
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Elastic behavior of inhomogeneities with size and shape different
from their hosting cavities

S. Giordano a,⇑, P.L. Palla b, E. Cadelano c, M. Brun d

a Institute d’Electronique, Microélectronique et Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d’Ascq, France
b Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di Padova, via Trieste 63, 35121 Padova, Italy
c Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
d Dipartimento di Ingegneria Strutturale, Infrastrutturale e Geomatica, Università di Cagliari, Piazza d’Armi, 09123 Cagliari, Italy

a r t i c l e i n f o

Article history:
Received 9 December 2010
Received in revised form 26 July 2011
Available online 3 August 2011

Keywords:
Inhomogeneity
Inclusion
Prestrain and prestress
62.20.-x
62.23.-c
62.25.-g

a b s t r a c t

In this paper we consider an application of the Eshelby theory concerning the elastic
behavior of prestrained or prestressed inhomogeneities. The theory, in its original version,
deals with a configuration where both the ellipsoidal particle and the surrounding matrix
are in elastostatic equilibrium if no external loads are applied to the system. Here, we con-
sider slightly different shapes and sizes for the particle and the hosting cavity (whose sur-
faces are firmly bonded together) and, therefore, we observe a given state of strain (or
stress) even without externally applied loads. We develop a complete procedure able to
determine the uniform elastic field induced in an arbitrarily prestrained particle subjected
to arbitrary remote loadings.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Probably the most important result in the extensive lit-
erature on elastic composites is the Eshelby theorem on
the response of a single isotropic ellipsoidal elastic particle
in an isotropic elastic space subjected to a remote strain.
Eshelby (1957, 1959, 1961) proved that an applied uniform
strain results in a uniform strain within the ellipsoidal
inhomogeneity. The so-called Eshelby tensor, involved in
the strain calculation, depends on the geometry of the
ellipsoid (i.e. on the ratios of semi-axes lengths) and on
the elastic properties of the homogeneous hosting matrix.
Some years later, a similar property was proved also for
the elastic field of an anisotropic particle embedded in an
anisotropic medium (Walpole, 1967).

The Eshelby solutions, in their first version, have been
found within the elastostatics regime. The dynamic Eshelby

inclusion problem for an ellipsoidal inclusion in a three-
dimensional isotropic medium was recently considered
(Michelitsch et al., 2003). The dynamic Eshelby tensor has
been expressed in terms of solutions of the Helmholtz equa-
tion. This approach leads to closed-form expressions in the
particular cases of spheres and cylinders coinciding with
those given by Mikata and Nemat-Nasser (1990) and by
Cheng and Batra (1999), obtained by employing different
techniques.

Two different problems concerning the elastic fields
generated by particular inhomogeneities have been solved
by Walpole (1991a,b). In the first case a rigid inhomogene-
ity of ellipsoidal shape is bonded firmly at arbitrary orien-
tation to a surrounding, unbounded, homogeneous matrix,
and is translated infinitesimally by the action of an exter-
nally imposed force (Walpole, 1991a). A second problem
deals with a rigid inclusion of ellipsoidal shape, bonded
firmly at arbitrary orientation to a surrounding matrix,
and rotated infinitesimally, about an axis through its cen-
ter, by means of an externally imposed couple (Walpole,
1991a).
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Some other interesting generalizations have been made
to obtain the counterpart of the (elastic) Eshelby property
for different physical situations. Berryman (1997) has
shown how the Eshelby theory may be generalized to both
poroelasticity and thermoelasticity. The resulting formulas
are important for applications to analysis of poroelastic
and thermoelastic composites (Dormieux et al., 2006).
Moreover, a simple and unified explicit expression for pie-
zoelectric Eshelby tensors is presented by Huang and Yu
(1994). Furthermore, the magneto-electro-elastic Eshelby
tensor that describes the stress, the electric displacement
and the magnetic induction in a piezomagnetic-piezoelec-
tric composite has been introduced (Huang et al., 1998).
The electric version of the Eshelby theory for an arbitrarily
anisotropic environment has been recently developed by
Giordano and Palla (2008).

The most important aspect of the Eshelby work is that
the interior points Eshelby tensor is constant for an ellipsoi-
dal inhomogeneity. This fact implies that an uniform strain
at infinity results in a uniform strain in the ellipsoidal inho-
mogeneity. Eshelby (1961) conjectured that, among all the
closed surfaces, the ellipsoid alone has this convenient
property. The strong Eshelby conjecture is: if the induced
elastic fields inside an inhomogeneity are uniform under
a single uniform loading, the inhomogeneity is of elliptic
or ellipsoidal shape. The weak Eshelby conjecture is: if
the induced elastic fields inside an inhomogeneity are uni-
form under all (any) uniform loadings, the inhomogeneity
is of elliptic or ellipsoidal shape. Of course, the strong con-
jecture implies the weak conjecture. The first result was
found by Sendeckyj (1970) who proved the strong Eshelby
conjecture for two-dimensional inhomogeneities (plane
strain or plane stress conditions). Successively, Ru and
Schiavone (1996) verified the strong Eshelby conjecture
for anti-plane problem. More recently, Kang and Milton
(2008) proved the weak Eshelby conjecture for three-
dimensional inclusions for isotropic materials by using
the maximum principle of harmonic potentials. Finally,
Liu (2008) showed that the strong Eshelby conjecture is
false in three and higher dimensions, by constructing expli-
cit counterexamples.

The Eshelby result and its generalizations have been
found to be useful in the analysis of composite materials:
the crucial point is the determination of the effective phys-
ical properties exhibited at the macroscopic scale (Van Beek,
1967; Walpole, 1981). The homogenization procedures con-
tain at first the exact mathematical analysis of the mechan-
ical behavior induced by a single inhomogeneity (Mura,
1987; Nemat-Nasser and Hori, 1999), and then proceed by
considering the more general case of interacting particles
(Hashin, 1983; Markov, 2000). This approach is generally
carried out in the limit of a low density defect population
(Mori and Tanaka, 1973). Such an hypothesis can be par-
tially removed by means of different methods, such as iter-
ated homogenizations (Avellaneda, 1987) and differential
schemes (McLaughlin, 1977; Giordano, 2003,). These tech-
niques have been applied with great accuracy both to the
case of embedded inhomogeneities (Hill, 1963; Snyder and
Garboczi, 1992; Kachanov and Sevostianov, 2005) and to
the case of dispersed defects, such as micro-cracks in a
matrix (Budiansky and O’Connell, 1976; Kachanov, 1992;

Giordano and Colombo, 2007a,b). The application of the
Eshelby theory to evaluate the distribution of the elastic
and electric fields around a crack has conducted to the def-
inition of the densities of states for such quantities (Giord-
ano, 2007; Giordano and Colombo, 2007c).

The mechanical behavior of nanostructured materials is
strongly affected by interface features, occurring at the
boundary between phases characterized by different elas-
tic constitutive equations or crystalline structures (Palla
et al., 2008, 2009, 2010). In particular, the embedding of
a given nano-inhomogeneity in a hosting matrix is deeply
influenced by the lattice mismatch and by the possible dif-
ferences between the external surface of the particle and
the internal surface of the hosting cavity. In fact, both the
inhomogeneity and the matrix accomplish an elastic relax-
ation to accommodate these mismatches and, therefore,
they admit a state of deformation even if no external load
is applied. We will refer to such a complex system as a
prestrained (or, equivalently, prestressed) composite. In
particular, in this work, we develop a mathematical proce-
dure able to quantify the prestrains (or prestresses) in-
duced by the differences between the particle and the
cavity in a continuum. It means that we analyse the defor-
mations necessary to create the perfect bonding between
the external surface of the particle and the internal surface
of the cavity.

In general, the results of the present paper can be ap-
plied every time we deal with an inhomogeneity having
extent and geometry somewhat different from the hole
in the matrix. We are also able to take into account an arbi-
trary uniform mechanical load remotely applied to the sys-
tem. Throughout the paper we introduce and solve the
above problem within the geometrical framework of the
small strain elasticity theory. Therefore, the results can
be applied to any physical situation (independently of
the specific materials or the macro-, micro-or nano-scale)
which can be represented by the above introduced general
scheme.

Nevertheless, an interesting example of application is
given by composite materials and structures at the
nano-scale. In Fig. 1 one can find the atomistic structure
of an interface between a matrix and a cylindrical

Fig. 1. Example of an atomistically resolved prestrained cylindrical
inhomogeneity.
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nano-inhomogeneity: the effects of the lattice mismatch
between cylinder and cavity are evident in the region
close to the interface. That zone is in fact characterized
by a disorder (with atoms density larger than the pure
crystal phase) which generates a quite uniform hydro-
static compression within the particle. This effect can be
simply modelled through the insertion of a particle with
radius larger than the matrix cavity (Palla et al., 2009).
A very similar situation is found when the particle exhib-
its a thermal coefficient different from the matrix one
(Wakashima et al., 1974). In all these cases the particle
experiences an eigenstrain which leads to nonzero stress
also without external loads. While previous works
(Dvorak, 1992) discussed incremental thermomechanical
loads and transformation strains in the phases, here we
analyse the eigenstrain induced by the different geometry
between particle and matrix. In other words, other than
the typical eigenstrain introduced by Eshelby to take into
account the elastic contrast between particle and matrix,
we determine the additional eigenstrain induced by the
geometrical (size and shape) contrast between the inho-
mogeneity and the cavity.

Typical examples of prestressed systems in recent nano-
technology are represented by semiconductor quantum
dots or quantum wires, embedded in a matrix with differ-
ent properties. Several works have been addressed to the
calculation of the strain state in buried quantum dots
(Sharma and Ganti, 2002; Zhang and Sharma, 2005). Both
quantitative and qualitative knowledge of stress and strain
distributions are essential for characterizing and tailoring
their optoelectronic properties (Singh, 1992; Maranganti
and Sharma, 2006), as well as for understanding their
self-organization (Timm et al., 2008). Typically, the state
of deformation is estimated using continuum elasticity
and, then, used as input for an electronic structure calcula-
tion (Harrison, 2005). However, while continuum elasticity
is inherently scale-independent, the elastic relaxation of a
nanostructure does depend on the actual length scale at
which the heterogeneity shows up (Duan et al., 2005,,
2008). In other words, at the nanoscale surface effects be-
come important due to the increasing surface-to-volume
ratio and induce a size dependency in the overall elastic
behavior (Sharma et al., 2003; Sharma and Ganti, 2004).

In our approach, first of all we will analyse inhomoge-
neities with circular symmetry, namely cylinders and
spheres of radius R2, embedded in a matrix with a cavity
of different radius R1. The radius difference is considered
very small, thus allowing for the application of the infini-
tesimal theory of elasticity (Landau and Lifschitz, 1959; At-
kin and Fox, 2005). It is important to remark that this
configuration corresponds to a continuum dislocation dis-
tributed over the (cylindrical or spherical) interface be-
tween the materials (Willis, 1965; Eshelby, 1973). It must
be considered as a Volterra dislocation with constant Bur-
ger vector of modulus R1 � R2 and radial direction (referred
to as~n). More specifically, if we start from a situation with
a not prestrained inhomogeneity and we consider a dislo-
cation at the interface with Burger vector ~b ¼ ðR1 � R2Þ~n,
we obtain the final configuration corresponding to the pre-
strained inhomogeneity. In this work we approach this
problem with the theory of the inhomogeneities, based

on the Eshelby tensor. The solution through the dislocation
theory is much more complicated since we are dealing
with a heterogeneous structure. The same problem is
solved for an ellipsoidal inhomogeneity embedded in a dif-
ferent ellipsoidal cavity of the matrix. Also in this case
there is a direct correspondence with the dislocation the-
ory. In particular, the elastic fields can be attributed to a
Somigliana dislocation distributed over the interface. In
such a case the Burger vector connects a point of the inho-
mogeneity surface (in elastostatic equilibrium) with the
corresponding point of the cavity surface in the matrix.

We want to remark that, in this work, we have analysed
the fundamental micromechanical problem of a single pre-
strained particle and we have postponed the study of the
effective behavior of a dispersion of prestrained inhomoge-
neities to future investigations. Nevertheless, the knowl-
edge of the exact elastic fields inside a single particle
allows to apply standard homogenization theories (dilute
dispersions), as above discussed (Markov, 2000). It can be
useful to observe that the presence of the geometrical
eigenstrain is analogous to the presence of a pressure with-
in saturated pores and, therefore, the homogenization
methods used in linear microporoelasticity can be adopted
as well (Dormieux et al., 2006). Since we may expect that
the geometrical eigenstrain is dissimilar for different parti-
cles of a real dispersion, the above techniques should be
applied by considering a different behavior for all the inho-
mogeneities. For high values of the volume fraction of par-
ticles the consideration of the exact interactions among
them is very complicated and some approximated schemes
(iterative, differential, self-consistent) could be applied.

The structure of the paper is the following: in Section 2
we give a brief outline of the Eshelby theory for an ellipsoi-
dal inclusion. In Section 3 we introduce the generalized
equivalence principle for spheres and cylinders and in Sec-
tion 4 for ellipsoids. Conclusions and appendices with
some mathematical details close the paper.

2. Outline of the Eshelby theory for ellipsoidal
inclusions

The main purpose of this Section is to define the basic
equations describing the elastic field inside and outside
an ellipsoidal inclusion X embedded into a homogeneous
matrix. The materials are supposed to be linear elastic,
homogeneous and isotropic. We consider an infinite med-
ium with stiffness tensor Ĉð1Þ; it means that the homoge-
neous solid matrix (hereafter labelled as material 1) is
characterized by the relation T̂ ¼ Ĉð1Þ�̂ or, in components,
Tij ¼ Cð1Þijkh�kh where T̂ is the stress tensor (with components
Tij), �̂ is the strain tensor (with components �ij). Moreover,
we define an embedded ellipsoidal inclusion X as a region
of space described by the constitutive equation T̂ ¼ Ĉð1Þ
ð�̂� �̂�Þ. The strain �̂� is a priori given and it is called eigen-
strain (or stress-free strain). In other words, throughout
this paper we denote as an inclusion a region containing
a distribution of eigenstrain with the same moduli as the
matrix. It is important to remark that the concept of inclu-
sion is different from that of inhomogeneity. The inhomo-
geneity is defined as follows: we consider an infinite

6 S. Giordano et al. / Mechanics of Materials 44 (2012) 4–22
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medium with stiffness tensor Ĉð1Þin R3 nX (matrix) and Ĉð2Þ
in the ellipsoidal region X (inhomogeneity). We remotely
load the system with a uniform strain �̂1or, equivalently,
with the uniform stress T̂1 ¼ Ĉð1Þ�̂1. This configuration
can be analysed by means of the Eshelby equivalence prin-
ciple as discussed in the following Sections. For an isotro-
pic matrix the stiffness tensor can be represented as

Cð1Þijkh ¼ K1 �
2
3
l1

� �
dijdkh þ l1ðdikdjh þ dihdjkÞ ð1Þ

where the elastic moduli are named K1(bulk modulus) and
l1(shear modulus) and dij is the kronecker delta. The bulk
and the shear moduli can be replaced when needed by
the Young modulus E1 = (9K1l1)/(l1 + 3K1) and the Poisson
ratio m1 ¼ ð3K1 � 2l1Þ=ð2ðl1 þ 3K1ÞÞ. The displacement ui

induced by the presence of the inclusion (i.e. of the uni-
form eigenstrain �̂�) can be evaluated in term of the so-
called harmonic potential Uð~rÞ and biharmonic potential
Wð~rÞ (Eshelby, 1957, 1959):

uið~rÞ ¼ ��kh
1

8pð1� m1Þ
W;ikh�

dih

4p
U;k�

dik

4p
U;h�

m1

1� m1

dkh

4p
U;i

� �
ð2Þ

where ~r ¼ ðx1; x2; x3Þ is the position vector. Hereafter we
write the symbol f;i ¼ @f

@xi
and we extend this notation to

higher order derivatives. Eq. (2) is valid anywhere. The har-
monic potential is defined, as well known, by the Poisson
equation r2U ¼ �4p if ~r 2 X;0 if ~r R X and the integral
form of its solution is Uð~rÞ ¼

R
X

1
k~r�~xk d~x where the symbol

k � k indicates the standard Euclidean norm. Similarly, the
biharmonic potential is defined by means of the biharmonic
equation r4W ¼ �8p if ~r 2 X;0 if ~r R X and the standard
integral representation is Wð~rÞ ¼

R
X k~r �~xkd~x (Eshelby,

1957; Mura, 1987).
Such harmonic and biharmonic potentials only contain

geometrical information about the embedded ellipsoid
(i.e. the semi-axes lengths b1, b2 and b3). It is worthwhile
recalling some explicit expressions providing the above
potentials or their derivative as used to determine the elas-
tic fields (Mura, 1987):

Uð~rÞ ¼ pb1b2b3
Rþ1
gð~rÞ

1�f ð~r;sÞ
RðsÞ ds

W;ið~rÞ ¼ pb1b2b3xi
Rþ1
gð~rÞ

1�f ð~r;sÞ
RðsÞ

s
b2

i þs
ds

8<
: ð3Þ

where f ð~r; sÞ;gð~rÞ and R(s) are defined as follows:

f ð~r; sÞ ¼ x2
1

b2
1þs
þ x2

2

b2
2þs
þ x2

3

b2
3þs

gð~rÞ : f ð~r;gð~rÞÞ ¼ 1

RðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
1 þ s

� �
b2

2 þ s
� �

b2
3 þ s

� �r
8>>>><
>>>>:

ð4Þ

The quantity gð~rÞ is defined in implicit form and it is con-
sidered as the largest positive root of the equation
f ð~r;gð~rÞÞ ¼ 1. The integrals defined in Eq. (3) are used for
the external region assuming gð~rÞ given in Eq. (4) and for
the internal region assuming gð~rÞ ¼ 0. We summarize the
solution of the problem in terms of the gradient of the dis-
placement and of the strain tensor. The gradient of the dis-
placement is given by Jij = ui,j and the strain tensor is

defined as �ij ¼ 1
2 ðui;j þ uj;iÞ. They can be evaluated accord-

ingly to the relations

Jij ¼
@ui

@xj
¼ Dijkhð~rÞ��kh ð5Þ

�ij ¼
1
2

@ui

@xj
þ @uj

@xi

� �
¼ Sijkhð~rÞ��kh ð6Þ

where Sijkhð~rÞ is the Eshelby tensor andDijkhð~rÞ is a new ten-
sor useful to determine the gradient of the displacement
over the whole space. We observe that Sijkh is the symmetri-
zation of the tensor Dijkh with respect to the first couple of
indexes: Sijkh ¼ 1

2 ðDijkh þDjikhÞ. The generic forms of such
tensors, which apply both inside and outside the inclusion,
can be written by means of the elastic potentials as follows

Sijkhð~rÞ ¼
1

8pð1� m1Þ
W;ijkh �

m1

1� m1

dkh

4p
U;ij

� 1
8p

dihU;jk þ dikU;jh þ djhU;ik þ djkU;ih

	 

ð7Þ

Dijkhð~rÞ ¼
1

8pð1� m1Þ
W;ijkh �

m1

1� m1

dkh

4p
U;ij

� 1
4p
ðdihU;kj þ dikU;hjÞ ð8Þ

Typically, the notation adopted for the tensors is different
for the internal points and for external ones:

Sijkhð~rÞ ¼ Sijkh Dijkhð~rÞ ¼ Dijkh if ~r 2 X

Sijkhð~rÞ ¼ S1ijkhð~rÞ Dijkhð~rÞ ¼ D1ijkhð~rÞ if ~r R X
ð9Þ

Taking a different notation for the internal and the external
region is particularly efficient in order to remind that the
internal tensors are constant and, therefore, the internal
stress, strain and gradient of displacement are uniform
tensor fields. By defining the depolarization factors of the
first kind as

Ci ¼
b1b2b3

2

Z þ1

0

ds

b2
i þ s

� �
RðsÞ

ds ð10Þ

and the depolarization factors of the second kind

Hij ¼
b1b2b3

2

Z þ1

0

sds

ðb2
i þ sÞðb2

j þ sÞRðsÞ
ds ð11Þ

we obtain the explicit expressions for the derivatives of the
elastic potentials within the region X

U;ij ¼ �4pdijCi ð12Þ
W;ijkh ¼ �4pðdijdkhHki þ dikdjhHhi þ dihdjkHjiÞ ð13Þ

Therefore, the internal tensors assume the explicit forms

Dijkh ¼ �
1

2ð1� m1Þ
ðdijdkhHki þ dikdjhHhi þ dihdjkHjiÞ

þ m1

1� m1
dkhdijCi þ dihdkjCk þ dikdhjCh ð14Þ

Sijkh ¼
1
2
ðDijkh þDjikhÞ ð15Þ

The tensor Dijkh is one of the most important quantities for
the following derivations.

S. Giordano et al. / Mechanics of Materials 44 (2012) 4–22 7
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3. Generalized equivalence principle for spheres and
cylinders

Eshelby has considered the case of a non-prestrained
inhomogeneity embedded in a matrix which is remotely
loaded by a given stress. This problem has been solved
by means of the Eshelby equivalence principle according
to which the complete problem is solved by combining
the solutions of two different simpler problems (see
Fig. 2). The first one (subproblem A) corresponds to the
application of the remote uniform load to a simple homo-
geneous elastic system with the stiffness tensor of the ma-
trix. The second configuration (subproblem B) corresponds
to an unloaded inclusion (see previous Section) with a suit-
able eigenstrain. We follow the same technique but we

introduce the generalized equivalence principle in order
to consider a possible prestrain or prestress. Basically, in
the generalized equivalence principle one must consider
the constitutive equation of the inhomogeneity written in
the reference frame corresponding to the configuration in
which the particle fits exactly the cavity.

The first step in considering inhomogeneities with shape
and size slightly different from the hosting cavity is given by
the analysis of spherical or cylindrical particles embedded in
cavities with different radii. A following Section will deal
with the most general case of an ellipsoidal particle embed-
ded in a different ellipsoidal cavity. More precisely, in this
Section, we consider a (spherical or cylindrical) particle of
radius R2 and stiffness Ĉð2Þ which must be enclosed in the
(spherical or cylindrical) cavity of radius R1 in a matrix with

Fig. 2. Scheme of a prestrained (cylindrical or spherical) inhomogeneity (stiffness Ĉð2Þ and radius R2) embedded into a homogeneous matrix (stiffness Ĉð1Þ
and cavity with radius R1). One can see the initial deformation �̂0 (applied to fit the cavity) and the representation of the generalized equivalence principle:
the embedded particle can be studied through the superimposition of the subproblems A and B corresponding to an homogeneous loaded matrix and to an
unloaded inclusion with eigenstrain �̂� , respectively.

8 S. Giordano et al. / Mechanics of Materials 44 (2012) 4–22
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stiffness Ĉð1Þ. We suppose a perfect gluing of the spherical or
cylindrical surfaces obtained by means of radial deforma-
tions of both bodies. We also suppose that a system of forces
remotely applied generates a uniform stress in a homoge-
neous matrix Ĉð1Þ (without the inhomogeneity). The corre-
sponding elastic state is fully described by the following
fields: linear displacement u1i ð~yÞ, constant strain

�1kh ¼ 1
2

@u1
k

@yh
þ @u1

h
@yk

� �
and constant stress T1ij ¼ C

ð1Þ
ijkh�

1
kh. If we

now embed the inhomogeneity in the matrix, we must cope
with the problem of evaluating the perturbation induced in
the elastic fields, both inside and outside the particle. In
order to utilize the infinitesimal theory of elasticity we must
consider R1 � R2 or, equivalently j�0j � 1 if �0 = R1/R2 � 1. All
the quantities in our system are reported in Fig. 2, together
with the conceptual scheme utilized to solve the problem.
We start with the description of the equivalence principle
used to obtain the elastic fields in the system. The original
problem with the prestrained (or prestressed) inhomogene-
ity is approached through the superimposition of two sub-
problems A and B. The subproblem A is described by an
entirely homogeneous matrix subjected to the remote load

�̂1 or T̂1 ¼ Ĉð1Þ�̂1. In this simple case the following elastic
fields apply at any point of the body

�̂A ¼ �̂1 and T̂A ¼ T̂1 ¼ Ĉð1Þ�̂1 ð16Þ

The subproblem B corresponds to a spherical or cylindrical
inclusion (with radius R1) described by the eigenstrain �̂�.
The results summarized in the previous Section allow us
to obtain the following uniform elastic fields in the region
of the inclusion

�̂B ¼ Ŝ�̂� and T̂B ¼ Ĉð1Þð�̂B � �̂�Þ ð17Þ

The superimposition of the stress and the strain for the sit-
uations A and B leads to the relations

�̂ ¼ �̂A þ �̂B ¼ �̂1 þ Ŝ�̂�

T̂ ¼ T̂A þ T̂B ¼ Ĉð1Þ�̂1 þ Ĉð1Þð�̂B � �̂�Þ
¼ Ĉð1Þ�̂1 þ Ĉð1ÞðŜ�̂� � �̂�Þ

ð18Þ

which apply to any point of the inclusion. Now, it is impor-
tant to investigate the relation between �̂ and T̂ inside the
inhomogeneity, i.e. the constitutive relation of the embed-
ded particle. This is a crucial issue because this relation is
described by the stiffness tensor Ĉð2Þ in the reference frame
f~xg, where the particle is not deformed (see Fig. 2).

However, this is not true in the reference frame f~yg
where the particle is radially deformed in order to achieve
the radius R1 of the cavity. It must be underlined that the
equivalence principle must be used with the constitutive
equation of the particle written in the reference frame
where the particle itself has the same shape and size of
the cavity.

The linear displacement field changing the radius of the
particle from R2 to R1 is ~u0ð~xÞ ¼ ðR1 � R2Þ=R2~x and, there-
fore, the corresponding strain tensor is �̂0 ¼ ðR1 � R2Þ=
R2 Î2 ¼ �0 Î2 for a cylinder and �̂0 ¼ ðR1 � R2Þ=R2 Î3 ¼ �0 Î3 for
a sphere, where �0 = (R1 � R2)/R2 (̂I2 and Î3 are the two-
dimensional and the three-dimensional identity tensors,
respectively).

In other words, each point of the particle is transformed
accordingly to ~y ¼~xþ �̂0~x in order to fit the cavity. In this
configuration the surfaces of the prestrained circular inho-
mogeneity and of the cavity are firmly bonded. An arbi-
trary deformation ~uTð~xÞ of the particle can be described
by two successive steps: a first deformation described by
~u0ð~xÞ and a further deformation ~uð~yÞ defined on the refer-
ence frame f~yg. Therefore, the arbitrary deformation
~uTð~xÞ can be written in the form ~uTð~xÞ ¼ ~u0ð~xÞ þ~uð~yÞ ¼
~u0ð~xÞ þ~uð~xþ �̂0~xÞ. The subscript T means true, i.e. the dis-
placement ~uTð~xÞ is the actual or total displacement mea-
sured in the reference configuration where the material
is in elastic equilibrium. On the other hand, the second
step of the deformation, described by the vector ~uð~yÞ, de-

fines a standard strain tensor �ijð~yÞ ¼ 1
2

@ui
@yj
þ @uj

@yi

� �
working

in the reference frame f~yg. The relation between �̂Tð~xÞ
and �̂ð~yÞ is

�T;ij ¼
1
2

@uT;i

@xj
þ @uT;j

@xi

� �

¼ 1
2

@u0;i

@xj
þ @u0;j

@xi
þ @ui

@yj
þ @uj

@yi
þ @ui

@ys
�0;sj þ

@uj

@ys
�0;si

 !

¼ �0dij þ ð1þ �0Þ�ij

ð19Þ

In the reference frame f~xg we have the standard constitu-

tive equation T̂ð~xÞ ¼ Ĉð2Þ�̂Tð~xÞ while, in the reference frame
f~yg (where the particle has the same radius of the hosting

cavity) we simply obtain T̂ð~yÞ ¼ Ĉð2Þ½�0 Î þ ð1þ �0Þ�̂ð~yÞ�
where Î ¼ Î2 for a cylindrical particle and Î ¼ Î3 for a spher-
ical one. By considering that �0 = (R1 � R2)/R2 we obtain

T̂ð~yÞ ¼ Ĉð2Þ R1 � R2

R2
Î þ R1

R2
�̂ð~yÞ

� �
¼ R1

R2
Ĉð2Þ �̂ð~yÞ � R2 � R1

R1
Î

� �
ð20Þ

This is the constitutive equation of the prestrained (or pre-
stressed) inhomogeneity in the reference frame f~yg. It
must be utilized with the strain and stress fields defined
in Eq. (18), yielding

Ĉð1Þ�̂1 þ Ĉð1Þ Ŝ�̂� � �̂�
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T̂ð~yÞ

¼ R1

R2
Ĉð2Þ �̂1 þ Ŝ�̂�

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

�̂ð~yÞ

�R2 � R1

R1
Î

2
664

3
775
ð21Þ

Eq. (21) represents an equation for the eigenstrain �̂� assur-
ing the equivalence between the original (prestrained)
inhomogeneity problem and the superimposition of the
subproblems A and B. The eigenstrain �̂� can be obtained
through straightforward tensor calculations

�̂� ¼ Î � R1

R2
ðĈð1ÞÞ�1Ĉð2Þ

� ��1

� Ŝ
" #�1

� �̂1 � Î � R2

R1
ðĈð2ÞÞ�1Ĉð1Þ

� ��1 R2 � R1

R1
Î

" #
ð22Þ
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Moreover, Eq. (21) can be written in the alternative form

Ĉð1Þ �̂1 þ Ŝ�̂�
� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

�̂ð~yÞ

��̂�

2
664

3
775 ¼ R1

R2
Ĉð2Þ �̂1 þ Ŝ�̂�

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

�̂ð~yÞ

�R2 � R1

R1
Î

2
664

3
775
ð23Þ

which is useful to evaluate the strain �̂ð~yÞ in the inhomoge-
neity. A long manipulation leads to the following relation
between the internal strain �̂ð~yÞ and the eigenstrain �̂�

�̂ ¼ Î � R1

R2
ðĈð1ÞÞ�1Ĉð2Þ

� ��1

�̂�

þ Î � R2

R1
Ĉð2Þ
� ��1

Ĉð1Þ
� ��1 R2 � R1

R1
Î ð24Þ

Now, we can substitute Eq. (22) in Eq. (24), obtaining the
internal strain measured in the reference frame f~yg

�̂ ¼ Â �̂1 þ ŜðĈð1ÞÞ�1Ĉð2Þ R2 � R1

R2
Î

� �
ð25Þ

where we have defined the tensor Â as

Â ¼ Î � Ŝ Î � R1

R2
ðĈð1ÞÞ�1Ĉð2Þ

� �� �1

ð26Þ

It is also important to obtain the true internal strain, mea-
sured in the reference frame f~xg. To this aim we obtain
from Eq. (19) the relation giving the true strain �̂T as

�̂T ¼
R1 � R2

R2
Î þ R1

R2
�̂ ¼ R1

R2
Â �̂1 � ðÎ � ŜÞR2 � R1

R1
Î

� �
ð27Þ

Finally, by recalling the definition of Â in Eq. (26), we ob-
tain the explicit expression

�̂T ¼
R1

R2
Î � Ŝ Î � R1

R2
ðĈð1ÞÞ�1Ĉð2Þ

� �� �1

�̂1 � ðÎ � ŜÞR2 � R1

R1
Î

� �
ð28Þ

This is the most important result of the present Section. It
is important to remark that, if we consider R1 = R2, we ob-
tain the standard Eshelby result for not prestrained inho-
mogeneities. In fact, if R1 = R2 both Eqs. (25) and (28)

reduce to �̂ ¼ �̂T ¼ fÎ � Ŝ½Î � ðĈð1ÞÞ�1Ĉð2Þ�g�1�̂1, as ex-
pected. Furthermore, we can calculate the state of strain
in the surrounding matrix; the counterpart of Eq. (18) for
the external region reads

�̂ð~yÞ ¼ �̂1 þ Ŝ1ð~yÞ�̂�

T̂ð~yÞ ¼ Ĉð1Þ�̂1 þ Ĉð1ÞŜ1ð~yÞ�̂�
ð29Þ

where the eigenstrain �̂� is given by Eq. (22). The final
expression for the external strain assumes the form

�̂ð~yÞ ¼ �̂1 þ Ŝ1ð~yÞ Î � R1

R2
Ĉð1Þ
� ��1

Ĉð2Þ
� ��1

� Ŝ
" #�1

� �̂1 � Î � R2

R1
Ĉð2Þ
� ��1

Ĉð1Þ
� ��1 R2 � R1

R1
Î

" #
ð30Þ

3.1. Formalism for the sphere

Here, we apply the result stated in Eq. (28) to the spe-
cific case of a spherical particle. The constitutive equations
for the sphere (j = 2) and the matrix (j = 1) can be repre-

sented in the explicit form T̂ ¼ ĈðjÞ�̂ ¼ 2lj�̂þ kjTrð�̂Þ̂I3. We

also introduce the bulk moduli Kj ¼ kj þ 2
3 lj. The explicit

expression of the Eshelby tensor for a sphere embedded
in a matrix with Poisson ratio m1 is reported in literature
(Walpole, 1981; Mura, 1987)

Sijkh ¼
1

15ð1� m1Þ
½ðdikdjh þ dihdjkÞð4� 5m1Þ þ dkhdijð5m1 � 1Þ�

ð31Þ

To obtain a more useful form, we can evaluate the effect of
Sijkh over an arbitrary tensor wkh, getting

Sijkhwkh ¼
2ð4� 5m1Þ
15ð1� m1Þ

wij þ
5m1 � 1

15ð1� m1Þ
wkkdij ð32Þ

Now, the Poisson ratio m1 of the matrix can be written in
terms of the moduli K1 and l1 through the standard rela-

tion m1 ¼ 3K1�2l1
2ð3K1þl1Þ

, obtaining

Ŝŵ ¼ 6
5

K1 þ 2l1

3K1 þ 4l1
ŵþ 1

5
3K1 � 4l1

3K1 þ 4l1
TrðŵÞ̂I3 ð33Þ

At this point we have all the ingredients to develop Eq.
(28). We define the parameters

L3 ¼ 1þ 6
5

K1 þ 2l1

3K1 þ 4l1

R1

R2

l2

l1
� 1

� �
ð34Þ

M3 ¼
1

5ð3K1 þ 4l1Þ
5

R1

R2
K2 � K1 3þ 2

R1

R2

l2

l1

� ��

�4
R1

R2
l2 � l1

� ��
ð35Þ

which are useful to write in explicit form the effect of Â de-
fined in Eq. (26) over an arbitrary tensor ŵ

Âŵ ¼ 1
L3

ŵ�M3

L3

1
L3 þ 3M3

TrðŵÞ̂I3 ð36Þ

This expression is also useful in the following develop-
ments

L3 þ 3M3 ¼
3 R1

R2
K2 þ 4l1

3K1 þ 4l1
ð37Þ

By means of a long but straightforward calculation we ob-
tain the final expression for the true strain in the form

�̂T ¼
R1

R2

1
L3
�̂1 � R1

R2

M3

L3

1
L3 þ 3M3

Tr�̂1 Î3

� R2 � R1

R2

4l1

3 R1
R2

K2 þ 4l1

Î3 ð38Þ

An alternative method for obtaining the value of �̂T when
�̂1 ¼ 0 can be found in Appendix A. This further calculation
has been performed observing that the elastic fields show
spherical symmetry when no loads are applied to the
system.
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3.2. Formalism for the cylinder

We apply now Eq. (28) to the case of a cylindrical par-
ticle embedded in the homogeneous matrix. We suppose
to deform both the particle and the matrix under the plane
strain condition (on the plane perpendicular to the axis of
the cylindrical particle). Therefore, we introduce the cus-
tomarily defined two-dimensional bulk moduli kj ¼ Kjþ
1
3 ljðj ¼ 1;2Þ. Accordingly, we adopt the constitutive rela-
tions in the form T̂ ¼ ĈðjÞ�̂ ¼ 2lj�̂þ ðkj � ljÞTrð�̂Þ̂I2 where
j = 1 for the matrix and j = 2 for the inhomogeneity. More-
over, we remember that the result of the application of the
Eshelby tensor Ŝ (for a cylindrical geometry) over an arbi-
trary tensor ŵ is given by (Mura, 1987)

Ŝŵ ¼ 1
2

k1 þ 2l1

k1 þ l1
ŵþ 1

4
k1 � 2l1

k1 þ l1
TrðŵÞ̂I2 ð39Þ

The development of Eq. (28) can be made easier by the def-
inition of the parameters

L2 ¼ 1þ1
2

k1 þ 2l1

k1 þl1

R1

R2

l2

l1
� 1

� �
ð40Þ

M2 ¼
1

4ðk1 þl1Þ
2

R1

R2
k2 � k1 1þR1

R2

l2

l1

� �
� 2

R1

R2
l2 �l1

� �� �
ð41Þ

which are useful to write in explicit form the effect of Â de-
fined in Eq. (26) over an arbitrary tensor ŵ

Âŵ ¼ 1
L2

ŵ�M2

L2

1
L2 þ 2M2

TrðŵÞ̂I2 ð42Þ

The following expression is useful in the calculations

L2 þ 2M2 ¼
R1
R2

k2 þ l1

k1 þ l1
ð43Þ

A tedious algebraic manipulation leads to the final result

�̂T ¼
R1

R2

1
L2
�̂1 � R1

R2

M2

L2

1
L2 þ 2M2

Tr�̂1 Î2

� R2 � R1

R2

l1
R1
R2

k2 þ l1

Î2 ð44Þ

As before, the value of �̂T when �̂1 ¼ 0 has been checked by
a standard methodology based on the cylindrical symme-
try of the elastic fields. The details are discussed in Appen-
dix B. Since Eq. (44) is a result obtained for the two-
dimensional elasticity (plane strain condition), it can be
also verified by means of the complex potentials method
of Kolosoff (1909, 1914) and Muskhelishvili (1953). This
approach has been followed in Appendix C where the read-
er can find all the relevant details.

3.3. Example of application

For nano-science applications the typical sizes of the
particles range in the interval 5 nm < R1 � R2 < 50 nm,
while the possible difference between the radii lies in
0 Å < jR2 � R1j < 5 Å. In this Section we show an example
of cylindrical particle with moduli l2 = 85 GPa and k2 =
115 GPa embedded in a matrix having moduli l1 = 50
GPa and k1 = 110 GPa. By means of Eq. (44) we obtain the

true internal strain field �̂T for 2 nm < R1 < 20 nm and
0.1 Å < R2 � R1 < 0.5 Å. In Fig. 3 (a) one can find the results
for the case without external loads applied to the system.
In this case the isotropy leads to the hydrostatic condition
exx = eyy. The scale effects generated by the condition
R1 – R2 can be compared with the constant value of the
strain predicted by the classical Eshelby theory when
R1 = R2. Moreover, in Fig. 3 (b) the effects of a remotely ap-
plied uniaxial load are shown. One can observe that the
scale effects induced by the condition R1 – R2 become neg-
ligible only when the radius R1 is larger than a given
threshold.

We have also analysed the external fields (i.e. outside
the particle), described by Eq. (30). In particular, in Fig. 4
the true displacement field components uxðx;0Þ � u1x ðx;0Þ
(a) and uyð0; yÞ � u1y ð0; yÞ (b) are shown for e1xx ¼ 0:01,
e1yy ¼ 0 and e1xy ¼ 0. We have used the fixed radius R1 =
20 nm and the difference 0.1 Å < jR2 � R1j < 1 Å. The dashed
lines correspond to the Eshelby theory (R1 = R2) and, there-
fore, they are continuous at the cylinder-matrix interface.
When R1 – R2 the displacement field shows a discontinuity
at the interface due to the gluing of the surfaces having dif-
ferent radius (it is the typical behavior of the elastic fields
generated by a dislocation distributed over the interface).
The jump of the discontinuity is an increasing function of
R2 � R1 both for the longitudinal and the transversal com-

Fig. 3. Internal components exx and eyy of the strain tensor �̂T for a
prestrained cylindrical inhomogeneity (stiffness Ĉð2Þ and radius R2)
embedded into a homogeneous matrix (stiffness Ĉð1Þ and cavity with
radius R1). Results without external load (a) and the effects of a remotely
applied deformation (b).
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ponents. By comparing the Eshelby solution with the
results for R1 – R2 we note that the behavior can be largely
different, depending on the quantity R2 � R1. As for the lon-
gitudinal component, we observe that a value of R2 � R1

exists (of about 0.7 Å for the example shown in Fig. 4 (a))
which leads to a very fast decay to zero of uxðx;0Þ�
u1x ðx;0Þ. In other words, in such a case, the prestrain causes
a strong localization of the elastic fields around the inter-
face. On the other hand, the transversal component shown
in Fig. 4 (b) shows a decay to zero that is more and more
slowly for increasing values of R2 � R1.

All the features described in this Section have been re-
cently confirmed by molecular dynamics experiments con-
ducted in order to show the role of the interface elasticity
in nanostructured silicon (Palla et al., 2009, 2010). It is
interesting to observe that such atomistic simulations per-
fectly take into account both the fast decay and the dis-
placement discontinuity, being in good agreement with
the present model.

4. Generalized equivalence principle for ellipsoids

As in the case of spherical or cylindrical inhomogenei-
ties, also with ellipsoidal particles we can generalize the
Eshelby equivalence principle in order to take into account
the effects of the prestrain or prestress. As before, we will

prove that the problem can be decomposed in two sub-
problems: the subproblem A with a loaded uniform matrix
and the problem B with an unloaded inclusion with a suit-
able eigenstrain (see Fig. 5). Here, the new crucial point is
the method for obtaining the constitutive equation of the
inhomogeneity, written in the configuration fitting the ma-
trix cavity. In fact, in contrast to the previous case where a
simple hydrostatic deformation was applied, for an ellip-
soidal particle an arbitrary geometrical transformation
(rotation and stretching) must be taken into account.

To begin, we consider an elastic particle (stiffness Ĉð2Þ)
with an ellipsoidal shape given by~x � â�2~x ¼ 1 in the refer-
ence frame f~xg. This particle must be embedded in the ma-
trix (stiffness Ĉð1Þ) showing an ellipsoidal cavity described
by~y � b̂�2~y ¼ 1 in the reference frame f~yg (see Fig. 5 for de-
tails). These ellipsoids have the semi-axes aligned to refer-
ence frames and, therefore, the tensors â and b̂ are diagonal
and their entries represent the lengths of the semi-axes of
the ellipsoids. We now search for the geometrical transfor-
mation, which converts the first ellipsoid (representing the
particle) in the second ellipsoid (representing the cavity).
The general form of such a transformation is assumed in
the form~y ¼ F̂~x where F̂ is an unknown non singular tensor
(the inverse transformation is~x ¼ F̂�1~y). The application of
the tensor F̂ to the ellipsoid~x � â�2~x ¼ 1 leads to the trans-
formed ellipsoid~y � F̂�T â�2F̂�1~y ¼ 1. Therefore, the tensor F̂
must fulfil the condition

b̂�2 ¼ F̂�T â�2F̂�1 ð45Þ

It is easy to recognize that it exists an infinite number of
tensors F̂ fulfilling the previous relation: in fact, reasoning
in Rn, the tensor F̂ corresponds to n2 unknowns, while Eq.
(45) corresponds to n(n + 1)/2 equations (in fact, both sides
are symmetric). In order to characterize all the possible
tensors satisfying Eq. (45) we invoke the polar decomposi-
tion F̂ ¼ R̂Û ¼ V̂ R̂, which applies to any non singular tensor
F̂. We adopt the left version F̂ ¼ V̂ R̂ where R̂ is an orthogo-
nal tensor and V̂ is symmetric and positive definite. From
the above statement we simply obtain F̂�1 ¼ R̂T V̂�1 and
F̂�T ¼ V̂�1R̂. Therefore, Eq. (45) can be rewritten in the form

b̂�2 ¼ V̂�1R̂â�2R̂T V̂�1 ð46Þ

Now, we suppose to consider a given orthogonal tensor R̂
and we prove that it exists a unique tensor V̂ fulfilling
Eq. (46). In other words, we have decomposed the transfor-
mation~y ¼ F̂~x in two steps:~z ¼ R̂~x and~y ¼ V̂~z (see Fig. 5 for
details). In the reference frame f~zg the ellipsoid assumes
the form ~z � ĉ�2~z ¼ 1 where ĉ ¼ R̂âR̂T is a positive definite
symmetric tensor. Since the tensor R̂ is now considered
fixed, Eq. (46) can be written as follows

b̂�2 ¼ V̂�1ĉ�2V̂�1 ð47Þ

We must now find the solution V̂ of the previous Eq. (47).

This equation can be represented in the form ĉ�1b̂�2ĉ�1 ¼
ðĉ�1V̂�1ĉ�1Þðĉ�1V̂�1ĉ�1Þ or, equivalently, in the form

ĉ�1b̂�2ĉ�1 ¼ ðĉ�1V̂�1ĉ�1Þ2. Therefore, we obtain ĉ�1V̂�1ĉ�1¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉ�1b̂�2ĉ�1

p
since the tensor ĉ�1b̂�2ĉ�1 is symmetric and

positive definite (having a standard square root). At the

end, the transformation tensor F̂�1 or F̂�T is explicitly given

Fig. 4. True displacement field components uxðx;0Þ � u1x ðx;0Þ (a) and
uyð0; yÞ � u1y ð0; yÞ (b) for a prestrained cylindrical inhomogeneity (radius
R2) embedded into a homogeneous matrix (cavity with radius R1).
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F̂�1 ¼ R̂T V̂�1 ¼ R̂T ĉ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉ�1b̂�2ĉ�1

q
ĉ

¼ âR̂T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR̂âR̂TÞ�1b̂�2ðR̂âR̂TÞ�1

q
R̂âR̂T ð48Þ

F̂�T ¼ V̂�1R̂ ¼ ĉ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉ�1b̂�2ĉ�1

q
ĉR̂

¼ R̂âR̂T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR̂âR̂TÞ�1b̂�2ðR̂âR̂TÞ�1

q
R̂â ð49Þ

It is simple to verify by substitution that our solution sat-
isfies Eq. (45) as requested. Moreover, if R̂ ¼ Î3 we obtain
the simple solution F̂ ¼ â�1b̂ as expected.

For the following purposes we suppose to fix the rota-
tion tensor R̂ and to obtain the transformation tensors V̂
and F̂ through the previous procedure based upon the
knowledge of the shape of the ellipsoids (the tensors â
and b̂). Moreover, the shape of the ellipsoid assumed in

Fig. 5. Scheme of a prestrained ellipsoidal inhomogeneity (stiffness Ĉð2Þ) embedded into a matrix (stiffness Ĉð1Þ). One can see the initial rotation R̂, the
further deformation V̂ (applied to fit the cavity) and the representation of the generalized equivalence principle: the prestrained ellipsoidal inhomogeneity
can be analysed by means of the superimposition of the sub-problems A and B corresponding to an homogeneous loaded matrix and to an unloaded
inclusion with eigenstrain �̂� , respectively.
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the reference f~zg must be very similar to that assumed in
the reference f~yg in order to satisfy the requirements of
the infinitesimal theory of elasticity.

We suppose to measure the true strain of the embedded
ellipsoid in the reference frame f~zg, i.e. after the first rota-
tion. The ellipsoid in the reference frame f~zg assumes the
role of reference configuration. In order to describe the
generalized version of the Eshelby equivalence principle,
the complete transformation, from the reference configu-
ration to the deformed one, can be accomplished in two
steps: firstly, we apply the tensor V̂ , which gives to the
ellipsoidal particle the exact shape of the cavity (in the ref-
erence frame f~yg) and, successively, we consider the final
change leading to the actual current configuration.

The transformation ~y ¼ V̂~z between the reference
frames f~zg and f~yg corresponds to a displacement field
~uV ð~zÞ ¼~y�~z ¼ ðV̂ � ÎÞ~z. In this configuration the surfaces
of the prestrained ellipsoidal inhomogeneity and of the
cavity are firmly bonded. The current configuration, after
relaxation, is then reached through a further displacement
field ~uð~yÞ, which represents the main unknown in our sys-

tem, depending upon the shape tensors â and b̂ and on the
externally applied loadings. It is now important to find a
relation between the true strain measured in the reference
frame f~zg and the displacement fields ~uV ð~zÞ and ~uð~yÞ;
the total displacement is ~uTð~zÞ ¼ ~uV ð~zÞ þ~uð~yÞ ¼~uV ð~zÞþ
~u½~zþ~uV ð~zÞ�. The strain in the reference frame f~yg is defined
as �ijð~yÞ ¼ 1

2 ðJij þ JjiÞ where Jijð~yÞ ¼ @ui
@yj

and, therefore, the

true strain is given by

�T;ijð~zÞ ¼
1
2

@uT;i

@zj
þ @uT;j

@zi

� �

¼ 1
2

@uV ;i

@zj
þ @uV ;j

@zi
þ @ui

@ys

@ys

@zj
þ @uj

@ys

@ys

@zi

� �

¼ 1
2
½Vij � dij þ Vji � dji þ Jisð~yÞVsj

þ Jjsð~yÞVsi�~y¼V̂~z ð50Þ

Since the tensor V̂ is symmetric we simply obtain

�̂Tð~zÞ ¼ V̂ � Î þ 1
2
½̂Jð~yÞV̂ þ V̂ Ĵ!Tð~yÞ�~y¼V̂~z ð51Þ

where ĴV̂ and V̂ Ĵ!T represent two standard matrix multipli-
cations and Ĵ!T is the transpose of Ĵ. The constitutive equa-
tion in the reference frame f~zg is T̂ð~zÞ ¼ Ĉð2Þ�̂Tð~zÞ and,
consequently, in the reference frame f~yg we immediately
obtain

T̂ð~yÞ ¼ Ĉð2Þ V̂ � Î þ 1
2
½̂Jð~yÞV̂ þ V̂ Ĵ!Tð~yÞ�

� 
ð52Þ

It is important to remark that, in order to adopt the equiv-
alence principle approach, we must utilize in the region X
the constitutive equation of the inhomogeneity written in
the reference frame f~yg, i.e. in the deformed configuration
close-fitting the cavity of the homogeneous matrix. In
these conditions, the problem can be split in the superim-
position of two different sub-problems (see Fig. 5): the
problem A corresponds to a very simple situation of an en-
tirely homogeneous material (stiffness Ĉð1Þ without inclu-
sions or inhomogeneities) loaded by the remotely applied

stress T̂1. The corresponding elastic fields can be summed
up as follows

�̂A ¼ �̂1; ĴA ¼ �̂1 and T̂A ¼ T̂1 ¼ Ĉð1Þ�̂1 ð53Þ

The second problem B corresponds to an inclusion confined
in the region X and described by the eigenstrain �̂�. The re-
lated fields have been discussed in Section 2 and they are
summarized below

�̂B ¼ Ŝ�̂�; ĴB ¼ D̂�̂� and T̂B ¼ Ĉð1Þð�̂B � �̂�Þ ð54Þ

where the tensors D̂ and Ŝ have been defined in Eqs. (14)
and (15), respectively. The superimpositions of strain, gra-
dient of displacement and stress in the schemes A and B
define the elastic field in the region X as follows

�̂ ¼ �̂A þ �̂B ¼ �̂1 þ Ŝ�̂�

Ĵ ¼ ĴA þ ĴB ¼ �̂1 þ D̂�̂�

T̂ ¼ T̂A þ T̂B ¼ Ĉð1Þ�̂1 þ Ĉð1Þð�̂B � �̂�Þ ¼ Ĉð1Þ�̂1 þ Ĉð1ÞðŜ�̂� � �̂�Þ
ð55Þ

The equivalence principle becomes operative by combin-
ing Eq. (55) for the fields in the region X with the constitu-
tive relation given in Eq. (52)

Ĉð1Þ�̂1 þ Ĉð1ÞðŜ � ÎÞ�̂�

¼ Ĉð2Þ V̂ � Î þ 1
2
½ð�̂1 þ D̂�̂�ÞV̂ þ V̂ð�̂1 þ D̂�̂�Þ!T �

� 
ð56Þ

This is an equation for the eigenstrain ensuring the equiv-
alence between the superimposition of the problems A and
B and the original prestrained inhomogeneity problem.
This relation can be written in the following form

Ĉð1Þ�̂1 � Ĉð2ÞðV̂ � ÎÞ � 1
2
Ĉð2Þ �̂1V̂ þ V̂ �̂1
� �

¼ �Ĉð1ÞðŜ � ÎÞ�̂� þ 1
2
Ĉð2Þ½ðD̂�̂�ÞV̂ þ V̂ðD̂�̂�Þ!T � ð57Þ

which represents a linear equation in the eigenstrain �̂�. It
can be written in components through the standard form
Mij ¼ Nijkh��kh, where

Mij ¼ Cð1Þijst�
1
st � C

ð2Þ
ijstðVst � dstÞ �

1
2
Cð2Þijst �

1
sk Vkt þ Vsk�1kt

	 

ð58Þ

Nijkh ¼ Cð1Þijkh � C
ð1Þ
ijstSstkh þ

1
2
Cð2Þijst½DsrkhVrt þDtrkhVrs� ð59Þ

Alternatively, Eq. (57) can be solved in tensor notation by
means of the definition of the following operation

½D̂~V̂ ��̂� ¼ 1
2
½ðD̂�̂�ÞV̂ þ V̂ðD̂�̂�ÞT � ð60Þ

where the tensor D̂~V̂ corresponds to the components

½D̂~V̂ �stkh ¼
1
2
½DsrkhVrt þDtrkhVrs� ð61Þ

By this definition, Eq. (57) can be easily solved and the
equivalent eigenstrain is eventually obtained as

�̂� ¼ ½Ĉð2ÞðD̂~V̂Þ � Ĉð1ÞðŜ � ÎÞ��1

� Ĉð1Þ�̂1 � Ĉð2ÞðV̂ � ÎÞ � 1
2
Ĉð2Þð�̂1V̂ þ V̂ �̂1Þ

� �
ð62Þ
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Moreover, the true internal strain, defined in the reference
frame f~zg is given by Eq. (51). By utilizing Eqs. (55) and
(56), it assumes, after some straightforward calculations,
the following final form

�̂Tð~zÞ ¼ ðĈð2ÞÞ�1Ĉð1Þ �̂1 þ ðŜ � ÎÞ Ĉð2ÞðD̂~V̂Þ � Ĉð1ÞðŜ � ÎÞ
h i�1

�

� Ĉð1Þ�̂1 � Ĉð2ÞðV̂ � ÎÞ � 1
2
Ĉð2Þð�̂1V̂ þ V̂ �̂1Þ

� �
ð63Þ

This is the most important result of this Section, stating
that the internal strain is uniform inside the inhomogene-
ity having shape and size different from those of the host-
ing cavity. We remark that if one is interested in the true

internal strain in the original reference frame f~xg it is suf-
ficient to use the rotation �̂Tð~xÞ ¼ R̂!T �̂Tð~zÞR̂. When V̂ ¼ Î
the inhomogeneity is not strained (deformed) to fit the
cavity and the results of the standard Eshelby theory must
be obtained. In fact, if V̂ ¼ Î we have D̂~V̂ ¼ Ŝ and the true
strain assumes the simpler form �̂T ¼ fÎ � Ŝ½Î � ðĈð1ÞÞ�1

Ĉð2Þ�g�1�̂1, as expected.
Furthermore, we can calculate the state of strain in the

surrounding matrix; the equivalence principle for the
external region reads

�̂ð~yÞ ¼ �̂1 þ Ŝ1ð~yÞ�̂�

T̂ð~yÞ ¼ Ĉð1Þ�̂1 þ Ĉð1ÞŜ1ð~yÞ�̂�
ð64Þ

Fig. 6. Planar components exx, eyy and exy of the strain �̂T versus the angle # [rad], in both reference frames f~zg and f~xg with the following parameters:
K1 = K2 = 1, l1 = l2 = 0.1,â = diag(d,1,1) with 0.9 < d < 1.1 and b̂ ¼ diagð1:1;1;1Þ. The load is given by �̂1 ¼ diagð0:1;0:1;0Þ. Dotted red lines: prestrain before
relaxation; black lines with circles: strain after relaxation without load; green lines with triangles: strain after relaxation with applied load. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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where the eigenstrain �̂� is given by Eq. (62). The final
expression for the external strain assumes the form

�̂ð~yÞ ¼ �̂1 þ Ŝ1ð~yÞ Ĉð2ÞðD̂~V̂Þ � Ĉð1ÞðŜ � ÎÞ
h i�1

� Ĉð1Þ�̂1 � Ĉð2ÞðV̂ � ÎÞ � 1
2
Ĉð2Þð�̂1V̂ þ V̂ �̂1Þ

� �
ð65Þ

We describe now a series of examples of application of the
previous theory to prestrained ellipsoidal inhomogeneities
inserted into different ellipsoidal cavities. For the sake of
simplicity we have used the same material for the embed-
ded particle and the hosting matrix (K1 = K2 = 1 and

l1 = l2 = 0.1 in arbitrary units). The geometry of the
inhomogeneity is described by the tensor â = diag(d,1,1)
(a.u.) for 0.9 < d < 1.1, in order to investigate the effects of
the aspect ratio on the elastic response of the system. More
precisely, we have utilized nine values of d regularly
distributed over its range of variation (moving from prolate
to oblate ellipsoids of revolution). On the other hand, for the
geometry of the cavity we have chosen three different pos-
sibilities, namely b̂ ¼ diagð1:1;1;1Þ (a.u.) (prolate spher-
oid), b̂ ¼ diagð1;1;1Þ (a.u.) (sphere) and b̂ ¼ diagð0:9;1;1Þ
(a.u.) (oblate spheroid). For any possible geometry of the
ellipsoids, the inhomogeneity is embedded in the cavity

Fig. 7. Planar components exx, eyy and exy of the strain �̂T versus the angle # [rad], in both reference frames f~zg and f~xg with the following parameters:
K1 = K2 = 1, l1 = l2 = 0.1, â = diag(d,1,1) with 0.9 < d < 1.1 and b̂ ¼ diagð1;1;1Þ. The load is given by �̂1 ¼ diagð0:1;�0:1;0Þ. Dotted red lines: prestrain before
relaxation; black lines with circles: strain after relaxation without load; green lines with triangles: strain after relaxation with applied load. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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after a rotation of an angle # around the x3 	 z axis of the
reference frame f~xg. It corresponds to a rotation matrix of
the form

R̂ ¼
cos# � sin# 0
sin# cos#

0 0 1

2
64

3
75 ð66Þ

We have explored the entire interval 0 < # < p/2 [rad] by
means of 25 regularly spaced values. The results have been
organized as follows:


 In Fig. 6 the planar components exx, eyy and exy of the
true strain �̂T are shown versus the angle # [rad], in both
reference frames f~zg and f~xg , for b̂ ¼ diagð1:1;1;1Þ. The
load is given by �̂1 ¼ diagð0:1;0:1;0Þ.

 In Fig. 7 the planar components exx, eyy and exy of the

true strain �̂T are shown versus the angle # [rad], in both
reference frames f~zg and f~xg , for b̂ ¼ diagð1;1;1Þ. The
load is given by �̂1 ¼ diagð0:1;�0:1;0Þ.

 In Fig. 8 the planar components exx, eyy and exy of the

true strain �̂T are shown versus the angle # [rad], in both
reference frames f~zg and f~xg , for b̂ ¼ diagð0:9;1;1Þ. The
load is given by �̂1 ¼ diagð�0:1;�0:1;0Þ.

Fig. 8. Planar components exx, eyy and exy of the strain �̂T versus the angle # [rad], in both reference frames f~zg and f~xg with the following parameters:
K1 = K2 = 1, l1 = l2 = 0.1, â = diag(d,1,1) with 0.9 < d < 1.1 and b̂ ¼ diagð0:9;1;1Þ. The load is given by �̂1 ¼ diagð�0:1;�0:1;0Þ. Dotted red lines: prestrain
before relaxation; black lines with circles: strain after relaxation without load; green lines with triangles: strain after relaxation with applied load. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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In each plot the dotted red lines correspond to the pre-
strain before relaxation, i.e. �̂Tð~zÞ ¼ V̂ � Î and �̂Tð~xÞ ¼
R̂!p�̂Tð~zÞR̂ ¼ R̂!pðV̂ � ÎÞR̂ (this is the deformation of the
inhomogeneity applied for fitting closely the undeformed
cavity); the black lines with circles correspond to the strain
after relaxation without load, i.e. to Eq. (63) with �̂1 ¼ 0 or
its rotated version; finally, the green lines with triangles
correspond to the strain after relaxation with applied load,
i.e. to Eq. (63) with �̂1 – 0 or its rotated version.

It is interesting to observe the following properties of
the plots: for # = 0 we have exxð~zÞ ¼ exxð~xÞ (see dark-blue ar-
rows in Figs. 6–8) and eyyð~zÞ ¼ eyyð~xÞ (see red arrows in
Figs. 6–8); similarly, for # = p/2 we have exxð~zÞ ¼ eyyð~xÞ
(see sky-blue arrows in Figs. 6–8) and eyyð~zÞ ¼ exxð~xÞ (see
green arrows in Figs. 6–8). These properties simply derive
from the rotation of the strain tensor and, therefore, hold
on for all the strain plots (unrelaxed, relaxed without load
and relaxed with load).

Some more comments of the results follow. In Fig. 6, re-
lated to the case with the prolate cavity b̂ ¼ diagð1:1;1;1Þ,
the unrelaxed strain exxð~zÞ (dotted red lines) in the refer-
ence frame fixed on the matrix must start at the value
(1.1 � d)/d for # = 0 and it must end at the value
(1.1 � 1)/1 = 0.1 for # = p/2; on the other hand, the unre-
laxed strain exxð~xÞ (dotted red lines) in the reference frame
fixed on the inhomogeneity must start at the value
(1.1 � d)/d for # = 0 as before while it must end at the value
(1 � d)/d for # = p/2. Moreover, for the same case, the unre-
laxed strain eyyð~zÞ (dotted red lines) in the reference frame
fixed on the matrix must start at the value 0 for # = 0 and it
must end at the value (1 � d)/d for # = p/2; on the other
hand, the unrelaxed strain eyyð~xÞ (dotted red lines) in the
reference frame fixed on the inhomogeneity must start at
the value 0 for # = 0 as before while it must end at the va-
lue (1.1 � 1)/1 = 0.1 for # = p/2. These considerations, deal-
ing with the unrelaxed strains, are related just to
geometrical factors. On the contrary, the elastic response
can be observed in the relaxed strain curves (black lines
without load and green lines with load), obtained by
means of the present theory, i.e. through Eq. (63). It is
interesting to observe that the intersection points of the
curves (of exxð~zÞ for # = p/2 and of eyyð~zÞ for # = 0) of the
unrelaxed strains (dotted red lines) are shifted by the elas-
tic relaxation process to a different value of the angle # (see
black lines), preserving the property that all the curves
pass through the same point. This property is maintained
also with an externally applied load (see green lines). We
also note that a shear strain appear inside the inhomoge-
neity when it is rotated by an angle # different from 0
and p/2.

The second case, represented in Fig. 7, is simpler be-
cause the cavity is a sphere (of radius 1) and, therefore,
the embedding of the inhomogeneity does not depend on
the angle #. This can be seen by means of the (dotted
red) curves of the unrelaxed strain exxð~xÞ, which are con-
stant at the values (1 � d)/d and the curves of the unre-
laxed strain eyyð~xÞ, which are constant at the values 0.
Also the relaxed version of these strain curves (black lines
without load) are constant for the same reasons. Only
when the load is applied to the system we observe the

dependence on the angle #, due to the rotation of the ref-
erence frame f~xg, rigidly bonded to the inhomogeneity
(see green lines). As for the reference frame f~zg, fixed in
the matrix, we observe in Fig. 7 that the red lines for
exxð~zÞ start at (1 � d)/d and end in 0. Conversely, the red
lines for eyyð~zÞ start at 0 and end in (1 � d)/d. The elastic
relaxation with or without load allows us to conclude that
the intersection points of the curves have the same behav-
ior described for the previous case, represented in Fig. 6.

The third case, shown in Fig. 8 is similar to the first one.
Here an oblate particle with b̂ ¼ diagð0:9;1;1Þ is consid-
ered and the analysis of the results can be conducted as be-
fore: for sake of brevity, it has been left to the reader.

The analysis of the present ellipsoidal case is relevant in
the quantum dot applications since, recently, non circular
quantum dots have been considered in order to modulate
the final quantum response with the aspect ratio of the
dot. Since the embedding of an elliptic/ellipsoidal particle
is very complicated from the technological point of view,
possible deviation of shape and size (between matrix hole
and dot) may largely affect the confining properties and
the binding energies. Of course, in order to apply the pres-
ent theory for determining the strain inside the dot it is
important to know the exact geometry of cavity and parti-
cle before the embedding or the relevant features of the
growth process. The elliptical quantum dot has been
experimentally analysed in order to investigate the strain
induced lateral potential that quantizes the states in the
quantum well (Wang et al., 2006). Moreover, the binding
energies in ellipsoidal quantum dot are discussed with a
variational method by considering the hydrostatic pressure
effect. The results show that the binding energies increase
with pressure but decrease with increasing ellipticity (Shi
and Wei Yan, 2011).

5. Conclusions

The analysis of the mechanical response of nanostruc-
tured or nanocomposite materials must be conducted by
taking into account the possible slight difference between
the embedded particles and their hosting cavities. In fact,
at the nanoscale, the lattice mismatch and the geometrical
differences between the external surface of each particle
and the internal surface of the corresponding cavity can in-
duce important elastic effects. Within this context, the
present work has pointed out the following conceptual
issues:


 The problem of finding the elastic fields generated by a
prestrained or prestressed inhomogeneity (with size
and shape slightly different from the hosting cavity) is
equivalent to the problem of analysing the effects of a
continuous dislocation distributed over the particle/
matrix interface. It is a uniform Volterra dislocation
for spherical or cylindrical particles and it is a not uni-
form Somigliana dislocation for arbitrary ellipsoidal
inhomogeneities.

 When the inhomogeneity has shape and/or size different

from the hosting cavity, in the generalized Eshelby
equivalence principle one must consider the constitutive
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equation written in the reference frame corresponding
to the configuration in which the particle fits exactly
the cavity. This approach is useful since it permits the
solution of the problems through the inhomogeneity
Eshelby theory, avoiding the application of the contin-
uum dislocation theory, which is very complicated for
the case of heterogeneous structure.

 We have proved the following geometrical property:

given two ellipsoids ! and X defined in two reference
frames f~xg and f~yg with axis coincident with their prin-
cipal axis (

P
ix

2
i =a2

i ¼ 1 and
P

iy
2
i =b2

i ¼ 1) a unique lin-
ear transformation ~y ¼ F̂~x ¼ V̂ R̂~x, which applies ! in
X, exists if the rotation matrix R̂ is given and fixed (V̂
results in a symmetric and positive definite tensor). This
property has been used to define the initial strain
applied to the ellipsoidal inhomogeneity in order to clo-
sely fit the cavity in the undeformed matrix (this is the
configuration where the particle–matrix interface is
firmly bonded and glued).

 In order to develop the equivalence principle it is neces-

sary to define another version of the Eshelby tensor ðD̂Þ
that takes into account the internal gradient of the dis-
placement Ĵ and not only the strain tensor �̂. From this
point of view the standard Eshelby tensor Ŝ is simply
the symmetrized version of the new tensor D̂.

 When the linear transformation ~y ¼ F̂~x ¼ V̂ R̂~x is uni-

form (independent from the position) and the remotely
applied strain �̂1 is uniform, then the strain induced
inside the prestrained ellipsoidal inhomogeneity
remains uniform, similarly to the standard Eshelby the-
ory. We have introduced and discussed a complete pro-
cedure able to evaluate such an internal strain and the
corresponding external elastic fields for an arbitrary
ellipsoidal inhomogeneity embedded in a different
ellipsoidal cavity.
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Appendix A. Spherical symmetry

We consider an arbitrary elastic problem with spherical
symmetry in a homogeneous and isotropic medium with
Lamé moduli k and l. We therefore assume that
~uð~rÞ ¼ uðrÞ~rr, where r is the modulus of the position vector
~r. We obtain the general solution for the radial displace-
ment u(r) in static conditions. From the spherically sym-
metric vector displacement ~uð~rÞ ¼ uðrÞ~rr we obtain the
components uj ¼ uðrÞ

r xj from which we determine the strain
tensor as

�ij ¼
@

@r
uðrÞ

r

� �
xixj

r
þ uðrÞ

r
dij ðA:1Þ

and, therefore, the stress tensor is

Tij ¼ 2l @

@r
uðrÞ

r

� �
xixj

r
þ ð2lþ 3kÞuðrÞ

r
dij

þ kr
@

@r
uðrÞ

r

� �
dij ðA:2Þ

By substituting this form of the stress tensor into the equi-

librium equation @Tij

@xi
¼ 0 we obtain

ð2lþ kÞ
~r
r
@

@r
1
r2

@

@r
r2uðrÞ
	 
� �

¼ 0 ðA:3Þ

It follows that the quantity 1
r2

@
@r ðr2uÞ must be constant.

Therefore, the general solution for the radial displacement
is uðrÞ ¼ Ar þ B

r2 (Landau and Lifschitz, 1959; Atkin and Fox,
2005). The corresponding strain tensor is

�ij ¼ Aþ B
r3

� �
dij � 3B

xixj

r5 ðA:4Þ

and the radial force (for unit of area) is

~f ¼ T̂~n ¼ T̂
~r
r
¼ ð2lþ 3kÞA� 4lB

1
r3

� �
~r
r

ðA:5Þ

The relations obtained allow us to solve any problem with
spherical symmetry. We consider a medium with moduli
k1 and l1 with a spherical cavity of radius R1. This cavity
will be filled by a sphere made of a material having moduli
k2 and l2 and radius R2 (different from R1). We suppose to
radially deform both media in order to obtain the coinci-
dence of the two spherical surfaces with initial radii R1

and R2. We observe that when R2 < R1 the materials are
subjected to radial traction, and, when R1 < R2 they are sub-
jected to radial compression. We define u2(r) as the radial
displacement in the internal sphere and u1(r) as the radial
displacement in the external matrix. The previous analysis
allows us to write the expressions u2ðrÞ ¼ Ar þ B

r2 and
u1ðrÞ ¼ Cr þ D

r2. Since we must impose u2(0) = 0 and
u1(+1) = 0 we assume B = 0 and C = 0. The perfect gluing
between the spherical surfaces imposes the interface rela-
tions (continuity of the displacement and of the radial
force)

R2 þ AR2 ¼ R1 þ
D

R2
1

and ð2l2 þ 3k2ÞA ¼ �4l1
D

R3
1

ðA:6Þ

From Eq. (A.6) we find the parameters A and D and, there-
fore, the solutions of the problem in terms of radial
displacements

u2ðrÞ ¼
R1 � R2

R1

1
2l2þ3k2

4l1
þ R2

R1

r ðA:7Þ

u1ðrÞ ¼ �
R1 � R2

r2 R2
1

1

1þ 4l1
2l2þ3k2

R2
R1

ðA:8Þ

By considering that k2 ¼ K2 � 2
3 l2 we obtain the equilib-

rium radius of the gluing

Reff ¼ R2 þ udðR2Þ ¼ R1 þ uf ðR1Þ ¼
3K2 þ 4l1

3K2
R2
þ 4l1

R1

ðA:9Þ

Moreover, the internal (3D) strain is obtained as
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�̂T ¼
@u2ðrÞ
@r

Î3 ¼
R1 � R2

R1

1
2l2þ3k2

4l1
þ R2

R1

Î3

¼ R1 � R2

R2

4l1

3 R1
R2

K2 þ 4l1

Î3 ðA:10Þ

which is perfectly coherent with Eq. (38) when �̂1 ¼ 0 (no
external loads applied).

Appendix B. Cylindrical symmetry

We consider an arbitrary elastic problem with cylindri-
cal symmetry in a homogeneous and isotropic medium
with Lamé moduli k and l. The displacement vector is
therefore given by ~uð~rÞ ¼ gðrÞ~er þ f ðx3Þ~e3, where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
is the modulus of the vector (x1,x2,0), ~er ¼

ðx1=r; x2=r;0Þ and ~e3 ¼ ð0;0;1Þ. We determine the general
solution for the radial displacement g(r) and for the longi-
tudinal displacement f(x3). From the displacement vector
~uð~rÞ ¼ gðrÞ~er þ f ðx3Þ~e3 we simply obtain the strain tensor
and the stress tensor; these expressions can be substituted

into the equilibrium elasticity equation @Tij

@xi
¼ 0. The devel-

opment of the straightforward calculations lead to the
differential equations

@

@r
1
r
@

@r
ðrgðrÞÞ

� �
¼ 0 and

@2f
@x2

3

¼ 0 ðB:1Þ

We therefore obtain gðrÞ ¼ Ar þ B
r and f(x3) = Cx3 + D. The

parameter D represents a simple translation: from now
on, we assume D = 0. The components of the displacement
assume the form u1 ¼ Ar þ B

r

	 
 x1
r , u2 ¼ Ar þ B

r

	 
 x2
r and

u3 = f(x3) = Cx3 (Landau and Lifschitz, 1959; Atkin and Fox,
2005). By differentiation we calculate the strain tensor

�̂ ¼
Aþ B

r2 � 2B
x2

1
r4 �2B x1x2

r4 0

�2B x1x2
r4 Aþ B

r2 � 2B
x2

2
r4 0

0 0 C

2
664

3
775 ðB:2Þ

and the corresponding stress tensor is

T̂ ¼ 2l
Aþ B

r2 � 2B
x2

1
r4 �2B x1x2

r4 0

�2B x1x2
r4 Aþ B

r2 � 2B
x2

2
r4 0

0 0 C

2
664

3
775

þ kð2Aþ CÞ
1 0 0
0 1 0
0 0 1

2
64

3
75 ðB:3Þ

Finally, the radial pressure is

T̂~er ¼ 2ðkþ lÞA� 2l B
r2 þ kC

� �
~er ðB:4Þ

and the longitudinal pressure is

T̂~e3 ¼ ½ðkþ 2lÞC þ 2kA�~e3 ðB:5Þ

These relations can be utilized to solve explicitly any prob-
lem of the elasticity theory with cylindrical symmetry. We
consider now a material with moduli k1 and l1 with a cav-
ity of radius R1 . The cavity will be filled by a cylinder made

of a different material having moduli k2 and l2 and radius
R2. As before, we determine the elastic fields after a perfect
gluing of the surfaces. In the internal cylinder we define
g2ðrÞ ¼ A2r þ B2

r and f2(x3) = C2x3. Similarly, in the external
matrix we define g1ðrÞ ¼ A1r þ B1

r and f1(x3) = C1x3. Since
g2(0) = 0, we assume B2 = 0; moreover, since g1(+1) = 0,
we assume A1 = 0; finally, we consider a plane strain condi-
tion and, therefore, we set C1 = C2 = 0. Now, we have to
determine the unknowns constants A2 and B1 by means
of the interface relations

R2 þ A2R2 ¼ R1 þ
B1

R1
and 2ðl2 þ k2ÞA2 ¼ �2l1

B1

R2
1

ðB:6Þ

The final radial displacement can be eventually obtained as

g2ðrÞ ¼
R1 � R2

R1

1
l2þk2

l1
þ R2

R1

r

g1ðrÞ ¼ �
R1 � R2

r
R1

1
1þ l1

l2þk2

R2
R1

The radius corresponding to the gluing of the surfaces (at
equilibrium) is

Reff ¼ R2 þ g2ðR2Þ ¼ R1 þ g1ðR1Þ ¼
k2 þ l2 þ l1

k2þl2
R2
þ l1

R1

By considering that k2 ¼ K2 � 2
3 l2 and utilizing the two-

dimensional modulus k2 ¼ K2 þ 1
3 l2 we obtain the internal

(2D) strain as

�̂T ¼
@g2ðrÞ
@r

Î2 ¼
R1 � R2

R1

1
l2þk2

l1
þ R2

R1

Î2

¼ R1 � R2

R2

l1
R1
R2

k2 þ l1

Î2 ðB:7Þ

This result is in perfect agreement with Eq. (44) when
�̂1 ¼ 0 (no external loads applied).

Appendix C. The two-dimensional problem

In order to solve the model, we use the complex vari-
able method for the two-dimensional elasticity (Atkin
and Fox, 2005). In each homogeneous region of the x1x2-
plane the displacement vector field and the stress tensor
field can be represented by means of a couple of Kolos-
sov–Muskhelishvili elastic potentials (Kolosoff, 1909,
1914; Muskhelishvili, 1953). We assume that the elastic
state of a given homogeneous region a is exactly described
by two holomorphic functions /a(z) and wa (z), where the
complex number z = x1 + ix2 represents the position on the
plane. The Kolossov–Muskhelishvili equations allow for
the determination of the elastic fields in each region (Mus-
khelishvili, 1953; Green and Zerna, 1954)

ua
1 þ i ua

2 ¼
1

2la
va/aðzÞ � z /0aðzÞ � waðzÞ
h i

ðC:1Þ

Ta
11 þ Ta

22 ¼ 2 /0aðzÞ þ /0aðzÞ
h i

ðC:2Þ

Ta
22 � Ta

11 þ 2 i TðaÞ12 ¼ 2 �z/00aðzÞ þ w00aðzÞ
� �

ðC:3Þ
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where �f is the conjugate of f while f0 and f00 indicate the first
and the second derivative of the analytic function f, respec-
tively. In our model the phase with a = 1 corresponds to
the matrix and the phase with a = 2 corresponds to the
inclusion. It means that /1(z) and w1(z) are defined for
jzj > R1 and /2(z) and w2(z) are defined for jzj < R2. More-
over, the parameter va introduced in Eq. (C.1) is given by
va = 3 � 4ma under the assumed plane strain conditions
(Muskhelishvili, 1953). The solution of the elastic problem
can be obtained by imposing the perfect bonding at the
interface described by the following continuity relations

zþ u1
1 þ i u1

2

	 

jz¼R1eih ¼ zþ u2

1 þ i u2
2

	 

jz¼R2eih

ðT̂1 �~nÞjz¼R1eih ¼ ðT̂2 �~nÞjz¼R2eih

ðC:4Þ

These boundary conditions can be expressed in terms of
the elastic potentials

zþ 1
2l1
½v1/1 � z /01 � w1�

� �
jz¼R1eih

¼ zþ 1
2l2
½v2/2 � z /02 � w2�

� �
jz¼R2eih

/1 þ z /01 þ w1

� �
jz¼R1eih ¼ /2 þ z /02 þ w2

� �
jz¼R2eih

ðC:5Þ

The potentials /2(z) and w2(z) can be represented by Taylor
series and /1(z) and w1(z) by Laurent series (Atkin and Fox,
2005; Green and Zerna, 1954). A detailed analysis of the
problem proves that the following simplified representa-
tions are sufficient to solve the problem

w1ðzÞ ¼ l1ðe122 � e111 þ 2ie112Þzþ
H1

z
þ H3

z3 ðC:6Þ

/1ðzÞ ¼
l1ðe111 þ e122Þz

v1 � 1
þ F

z
ðC:7Þ

w2ðzÞ ¼ Az ðC:8Þ
/2ðzÞ ¼ Bz ðC:9Þ

The linear terms in /1(z) and w1(z) represent the remotely
applied load described by an arbitrary strain with compo-
nents e111; e122 and e112. The continuity relations given in Eq.
(C.5) lead to a linear system for the complex parameters
H1, H3, F, A and B. The parameters H1, H3 and F describe
the elastic fields in the matrix around the inclusion and
can be eventually obtained as

RefH1g ¼ 4
l1l2ðR1 � R2ÞR2

1

2l2R1 � l1R2 þ R2l1v2

þ 2
e111 þ e122

	 

R1l2ðv1 � 1Þ � R2l1ðv2 � 1Þ
� �

l1R2
1

ð2l2R1 � l1R2 þ R2l1v2Þðv1 � 1Þ
ðC:10Þ

ImfH1g ¼ 0 ðC:11Þ

RefH3g ¼
R4

1l1 e122 � e111

	 

ðl2R1 � l1R2Þ

R1l2v1 þ l1R2
ðC:12Þ

ImfH3g ¼ 2
l1R4

1e112ðl1R2 � l2R1Þ
R1l2v1 þ l1R2

ðC:13Þ

RefFg ¼
R2

1l1 e122 � e111

	 

ðl2R1 � l1R2Þ

R1l2v1 þ l1R2
ðC:14Þ

ImfFg ¼ 2
l1R2

1e112ðl1R2 � l2R1Þ
R1l2v1 þ l1R2

ðC:15Þ

The parameters A and B represent the uniform field in the
cylindrical inclusion

RefAg ¼
R1l1l2 e122 � e111

	 

ðv1 þ 1Þ

R1l2v1 þ l1R2
ðC:16Þ

ImfAg ¼ 2
l1l2R1e112ðv1 þ 1Þ

R1l2v1 þ l1R2
ðC:17Þ

RefBg ¼ 2
l1l2ðR1 � R2Þ

2l2R1 � l1R2 þ R2l1v2

þ
e111 þ e122

	 

ðv1 þ 1ÞR1l2l1

ð2l2R1 � l1R2 þ R2l1v2Þðv1 � 1Þ ðC:18Þ

ImfBg ¼ 0 ðC:19Þ

The knowledge of all the parameters allows us to obtain
any component of any elastic field by means of the Kolos-
sov–Muskhelishvili Eqs. (C.1), (C.2) and (C.3). It is possible
to verify that, if we consider R1 = R2, we exactly obtain the
results of the Eshelby theory for a cylindrical inclusion
(Mura, 1987). Our general solution takes into account both
the effects of the remotely applied loads and those induced
by the different size between the cylinder and the hosting
hole (prestrain). We utilize now such a solution to verify
Eq. (44) obtained in the main text with a different tech-
nique. To this aim, by using Eq. (C.1), we obtain the dis-
placement field inside the particle in the form

u2
1 ¼

1
2l2

Refv2/2ðzÞ � z /02ðzÞ � w2ðzÞg

¼ 1
2l2
f½ðv2 � 1ÞRefBg �RefAg�xþ ImfAgyg ðC:20Þ

u2
2 ¼

1
2l2

Im v2/2ðzÞ � z /02ðzÞ � w2ðzÞ
n o

¼ 1
2l2
fImfAgxþ ½ðv2 � 1ÞRefBg þRefAg�yg ðC:21Þ

and, by differentiation, we immediately obtain the corre-
sponding strain tensor

�̂T ¼
1

2l2

ðv2�1ÞRefBg�RefAg ImfAg
ImfAg ðv2�1ÞRefBgþRefAg

� �
ðC:22Þ

We successively substitute the relation va = 3 � 4ma, the
definition of Poisson ratio ma = (3Ka � 2la)/(6Ka + 2la)
and the formula Ka = ka � la/3, by obtaining va = 1 + 2la/
ka. These conversions can be used in Eqs. (C.16), (C.17),
(C.18) and (C.22) proving, after long but straightforward
calculations, the perfect agreement between Eqs. (C.22)
and (44). It is also possible to verify that the external strain
field described by the parameters H1, H3 and F corresponds
exactly to that calculated in Eq. (30).
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