NANOMAGNETIC AND SPINTRONIC DEVICES FOR ENERGY-EFFICIENT MEMORY AND COMPUTING

In memory of my late great-uncle, N. Seshagiri, who inspired my career in science and technology Jayasimha Atulasimha

> In memory of my uncle, Dalumama Supriyo Bandyopadhyay

NANOMAGNETIC AND SPINTRONIC DEVICES FOR ENERGY-EFFICIENT MEMORY AND COMPUTING

Edited by Jayasimha Atulasimha and Supriyo Bandyopadhyay Virginia Commonwealth University, US

WILEY

This edition first published 2016 © 2016 John Wiley & Sons Ltd.

Registered office

John Wiley & Sons Ltd., The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Nanomagnetic and spintronic devices for energy-efficient memory and computing / edited by Jayasimha Atulasimha and Supriyo Bandyopadhyay.

pages cm Includes bibliographical references and index. ISBN 978-1-118-86926-0 (cloth) 1. Magnetic memory (Computers) 2. Spintronics. 3. Nanoelectronics. I. Atulasimha, Jayasimha, editor. II. Bandyopadhyay, S., editor. TK7895.M3N27 2016 621.39'73-dc23

2015033564

A catalogue record for this book is available from the British Library.

Cover image: The cover shows magnetic force micrographs of an array of 100-nm sized nanomagnets exhibiting single-domain behavior. Image courtesy of the Atulasimha group and Bandyopadhyay group.

Set in 10/12pt Times by Aptara Inc., New Delhi, India

1 2016

Contents

Abo	ut the Editors and Acknowledgments	xi	
List	of Contributors	xiii	
Fore	word	xvii	
Preface			
1	Introduction to Spintronic and Nanomagnetic Computing Devices Jayasimha Atulasimha and Supriyo Bandyopadhyay	1	
1.1	Spintronic Devices	1	
1.2	Nanomagnetic Devices	3	
	1.2.1 Use of Spin Torque to Switch Nanomagnets	6	
	1.2.2 Other Methodologies for Switching Nanomagnets	6	
1.3	Thinking beyond Traditional Boolean Logic	7	
	References	7	
2	Potential Applications of all Electric Spin Valves Made of Asymmetrically Biased Quantum Point Contacts <i>Nikhil Bhandari, Maitreya Dutta, James Charles, Junjun Wan,</i> <i>Marc Cahay, and S.T Herbert</i>		
2.1	Introduction	9	
2.2	Quantum Point Contacts	11	
2.3	Spin Orbit Coupling	14	
	2.3.1 Rashba SOC (RSOC)	15	
	2.3.2 Dresselhaus SOC (DSOC)	15	
	2.3.3 Lateral Spin-Orbit Coupling (LSOC)	16	
2.4	Importance of Spin Relaxation in 1D Channels	18	
2.5	Observation of a 0.5 Conductance Plateau in Asymmetrically Biased		
	QPCs in the Presence of LSOC		
	2.5.1 Early Experimental Results Using InAs QPCs	20	
	2.5.2 NEGF Conductance Calculations	20	
	2.5.3 Spin Texture Associated with Conductance Anomalies in QPCs	23	

	2.5.4 Prospect for Generation of Spin Polarized Current			
	at Higher Temperature	25		
	2.5.5 Observation of Other Anomalous Conductance Plateaus in an			
	Asymmetrically Biased InAs/In _{0.52} Al _{0.48} as QPCs	26		
2.6	Intrinsic Bistability near Conductance Anomalies	27		
	2.6.1 Experimental Results	28		
	2.6.2 NEGF Simulations	30		
2.7	QPC Structures with Four In-plane SGs: Toward an All Electrical			
	Spin Valve	43		
	2.7.1 Preliminary Results on Four-gate QPCs	43		
	2.7.2 Experiments	46		
	2.7.3 Onset of Hysteresis and Negative Resistance Region	50		
2.8	Future Work	56		
2.9	Summary	58		
	Acknowledgments	60		
	References	60		
3	Spin-Transistor Technology for Spintropics/CMOS Hybrid Logic			
5	Circuits and Systems	65		
	Satoshi Sugahara, Yusuke Shuto, and Shuu'ichirou Yamamoto	05		
3.1	Spin-Transistor and Pseudo-Spin-Transistor	65		
	3.1.1 Spin – MOSFET	66		
	3.1.2 Pseudo-Spin-MOSFET	69		
3.2	Energy-Efficient Logic Applications of Spin-Transistors	72		
	3.2.1 Power Gating with Nonvolatile Retention	73		
	3.2.2 Nonvolatile Bistable Circuits	15		
2.2	3.2.3 Break-even Time	/6		
3.3	Nonvolatile SKAW Technology	/8 70		
	3.3.1 Static Noise Margin of Nonvolatile SKAM	/9		
2.4	5.5.2 Energy Performance of NV-SKAM	81 96		
3.4	Application of Nonvolatile Bistable Circuits for Memory Systems	80		
	Kelefences	00		
4	Spin Transfer Torque: A Multiscale Picture	91		
	Yunkun Xie, Ivan Rungger, Kamaram Munira, Maria Stamenova,			
	Stefano Sanvito, and Avik W. Ghosh			
41	Introduction	91		
7.1	411 Background	91		
	4.1.2 STT Modeling: An Integrated Approach	93		
42	The Physics of Spin Transfer Torque	94		
	4.2.1 Free-Electron Model for Magnetic Tunnel Junction	96		
4.3	First Principles Evaluation of TMR and STT	102		
1.5	4.3.1 The TMR Effect in the MgO Barrier	102		
	4.3.2 Currents and Toraues in NEGF	114		
	4.3.3 First Principles Results on Spin Transfer Toraue	116		
4.4	Magnetization Dynamics	119		

	4.4.1 Landau-Lifshitz-Gilbert Equation	119			
	4.4.2 Spin Torque Switching in Presence of Thermal Fluctuations	121			
	4.4.3 Including Thermal Fluctuations: Stochastic LLG vs				
	Fokker Planck	122			
4.5	Summary: Multiscaling from Atomic Structure to Error Rate	125			
	Acknowledgments	129			
	References	129			
5	Magnetic Tunnel Junction Based Integrated Logics and				
	Computational Circuits				
	Jian-Ping Wang, Mahdi Jamali, Angeline Klemm Smith,				
	and Zhengyang Zhao				
5.1	Introduction	133			
5.2	GMR Based Field Programmable Devices	134			
5.3	MTJ Based Field Programmable Devices	136			
	5.3.1 MTJ Structure and TMR Ratio	136			
	5.3.2 MTJ Based Magneto-Logic	137			
	5.3.3 Utilization of STT in MTJ Based Magneto-Logic	144			
5.4	Information Transformation between Gates	145			
	5.4.1 Direct Communication Using Charge Current	146			
	5.4.2 Magnetic Domain Walls for Information Transferring	148			
5.5	MTJ Based Logic-in-Memory Devices	148			
5.6	Magnetic Quantum Cellular Automata	149			
	5.6.1 Introduction and Background	149			
	5.6.2 Experimental Demonstrations	150			
5.7	All-Spin Based Magnetic Logic	155			
	5.7.1 Nonlocal Lateral Spin Valve Background	155			
	5.7.2 Critical Parameters for Operation	155			
	5.7.3 Selected Review of Experimental Demonstrations	156			
	5.7.4 Applications to All-Spin Logic Devices	158			
5.8	Summary	161			
	Acknowledgment	161			
	References	162			
6	Magnetization Switching and Domain Wall Motion Due to				
	Spin Orbit Torque	165			
	Debanjan Bhowmik, OukJae Lee, Long You, and Sayeef Salahuddin				
6.1	Introduction	165			
6.2	Theory	166			
	6.2.1 Rashba Effect	168			
	6.2.2 Spin Hall Effect	169			
6.3	Magnetic Switching Driven by Spin Orbit Torque	171			
6.4	Domain Wall Motion Driven by Spin Orbit Torque	176			
6.5	Applications of Spin Orbit Torque				
6.6	Conclusion	186			
	References	186			

7	Magnonic Logic Devices Alexander Khitun and Alexander Kozhanov	189		
7.1	Introduction	189		
7.2	7.2 Magnonic Logic Devices			
7.3 Spin Wave-Based Logic Gates and Architectures		206		
7.4	Discussion and Summary	212		
	References	216		
8	Strain Mediated Magnetoelectric Memory	221		
	N. Tiercelin, Y. Dusch, S. Giordano, A. Klimov, V. Preobrazhensky, and P. Pernod			
8.1	Introduction	221		
8.2	Concept of Unequivocal Strain- or Stress-Switched Nanomagnetic Memory	223		
	8.2.1 Magnetic Configuration and Equilibrium Positions	223		
	8.2.2 Quasi-Static Stress-Mediated Switching	225		
8.3	LLG Simulations – Macrospin Model	226		
	8.3.1 Landau-Lifshitz-Gilbert Equation and Effective Magnetic Field	226		
	8.3.2 Memory Parameters	227		
	8.3.3 Results of the Macrospin Model	228		
8.4	LLG Simulations – Eshelby Approach	231		
	8.4.1 Geometry of the Memory Element	232		
	8.4.2 Coupling with the External Magnetic Field	233		
	8.4.3 Coupling with the External Electric Field and Elastic Stress	234		
	8.4.4 Static Behavior of the System	234		
	8.4.5 Dynamic Behavior of the System	235		
8.5	Stochastic Error Analysis			
	8.5.1 Statistical Mechanics of Magnetization in a			
	Single-Domain Particle	238		
	8.5.2 Switching Process within the Magnetoelectric Memory	243		
8.6	Preliminary Experimental Results	248		
	8.6.1 Piezoelectric Actuator with in-Plane Polarization	248		
	8.6.2 Ferroelectric Relaxors with out-of-Plane Polarization	249		
	8.6.3 Magnetoelastic Switching in a Magneto-Resistive Structure	250		
8.7	Conclusions	250		
	Acknowledgments	252		
	References	253		
9	Hybrid Spintronics-Strainronics			
	Jayasimha Atulasimha			
9.1	Introduction	259		
	9.1.1 Nanomagnetic Memory and Logic Devices: The Problem of Energy			
	Dissipation in the Clocking Circuit	260		

	9.1.2	Switching Nanomagnets with Strain Could Drastically Reduce		
		Energy Dissipation: Hybrid Spintronics-Straintronics Overview	261	
	9.1.3	Landau Lifshitz Gilbert (LLG) Equation	263	
9.2	Nanomagnetic Memory Switched with Strain			
	9.2.1	Complete Magnetization Reversal (180° Switching): Complex		
		out-of-Plane Dynamics	265	
	9.2.2	Switching the Magnetization between Two Mutually Perpendicular		
		Stable Orientations and Extension to Stable Orientations with		
		Angular Separation >90°	268	
	9.2.3	Complete 180° Switching with Stress Alone	269	
	9.2.4	Mixed Mode Switching of Magnetization by 180°: Acoustically		
		Assisted Spin Transfer Torque (STT) Switching for Nonvolatile		
		Memory	273	
9.3	Straintronic Clocking of Nanomagnetic Logic			
	9.3.1	Two-State Dipole Coupled Nanomagnetic Logic	276	
	9.3.2	Four-state Multiferroic Nanomagnetic Logic (NML)	279	
	9.3.3	Switching Error in Dipole Coupled Nanomagnetic Logic (NML)	283	
	9.3.4	Straintronic Nanomagnetic Logic Devices (NML)	284	
9.4	Summar	y and Conclusions	286	
	Reference	ces	286	
10	Unconv	entional Nanocomputing with Physical Wave Interference	201	
	Function	ns Zl · M · C P l P · lCl · l'	291	
	Santosh	Khasanvis, Mostafizur Rahman, Prasad Shabadi,		
	and Csa	ba Andras Moritz		
10.1	Overview	W	291	
10.2	Spin Wa	ves Physical Layer for WIF Implementation	293	
	10.2.1	Physical Fabric Components	295	
10.3	Element	ary WIF Operators for Logic	298	
10.4	Binary V	VIF Logic Design	303	
	10.4.1	Binary WIF Full Adder	303	
	10.4.2	Parallel Counters	306	
	10.4.3	Benchmarking Binary WIF Circuits vs. CMOS	309	
	10.4.4	WIF Topology Exploration	310	
10.5	Multival	ued WIF Logic Design	311	
	10.5.1	Multivalued Operators and Implementation Using WIF	312	
	10.5.2	Multivalued Arithmetic Circuit Example: Quaternary Full Adder	316	
	10.5.3	Benchmarking of WIF Multivalued Circuits vs. Conventional CMOS	318	
	10.5.4	Input/Output Logic for Data Conversion between Binary and		
		Radix-r Domains	319	
10.6	Micropro	ocessors with WIF: Opportunities and Challenges	320	
10.7	Summar	y and Future Work	326	
	Reference	ces	326	
. .			200	
index			529	

A color plate section falls between pages 44 and 45

About the Editors and Acknowledgments

Jayasimha Atulasimha

Jayasimha Atulasimha is Qimonda Associate Professor of Mechanical and Nuclear Engineering with a courtesy appointment in Electrical and Computer Engineering at the Virginia Commonwealth University, where he directs the Magnetism, Magnetic Materials and Magnetic Devices (M³) laboratory. He has authored or coauthored over 60 scientific articles including more than 40 journal publications on magnetostrictive materials, magnetization dynamics, and nanomagnetic computing and has given several invited talks at conferences, workshops and universities in the USA and abroad on these topics. His research interests include nanomagnetism, spintronics, magnetostrictive materials and nanomagnet-based computing devices. He received the NSF CAREER Award for 2013–2018. He currently serves on the Technical Committees for Spintronics, IEEE Nanotechnology Council, ASME Adaptive Structures and Material Systems, Device Research Conference (DRC), and as a Focus Topic organizer for the APS topical group on magnetism (GMAG). He is a member of ASME, APS and an IEEE Senior Member.

Supriyo Bandyopadhyay

Supriyo Bandyopadhyay is Commonwealth Professor in the Department of Electrical and Computer Engineering in Virginia Commonwealth University, Richmond, Virginia, USA, where he directs the Quantum Device Laboratory. His research interests are in broad areas of nanotechnology and focus on spintronics, nanomagnetism, energy-efficient and noncharge-based computing paradigms, optical properties of nanostructures, and self-assembly based nanosynthesis. He is the author/coauthor of over 300 peer reviewed research publications and has given over 100 invited or keynote talks in conferences, workshops and colloquia across four continents. He currently serves as the Chair of the Technical Committee on Spintronics within the Nanotechnology Council of the Institute of Electrical and Electronics Engineers (IEEE) and in the past served as the Chair of the Technical Committee on Compound Semiconductor Devices within the Electron Device Society of IEEE. He has served as an IEEE Distinguished Lecturer and also as a Vice President of the IEEE Nanotechnology Council. He is the winner of the Distinguished Scholarship Award at Virginia Commonwealth University, which is the highest award given by the university for scholarship to one faculty member each year, and

also won the faculty research award, the faculty interdisciplinary research award and the faculty service award from the College of Engineering at University of Nebraska where he was employed prior to coming to Virginia Commonwealth University. He currently serves on the editorial boards of six international journals and served on the editorial boards of seven other journals in the past. Dr Bandyopadhyay is a Fellow of the Institute of Electrical and Electronics Engineers, American Physical Society, Institute of Physics, the Electrochemical Society and the American Association for the Advancement of Science.

Acknowledgments

This work was supported by the US National Science Foundation under grants ECCS-1124714 and CCF-1216614. Jayasimha Atulasimha would also like to acknowledge the NSF CAREER grant CCF-1253370.

List of Contributors

Nikhil Bhandari

Spintronics and Vacuum Nanoelectronics Laboratory University of Cincinnati Cincinnati, OH, USA

Debanjan Bhowmik

Department of Electrical Engineering and Computer Sciences University of California Berkeley Berkeley, CA, USA

Ayan K. Biswas

Department of Electrical and Computer Engineering Virginia Commonwealth University Richmond, VA, USA

Marc Cahay

Spintronics and Vacuum Nanoelectronics Laboratory University of Cincinnati Cincinnati, OH, USA; Physics Department University of Cincinnati Cincinnati, OH, USA

James Charles

School of Electrical Engineering Purdue University West Lafayette, IN, USA

Noel D'Souza

Department of Mechanical and Nuclear Engineering Virginia Commonwealth University Richmond, VA, USA

Y. Dusch

LIA LICS/LEMAC, IEMN UMR CNRS 8520, Univ. Lille, Centrale Lille Lille, France

Maitreya Dutta Spintronics and Vacuum Nanoelectronics Laboratory University of Cincinnati Cincinnati, OH, USA

Avik W. Ghosh Charles L Brown School of Electrical and Computer Engineering University of Virginia Charlottesville, VA, USA

S. Giordano LIA LICS/LEMAC, IEMN UMR CNRS 8520, Univ. Lille, Centrale Lille Lille, France

S.T. Herbert

Department of Physics Xavier University Cincinnati, OH, USA

Mahdi Jamali

University of Minnesota Minneapolis, MN, USA

Santosh Khasanvis

University of Massachusetts Amherst Amherst, MA, USA

Alexander Khitun

University of California Riverside, CA, USA

A. Klimov

International Associated Laboratory LIA LEMAC Lille, France; Moscow Institute of Radio Engineering and Automation MIREA Moscow, Russia; V.A. Kotelnikov Institute of Radioengineering and Electronics Moscow, Russia

Alexander Kozhanov

Georgia State University Atlanta, GA, USA

OukJae Lee

Department of Electrical Engineering and Computer Sciences University of California Berkeley Berkeley, CA, USA

Csaba Andras Moritz

University of Massachusetts Amherst Amherst, MA, USA

Kamaram Munira

Center for Materials for Information Technology University of Alabama Tuscaloosa, AL, USA

P. Pernod

LIA LICS/LEMAC, IEMN UMR CNRS 8520, Univ. Lille, Centrale Lille Lille, France

V. Preobrazhensky

LIA LICS/LEMAC, IEMN UMR CNRS 8520, Univ. Lille, Centrale Lille Lille, France; A.M. Prokhorov General Physics Institute RAS Moscow, Russia

Mostafizur Rahman

University of Massachusetts Amherst Amherst, MA, USA

Ivan Rungger

School of Physics, AMBER and CRANN Institute Trinity College Dublin, Ireland

Sayeef Salahuddin

Department of Electrical Engineering and Computer Sciences University of California Berkeley Berkeley, CA, USA

Stefano Sanvito

Center for Materials for Information Technology University of Alabama Tuscaloosa, AL, USA

Prasad Shabadi

University of Massachusetts Amherst Amherst, MA, USA Marvell Semiconductors

Yusuke Shuto

Imaging Science and Engineering Laboratory Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama, Japan

Angeline Klemm Smith

University of Minnesota, Minneapolis, MN, USA

Maria Stamenova

School of Physics, AMBER and CRANN Institute Trinity College Dublin, Ireland

Satoshi Sugahara

Imaging Science and Engineering Laboratory Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama, Japan

N. Tiercelin

LIA LICS/LEMAC, IEMN UMR CNRS 8520, Univ. Lille, Centrale Lille Lille, France

Junjun Wan

Intel Corporation Hillsboro, OR, USA

Jian-Ping Wang

University of Minnesota Minneapolis, MN, USA

Yunkun Xie

Charles L Brown School of Electrical and Computer Engineering University of Virginia Charlottesville, VA, USA

Shuu'ichirou Yamamoto

Imaging Science and Engineering Laboratory Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama, Japan

Long You

Department of Electrical Engineering and Computer Sciences University of California Berkeley Berkeley, CA, USA

Zhengyang Zhao

University of Minnesota Minneapolis, MN, USA

Foreword

When I started out on my career, CMOS technology had just begun its domination in electronics. Although there are major challenges in continued scaling, no other technology was expected to be able to compete with CMOS commercially in the near future. However, the research community had always been interested in looking beyond CMOS and searching for alternative technologies. I was very fortunate to be surrounded by wise mentors and brilliant colleagues, who ultimately convinced me it would be fun to be in the arena of "beyond CMOS technologies." On many occasions I wished somebody had written a book summarizing the most promising developments, saving professionals and students the time and aggravation of sifting through a plethora of many approaches. The fact that Jayasimha Atulasimha and Supriyo Bandyopadhyay are doing just that, putting together a collection of the latest and most promising developments in spintronics, is going to benefit not only young students and researchers new to the field, but will also provide a convenient reference for experts and experienced researchers to build their discoveries upon.

The field of spintronics has enjoyed rapid progress during the last decade, mostly due to the major challenge of excessive power dissipation in further CMOS scaling, which threatens perhaps a complete halt to scaling in the near future. As any active researcher in this field will tell you, the race to be the first to discover novel devices far beyond CMOS applications is both exhilarating as well as exhausting. It is therefore with great pleasure and honor that I am writing this foreword to introduce you to this timely treatise on the latest developments in this field, edited by recognized experts as well as my friends and colleagues, Supriyo Bandyopadhyay and Jayasimha Atulasimha.

This new book delivers a summary of the latest developments in spintronics in a way that is pleasantly digestible for any graduate level student and beyond, aspiring to excel in this field.

Professor Kang L. Wang Distinguished Professor and Raytheon Chair in Electrical Engineering University of California, Los Angeles

Preface

The complementary metal-oxide semiconductor (CMOS) device technology has dominated electronics for the last 70 years. CMOS has been able to scale down at an incredible pace, predicted by the famed Moore's law. However, it appears that further scaling of CMOS devices may encounter a road block by the end of the decade due to various issues, primarily among which is the rapid increase in heat dissipation as more and more devices are packed on to a chip with increasing densities.

There is also a strong need for computing devices that can operate with 2–3 orders of magnitude lower energy dissipation than current CMOS devices in embedded applications. Mobile and medical applications would prefer processors that would dissipate so little power that they can be run on energy harvested from the ambient without requiring a separate power source. If this comes to pass, it will open up myriad applications in wearable electronics, medical devices embedded to monitor the health of patients and sensor networks that monitor critical infrastructure such as buildings and bridges.

For these reasons, several new device concepts have been advanced as potential replacements for CMOS devices, or to complement CMOS devices for specific applications such as nonvolatile memory and logic, or to implement certain functionalities such as neuromorphic computing in a way better than CMOS devices can. They draw upon different physical mechanisms to elicit computational or signal processing activity. Among these different physical paradigms, spintronic and nanomagnetic devices form an important class both for the rich variety of physical phenomena on which these devices are based and the many different device concepts that they have spawned.

The editors hope that this book will provide the reader with a broad understanding of the key concepts behind spintronic and nanomagnetic devices as well as summarize the latest developments in this field. Questions and comments can be addressed to J. Atulasimha (jatulasimha@vcu.edu) and S. Bandyopadhyay (sbandy@vcu.edu).