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ABSTRACT

A thermoacoustic sound generation model, based on the classical balance equations of the continuum mechanics, is here developed for the
cylindrical and the spherical thermoacoustic wave generation. In both geometries, the model considers an arbitrary multilayered structure,
where each layer can be fluid or solid and it is characterized by the fully coupled thermo-visco-acoustic response. It means that the viscous
behavior and the thermal conduction are considered in each layer. The model is based on a unified representation of cylindrical or spherical
thermoacoustic waves, which is valid for both fluid and solid phases. Thanks to the continuity of temperature, particle velocity, normal
stress, and heat flux between adjacent layers, the model can be implemented by means of a versatile matrix approach, allowing flexible analy-
sis and design of cylindrical or spherical thermophones. Any thermoacoustic variable can be determined at any position, any frequency,
and for any input power. The results are compared with the models already existing in the literature, and the underlying physics is thor-
oughly discussed. The analysis is focused on a better understanding of the thermoacoustic generation with application to the state of the art
of the thermophone technology.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0039458

I. INTRODUCTION

Traditional ways for sound generation involve the use of an elec-
troacoustic transducer that is composed either of a piezoelectric mate-
rial or of a speaker consisting of a membrane, a coil, and a magnet.
Those electroacoustic transducers are widely adopted from everyday
sound reproduction to scientific use for ultrasonic sound generation.
Additionally, when we talk about the ultrasonic region of the spectrum,
we must mention other technologies used for electroacoustic transduc-
tion. For instance, the nondestructive evaluation and testing (NDE and
NDT) of materials commonly involve the use of ultrasonic waves. The
standard transduction techniques make use of the laser generation of
ultrasound1 or the acoustic wave generation by microwaves.2 In these
cases, the acoustic field is typically generated in the form of pulses or
bursts. An alternative and more recent method is based on capacitive
micromachined ultrasonic transducers (CMUTs).3 This technique uses
an electrostatic mechanism: the acoustic wave is generated utilizing the
attraction force between the plates of a condenser. They are fabricated

by means of silicon technology, using standard processes of microelec-
tronics, and exhibit a larger bandwidth than the piezoelectric devices
together with a lower noise level.

However, dynamic loudspeakers, piezoelectric transducers,
and CMUTs are all based on mechanical vibrations and thus are
inherently resonant. Today, no alternative for wideband sound gen-
eration is currently available. In the early 20th century, Arnold and
Crandall started theorizing a phenomenon observed in the 1800s,
where samples with low thermal capacity and high thermal con-
ductivity produced sound when supplied with an alternative electri-
cal current.4,5 This kind of sample is called thermophone. When
supplied with an alternative electric power, the temperature of the
sample will follow the electric oscillations (Joule effect) and the air
in the vicinity (in the so-called thermal layer) will compress and
dilate because of the exchanged heat, thus generating an acoustic
pressure wave (see Fig. 1). Since no resonating part is involved in
the process, the sound generation is wideband.
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If the interest in this technology was largely overshadowed by
the rise of traditional speakers, the modern possibilities to design
and produce complex micro- and nano-materials allowed the fabri-
cation of more efficient materials from the thermoacoustic point of
view. This point has rekindled the interest in thermophones theory
and applications over the past 20 years.6 Most thermophones are
carbon7,8 or metal based.9–11 They can be in the geometry of a thin
film,12–14 of a forest of nanotubes or wires,9,15,16 or in porous,
foam-like, 3D geometries.17–20

Alongside those experimental tryouts, many theoretical
models have been developed and improved over the years. For
instance, in 2008, Xiao et al. improved the Arnold and Crandall
model by adding the heat stored in the thermophone using the
heat flow balance equation.21 Similarly, in 2013, Daschewski et al.
added the influence of a substrate (or backing) to better describe
the free standing thermophone response and also considered the
effect of the viscous dissipation in the propagation medium.22,23

Successively, in 2017, La Torraca et al. added conduction and con-
vection contributions to the model and also took the thickness of
the substrate into account with a more refined technique.24 These
approaches are called piston based models. They are valid in many
cases but may show limitations depending on the configuration
under investigation (especially at high frequencies). Another
method used for modeling the thermoacoustic effect is based on
the classical conservation laws of continuum mechanics applied to
the propagation media (typically without considering the viscosity).
This system of equations was first elaborated by McDonald and
Wetsel to study the photoacoustic effect in 1978.25 More recently,
the same set of equations has also been adopted for the thermo-
acoustics analysis. This coupled set of balance equations was solved
in 2010 by Hu et al. for a thermophone placed onto a substrate,
generating sound in a perfect gas.26 This model was validated
against Shinoda experimental data6 and was later adapted to evalu-
ate the far field pressure and to consider the influence of the

so-called Heat Capacity per Unit Area (HCPUA).7 This parameter
is defined as the product of three factors: the density of the thermo-
phone generating layer (kg=m3), the specific heat of the same layer
[J=(kg K)], and the generating layer thickness (m). The HCPUA
must be low enough to have an efficient thermoacoustic radiation.
The refined methodology of Hu et al. has been used in 2012 to
study the influence of the main thermophone parameters on its
wideband frequency response.27

Successively, in 2012, Hu et al. modified this approach to
investigate the thermophones with spherical geometry (or acoustic
monopoles).28 This approach was generalized in 2014 to arbitrary
sources using an arbitrary distribution of acoustic monopole29 and
in 2017 to represent a cylindrical geometry.30 Lastly, in 2019, Mao
et al. added the influence of viscosity to the equations of Hu et al.31

Furthermore, based on the previous investigations,32,33 a general-
ized theory was developed by Liu et al. in 2018 to describe point
source, line source, and line array thin film thermophones in free
field and in half space, also with an air gap between the substrate
and the generating layer.34

Due to the rather low efficiency of thermophones, it is of
prime interest to optimize the thermophone acoustic radiation,
especially for loudspeaker applications. One direction considered to
perform this optimization makes use of the flexibility of the fabri-
cation processes. Indeed, modern methods can be exploited to
design and produce optimal shapes of thermoacoutic generators.
However, despite the exploration of several geometries as thermo-
phone samples (films, nanotube forests, sponges, and so on), they
are often represented by thin sheets in the modeling activity. In
fact, most of the developed theoretical models are based on planar
generators and plane waves propagation. Only some investigations,
as briefly discussed above, generalized the plane wave model to
spherical or cylindrical symmetries. However, due to the applica-
tion oriented purpose of those models, simplifications have been
made and only specific configurations have been studied. For
instance, concerning the spherical model, the objective was more
about using acoustic superposition theory to explore complex ther-
mophone geometries than about understanding all the possibilities
offered by the spherical symmetry itself (for example, with multi-
layered systems). Furthermore, a refined investigation of the near
field generation of the cylindrical geometry could improve the
understanding of the thermoacoustic mechanisms in single wires,
in nanotubes, or even in the tubular branches of porous or foam
like thermophones. If the plane wave analysis is useful in many
cases at a macroscopic scale, the geometry is typically more
complex at a microscopic scale and the analysis of cylindrical or
spherical waves needs to be considered to better understand the
near field generation.

In this work, a multilayer model for cylindrical and spherical
wave generation is elaborated. It is based on the conservation equa-
tions of the continuum mechanics and takes into account the fully
coupled thermo-visco-acoustic behavior of each fluid or solid layer.
This methodology was recently proposed for plane wave genera-
tion35 and is here generalized to the cylindrical and the spherical
geometries. With respect to previous approaches, the following
improvements can be mentioned: (i) a versatile matrix approach,
based on the continuity of the main variables across the interfaces
between adjacent layers, allows the consideration of a completely

FIG. 1. Schematic of the thermoacoustic sound generation through the thermo-
phone principle. An electric current of frequency ω=2 is applied to the active
layer, which is therefore subjected to a heating process at frequency ω (Joule
effect). Heat is transmitted to the adjacent fluid, which is then subjected to a
periodic sequence of compressions and dilations. This phenomenon leads to
the generation of an acoustic wave at frequency ω that freely propagates
outside the thermal layer.
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arbitrary multilayered structure composed of both fluid and solid
layers; (ii) the main dissipative phenomena, namely, the thermal
conduction and the viscous behavior, are fully considered in each
layer of the system; (iii) since the thermo-visco-acoustic wave prop-
agation is introduced in each layer, the acoustic wave propagation
in solids is then considered and allows the study of possible reso-
nances and antiresonances of the structure. The approach pre-
sented here will be compared with some previously existing
models, and a complete analysis of the effects of the main impor-
tant physical and geometrical parameters is performed.

In Secs. II and III, the physical and mathematical formalism
adopted for studying the cylindrical and spherical geometries is
introduced for both fluid and solid phases. Moreover, the matrix
methodology to develop the model for a multilayered structure is
discussed. Then, in Sec. IV, this technique is applied to specific
thermophone configurations. In particular, in Sec. IV A, some
results are compared with the model from the literature, and, in
Sec. IV B, different thermophone structures (full thermophone,
hollow thermophone, and hollow thermophone with substrate) are
investigated in more detail and their defining parameters will be
modified to better assess their influence. In particular, both fre-
quency and position dependent analyses will be performed.

II. MULTILAYER MODEL FOR CYLINDRICALWAVES

It can been proven that the linearized conservation equations
in any fluid with viscosity and thermal conduction can be written
as35,36

ρ0,f
Bf

@p
@t � ρ0,f αT

@T
@t þ ρ0,f~∇ �~v ¼ 0,

ρ0,f
@~v
@t ¼ �~∇pþ μ∇2~v þ (λþ μ)~∇(~∇ �~v),

ρ0,f Cp
@T
@t � αTT0

@p
@t ¼ κ∇2T ,

8>><
>>: (1)

where the pressure p (Pa), the temperature variation T (K), and
the particle velocity vector~v (m/s) are the main variables depend-
ing on time t (s) and space ~r (m). Moreover, ρ0,f is the density
(kg=m3), Bf is the bulk modulus (Pa) , αT is the coefficient of
volumetric expansion (1/K), λ and μ are the first and second vis-
cosity coefficients (Pa s), Cp is the specific heat at constant pres-
sure [J=(kg K)], T0 is the ambient temperature (K) and, finally, κ
is the thermal conductivity [W/(mK)]. The subscript f in most
parameters means fluid. All these parameters will be considered
constants in each cylindrical layer, and they can only vary from
one layer to another. It is worth noticing that in some practical
applications it could be useful to consider the dependence of
some parameters on the temperature. However, the introduction
of this dependence transforms the system from linear to nonlin-
ear, eliminating the possibility of doing the mathematical analysis
developed in this article. Only more time-consuming numerical
methods (finite elements or similar techniques) can consider such
kind of dependence.

The proposed system of differential equations describes the
heat transfer and the mechanical wave propagation while taking
into account dissipative phenomena introduced through the
viscous behavior of the fluid. Equation (1) is obtained by a combi-
nation of the linearized classical conservation laws (of mass, linear

momentum, and energy) of continuum mechanics and the linear-
ized constitutive equations for a fluid.35,36 This approach is justified
by the fact that we are here considering small variations of the rele-
vant quantities p, v, T around given equilibrium values.

Under the hypotheses of small deformations and small
temperature variations around equilibrium, a similar system of
equations can be stated for an isotropic and homogeneous solid
as35,37

ρ0,sCV ,s
@T
@t ¼ κs∇2T � αT ,sB0

@
@t
~∇ �~uT0 þ Q0,

ρ0,s
@2~u
@t2 ¼ (λ0 þ μ0)~∇(~∇ �~u)þ μ0∇2~u

þ(λs þ μs)~∇(~∇ �~v)þ μs∇2~v � αTB0~∇T þ~b,

8><
>: (2)

with main variables given by the particle displacement vector ~u
(m), the particle velocity vector ~v ¼ @~u=@t (m/s), and the tem-
perature variation T (K). We also introduced the Lamé elastic
coefficients λ0 and μ0 (Pa), the bulk modulus B0 ¼ λ0 þ (2=3)μ0
(Pa), the coefficient of volumetric expansion αT ,s (1/K), the first
and second viscosity coefficients λs and μs (Pa s), the specific heat
at constant volume CV ,s [J=(kg K)], the externally applied body
forces ~b (N), and the supplied thermal power density Q0

(W=m3). The subscript s in most parameters means solid. In this
case, dealing with a solid material, we considered only the con-
servation of energy and linear momentum since the mass density
is considered constant within the linearized formalism.

Those conservation equations, for both fluids and solids, have
been solved for a one-dimensional model, assuming plane wave
generation and propagation, in the recent literature.35 Considering
a system with cylindrical symmetry, we shall now solve those equa-
tions assuming a cylindrical wave generation, thus generalizing pre-
vious results.35 Explicit analytical solutions for the variables T , p, v,
and q, the heat flux, are obtained in a single material, and then a
transfer matrix method is introduced to investigate the thermoa-
coustic behavior of systems with an arbitrary distribution of fluid
and solid cylindrical layers. This will allow to create a multilayer
model, which we will later use to investigate near field sound gener-
ation in real life microscopic thermophone structures.

The cylindrical thermophone is supposed to be infinitely long
in the z direction. Moreover, all physical properties are supposed to
be independent of the angle θ on the x–y plane due to the cylindri-
cal symmetry. The main variables describing the thermoacoustic
wave generation are therefore solely dependent on the radius r.
We analyze the effects of these assumptions on the main equations
for both fluid and solid layers in Secs. II A–II C.

A. Thermoacoustic cylindrical waves in a fluid

Using the general equations for a fluid given in Eq. (1), a
cylindrical geometry is now investigated as shown in Fig. 2. The
pressure, the temperature variation, and the particle velocity can be
written as

p ¼ p(r),
T ¼ T(r),
~v ¼ ~r

r v(r),

8<
: (3)
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with~r ¼ x~ex þ y~ey and k~rk ¼ r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
(see Fig. 2 for the def-

inition of coordinates). In order to write Eq. (1) in cylindrical coor-
dinates, each component of those balance equations has to be
rewritten using the prescriptions of Eq. (3). This leads to

iω 1
Bf
p� iωαTT þ 1

r
@
@r (rv) ¼ 0, (4a)

iωρ0,f v ¼ � @p
@r þ (λþ 2μ) � 1

r2 v þ 1
r
@v
@r þ @2v

@r2
� �

, (4b)

iωρ0,f CpT � iωαTT0p ¼ κ 1
r
@T
@r þ @2T

@r2
� �

, (4c)

8><
>:

with 1
r
@
@r (rv) ¼ 1

r (v þ r @v@r ). Here, we also substituted the time
derivative @=@t with iω by assuming a monochromatic sinusoidal
permanent regime with angular frequency ω.

The aim is to write the pressure p and the particle velocity v
as a function of the temperature T and find the differential equa-
tion that T solves. To this aim, Eq. (4a) can be rewritten as

p ¼ αTBf T � Bf

iω
1
r
v þ @v

@r

� �
: (5)

Here, the hydrostatic cylindrical pressure p does not take the
viscosity into account and so, in order to have a continuity
relation between different adjacent media (solid, fluid), we need
to define ~p, which represents the normal component of the
total stress tensor T̂ ¼ �pÎ þ T̂V in cylindrical coordinates
(with negative sign). Knowing the viscous stress T̂V being
defined as

T̂V ¼ ^̂V
@ε̂

@t
, (6)

with ^̂V being the viscous tensor

^̂VŜ
� �

ij
¼ VijkhSkh ¼ 2μSij þ λSkkδij: (7)

~p is written in the form

~p ¼ �T̂~n �~n
¼ pÎ~n �~n� T̂V~n �~n
¼ p� 2μ

@v
@r

� λ
1
r
@

@r
(rv)

¼ αTBf T � Bf

iω
þ λ

� �
1
r
@

@r
(rv)� 2μ

@v
@r

, (8)

where ~n ¼~r=r. The variable ~p here introduced will be useful to
develop the transfer matrix method for multilayered structures.
Anyway, by deriving Eq. (5), and injecting this result in Eq.
(4b), we have

iωρ0,f v ¼ �αTBf
@T
@r

þ λþ 2μþ Bf

iω

� �
@

@r
1
r
@

@r
(rv)

� �
: (9)

Similarly, by injecting Eq. (5) into Eq. (4c) and using the ther-
modynamic relation35

ρ0,f (Cp � CV ) ¼ T0α
2
TBf , (10)

we have after straightforward elaborations

1
r
@

@r
(rv) ¼ κ

αTT0Bf

1
r
@T
@r

þ @2T
@r2

� �
� iωρ0,f CV

αTBf T0
T: (11)

Injecting now Eq. (11) into Eq. (9) allows us to write v as a
function of T only,

v ¼ � 1
iωρ0,f

αTBf þ λþ 2μþ Bf

iω

� �
iωρ0,f CV

αTBf T0

	 

@T
@r

þ λþ 2μþ Bf

iω

� �
κ

iωρ0,f αTT0Bf

@

@r
1
r
@T
@r

þ @2T
@r2

� �
: (12)

To obtain a pure equation for T , we apply the operator
1
r
@
@r [r(�)] to Eq. (9) and we combine the result with Eq. (11).

Hence, by introducing the notations

Tii ¼ DT ¼ 1
r
@
@r (r

@T
@r ),

Tiv ¼ (Tii)ii ¼ DDT ¼ 1
r
@
@r r @

@r [
1
r
@
@r (r

@T
@r )]

� �
,

(
(13)

FIG. 2. Example of a cylindrical thermophone composed of three cylindrical
regions and two interfaces. The external region represents the propagating
medium of the emitted cylindrical thermoacoustic wave.
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a fourth order differential equation for T can be obtained:

0 ¼ λþ 2μþ Bf

iω

� �
κTiv

� (λþ 2μþ Bf

iω
)iωρ0,f CV þ α2

TB
2
f T0 þ iωρ0,f κ

	 

Tii

� ω2ρ20,f CVT , (14)

and it is similar to the equation for plane waves but with dif-
ferent definition of the derivatives of T .35 Following exactly the
same procedure previously introduced for plane waves and
using the notations35

γ ¼ Cp

CV
,

C0 ¼
ffiffiffiffiffiffiffiffi
Bf
ρ0,f

γ
q

(m=s),

lκ ¼ C0κ
Bf Cp

(m),

lV ¼ λþ2μ
ρ0,f C0

(m),

8>>>>>><
>>>>>>:

(15)

Eq. (14) can be finally written as

lκ lV � i
C0

ωγ

� �
Tiv � 1þ iω

C0
(lκ þ lV )

	 

Tii � ω2

C2
0
T ¼ 0: (16)

The four solutions of the algebraic equation associated with
Eq. (16) are written in the form +θac,f and +θth,f as

θac,f ¼ iω
C0

1� 1
2
iω
C0
lV � 1

2 lκ
iω
C0
(1� 1

γ )
h i

,

θth,f ¼
ffiffiffiffiffiffi
iωγ
C0 lκ

q
1þ 1

2
iω
C0

lκ(1� 1
γ )þ lV (1� γ)

h ih i
:

8><
>: (17)

They are associated with progressive and regressive acoustical waves
and thermal waves, respectively, propagating in the fluid phase. The
details of their calculation are found in Appendix B 1. The general
form of the solution for the fourth order differential equation in
Eq. (16) is obtained in Appendix A. It can be written as

T(r) ¼ AH(1)
0 (iθac,f r)þ BH(2)

0 (iθac,f r)

þ CH(1)
0 (iθth,f r)þ DH(2)

0 (iθth,f r), (18)

with A, B, C, D being the integration constants and H(1)
i (z) and

H(2)
i (z) being the cylindrical Hankel function of order i and of first

and second kind.

B. Thermoacoustic cylindrical waves in a solid

The cylindrical geometry will now be investigated for a
thermo-visco-elastic solid medium. Based on Eq. (2) and using
Eq. (3), the main equations in a solid become

ρ0,sCV ,siωT ¼ κs
1
r
@
@r (r

@T
@r )� αT ,sB0T0

1
r
@
@r (rv)þ Q0, (19a)

ρ0,siωv ¼ λ0þ2μ0
iω þ λs þ 2μs

� �
@
@r

1
r
@
@r (rv)

� �� αT,sB0
@T
@r : (19b)

(

with @
@t ¼ iω, Q0 (the heat density energy supplied) spatially uniform,

~b ¼ 0 and knowing that @u
@t ¼ v. When injecting 1

r
@
@r (rv) from

Eq. (19a) into Eq. (19b), v can be written as a function of T alone as

v ¼ 1
iωρ0,s

1
αT ,sB0T0

λ0 þ 2μ0
iω

þ λs þ 2μs

� �	

� κs
@

@r
1
r
@

@r
(r
@T
@r

)

� �
� ρ0,sCV ,siω

@T
@r

� �
� αT ,sB0

@T
@r



: (20)

Then, by applying to Eq. (20) the operator 1
r
@
@r [r(�)], and using again

Eq. (19a), a differential equation for T is eventually found as

ρ0,siωQ0 ¼ λs þ 2μs þ
λ0 þ 2μ0

iω

� �
κsT

iv

� λs þ 2μs þ
λ0 þ 2μ0

iω

� �
iωρ0,sCV ,s

	
þ α2

T ,sB
2
0T0 þ iωρ0,sκs

�
Tii � ω2ρ20,sCV ,sT , (21)

using the notation for derivatives introduced in Eq. (13). Apart
from the supplied input power Q0, Eq. (21) is similar to Eq. (14) for
fluid with only Bf changed to λ0 þ 2μ0 for the solid. Henceforth,
even if the solutions θ of the associated algebraic equation will be
numerically different between fluid and solid, the whole process to
find T in the fluid, resulting in Eq. (18) (see Appendix A), is still
valid for a solid. In order to add the effect of the supplied energy to
the final solution for T , we use the assumption that Q0 is spatially
uniform, and we easily find the particular solution,

TQ0 ¼
Q0

ρ0,sCv,siω
, (22)

which can be used in the following general solution:

T(r) ¼ AH(1)
0 (iθac,sr)þ BH(2)

0 (iθac,sr)þ CH(1)
0 (iθth,sr)

þ DH(2)
0 (iθth,sr)þ TQ0 : (23)

We start now the investigation of the pressure behavior in the
solid case. By definition, a force d~f applied on a surface dS within
a solid can be written using the stress tensor T̂ as d~f ¼ T̂~ndS,
where ~n is the unit vector perpendicular to dS.37 Therefore, the
elastic pressure p in the direction~n can be calculated as

p ¼ �T̂e~n �~n ¼ �Teij

XiXj

r2
, (24)

with ~n ¼ ~r
r and Xi, i ¼ 1, 2, 3, are the coordinates of~r in Cartesian

coordinates. Here, T̂e is the elastic part of the stress tensor. It is
important to note that a plane strain hypothesis has been used in
this analysis. This means that the stress is acting perpendicularly to
the length of the cylinder leading to X3 ¼ 0 and @

@X3
¼ 0. With ϵ̂
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the infinitesimal deformation tensor defined as37

ε̂ ¼ 1
2
(~∇~uþ ~∇~uT), (25)

the elastic stress tensor elements are written as37

Teij ¼ 2μ0εij þ λ0εkkδij � αT λ0 þ 2
3
μ0

� �
δijT , (26)

with the displacement vector ~u defined as ~u ¼ ~r
r u(r). The three

elastic tensor elements necessary for the pressure calculation are as
follows:

Te11 ¼ 2μ0
@u1
@X1

þ λ0ϵkk � αT ,sB0T , (27)

Te12 ¼ μ0
@u1
@X2

þ @u2
@X1

� �
, (28)

Te22 ¼ 2μ0
@u2
@X2

þ λ0ϵkk � αT ,sB0T: (29)

The partial derivatives of ui are

@ui
@Xj

¼ XiXj

r2
@u
@r

þ r2δij � XiXj

r3
u, (30)

and therefore we obtain the pressure after straightforward
calculations:

p ¼ �Te11
X2
1

r2
� 2Te12

X1X2

r2
� Te22

X2
2

r2

¼ αT ,sB0T � 2μ0
iω

@v
@r

� λ0
iω

1
r
@

@r
(rv): (31)

Here, the pressure p is only defined with the elastic stress tensor
and so, in order to have a stress continuity between different media
(solid, fluid), we need to define ~p as [using Eqs. (6) and (7)]

~p ¼ �T̂~n �~n
¼ �T̂e~n �~n� T̂V~n �~n
¼ p� 2μs

@v
@r

� λs
1
r
@

@r
(rv)

¼ αT ,sB0T � 2(
μ0
iω

þ μs)
@v
@r

þ λ0
iω

þ λs

� �
1
r
@

@r
(rv)

	 

, (32)

where the total stress tensor composed of elastic and viscous parts
is considered. The definition of ~p within the solid layer is crucial to

impose the stress continuity at the interface in multilayered
systems, as discussed in Sec. II C.

Due to the similarity of the differential equation for T in a
fluid and in a solid, the temperature variation has been written
here as in the fluid in Eq. (23). The differences are found in the
wavenumbers θac and θth and in the presence of the term depend-
ing on the local heating. In order to explicit the differences in wave-
numbers between solid and liquid media, a first order solution of
the algebraic equation associated with Eq. (21) is determined
(details in Appendix B 2) as follows:

θac,s ¼ iω
C0,s

(1� 1
γs
þ CL

C0,s
)
�1=2

� 1� lV ,s iω
2C0,s

(1� 1
γs
þ CL

C0,s
)
�1 � lκ,s iω

2C0,s

h
� (1� 1

γs
þ CL

C0,s
)
�1 � CL

C0,s
1� 1

γs
þ CL

C0,s

� ��2
� �


,

θth,s ¼ iω
lκ,sCL

� �1=2
1� 1

γs
þ CL

C0,s

� �1=2
1þ iω

2C0,s

h
� lκ,s 1� 1

γs
þ CL

C0,s

� ��1
� 1� 1

γs
þ CL

C0,s

� ��2
CL
C0,s

	 
	

þlV ,s 1� 1
γs
þ CL

C0,s

� ��1
� C0,s

CL

	 



:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(33)

We note that Eq. (33) is consistent with Eq. (17) if CL is replaced
by C0,s

γs
. This similitude is coming from the comparison of the coeffi-

cient of the second degree in both cases.

C. Transfer matrix method with N cylindrical layers

Having solved the equations for cylindrical thermoacoustic
radiations in both fluid and solid phases, we will now investigate
the behavior of a multilayered cylindrical thermophone. As seen in
Fig. 3, a system with N layers defined by concentric cylinders is
considered. The external layer, at the extremity (layer N), is sup-
posed to be semi-infinite, and each layer j [ [1, N � 1] potentially

FIG. 3. Schematic of a generalized multilayered thermophone model with N
cylindrical layers.
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has a volumetric input source Q0,j (Q0,N ¼ 0). The thickness of
each circular crown j is rj � r j�1, with rj being the external radius
of the jth concentric cylinder. The type of material of each layer
(fluid or solid) is not explicitly specified since the material differ-
ences are taken into account in the inherent parameters of their
defining matrix, as discussed below.

To build the multilayered model, we first define the vector
heat flux in each circular crown as

~q ¼ �κ~∇T ¼ �κ
~r
r
@T
@r

, (34)

and its scalar version q ¼ �κ @T
@r . We also define TQ0 as in Eq. (22)

and the functions F and G as

F(η) ¼ αTBf � Bf

iω
þ λþ 2μ

� �
L1η

2 þ L2η
4

� �
, (35)

G(η) ¼ L1 þ L2η
2: (36)

Here, the coefficients L1 and L2 are defined through Eq. (12) for a
fluid and Eq. (20) for a solid, when these expressions are written in

the form v ¼ L1 @T
@r þ L2 @

@r
1
r
@
@r (r

@T
@r )

� �
. We also remark that when

Eq. (35) is written for a solid layer, one must substitute Bf with
λ0 þ 2μ0 and all parameters must correspond to those of the solid
material. In order to rewrite the final expressions of velocity, pres-
sure, and heat flux in terms of Hankel functions, we use the follow-
ing derivative formulas and recurrence properties:38

C0
ν(z) ¼ �Cνþ1(z)þ ν

z
Cν(z), (37)

C0
ν(z) ¼ Cν�1(z)� ν

z
Cν(z), (38)

Cν�1(z)þ Cνþ1(z) ¼ 2ν
z
Cν(z), (39)

with Cν being any cylindrical function of order ν. The general form

of the parameters ~p, v, q, T in an arbitrary layer can be found to be

~p(r) ¼ A F(θac)H
(1)
0 (iθacr)� 2μi θacr G(θac)H

(1)
1 (iθacr)

h i
þB F(θac)H

(2)
0 (iθacr)� 2μi θacr G(θac)H

(2)
1 (iθacr)

h i
þC F(θth)H

(1)
0 (iθthr)� 2μi θthr G(θth)H

(1)
1 (iθthr)

h i
þD F(θth)H

(2)
0 (iθthr)� 2μi θthr G(θth)H

(2)
1 (iθthr)

h i
þαTBf TQ0 ,

v(r) ¼ �AiθacG(θac)H
(1)
1 (iθacr)� BiθacG(θac)H

(2)
1 (iθacr)

�CiθthG(θth)H
(1)
1 (iθthr)� DiθthG(θth)H

(2)
1 (iθth,f r),

q(r) ¼ AiθacκH
(1)
1 (iθacr)þ BiθacκH

(2)
1 (iθacr)

þCiθthκH
(1)
1 (iθthr)þ DiθthκH

(2)
1 (iθthr),

T(r) ¼ AH(1)
0 (iθacr)þ BH(2)

0 (iθacr)

þCH(1)
0 (iθthr)þ DH(2)

0 (iθthr)þ TQ0 :

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

(40)

These equations apply for both a fluid and a solid layer provided that
the appropriate changes in parameters are applied. Additionally, when
we deal with a solid layer, we have to replace Bf by λ0 þ 2μ0 in F and
G, as previously discussed. Moreover, for the solid layers, in the
expression for ~p we have to substitute μ with μþ μ0

iω as follows:

~p(r)¼A F(θac)H
(1)
0 (iθacr)�2 μþμ0

iω

� �
i
θac
r
G(θac)H

(1)
1 (iθacr)

	 

þ�� � :
(41)

We are able to rewrite Eq. (40) in matrix form for the layer j as
follows:

~p
v
q
T

2
664

3
775
j

¼ Wj

Aj

Bj

Cj

Dj

2
664

3
775þ

αT ,jB f ,jTQ0,j

0
0

TQ0,j

2
664

3
775, (42)

with TQ0,s ¼ Q0,j

ρ0,jCV ,j iω
. The general form of the matrix Wj (with four

rows and four columns) is then written as

Wj ¼

F(θac)H
(1)
0 (iθacr)þ F(θac)H

(2)
0 (iθacr)þ F(θth)H

(1)
0 (iθthr)þ F(θth)H

(2)
0 (iθthr)þ

�2iμ θac
r G(θac)H

(1)
1 (iθacr) �2iμ θac

r G(θac)H
(2)
1 (iθacr) �2iμ θth

r G(θth)H
(1)
1 (iθthr) �2iμ θth

r G(θth)H
(2)
1 (iθthr)

�iθacG(θac)H
(1)
1 (iθacr) �iθacG(θac)H

(2)
1 (iθacr) �iθthG(θth)H

(1)
1 (iθthr) �iθthG(θth)H

(2)
1 (iθthr)

iθacκH
(1)
1 (iθacr) iθacκH

(2)
1 (iθacr) iθthκH

(1)
1 (iθthr) iθthκH

(2)
1 (iθthr)

H(1)
0 (iθacr) H(2)

0 (iθacr) H(1)
0 (iθthr) H(2)

0 (iθthr)

2
6666664

3
7777775
, (43)

where, of course, all parameters correspond to the jth layer. Here,
as before, when we deal with a solid layer, we must substitute Bf

with λ0 þ 2μ0 and we have to consider the correct values for θac
and θth.

As shown in Fig. 3, r ¼ 0 corresponds to the center of the cyl-
inder and due to the cylindrical symmetry only positive values of r
are considered. In order to avoid any singularity at r ¼ 0, we define
in the first layer the conditions A1 ¼ B1 and C1 ¼ D1. This
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assumption is based on the property H(1)
1 (z) � �H(2)

1 (z) when
z ! 0.38 The last layer N is considered to be semi infinite so
only progressive waves are assumed and we therefore impose
AN ¼ CN ¼ 0 (the absence of regressive waves). In addition to
those boundary conditions, the continuity of the parameters ~p, v,
q, and T is assumed between two adjacent layers for obvious physi-
cal reasons. Of course, it means that we do not take into account
imperfect interfaces.39,40 This continuity is automatically verified if
we adopt the matrix form given in Eq. (42). By imposing the conti-
nuity of the variables at interfaces between layers, we found

A1

A1

C1

C1

2
664

3
775 ¼ M0

0
BN

0
DN

2
664

3
775þ

X
n[[1,N�1]

MQ0,n

αT ,nB f ,nTQ0,n

0
0

TQ0,n

2
664

3
775, (44)

where n is summed over layers with a volumetric source and

M0 ¼ W�1
1 (r1)

YN�1

j¼2

Wj(r j�1) W
�1
j (rj)

" #
WN (rN�1), (45)

with

MQ0,1 ¼ �W�1
1 (r1),

MQ0,n ¼ W�1
1 (r1)

Qn�1
j¼2 Wj(r j�1) W�1

j (rj)
h i

� 1�Wn(rn�1)W�1
n (rn)

� �
,

8n [ [2, N � 1],

MQ0,N ¼ W�1
1 (r1)

QN�1
j¼2 Wj(r j�1)W�1

j (rj)
h i

:

8>>>>>>><
>>>>>>>:

(46)

Equation (44) can be rewritten in a more explicit form as

1 0 �M0(1, 2) �M0(1, 4)
1 0 �M0(2, 2) �M0(2, 4)
0 1 �M0(3, 2) �M0(3, 4)
0 1 �M0(4, 2) �M0(4, 4)

2
664

3
775

A1

C1

BN

DN

2
664

3
775

¼

P
n MQ0,n (1, 1)αT ,nB f ,nTQ0,n

þPn MQ0,n (1, 4)TQ0,nP
n MQ0,n (2, 1)αT ,nB f ,nTQ0,n

þPn MQ0,n (2, 4)TQ0,nP
n MQ0,n (3, 1)αT ,nB f ,nTQ0,n

þPn MQ0,n (3, 4)TQ0,nP
n MQ0,n (4, 1)αT ,nB f ,nTQ0,n

þPn MQ0,n (4, 4)TQ0,n

2
66666666664

3
77777777775
: (47)

It is important to remark that Eq. (44) or (47) represents a system
of linear equations giving A1, C1, BN , and DN . The determination
of these four parameters allows the calculation of any coefficient

(ABCD)j using either

Aj

Bj

Cj

Dj

2
6664

3
7775 ¼ W�1

j (rj) Wjþ1(rj)

Ajþ1

B jþ1

Cjþ1

Djþ1

2
6664

3
7775

2
6664

þ

αT ,jþ1B f ,jþ1TQ0,jþ1

0

0

TQ0,jþ1

2
6664

3
7775�

αT ,jB f ,jTQ0,j

0

0

TQ0,j

2
6664

3
7775
3
7775, (48)

with j [ [1, N � 1], or

Aj

Bj

Cj

Dj

2
6664

3
7775 ¼ W�1

j (r j�1) Wj�1(r j�1)

Aj�1

B j�1

Cj�1

Dj�1

2
6664

3
7775

2
6664

þ

αT ,j�1B f ,j�1TQ0,j�1

0

0

TQ0,j�1

2
6664

3
7775�

αT ,jB f ,jTQ0,j

0

0

TQ0,j

2
6664

3
7775
3
7775, (49)

with j [ [2, N]. In Eq. (48), we calculate recursively the coefficients of
the layers moving from the last external layer to the center of the
structure. Alternatively, in Eq. (49), we calculate recursively the coeffi-
cients of the layers going from the central layer to the external one of
the structure. The two procedures are theoretically equivalent and,
depending on the system under consideration, it is possible to choose
the better one from the numerical point of view. Finally, ~p, v, q, and
T can be found for any value of r by means of Eq. (42).

This methodology allows for studying the thermoacoustic
wave generation and propagation in arbitrarily complex systems
with cylindrical geometry.

III. MULTILAYER MODEL FOR SPHERICALWAVES

In Sec. II, the balance equations for fluids, Eq. (1), and the
balance equations for solids, Eq. (2), were solved for thermoacous-
tic cylindrical waves. Using the same procedure and starting equa-
tions, the problem will be now solved under the assumption of
spherical waves.

The system of equations will be solved first in a fluid and then in
a solid medium using a spherical coordinate system with the hypothe-
sis that all physical variables depend on the radius r while they are
independent of azimuth and elevation angles. The solutions obtained
describe therefore thermoacoustic spherical waves in a medium with
thermal conduction and viscous dissipation. As before, the general sol-
utions obtained are used to develop a multilayered spherical model
able to represent spherical thermophones of technological interest.

Due to the similarities between the Secs. II and III, it is
advised for a first read to skip this section if the analysis of results
is of more interest to the reader.
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A. Thermoacoustic spherical waves in a fluid

Using the general equations for a fluid given in Eq. (1), ther-
moacoustic spherical waves are now investigated in systems as
shown in Fig. 4 with spherical symmetry. The main variables
appearing in Eq. (1) now can be written as

p ¼ p(r),
T ¼ T(r),
~v ¼ ~r

r v(r),

8<
: (50)

with~r ¼ x~ex þ y~ey þ z~ez , k~rk ¼ r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, and x, y, z are

the adopted coordinates (see Fig. 4). In order to write Eq. (1) in
spherical coordinates, with only the radial abscissa r, each variable
of those equations has to be rewritten using the assumptions in
Eq. (50). Hence, we have that Eq. (1) becomes

iω 1
Bf
p� iωαTT þ 1

r
@
@r (rv) ¼ 0, (51a)

iωρ0,f v ¼ � @p
@r þ (λþ 2μ) @

@r
1
r2

@
@r (r

2v)
� �

, (51b)
iωρ0,f CpT � iωαTT0p ¼ κ 1

r2
@
@r (r

2 @T
@r ): (51c)

8><
>:

The aim is to write the pressure p and the particle velocity v
as a function of the temperature variation T and find the differen-
tial equation that T solves, similarly as before. To this aim,
Eq. (51a) can be rewritten in the same form as Eq. (5),

p ¼ αTBf T � Bf

iω
1
r2

@

@r
(r2v): (52)

As previously discussed, the pressure p does not take the vis-
cosity into account and so, in order to have a continuity relation
between different adjacent media (solid, fluid), we need to define
~p, which represents the normal component of the total stress
tensor T̂ ¼ �pÎ þ T̂V in spherical coordinates (with negative sign).

We obtain

~p ¼ �T̂~n �~n
¼ pÎ~n �~n� T̂V~n:~n

¼ p� 2μ
@v
@r

� λ
1
r2

@

@r
(r2v)

¼ αTBf T � Bf

iω
þ λ

� �
1
r2

@

@r
(r2v)� 2μ

@v
@r

: (53)

This function must be continuous across the interfaces between
adjacent materials. This point will be exploited later on. By deriving
Eq. (52) with respect to r, and injecting the result in Eq. (51b), we
obtain

iωρ0,f v ¼ �αTBf
@T
@r

þ λþ 2μþ Bf

iω

� �
@

@r
1
r2

@

@r
(r2v)

� �
: (54)

In the same way, by substituting Eq. (52) in Eq. (51c), we have

1
r
@

@r
(rv) ¼ κ

αTT0Bf

1
r2

@

@r
(r2

@T
@r

)� iωρ0,f CV

αTBf T0
T , (55)

having used the thermodynamic relation stated in Eq. (10). Finally,
by injecting Eq. (55) into Eq. (54), we can write v as a function of
T only

v ¼ � 1
iωρ0,f

αTBf þ (λþ 2μþ Bf

iω
)
iωρ0,f CV

αTBf T0

	 

@T
@r

þ (λþ 2μþ Bf

iω
)

κ

iωρ0,f αTT0Bf

@

@r
1
r2

@

@r
(r2

@T
@r

)

� �
: (56)

To obtain a pure equation for the temperature T , we apply now the
operator 1

r2
@
@r [r

2(�)] to Eq. (54) and then we combine the result
with Eq. (55). So, we can redefine (with respect to the cylindrical
geometry) the notations for the differential operators as follows:

Tii ¼ DT ¼ 1
r2

@
@r (r

2 @T
@r ),

Tiv ¼ (Tii)ii ¼ DDT ¼ 1
r2

@
@r r2 @

@r
1
r2

@
@r (r

2 @T
@r )

h ih i
,

8<
: (57)

and the fourth order differential equation for T can be written as

0 ¼ (λþ 2μþ Bf

iω
)κTiv

� (λþ 2μþ Bf

iω
)iωρ0,f CV þ α2

TB
2
f T0 þ iωρ0,f κ

	 

Tii

� ω2ρ20,f CVT , (58)

which is similar to Eq. (14) but, importantly, with a different defi-
nition of the differential operators. Adopting the same notations

FIG. 4. Example of a spherical thermophone composed of three spherical
regions and two interfaces. The external region represents the propagating
medium of the emitted spherical thermoacoustic wave.
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introduced studying the thermoacoustic cylindrical waves in a fluid,
Eq. (58) can be rewritten as

lκ lV þ C0

iωγ

� �
Tiv � 1þ iω

C0
(lκ þ lV )

	 

Tii � ω2

C2
0
T ¼ 0, (59)

with the parameters defined in Eq. (15) and the differential
operators in Eq. (57). The four solutions of the associated
algebraic equation are written in the form +θac,f and +θth,f .
They assume exactly the same values defined as in Eq. (17).
Moreover, it can be easily shown that if T is written in the form
T(r) ¼ e+θi r

r then

DT ¼ θ2i T ,
DDT ¼ θ4i T;



(60)

where the operator D is defined in Eq. (57) and θi being a solution
of the associated fourth degree algebraic equation. Then, T(r) ¼
e+θi r

r is a solution for Eq. (59). Hence, the final general solution of
Eq. (58) is eventually found as

T(r) ¼ A
e�θac,f r

r
þ B

eθac,f r

r
þ C

e�θth,f r

r
þ D

eθth,f r

r
, (61)

with A, B, C, D being the integration constants.

B. Thermoacoustic spherical waves in a solid

The spherical geometry will now be investigated in a solid
phase. Based on Eqs. (2) and (50), the balance equations in a solid
become

ρ0,sCV ,siωT ¼ κs
1
r2

@
@r (r

2 @T
@r )� αT ,sB0T0

1
r2

@
@r (r

2v)þ Q0, (62a)

ρ0,siωv ¼ λ0þ2μ0
iω þ λs þ 2μs

� �
@
@r

1
r2

@
@r (r

2v)
� �� αT ,sB0

@T
@r , (62b)

8<
:

with @
@t ¼ iω, Q0 (the heat density energy supplied) spatially

uniform, ~b ¼ 0 and knowing that @u
@t ¼ v. When injecting 1

r2
@
@r (r

2v)

from Eq. (62a) into Eq. (62b), v can be written as a function of T
alone as

v ¼ � 1
iωρ0,s

CV ,siωρ0,s
αT ,sB0T0

λ0 þ 2μ0
iω

þ λs þ 2μs

� �
þ αT ,sB0

	 

@T
@r

þ κs

iωρ0,sαT,sB0T0

λ0 þ 2μ0
iω

þ λs þ 2μs

� �
@

@r
1
r2

@

@r
(r2

@T
@r

)

� �
:

(63)

Multiplying Eq. (63) by 1
r2

@
@r [r

2(�)] and using Eq. (62a), we get, using
the notation introduced in Eq. (57), a differential equation for T

(λs þ 2μs þ
λ0 þ 2μ0

iω
)κsT

iv

� λs þ 2μs þ
λ0 þ 2μ0

iω

� �
iωρ0,sCV ,s þ α2

T ,sB
2
0T0 þ iωρ0,sκs

	 

Tii

� ω2ρ20,sCV ,sT ¼ ρ0,siωQ0: (64)

Apart from the supplied input power Q0, Eq. (64) is similar to
Eq. (58) for fluids, with only Bf changed to λ0 þ 2μ0 for the solid.
Henceforth, the solutions of the associated algebraic equation are
given in Eq. (33). Moreover, the solution for T obtained in Eq. (61) is
still valid if we add the effect of the supplied energy defined in
Eq. (22). Therefore, we finally get the general solution

T(r) ¼ A
e�θac,sr

r
þ B

eθac,sr

r
þ C

e�θth,sr

r
þ D

eθth,sr

r
þ TQ0 , (65)

with A, B, C, D being the integration constants.
As before, we analyze the pressure in the solid phase with

spherical geometry. By definition, the pressure is given by

p ¼ �T̂e~n �~n ¼ �Teij

XiXj

r2
, (66)

with~n ¼ ~X
r . Using strain and stress tensors defined in Eqs. (25) and

(26), respectively, and the assumption ~u ¼ ~X
r u(r), the elastic tensor

can be written as37

T̂e ¼
2μ0

@u1
@X1

þ λ0ϵkk � αT,sB0T μ0
@u1
@X2

þ @u2
@X1

� �
μ0

@u1
@X3

þ @u3
@X1

� �
μ0

@u1
@X2

þ @u2
@X1

� �
2μ0

@u2
@X2

þ λ0ϵkk � αT ,sB0T μ0
@u2
@X3

þ @u3
@X2

� �
μ0

@u1
@X3

þ @u3
@X1

� �
μ0

@u2
@X3

þ @u3
@X2

� �
2μ0

@u3
@X3

þ λ0ϵkk � αT ,sB0T

2
66664

3
77775: (67)
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The partial derivatives of u can be calculated using

@ui
@Xj

¼ XiXj

r2
@u
@r

þ r2δij � XiXj

r3
u, (68)

and therefore

Teij

XiXj

r2
¼ 2μ0

r2
(XiXj)

2

r2
@u
@r

� (r2δij � XiXj)XiXj

r3
u

� �

þ (λ0ϵkk � αT ,sB0T)
XiXjδij
r2

, (69)

with ϵkk ¼ Tr(ϵ̂) ¼ 2
r uþ @u

@r . This finally leads to

p ¼ αT ,sB0T � 2μ0
iω

@v
@r

� λ0
iω

1
r2

@

@r
(r2v): (70)

In this expression, the pressure p is only defined through the elastic
stress tensor and therefore, in order to have a stress continuity rela-
tion between different adjacent media (solid, fluid), we also need to
define ~p. It is based on the total stress tensor obtained by adding
elastic and viscous components

~p ¼ �T̂~n �~n
¼ �T̂e~n �~n� T̂V~n �~n
¼ p� 2μs

@v
@r

� λs
1
r2

@

@r
(r2v)

¼ αT ,sB0T � 2(
μ0
iω

þ μs)
@v
@r

þ λ0
iω

þ λs

� �
1
r2

@

@r
(r2v)

	 

: (71)

To conclude, the system of equations for a solid given in Eq. (62)
has been solved in a spherical geometry. The general solution for
the temperature T has been obtained, and the other variables can
be calculated on the basis of this quantity. Lastly, by definition of
the elastic stress tensor, the pressure was determined in the solid
with spherical symmetry. The viscous stress tensor was then added
to define the normal component of the total stress tensor, which is
useful to have continuous quantities at interfaces.

C. Transfer matrix method with N spherical layers

A flexible model with multiple concentric spherical layers, as
shown in Fig. 5, will be now elaborated using the solutions
obtained in fluid and solid media. We consider a system with N
spherical layers. The external one is supposed to be semi-infinite
and each internal layer, j [ [1, N � 1], potentially has a volumetric
source Q0,j (Q0,N ¼ 0). The thickness of the jth shell is given by
rj � r j�1, with rj being the external radius of the jth layer. The type
of material of each layer (fluid or solid) is not explicitly specified
since materials are taken into account in the inherent parameters of
their defining matrix, as explained below. In each spherical shell,
the thermal flux~q is defined as

~q ¼ �κ~∇T ¼ �κ
~r
r
@T
@r

, (72)

and its scalar version is q ¼ �κ @T
@r . As before, the functions F and

G are defined as

F(η) ¼ αTBf � Bf

iω
þ λþ 2μ

� �
(L1η

2 þ L2η
4), (73)

G(η) ¼ L1 þ L2η
2: (74)

Here, the coefficients L1 and L2 are defined through Eq. (56) for a
fluid and Eq. (63) for a solid, when these expressions are written in

the form v ¼ L1 @T
@r þ L2 @

@r
1
r2

@
@r (r

2 @T
@r )

� �
. We also remark that

when Eq. (73) is written for a solid layer, one must substitute Bf

with λ0 þ 2μ0 and all parameters must correspond to those of the
solid material. The general form of the variables ~p, v, q, T in a
given shell can be directly found to be

~p(r) ¼ A F(θac)� 2μ 2
r (

1
r þ θac)G(θac)

h i
e�θacr

r

þB F(θac)� 2μ 2
r (

1
r � θac)G(θac)

h i
eθacr
r

þC F(θth)� 2μ 2
r (

1
r þ θth)G(θth)

h i
e�θthr

r

þD F(θth)� 2μ 2
r (

1
r � θth)G(θth)

h i
eθthr
r þ αTB f TQ0 ,

v(r) ¼ �A( 1r þ θac)G(θac) e
�θacr

r � B( 1r � θac)G(θac) e
θacr

r

�C( 1r þ θth)G(θac) e
�θth r

r � D( 1r � θth)G(θth) e
θthr

r , (75)

q(r) ¼ A( 1r þ θac)κ e�θacr

r þ B( 1r � θac)κ eθacr
r

þC( 1r þ θth)κ e�θth r

r þ D( 1r � θth)κ eθthr
r ,

T(r) ¼ A e�θacr

r þ B eθacr
r þ C e�θthr

r þ D eθthr
r þ TQ0 :

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

FIG. 5. Schematic of a generalized multilayered thermophone model with N
spherical layers.
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Those equations apply for both fluid and solid layers with
appropriate changes of parameters. In particular, we have to
replace Bf with λ0 þ 2μ0 in F and G, and we have to replace
μ with μþ μ0

iω in the expression for ~p, which become for solid
layer

~p(r) ¼ A F(θac) � 2 μ þ μ0
iω

� � 2
r

1
r
þ θac

� �
G(θac)

	 

e�θacr

r

þ � � � : (76)

We can rewrite Eq. (75) in matrix form in the jth layer as

~p

v

q

T

2
66664

3
77775
j

¼ Wj

Aj

Bj

Cj

Dj

2
66664

3
77775þ

αT ,jB f ,jTQ0,j

0

0

TQ0,j

2
66664

3
77775, (77)

with TQ0,j ¼ Q0,j

ρ0,jCV ,jiω
. We also defined Wj(r) ¼ W(a)

j (r)W(b)
j (r),

where W(a)
j and W(b)

j (with four rows and four columns) can be
written in an arbitrary layer as

W(a) ¼

F(θac)� 2μ 2
r (

1
r þ θac)G(θac) F(θac)� 2μ 2

r (
1
r � θac)G(θac)

� 1
r þ θac
� �

G(θac) �( 1r � θac)G(θac)

( 1r þ θac)κ ( 1r � θac)κ

1 1

2
666664

F(θth)� 2μ 2
r (

1
r þ θth)G(θth) F(θth)� 2μ 2

r (
1
r � θth)G(θth)

�( 1r þ θth)G(θth) �( 1r � θth)G(θth)

( 1r þ θth)κ ( 1r � θth)κ

1 1

3
777775

and

W(b) ¼

e�θacr

r 0 0 0

0 eθacr
r 0 0

0 0 e�θth r

r 0

0 0 0 eθthr
r

2
66664

3
77775, (78)

where all parameters must correspond to the layer under consider-
ation. Here, as before, when we deal with a solid layer, we must
substitute Bf with λ0 þ 2μ0 and we have to consider the correct
values for θac and θth.

All variables within our system are defined for r . 0. In order
to avoid any singularity at r ¼ 0, we impose in the first layer the
conditions A1 ¼ �B1 and C1 ¼ �D1, coming from the simple
property ez � 1þ z when z ! 0. The last Nth layer is considered

to be semi-infinite and only progressive waves are therefore
assumed. It means that we have to impose BN ¼ DN ¼ 0 (absence
of regressive waves). By imposing the continuity of the main four
variables between adjacent layers, we directly find

A1

�A1

C1

�C1

2
66664

3
77775 ¼ M0

AN

0

CN

0

2
66664

3
77775þ

X
n[[1,N�1]

MQ0,n

αT,nB f ,nTQ0,n

0

0

TQ0,n

2
66664

3
77775, (79)

with n summed over all layers with a volumetric source and where

M0 ¼ W�1
1 (r1)

YN�1

j¼2

Wj(r j�1) W
�1
j (rj)

" #
WN (rN�1) (80)

and

MQ0,1 ¼ �W�1
1 (r1),

MQ0,n ¼ W�1
1 (r1)

Qn�1
j¼2 Wj(r j�1)W�1

j (rj)
h i

� 1�Wn(rn�1)W�1
n (rn)

� �
,

8n [ [2, N � 1],

MQ0,N ¼ W�1
1 (r1)

QN�1
j¼2 Wj(r j�1)W�1

j (rj)
h i

:

8>>>>>>>><
>>>>>>>>:

(81)

Of course, as discussed before, this is true only if we neglect any
interface imperfection.39,40 We remark that Eq. (79) can be rewrit-
ten in a more explicit form as

1 0 �M0(1, 1) �M0(1, 3)

�1 0 �M0(2, 1) �M0(2, 3)

0 1 �M0(3, 1) �M0(3, 3)

0 �1 �M0(4, 1) �M0(4, 3)

2
66664

3
77775

A1

C1

AN

CN

2
66664

3
77775

¼

P
n MQ0,n (1, 1)αT ,nB f ,nTQ0,n

þPn MQ0,n (1, 4)TQ0,nP
n MQ0,n (2, 1)αT ,nB f ,nTQ0,n

þPn MQ0,n (2, 4)TQ0,nP
n MQ0,n (3, 1)αT ,nB f ,nTQ0,n

þPn MQ0,n (3, 4)TQ0,nP
n MQ0,n (4, 1)αT ,nB f ,nTQ0,n

þPn MQ0,n (4, 4)TQ0,n

2
666666666666664

3
777777777777775

: (82)

Then, we observe that Eq. (79) or (82) represents a system of four
linear equations giving the values of the parameters A1, C1, AN ,
and CN . This allows the calculation of any coefficient (ABCD)j
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using either the decreasing recursion

Aj

Bj

Cj

Dj

2
6664

3
7775 ¼ W�1

j (rj) Wjþ1(rj)

Ajþ1

B jþ1

Cjþ1

Djþ1

2
6664

3
7775þ

αT ,jþ1B f ,jþ1TQ0,jþ1

0

0

TQ0,jþ1

2
6664

3
7775�

αT ,jB f ,jTQ0,j

0

0

TQ0,j

2
6664

3
7775

2
6664

3
7775, (83)

8j [ [1, N � 1], or the increasing recursion

Aj

Bj

Cj

Dj

2
664

3
775 ¼ W�1

j (r j�1) Wj�1(r j�1)

Aj�1

B j�1

Cj�1

Dj�1

2
664

3
775þ

αT ,j�1B f ,j�1TQ0,j�1

0
0

TQ0,j�1

2
664

3
775�

αT ,jB f ,jTQ0,j

0
0

TQ0,j

2
664

3
775

2
664

3
775, (84)

8j [ [2, N]. Finally, ~p, v, q, T at any point, i.e., for any r, of each
layer can be found with Eq. (77).

As before, this methodology allows for studying the thermoa-
coustic wave generation and propagation in arbitrarily complex
systems with spherical geometry.

IV. ANALYSIS OF THERMOPHONE STRUCTURES
GENERATING CYLINDRICAL AND SPHERICALWAVES

In this section, the cylindrical and spherical models, elabo-
rated in Secs. II and III, are used to analyze different multilayered
thermophone structures generating cylindrical and spherical waves.
The results for cylindrical and spherical models are here compared
and it will be shown that they display a rather similar behavior.
The cylindrical and spherical geometries are nonconventional
shapes for thermophones at the macroscopic scale. Nonetheless,
those geometries are worth being investigated for different reasons.
For instance, the cylindrical shape analysis could be applied to the
microstructure of porous thermophones, where the foam structure
is often constituted of hollow nano-cylinders connecting the pores.
This is the case, for example, for carbon foams or three-
dimensional graphene.20 Additionally, the spherical geometry is of
interest since, if the radius of the sphere is very small, it would cor-
respond to a thermoacoustic monopole. As such, acoustical theory
relative to monopoles could be applied assuming only a different
input pressure generated from the monopoles. This would allow for
easy comparison with a regular sound generator and facilitate the
thermoacoustic design.

In this section, we will focus on three different cases, which
can be explained by means of Fig. 6,

• a full cylinder or sphere (Rb ¼ 0) composed of the thermophone
material;

• a hollow cylinder or sphere (0 , Rb , Rs) with air in the core
region; and

• a hollow cylinder or sphere (0 , Rb , Rs) with a different mate-
rial (the so-called substrate) in the core region.

In all cases, the external propagating medium is typically air
or water even if other materials can be envisaged. Nevertheless, for
the sake of definiteness, our results are obtained and shown only

with air as an external medium. The full thermophone structure,
without core, will allow one to estimate the radiation of an infi-
nitely thin and long cylindrical thermophone as well as a mono-
pole. The two other cases are motivated by the chemical vapor
deposition (CVD) method for the fabrication of porous graphene
thermophone.20,41 More specifically, in graphene foams, the gra-
phene sheets are grown on a nickel template, which is then
removed leaving the foam composed of hollow branches. The case
with the substrate at the core represents a branch of foam before
removal of the template while the hollow case represents branches
after nickel removal. The parameters adopted for thermophone
material, air, water, and substrate, are shown in Tables I and II.
The parameters describing the substrate correspond to titanium,42

while the parameters describing the thermophone active layer cor-
respond to three-dimensional carbon.41 Moreover, Table III allows
for an overview of the presented plots and their varying parameters.
In all plots, the recording distance from the thermophone surface
was fixed at Δr0 ¼ 50� 10�6 m (acoustic near field). In order to
facilitate the comparison between different plots, the input power is
normalized at Pin ¼ 1W, and the following procedure has been
applied. For the cylindrical geometry, we can write Q0 ¼ Pin=V ,
V ¼ πL(R2

s � R2
b), and A ¼ 2πRsL (with L being the length of the

cylinder and A its external surface). Similarly, for the spherical

FIG. 6. Schematic of the investigated models for cylindrical and spherical wave
generation. The core of the thermophone (air or substrate) in light yellow has a
radius Rb and the external radius of the thermophone layer (light green) is Rs.
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geometry, we have that Q0 ¼ Pin=V , V ¼ (4=3)π(R2
s � R2

b), and
A ¼ 4πR2

s . Therefore, with fixed radii and Pin ¼ 1W, we can easily
calculate the effective cylinder length L and the thermal power
density in each configuration. Here, the thermophone external
surface A was assumed to be the same for both cylindrical and
spherical models. The sound pressure level (SPL) is defined as
SPL=20log10 (prms=pref ), where prms is the root mean square pres-
sure j p j = ffiffiffi

2
p

(with p being the complex pressure previously
defined) and pref is the reference sound pressure being, by defini-
tion, 20 μPa in air and 1 μPa in water.

A. Comparison with models from the literature

In order to validate our multilayer models, they must first be
confronted with models from the literature. It was seen in Sec. I
that very few models actually investigated cylindrical or spherical
thermoacoustic sound generation. Moreover, not many thermo-
phones have a cylindrical or a spherical macroscopic geometry
and therefore it is not possible to draw a direct comparison
between experimental data and our models for the moment.
Nevertheless, one investigation concerning those geometries has
been made by Hu et al., where they extended their plane wave
geometry model26 to spherical28,29 and then cylindrical30 waves.
Those models are based on the conservation equations of contin-
uum mechanics. Alternatively, a piston based model for cylindrical
shapes is also found in the work of Tong et al.43 This technique
was then applied to model thinline arrays.34 All these models have
been implemented and compared with our approach in the next
discussion.

1. Cylindrical geometry

In Fig. 7, a full cylinder radiating in free field is considered,
and our results are compared with the models of Tong et al.43 and
Yin and Hu.30 In his model, Tong et al. consider a uniformly
heated cylindrical conductor and therefore they neglect the

influence of the heat capacity of the thermophone. This is justified
by the fact that in their future work they investigate thinline arrays
whose length are greatly larger than the radius of the cylinder.
They only defined the radius in order to take into account the
input power density [see Eq. (5) of Ref. 43]. In our model, we also
assumed a cylinder length much larger than the radius to simplify
the mathematical problem. Nonetheless, the radius is of critical
importance not only for the input power density but also for the
HCPUA calculation and for mechanical resonance determination.
The final pressure equation for the model of Tong et al. is written
as pg ¼ DH(1)

0 (kgr)þ p*g , with D being a constant determined in
Eq. (12) of Ref. 43] and p*g being a particular solution found in Eq.
(11) of Ref. 43.

Regarding the Yin and Hu model, it takes into account the
thermal wave inside the solid but assumes that the input power is
only distributed at the external surface of the thermophone. In fact,
all the models developed by Hu and colleagues (for planar, cylin-
drical, and spherical thermoacoustic wave generation)26,28–30 take
into consideration the electric and then thermal energy entering
the system distributed only on the external surface of the active
layer of the thermophone. It means that they consider the material
covered by a conductive 2D film that provides the energy to the
system. They adopted this particular geometry since in their first
planar analysis they wanted to reproduce the experimental results
obtained by Shinoda et al.,6 actually using this kind of configura-
tion in the experimental setup. Therefore, to compare these results
with our thermophone structure where the energy is distributed
uniformly within the whole volume of the active layer, we conve-
niently modified the models by Hu and colleagues. This modifica-
tion simply removes the surface energy distribution and replaces it
with a volume energy distribution. We performed this operation
for the case of planar waves in Ref. 35, and we apply here the same
procedure for cylindrical and spherical acoustic generation. For the
sake of brevity, we omitted all the mathematical details of this mod-
ification but all developments can be found in Ref. 44. Anyway, the

TABLE I. Parameters describing the physical behavior of the materials constituting the thermophone systems investigated.

ρ (kg m−3) Cp (J kg
−1 K−1) Cv (J kg

−1 K−1) Bf (Pa) αT (K−1)

Gas, air (g) 1.20 9.96 × 102 7.17 × 102 1.01 × 105 3.33 × 10−3

Thermophone (s) 0.03 × 103 2.38 × 102 2.38 × 102 2.78 × 105 0.6 × 10−6

Substrate (b) 4.5 × 103 5.23 × 102 5.23 × 102 1.14 × 1011 9.00 × 10−6

Fluid, water (w) 9.99 × 102 4.43 × 103 4.17 × 103 2.15 × 109 3.03 × 10−4

TABLE II. Other parameters describing the physical behavior of the materials constituting the thermophone systems investigated.

λ μ λ0 μ0 κ
(Pa s) (Pa s) (Pa) (Pa) (W K−1 m−1)

Gas, air (g) 5.61 × 10−6 1.68 × 10−5 0 0 2.62 × 10−2

Thermophone (s) 0 0 1.39 × 105 2.08 × 105 1.25
Substrate (b) 0 0 8.46 × 1010 4.36 × 1010 21.9
Fluid, water (w) 2.62 × 10−3 1.14 × 10−3 0 0 6.07 × 10−1
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resulting pressure equation has been found as

pg ¼
Q0

iωρsC p,s
κsM0σsdadt kgK1(kgRs)K0(σg r)� σgK1(σgRs)K0(kgr)

� �
dakgK1(kgRs) κsM0σsK0(σgRs)� κgσgK1(σgRs)

� �þ�
�dtσgK1(σgRs) κsM0σsK0(kgRs)� κgkgK1(kgRs)

� ��
¼ pg,surface

Q0

iωρsC p,s
κsσsM0 (85)

for volume density power. Here, pg,surface is the original result of the
Yin and Hu model with a surface density power.30 Moreover, the
quantities involved in Eq. (85) are defined in the original publica-
tion.30 Here, this equation does not take into account a substrate.

In Fig. 7, panel (a), one can find the comparison of the fre-
quency spectrum obtained through our model for a full cylindrical
thermophone with the literature results discussed above. It is seen
that there is a good agreement between the original Yin and Hu
model with the presented model up to 20 kHz. There is then an
increase in SPL in the Yin and Hu original model that reaches a
plateau between 1 and 8MHz before decreasing in the very high
frequency range. This overestimation in the high frequency range is
due to the neglect of the thermal capacity of the thermophone.
Indeed, the power being supplied only on its surface, the energy
stored by means of the heat capacity is strongly underestimated.

On the other hand, the modified Yin and Hu model, with
volume density power, is coherent with our model up to around
10MHz. After 10 MHz, both models exhibit a decreasing behavior
of SPL, although at a higher rate in our case. This is due to the way
the wavenumbers are calculated in the Yin and Hu model.
Similarly as for plane wave,26 Yin and Hu used a zero order
approximation for the thermal and acoustical wavenumbers with
respect to viscosity and thermal conduction. If the first order
approximations defined in Eq. (17) are used in the Yin and Hu
model, the consistency between both models is observed up to
around 100MHz, as seen in Fig. 7, panel (b). This proves that, in
the high frequency range, it is necessary to take losses into account
in the wavenumbers calculation. More specifically, thermal conduc-
tion losses are crucial to get a correct high frequency spectrum.

Lastly, a small deviation can be seen between our model and
the modified Yin and Hu model around 1 kHz. This is due to the
chosen special functions, solutions of the temperature differential
equation. In Eq. (18), the progressive and regressive waves are

FIG. 7. Frequency spectrum of a full cylinder radiating in free field. The presented multilayer model is compared with the models of Tong et al.43 and Yin and Hu30 (origi-
nal, with surface energy density, and modified, with volumetric energy density). The wavenumbers for the models of Tong et al. and Yin and Hu are calculated through a
zero order approximation as in the original literature in panel (a) and corrected with the first order approximation [see Eq. (17)] in panel (b).

TABLE III. Specific geometrical parameters adopted in the analysis of the different
structures investigated. For each figure, with SPL results, we clearly indicated the
details defining the corresponding configuration. In all plots, we assumed an input
power Pin = 1 W and a recording distance Δr0 = 50 × 10

−6 m from the generating
surface.

Core Rb (m) Rs (m)

Fig. 7(a) (0th
order approx.)

0 50 × 10−6

Fig. 7(b) (1st
order approx.)

0 50 × 10−6

Fig. 8(a) 0 50 × 10−6

Fig. 8(b) Substrate Rs/3 50 × 10−6

Fig. 9 0 [100, 50, 5,
0.5] × 10−6

Fig. 10 0 50 × 10−6

Fig. 11 Air [9, 7, 5, 1, 0.1] × Rs/10 50 × 10−6

Fig. 12 Air Rs/3 50 × 10−6

Fig. 13 Substrate [9, 7, 5, 3, 1] × Rs/10 50 × 10−6

Fig. 14 Substrate Rs/2 [100, 50, 25,
10] × 10−6

Fig. 15 Substrate Rs/3 50 × 10−6
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defined through Hankel functions of the first and second kind,
whereas Yin and Hu actually used the modified Bessel function. A
better agreement between the spectra can be found in this fre-
quency range if the modified Bessel functions are replaced by
Hankel functions.

Regarding the model of Tong et al. in Fig. 7, panel (a), the
20 dB/dec increase in the low frequency range fits with our model.
However, due to the lack of consideration of the wave propagation
within the thermophone region as well as an assumed uniform
heat distribution, there is an overestimation of SPL above 1 kHz. In
a similar fashion as for the surface density model of Yin and Hu,

the thermal capacity of the thermophone is neglected in the model
of Tong et al., making this approach only valid for very thin ther-
mophones or at very low frequencies. Notably, a zero order approx-
imation is used for the wavenumbers determination. However,
since the model is oversimplified, when a first order approximation
is used, the spectrum remains overestimated, as seen in Fig. 7,
panel (b).

It is worth discerning that there are no acoustic resonances
due to size and shape of the thermophone in neither literature
models. Only our multilayer model takes into account the acoustic
propagation inside the solid, allowing us to determine

FIG. 8. Frequency spectrum of a full spherical thermophone in panel (a) and of a hollow spherical thermophone with substrate at the core in panel (b), both radiating in
free field. The proposed multilayer model is compared with the Hu model for the spherical geometry with and without substrates.28,29

FIG. 9. Frequency spectrum of a full cylinder (a) and a full sphere (b), with a variable radius Rs.
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antiresonances caused by disruptive interference. Models in the lit-
erature neglected this influence since it was assumed to be in a fre-
quency range higher than the one of interest. The first
antiresonance observed in our model is seen around 1MHz, which
is much higher than the human hearing range, making the assump-
tion above reasonable in most of the literature. Antiresonances at
higher frequencies are also observed and display variable intensities
due to the chosen sampling step in the frequency axis. All antireso-
nances should be of similar amplitude, as can be seen by introduc-
ing a very small frequency sampling step in the analysis. We can
confirm that all the notches observed in Fig. 7 (and the following
ones) are real antiresonances of the system (and not numerical arti-
facts) since we checked the conditioning number of the matrices

defining the model and we observed a regular working of the
numerical procedure in this range of frequencies.

2. Spherical geometry

In Fig. 8, panel (a), a full sphere radiating in free field is con-
sidered and our results are compared with the model of Hu et al.29

Moreover, in Fig. 8, panel (b), a hollow sphere with core (substrate)
is considered and our results are compared with the model of Hu
et al.28 As already discussed for plane and cylindrical waves, the
Hu models assume a surface density energy input and therefore
they must be modified in order to be comparable with our
approach. Assuming a volume density power input, the modified

FIG. 10. Temperature variation, particle velocity, and heat flux calculated by the proposed multilayer model for full cylindrical (continuous blue curves) and full spherical
(dashed red curves) thermophones. All curves show the absolute value of the corresponding complex quantities. The thermophone material (green region) is on the left,
and the propagating air medium (yellow region) is on the right. Here, we used f = 10 kHz.
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pressure equation for a full sphere becomes

pg ¼ Rs

r

dadtkþg
Z

e�σgΔr � σþ
g

kþg
e�kgΔr

 !
Q0

iωρsC p,s
κsσ

�
s*

¼ pg,surface
Q0

iωρsCp,s
κsσ

�
s* , (86)

and the one for a sphere with core (substrate) is

pg ¼
dadtkþg

Z
e�σgΔr � σþ

g

kþg
e�σgΔr

 !

�
κs

Q0
iωρsC p,s

r
Rsσ

�
s* þ

Rbκbσ�
b*

κbσ�
b* � κsσ�

s
σs(1�M) eσsΔR

� �

¼ p*g,surface
r

κs
Q0

iωρsC p,s
Rsσ

�
s* þ

Rbκbσ�
b*

κbσ�
b* � κsσ�

s
σs(1�M) eσsΔR

� �
:

(87)

It is easily seen that Eq. (86) is equivalent to Eq. (87) if we impose
M ¼ 1. The form of these expressions is similar to the modified
Hu equation used for the plane wave case in a recent paper.35 For
all parameters used in Eqs. (86) and (87), the reader is asked to
refer to the original publications.28,29

Similarly to Figs. 7(a) and 8(a) (full sphere) displays a change in
behavior between the original Hu model with surface density power
and the modified one with volume density power. On the one hand,
the original version keeps increasing after 20 kHz, before reaching a
plateau between 1 and 80MHz and then decreases. This is once again
due to the neglect of the heat capacity of the thermophone and to the
assumption of a surface density power. On the other hand, from
10 kHz to 10MHz there is a good agreement between the modified
model and our multilayer one. Above 10MHz, the same issue as for

plane and cylindrical waves is observed, where the zero order approxi-
mation of the wavenumbers in Hu models prevents us from observing
the same decrease. A perfect match is found if the wavenumbers are
changed accordingly (not shown here for the sake of brevity).

Below 10 kHz, in Fig. 8, panel (a), the observed spectrum slopes
in both Hu models and ours are different. This interesting point is
explained by the adopted distance at which we calculate the physical
quantities of interest (e.g., the SPL). In Fig. 8, the pressure is calculated
at Δr0 ¼ 50 μm distance. However, based on Eq. (17b), the thermal
layer can be estimated with the approximated equation Lth ¼
2
ffiffiffiffiffiffi
C0 lk
2ωγ

q
¼

ffiffiffiffiffiffi
2αT
ω

q
and then Lth at 3 kHz is about 50 μm in air. It is

known that Lth is longer for lower frequency and therefore our record-
ing distance is not large enough to have an accurate evaluation of the
acoustic pressure. In this low frequency range, we are at a distance Δr0
inside the thermal layer in which the thermoacoustic process occurs
leading to altered results. The properties of the acoustic wave should be
calculated sufficiently far from the thermal layer. This scenario can be
observed only in our model where all layers are fully studied with all
relevant physical variables. In this particular case, the Hu model does
not implement the thermal layer and therefore the acoustic wave is
fully accessible just outside the generating layer. Anyway, if the position
at which we calculate the SPL is chosen further away (larger Δr0), there
is a better agreement between the models also at low frequencies.

Now regarding Fig. 8, panel (b) (hollow sphere with core),
similar observations can be made between the original and modified
Hu models at high frequencies. In fact, above 20 kHz, only little dif-
ferences can be observed between the spectra of the full sphere and
the hollow sphere with substrate. Below 20 kHz, due to the small size
of the substrate (Rb ¼ Rs=3), thermal losses will occur where the
thermal layer is longer than the radius of the thermophone. As
observed for plane waves,35 energy is lost in the substrate and results
in a decrease in the calculated SPL. It is also seen that numerical
instabilities can appear at low frequencies in our model, making the
model of Hu et al. more robust in this specific case.

FIG. 11. Frequency spectrum of a hollow cylinder in panel (a) and of a hollow sphere in panel (b), with a fixed external radius Rs and a variable internal radius Rb.
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Finally, like for plane and cylindrical waves, in both plots of
Fig. 8 only our model displays high frequency antiresonances. This
is due to the fact that this is the only model with a full implementa-
tion of the acoustic field within the solid layers.

B. Analysis of thermophone geometries

The validity of our multilayer model for cylindrical and spher-
ical geometries has now been proven by the comparison with other
models from the literature. As previously explained, it is important
to investigate those geometries as foam like thermophones have
cylindrical branches at a microscopic scale. Additionally, acoustic
theory based on monopoles (generating spherical wave) is very
useful and can be easily applied for thermophones if a monopole

thermoacoustic response is known. In the following, the three con-
figurations of interest previously defined will be investigated in
more detail and their defining parameters will be modified to
better assess their influence. In particular, both frequency and posi-
tion dependent analyses will be performed.

1. Full cylindrical or spherical thermophone

In Fig. 9, panels (a) and (b), we show the frequency response
of a full cylinder and a full sphere, respectively, by considering a
variable radius Rs.

In Fig. 9, panel (a), reducing the radius of the cylinder
increases the high frequency SPL. In fact, a 20 dB/dec profile is
observed from 100 Hz to almost 1MHz for the smaller radius. This

FIG. 12. Temperature variation, particle velocity, and heat flux calculated through the multilayer model in a hollow cylinder (continuous blue curves) and hollow sphere
(dashed red curves) thermophones. All curves show the absolute value of the corresponding complex quantities. While the air is represented by the yellow regions, the
green region corresponds to the thermophone material. Here, we adopted f = 10 kHz.
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increase could once again be attributed to the smaller HCPUA
induced by the reduced radius. On the other hand, having a large
radius seems to create a more flat frequency response in this fre-
quency range, which reminds us of the profile observed for plane
waves.35 This is explained by the fact that if the cylinder radius
becomes infinitely large, the cylinder can be approximated by a
plane. Therefore, in this case, cylindrical and plane waves become
similar. It is also seen that the first observable antiresonance is at a
lower frequency for thicker thermophones. For the smallest radius
Rs ¼ 0:5 μm, the antiresonance is even higher than 100MHz (i.e.,
out of the range of the plot). This behavior was expected since the

wavelengths of those mechanical resonances are directly propor-
tional to the size of the thermophone. This phenomenon was also
observed for plane waves.35 Lastly, it is important to remember that
those plots are normalized with total power. In other words, 1W
was applied to all simulated cylinder but for smaller cylinder the
actual power density was higher due to the reduced volume.

In Fig. 9, panel (b), we observe the spectra of full spheres with
variable radius. We can make the same analysis developed for Fig. 9,
panel (a), since results display a very similar behavior. In order to
facilitate the comparison, as previously declared, the same total
power and the same external surface have been imposed for both

FIG. 13. Frequency spectrum of a cylinder in panel (a) and a sphere in panel (b), with a substrate as an internal core. The external radius Rs is fixed, and the internal
radius Rb is variable.

FIG. 14. Frequency spectrum of a cylinder in panel (a) and a sphere in panel (b), with a substrate as an internal core. The external radius Rs is variable, and the internal
radius Rb is always half of the external one.
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cylindrical and spherical geometries. We observe similar SPL levels
above 1MHz for both shapes. Conversely, below 1MHz, the fre-
quency spectrum profile of the sphere displays lower SPL than the
cylinder. This could be explained by the fact that the surface of the
cylinder along the z direction is closer to the observation point than
the surface of the sphere. Even though diffraction is not taken into
account in this analysis, the inherent shape of the cylindrical ther-
mophone induces more efficient low frequency radiations. Finally,
Fig. 9 shows that computational limitations are more easily reached
at low frequency for spherical geometry and for thin thermophones.

Figure 10 displays the spatial behavior of the temperature varia-
tion, particle velocity, and heat flux within a full cylinder and a full
sphere for comparison. We considered a frequency of 10 kHz and we
plotted these quantities from the center of the thermophone to twice

the recording distance used for the frequency spectrum analysis. It is
seen that both cylinder and sphere display very similar profiles.
Notably, we remark that at the center of the thermophone the tem-
perature exhibits a maximum, while the heat flux and the velocity
are zero. At this frequency, the thermal layer length is 26 μm and
can be seen in all figures but mostly in the velocity plot.

2. Hollow cylindrical or spherical thermophone

We show in Fig. 11 the frequency response of thermophones
shaped as hollow cylinders and hollow spheres, with a fixed exter-
nal radius Rs and a variable internal radius Rb. Air is assumed at
the core of those thermophone structures. Figure 11, panel (a),
shows that for a small internal radius, relatively to the external one,

FIG. 15. Temperature variation, particle velocity, and heat flux calculated with the multilayer model for cylindrical (continuous blue curves) and spherical (dashed red
curves) thermophones with a substrate as an internal core. All curves show the absolute value of the corresponding complex quantities. Three different regions can be
observed: the substrate (red region), thermophone (green region), and the propagating air medium (yellow region). Here, we adopted f = 10 kHz.
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the frequency spectrum is similar to the one of a full sphere. With
increasing Rb, the heat capacity of the thermophone is reduced
because of its thinner thickness. This leads to an increase in high
frequency SPL, while the low frequency range is not sensibly modi-
fied. Another observable change is the slight modification of the
antiresonance frequency for large internal radius. New resonances
due to the new geometry are observed above 1MHz. However,
those changes are not as significant as the modifications induced
by changing the external radius previously observed for a full ther-
mophone. Those changes in resonances would not have been
observable without our multilayer model. We also observe that the
spectra for Rb ¼ 0:1Rs and Rb ¼ 0:01Rs are very similar since very
small cavities do not modify the heat capacity of the system and
therefore their effects are not discernible. Indeed, for Rb approach-
ing zero, we obtain again the response of the full thermophone.

In a similar fashion as for a full thermophone (Sec. IV B 1),
the behavior of a hollow sphere [Fig. 11, panel (b)] displays a
similar behavior as a hollow cylinder [Fig. 11, panel (a)]. The same
analysis can then be applied.

Finally, Fig. 12 shows the spatial behavior of the main varia-
bles at 10 kHz for this new geometry. We adopted Rb ¼ Rs=3.
Similar behaviors are observed for both the hollow cylinder and the
hollow sphere. The temperature exhibits its maximum value in the
thermophone material at the internal radius Rb and the thermal
layer is observed on the outer boundaries of Rs. The heat flux and
the velocity are also zero at r ¼ 0. It is then not possible to observe
the thermal layer inside the inner radius as waves cancel each other
out.

3. Hollow cylindrical or spherical thermophone with
substrate

In Fig. 13, we present the results for hollow cylinders and
hollow sphere thermophones, where a given substrate is assumed
in the internal core. The frequency spectra for a cylindrical and for
a spherical shapes are found in Fig. 13, panels (a) and (b), respec-
tively. Here, we considered a varying inner radius of the core. Two
main behaviors are observed in Fig. 13, panel (a).

First, below 10 kHz, it is seen that for larger values of the core
radius more losses are observed and the resulting SPL is conse-
quently reduced. In this case, a considerable quantity of heat is dis-
sipated in the substrate and this phenomenon is even more
pronounced at low frequencies with a larger thermal layer.
Conversely, the cylinder with the smallest core has the highest SPL
as it is closer to a full cylinder.

Second, above 10 kHz, since the thickness of the thermophone
is reduced by increasing Rb, its HCPUA is reduced as well and this
trend increases the SPL at high frequencies (as previously seen for a
hollow thermophone). Furthermore, when the thickness of the
thermophone Rs � Rb starts to be similar to the thermal layer
length, the influence of the substrate diminishes, as already
observed for plane waves.35 This means that the cylinder with the
thickest substrate is much more efficient above 1MHz. Summing
up, we underline that thin substrates are recommended at low fre-
quencies and thick substrates are convenient at high frequencies.

Additionally, the antiresonance wavelength of the thermo-
phone is directly proportional to its size but also its stiffness.

Therefore, having a substrate at the core changes the overall or
effective stiffness of the thermophone shifting the first antireso-
nance to a higher frequency range.

Similar observations can be made for Fig. 13, panel (b). Again,
we observe that the numerical model for the spherical case can be
unstable at low frequencies, especially for thin core substrate.

The results in Fig. 14 are complementary to those of Fig. 13 as
they consider the same structure but with a fixed ratio between
inner and outer radius (Rs ¼ 2Rb) and a variable outer radius.
Across the whole frequency range, the thinner thermophone has
overall the best performance. Its low HCPUA, due to its small size,
improves the high frequency radiation. At the same time, its thin
core with the substrate also limits the losses at low frequencies. At
last, the shift toward the high frequency range of the first antireso-
nance of the solid for a thicker radius is also clearly distinguishable.
It is, however, reminded that smaller samples have a higher input
power density, which theoretically helps the observation and analy-
sis but might create real experimental issues in terms of both fabri-
cation and heat density management.

The spatial behavior of temperature variation, particle velocity,
and heat flux for this configuration can be found in Fig. 15. We
can observe that the temperature drops inside the substrate. The
heat flux entering the substrate is larger at Rb than at Rs, as
opposed to Fig. 12 where the heat flux was at its maximum in cor-
respondence to the outer region of the thermophone material
(where the thermoacoustic generation occurs). This leads to a
smaller particle velocity and thus a reduced SPL with respect
to Fig. 12.

V. CONCLUSIONS

We introduced in this work a thermoacoustic model able to
describe the acoustic wave generation in multilayered thermo-
phones with cylindrical or spherical geometry. One important
point is that we introduced the thermal conduction and the viscous
behavior in all layers, which are therefore characterized by the fully
coupled thermo-visco-acoustic constitutive response. From the
thermodynamic point of view, these two contributions describe the
dissipative behavior of the system. Moreover, for both the cylindri-
cal and the spherical geometry, we considered layers that can be
either fluid or solid. It is interesting to remark that, starting from
the classical balance equations of the continuum mechanics for
fluids and solids, we obtained a unified formalism for describing
cylindrical and spherical thermo-visco-acoustic waves. This unified
picture has been exploited to elaborate the multilayer model, which
has been implemented for an arbitrary number of layers and for an
arbitrary disposition of fluid or solid phases. This approach allows
therefore the analysis and the design of complex thermophone
structures with cylindrical or spherical geometry. This contribution
is complementary to what already exists in the literature with
regard to stratified one-dimensional thermophone structures.35

From the computational point of view, the implementation of the
model is very efficient since it is based on matrices (see Secs. II C
and III C) and the calculation time is of the order of a few seconds
for systems with up to a dozen layers. The calculation time may
increase with a larger number of layers but it remains extremely
competitive compared to numerical methods based on finite
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elements or other computational techniques. This efficiency is
based on the use of linearized equations for wave propagation. Of
course, if we want to include nonlinear phenomena or temperature
dependent parameters, then we are forced to switch to more expen-
sive numerical techniques.

In Sec. IV A, our multilayer cylindrical and spherical models
were confronted to models from the literature. Actually, very few
models currently exist for cylindrical or spherical geometry of ther-
mophones but our model proved to be coherent with those cur-
rently available. In particular, it has been proven to be able to fit
different configurations (full thermophone, hollow thermophone,
and hollow thermophone with substrate), while being the only
model considering a refined estimation of the wavenumbers as well
as the mechanical resonances and/or antiresonances generated by
the solid layers. Indeed, we fully implemented in our model the
elastic wave propagation within the solid layers, suitably coupled
with the thermal and viscous behavior. We underline that the mul-
tilayer model sometimes can exhibit numerical instabilities due to
the computation of the inverse of not well-conditioned matrices.
Those limitations have been observed for low frequencies and par-
ticularly in spherical geometries.

In Sec. IV B, the influence of the geometrical parameters of
the cylindrical or spherical thermophones on the thermoacoustic
generation was analyzed. First, it was seen that cylindrical and
spherical systems have displayed similar results and the qualita-
tive physical analysis is valid in both cases. Importantly, simi-
larly to the one-dimensional case with plane waves, the thickness
of the thermophone directly influences the HCPUA of the
device. Thinner thermophones are then privileged for high fre-
quency radiation, although high power density has to be
expected and one has to be careful not to damage real samples.
The use of a substrate at the core was proven to lead to thermal
losses as expected. To optimize this configuration, thin sub-
strates are recommended at low frequencies and thick substrates
are convenient at high frequencies.

Concerning the applications, the spherical model can be
useful to obtain the response of the thermoacoustic monopole,
which can be integrated in more complex simulation systems.
Moreover, the cylindrical model can be used to study nano- or
micro-structured thermophones. In this case, the thickness of
layers has once again proven to be a decisive factor for HCPUA
tuning. In particular, carbon foam thermophones are character-
ized by hollow cylindrical branches in the porous microstruc-
ture. Interestingly, the growth of branches by CVD can adapt
their thickness by controlling the fabrication process and growth
time. This is useful to optimize the thermoacoustic response.
Finally, in the CVD based samples production, we can choose
whether to keep the substrate (typically a nickel matrix) to
improve the mechanical stability or to remove the matrix to
increase the thermoacoustic efficiency at high frequencies, at the
risk of high input power density. Also, intermediate solutions
can be envisaged.
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APPENDIX A: FOURTH ORDER DIFFERENTIAL
EQUATION IN CYLINDRICAL COORDINATES

The four solutions of the algebraic equation
aθ4 � bθ2 � c ¼ 0, associated with Eq. (16), are written in the
form +θ1 and +θ2. The fourth order differential equation given
in Eq. (16) can also be written as

a(Dþ (iθ1)
2)(Dþ (iθ2)

2)T ¼ 0, (A1)

with D defined as in Eq. (13), b ¼ a(θ21 þ θ22) and c ¼ �aθ21θ
2
2. We

define Ψ as

Ψ ¼ [Dþ (iθ2)
2]T: (A2)

Leaving aside the factor a, Eq. (A1) becomes

Dþ (iθ1)
2� �
Ψ ¼ 0,

1
r
@Ψ

@r
þ @2Ψ

@r2
þ (iθ1)

2Ψ ¼ 0,
(A3)

whose solution is

Ψ ¼ AH(1)
0 (iθ1r)þ BH(2)

0 (iθ1r), (A4)

with A, B being the integration constants and H(1)
i (z) and H(2)

i (z)
being the cylindrical Hankel function of order i and of first and
second kind. The equation for T becomes

Dþ (iθ2)
2� �
T ¼ AH(1)

0 (iθ1r)þ BH(2)
0 (iθ1r),

1
r
@

@r
r
@T
@r

� �
þ (iθ2)

2T ¼ AH(1)
0 (iθ1r)þ BH(2)

0 (iθ1r):
(A5)

This non-homogeneous differential equation gives the general solu-
tion of the temperature variation as

T(r) ¼ CH(1)
0 (iθ2r)þ DH(2)

0 (iθ2r)þ ps, (A6)

with ps being a particular solution of Eq. (A5) and C, D being
other two integration constants. In order to find the final solution
of T , the particular solution of Eq. (A5) can be determined by
finding separate solutions for the term AH(1)

0 (iθ1r) and BH(2)
0 (iθ1r),

which can then be added to form the final particular solution.

• Case 1: 1r
@
@r (r

@T1
@r )þ (iθ2)

2T1 ¼ AH(1)
0 (iθ1r).

We are looking for a particular solution of the form

T1(r) ¼ a(r)H(1)
0 (iθ2r)þ b(r)H(2)

0 (iθ2r): (A7)

The substitution of Eq. (A7) into the second order inhomogeneous
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equation of this kind leads to a system of equations of the form

da
dr H

(1)
0 (iθ2r)þ db

dr H
(2)
0 (iθ2r) ¼ 0,

da
dr

d
dr H

(1)
0 (iθ2r)þ db

dr
d
dr H

(2)
0 (iθ2r) ¼ AH(1)

0 (iθ1r):

(
(A8)

Based on the standard properties of Hankel functions,38 we have

d
dr

H(1,2)
0 (iθ2r) ¼ �iθ2H

(1,2)
1 (iθ2r): (A9)

Equation (A8) can be rewritten in the matrix form as

H(1)
0 (iθ2r) H(2)

0 (iθ2r)

H(1)
1 (iθ2r) H(2)

1 (iθ2r)

" #
da
dr
db
dr

" #
¼ 0

� A
iθ2

H(1)
0 (iθ1r)

	 

: (A10)

By calculating the inverse matrix and by using the Wronskian
relation38

H(1)
νþ1(z)H

(2)
ν (z)� H(1)

ν (z)H(2)
νþ1(z) ¼ � 4i

πz
, (A11)

we found the solutions

a(r) ¼ Aπ
4i

ð
rH(1)

0 (iθ1r)H
(2)
0 (iθ2r) dr, (A12)

b(r) ¼ �Aπ
4i

ð
rH(1)

0 (iθ1r)H
(1)
0 (iθ2r) dr: (A13)

These integrals can be performed by means of the following prop-
erty:38

ð
zCν(gz)Dν(hz) dz ¼ z[gCνþ1(gz)Dν(hz)� hCν(gz)Dνþ1(hz)]

g2 � h2
,

(A14)

with Cν and Dν being any cylinder function of order ν, not neces-
sarily distinct, and g, h being different constants. This leads to

a(r) ¼ Aπ
4i

r
(iθ1)

2�(iθ2)
2 � iθ1H

(1)
1 (iθ1r)H

(2)
0 (iθ2r)� iθ2H

(1)
0 (iθ1r)H

(2)
1 (iθ2r)

h i
,

b(r) ¼ Aπ
4i

r
(iθ1)

2�(iθ2)
2 � iθ2H

(1)
1 (iθ2r)H

(1)
0 (iθ1r)� iθ1H

(1)
0 (iθ2r)H

(1)
1 (iθ1r)

h i
:

8<
: (A15)

Using Eq. (A7) and the Wronskian relation in Eq. (A11), we have
the first particular solution T1,

T1 ¼ A

θ21 � θ22
H(1)

0 (iθ1r) ¼ ~AH(1)
0 (iθ1r): (A16)

We now investigate the second part of the particular solution.

• Case 2: 1r
@
@r r @T2

@r

� �þ (iθ2)
2T2 ¼ BH(2)

0 (iθ1r).

We are looking for a particular solution of the form

T2(r) ¼ a(r)H(1)
0 (iθ2r)þ b(r)H(2)

0 (iθ2r): (A17)

Beside the change in the constant from A to B and the fact that we
have now a second kind Hankel function in the inhomogeneous
term, the calculation can be repeated in the same way. We eventu-
ally find

T2 ¼ B

θ21 � θ22
H(2)

0 (iθ1r) ¼ ~BH(2)
0 (iθ1r): (A18)

A final solution of Eq. (14) for T is finally found as

T(r) ¼ ~AH(1)
0 (iθac,f r)þ ~BH(2)

0 (iθac,f r)

þ CH(1)
0 (iθth,f r)þ DH(2)

0 (iθth,f r), (A19)

with

~A ¼ A

θ2ac,f � θ2th,f
, (A20)

~B ¼ B

θ2ac,f � θ2th,f
: (A21)

APPENDIX B: WAVENUMBERS CALCULATION

1. Wavenumbers in fluid media

In order to find simplified explicit expressions for θac,f and
θth,f , solutions of the algebraic equation associated with Eq. (14),
we make the assumption of weak conduction and weak viscosity.
Hence, the asymptotic solutions of ax4 þ bx2 þ c ¼ 0 for small
values of a are investigated. If a ¼ 0, the first couple of solutions is
given by x2 ¼ � c

b, which means x ¼ +
ffiffiffiffiffiffiffi� c

b

p
. So, we search ε such

that x ¼ +
ffiffiffiffiffiffiffi� c

b

p þ εa, in order to obtain the solutions to the first
order in the parameter a. These solutions correspond to a regular
perturbation.

However, the second couple of solutions diverges to infinity
when a ! 0, thus corresponding to a singular perturbation. So, we
define y ¼ ffiffiffi

a
p

x and ax4 þ bx2 þ c ¼ 0 is transformed into
y4 þ by2 þ ac ¼ 0. If a ¼ 0, we get y ¼ +

ffiffiffiffiffiffi�b
p

and the perturbed
solutions are written as y ¼ +

ffiffiffiffiffiffi�b
p þ εa.
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Now, by substituting the first couple of solutions
x ¼ +

ffiffiffiffiffiffiffi� c
b

p þ εa in ax4 þ bx2 þ c ¼ 0, and the second couple

y ¼ +
ffiffiffiffiffiffi�b

p þ εa in y4 þ by2 þ ac ¼ 0, we can obtain the perti-
nent values of the first order coefficients ε, and we eventually get
the four solutions for small values of a, as follows:

x1,2 ¼ +

ffiffiffiffiffiffiffi
� c
b

r
� 1
2
ac2

b3

ffiffiffiffiffiffiffi
� b
c

r" #
, (B1)

x3,4 ¼ +

ffiffiffiffiffiffiffi
� b
a

r
þ 1
2
c
b

ffiffiffiffiffiffiffi
� a
b

r" #
: (B2)

If we consider that Re(a) . 0, Re(b) , 0 and c , 0, we can easily
obtain the simplified forms

x1,2 ¼ +

ffiffiffiffiffiffiffi
� c
b

r
1þ 1

2
ac
b2

	 

, (B3)

x3,4 ¼ +

ffiffiffiffiffiffiffi
� b
a

r
1� 1

2
ac
b2

	 

: (B4)

Through these general solutions, wavenumbers θac,f and θth,f asso-
ciated with acoustical and thermal waves, respectively, can be
approximated to the first order in lV and lk by

θac,f ¼ +
iω
C0

1� 1
2
iω
C0

lV � 1
2
iω
C0

lk 1� 1
γ

� �	 

, (B5)

θth,f ¼ +

ffiffiffiffiffiffiffiffi
iωγ
C0lk

r
1þ 1

2
iω
C0

lk 1� 1
γ

� �
þ 1
2
iω
C0

lV (1� γ)

	 

: (B6)

2. Wavenumbers in solid media

In order to explicit the differences in wavenumbers between
solid and liquid media, a first order approximation solution of
Eq. (21) will be determined for the associated homogeneous fourth
order differential equation of T . Equation (21) becomes

0 ¼ λs þ 2μs þ
λ0 þ 2μ0

iω

� �
κsθ

4

� (λs þ 2μs þ
λ0 þ 2μ0

iω
)iωρ0,sCV ,s þ α2

T ,sB
2
0T0 þ iωρ0,sκs

	 

θ2

� ω2ρ20,sCV ,s: (B7)

It will be seen that this equation is also the one associated with
spherical wave radiation following Eq. (64) in Sec. III B. Using

similar notations as in Eq. (15), we define

γs ¼ Cp,s

CV ,s
,

C0,s ¼
ffiffiffiffiffiffiffiffiffiffi
B0
ρ0,s

γs
q

(m=s),

CL ¼ λ0þ2μ0
ρ0,sC0,s

(m=s),

lκ,s ¼ C0,sκ
B0Cp,s

(m),

lV ,s ¼ λsþ2μs
ρC0,s

(m):

8>>>>>>>>><
>>>>>>>>>:

(B8)

Following the same thought process as for fluids, Eq. (B7) can be
written as

lκ,slV ,sþ lκ,s
CL

iω

� �
θ4� iω

C0,s
(lV ,sþ lκ,sþCL

iω
)þ1� 1

γs

	 

θ2� ω2

C2
0,s
¼ 0:

(B9)

The general form of the asymptotic solutions for the equations of
the form aθ4 þ bθ2 þ c ¼ 0 has been proven to be

θac,s ¼ +
ffiffiffiffiffiffiffi� c

b

p
1þ 1

2
ac
b2

� �
,

θth,s ¼ +
ffiffiffiffiffiffiffi
� b

a

q
1� 1

2
ac
b2

� �
,

8<
: (B10)

with now

a ¼ lκ,s
CL
iω (1þ lV ,s iω

CL
),

b ¼ � 1� 1
γs
þ CL

C0,s

� �
1þ iω

C0,s
(lκ,s þ lV ,s) 1� 1

γs
þ CL

C0,s

� ��1
� �

,

c ¼ � ω2

C2
0,s
:

8>>>><
>>>>:

(B11)

Using Eqs. (B11) and (B10), the first order Taylor’s series approxi-
mation and a first order approximation on lκ,s and lV ,s (weak con-
duction and weak viscosity),

1+ ac
b2 ¼ 1+ 1

2 lκ,s
CL
iω

�ω2

C2
0,s
(1� 1

γs
þ CL

C0,s
)
�2
,

ffiffiffiffi�c
b

p ¼ iω
C0,s

1� 1
γs
þ CL

C0,s

� ��1=2

� 1þ iω
C0,s

(lκ,s þ lV ,s) 1� 1
γs
þ CL

C0,s

� ��1=2
� �

,ffiffiffiffiffi
�b
a

q
¼ iω

lκ,sCL

� �1=2
1� 1

2
iω
CL
lV ,s

� �
� 1� 1

γs
þ CL

C0,s

� �1=2
� 1þ 1

2
iω
C0,s

(lκ,s þ lV ,s) 1� 1
γs
þ CL

C0,s

� ��1
� �

:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(B12)
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This leads to

θac,s ¼ iω
C0,s

1� 1
γs
þ CL

C0,s

� ��1=2

� 1� lV ,s
iω

2C0,s
1� 1

γs
þ CL

C0,s

� ��1
�lκ,s iω

2C0,s

	

� 1� 1
γs
þ CL

C0,s

� ��1
� CL

C0,s
1� 1

γs
þ CL

C0,s

� ��2
� �


,

θth,s ¼ iω
lκ,sCL

� �1=2
1� 1

γs
þ CL

C0,s

� �1=2
1þ iω

2C0,s

h
� lκ,s 1� 1

γs
þ CL

C0,s

� ��1
� 1� 1

γs
þ CL

C0,s

� ��2
CL
C0,s

	 
	

þlV ,s 1� 1
γs
þ CL

C0,s

� ��1
� C0,s

CL

	 



:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(B13)
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