

+∞
X

N=M

N + 1

xM+1
SM

N xN . (C.8)

Now, as before, we calculate this expression for x = 1/(M +1);
for convenience, we define aα = 1/(1 − αx) and we obtain

d

dx

M
Y

α=1

aα =

 

M
X

i=1

1

ai

dai

dx

!

M
Y

α=1

aα, (C.9)

M
Y

α=1

aα =
(M + 1)M

M !
, (C.10)

M
X

i=1

1

ai

dai

dx
=

M
X

i=1

i(M + 1)

M + 1 − i

= (M + 1)
M
X

i=1

„

(M + 1)

M + 1 − i
− 1

«

= (M + 1) [(M + 1)HM − M ] , (C.11)

where HM = 1 + 1
2

+ 1
3

+ . . . + 1
M

are the so-called harmonic
numbers. Summing up, we can use the intermediate results
in eqs. (C.9), (C.10) and (C.11) to further develop eq. (C.8)
calculated for x = 1/(M + 1), finally obtaining

+∞
X

N=M

N + 1

(M + 1)N
SM

N =
M + 1

M !
HM+1 . (C.12)

The previous equation, evaluated with M − 1 in place of
M , when substituted in eq. (C.5) yields

P+∞

N=M
N Pr{CN} =

M
PM

k=1 1/k, or equivalently, eq. (50) as requested.
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