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Abstract. Single-molecule force spectroscopy (SMFS) techniques allow for
the measurements of several static and dynamic features of macromolecules of
biological origin. In particular, the atomic force microscopy (AFM), used with
a variable pulling rate, provides valuable information on the folding/unfolding
dynamics of proteins. We propose here two different models able to describe
the out-of-equilibrium statistical mechanics of a chain composed of bistable units.
These latter represent the protein domains, which can be either folded or unfolded.
Both models are based on the Langevin approach and their implementation allows
for investigating the effect of the pulling rate and of the device intrinsic elasticity
on the chain unfolding response. The theoretical results (both analytical and
numerical) have been compared with experimental data concerning the unfolding
of the titin and filamin proteins, eventually obtaining a good agreement over a
large range of the pulling rates.
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1. Introduction

The development of single-molecule force spectroscopy
techniques has widely promoted the study of the
mechanical and kinetic properties of several biological
macromolecules, such as proteins [1–5], nucleic acids
(DNA [6–9] and RNA [10,11]) and polysaccharides [12–
14]. These methods include atomic-force microscopes
(AFM), laser optical tweezers (LOT), and magnetic
tweezers (MT) [15–19]. Besides, micro-electro-
mechanical systems (MEMS) have been designed
to study, e.g., the DNA mechanical degradation
under ionizing radiation [20–22]. All these devices
apply forces on chemical structures, allowing the
quantification of the intrinsic elasticity of biochemical
systems (force-extension response) [23], which is
considerably important for several reasons.

First, the functions of several macromolecules (for
instance, proteins) are strongly related to the three-
dimensional conformation of their polymeric chain.
Therefore, the capacity to preserve their geometrical
configuration against external mechanical loads must
be tested to quantify the ability to conserve their
functions. This can be directly done by force-
spectroscopy methods, which can be used to unfold
the native folded structure of a macromolecule. The
controlled unfolding leads to the estimate of the
strength, the energy landscape and the dynamic
properties of the system under investigation [24].

Second, the static and dynamic response of macro-
molecules is crucial for assessing the equilibrium and
out-of-equilibrium thermodynamics of small systems.
Indeed, the direct measurement of the specific biophys-
ical and biochemical properties in nanometric systems,
where the thermal fluctuations play an important role,
has allowed for the first time to test the theoretical
results based on the statistical physics [25,26].

The typical single-molecule experiment is con-
ducted by tethering the first end of the macromolecule
and by moving its second end by means of the force-
spectroscopy device. Ideally, it is able either to ap-
ply a constant force to the second end of the chain
(Gibbs ensemble) or to prescribe the distance between
the chain ends (Helmholtz ensemble) [27–31]. In real-
ity, intermediate cases can be generated by real devices
with a finite intrinsic elasticity [31–33]. The measured
force-extension response typically exhibits a sawtooth
pattern, corresponding to the sequential transitions of
the macromolecule domains from the folded to the un-
folded state. For practical reasons, these experiments
are typically conducted by imposing a given pulling
speed to the second end of the chain. This point has
crucial effects on the force-extension relation, which
shows a strong speed-dependent behaviour.

On the one hand, for very low pulling speeds,
the system is not far from the thermodynamic

equilibrium and its response can be studied by means
of the classical canonical distribution of the statistical
mechanics. This methodology has been specialized
to deal with bistable units through the so-called spin
variables approach. While this idea has been originally
introduced to study the mechanics of muscles [34, 35],
it is currently used to analyse many different two-
state systems [36–44]. The bistable potential energy of
each unit is approximated by two quadratic functions
representing the folded and unfolded states. Moreover,
the switching between these states is controlled by a
discrete spin variable, which belongs to the phase space
of the system. The partition function can be therefore
calculated in closed form by integrating the continuous
variables and summing the discrete ones. This allows
for the theoretical determination of the sawtooth force-
extension curve and of the macroscopic properties of
the system at thermodynamic equilibrium [36–40]. It
is worth noticing that also other equilibrium statistical
mechanics approaches have been developed to deal
with this issue [30,31,45–48].

On the other hand, the most important case
concerns the dynamic regime, where a finite pulling
speed is considered. Its typical values in AFM
force-spectroscopy experiments range between 10−2

and 102µm/s [49–54]. Recently, the introduction of
the high-speed atomic force microscope (HS-AFM)
has made it possible to attain speeds of about
104µm/sec, almost two orders of magnitude faster than
previous techniques [55–59]. Along with experiments,
molecular dynamics simulations have been performed
to study the speed-dependent unfolding of bistable
macromolecules [60]. However, this approach is limited
to pulling speeds larger than 103µm/s and, therefore,
it is not possible to draw a comparison with standard
AFM experiments [61]. Indeed, for lower values of
the pulling speed, the total computation time to
observe the unfolding is too extended and therefore
the simulation is not realizable with the available
computational resources [56–61]. The advantage of the
molecular dynamics is that the bistable character of the
units directly comes from the molecular architecture of
the system. Nevertheless, to reduce the complexity of
the molecular dynamics simulations, a coarse grained
model can be adopted and implemented through a
kinetic Monte Carlo method [62, 63]. In this case,
the bistability of each unit is simply described by a
two-state potential energy characterized by the rates
of the folding and unfolding processes. Hence, the
reduced complexity of the model allows for considering
a larger range of pulling speeds. Nonetheless, in
this approach only the folding and unfolding rates
are considered to describe the bistable characters of
the units. By considering the Kramers theory [64],
the Bell approximation [65], and the Evans-Ritchie
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more elaborated formalism [66], we can assert that
the folding and unfolding rates are directly related
to the energy barrier ∆B and the energy jump ∆E
between the two states, as well as the mechanical
action applied to the system. This point allows
to affirm that we can estimate energetic features of
the macromolecule (e.g., ∆B and/or ∆E) from the
force-extension response measured at different pulling
speeds. In fact, the observed unfolding forces are
influenced by the dynamic interplay between the
transition rates and the applied pulling speed. Of
course, much theroretical work has been done to
apply the Kramers, Bell and Evans-Ritchie theories
for decoding the force-spectroscopy data and yielding
the energetic parameters that govern the biomolecular
processes [24]. This approach has generated a
powerful class of approximated results, which are
of simple application in many different regimes and
configurations [67–73].

In the present work, we propose an alternative
approach based on the numerical implementation of
the Langevin methodology. In particular, we propose
two different complementary models describing a chain
of bistable units under the action of the applied
stretching. In the first case, the classical Langevin
equations are equipped with the full description of
an arbitrary potential energy mimicking the bistable
units. In the second case, we introduce a snap
spring model, based on the combination of the
Langevin equation with the spin variables approach.
It is particularly useful in order to have a dynamic
description of the system with the direct access to
the spin variables, which represent the configurational
state of the macromolecule. Both methods can
be used to analyse force spectroscopy experimental
data in order to estimate biological features of the
macromolecules, such as ∆E, ∆B or other biochemical
parameters. While the second model is useful to
directly observe the spin variable dynamics, it is based
on a less accurate description of the bistable behaviour
of the units. In this sense, the proposed Langevin
approaches can be placed in-between the molecular
dynamics method from one side, and the kinetic Monte
Carlo and the theoretical approximations from the
other side. In any case, they allow for considering the
whole range of pulling speeds used in real experiments,
including those of classical AFM experiments. Finally,
the Langevin approaches will be used to elucidate the
role of the device in the single-molecule measurements
and to interpret experimental data concerning filamin
and titin proteins.

The paper is structured as follows. In Section 2,
we introduce the Langevin approach and its numer-
ical implementation for studying the nonequilibrium
pulling experiments. In Section 3, we discuss the spin

variable method, dealing with the case of very small
pulling speeds. Then, in Section 4, we present a first se-
ries of numerical results concerning force spectroscopy
devices with and without intrinsic elasticity. In addi-
tion, in Section 5, we discuss the comparison with ex-
perimental data (filamin and titin). Finally, in Section
6, we introduce the snap spring model and we show its
behaviour via the analysis of the filamin unfolding.

2. Out of equilibrium statistical mechanics
through the Langevin approach

To introduce the out-of-equilibrium statistical mechan-
ics of the pulling process, we use the Langevin ap-
proach. It means that a friction term and a noise term
are added to the equation of motion of each degree of
freedom of the system. This stochastic evolution is co-
herent with the asymptotic behaviour of the system,
which is represented by the classical canonical distri-
bution of the statistical mechanics [74, 75]. For a par-
ticle in motion within the three-dimensional space, the
exact Newton dynamic equation is

m
d2~r

dt2
= −∂V

∂~r
−mβd~r

dt
+
√
Dm~n, (1)

where V is the potential energy describing the force
field applied to the particle, β is the friction coefficient
(per unit mass, the so-called collision frequency) and
D is the diffusion coefficient (per unit mass) given by
the Einstein relation D = KBTβ [76, 77]. Moreover,
in Eq.(1), ~r is the position vector of the particle, m
is its mass and ~n is a random process. As usual,
we assume the following hypotheses on ~n: ~n(t) ∈
R3 is a Gaussian stochastic process, E{~n(t)} = 0,
and E{ni(t1)nj(t2)} = 2δijδ(t1 − t2) (here E means
“expected value”, δij is the Kronecker delta, and
δ(.) is the Dirac delta function). It is well known
that these properties are sufficient to obtain a correct
thermodynamic behaviour for the system [74–77]. In
typical biological environments the coefficient mβ
describing the friction is quite large. It means that
we can neglect the inertial term within the Newton
equation of motion. This simplification is sometimes
named Smoluchowski approximation and it is valid in
the so-called overdamped regime [76, 77]. Hence, for
large values of β we can write

m
d~r

dt
= − 1

β

∂V

∂~r
+

√
Dm

β
~n, (2)

being the inertial term negligible.
This approach can be adopted to develop the

model for a one-dimensional chain of N bistable units,
unfolded through a force spectroscopy device (see
Fig.1a). In this case, we can write the system of
stochastic differential equations

m
dxi
dt

= − 1

β
U ′(xi − xi−1)
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Figure 1. Scheme of the single-molecule force spectroscopy
pulling experiments. Panel a): chain of bistable units stretched
by a device without intrinsic elasticity and with xN (t) =
v0t + N`. Panel b): chain of bistable units stretched by a
device with intrinsic stiffness kd, equilibrium length `d, and
xN+1(t) = v0t + N` + `d. Panel c): bistable potential energy
U(x) of a chain unit and its approximation Us(x) based on the
spin variable s (s = 0 for the folded state and s = 1 for the
unfolded state).

+
1

β
U ′(xi+1 − xi) +

√
KBTm

β
ni(t), (3)

where i = 1, ..., N − 1 if we consider N identical
units described by the potential energy U . This
approach has been recently adopted to study the effect
of the pulling velocity on the unfolding pathway of
heterogeneous chains [78, 79], and it is used here to
investigate the effect of the pulling velocity on the
unfolding forces. These equations must be solved
with the boundary conditions x0(t) = 0 and xN (t) =
v0t + N`, where ` is the length of one folded unit
(before the application of the traction). For t = 0,
we have xN (0) = N`, which means that all the
units are folded at the beginning of the process. In
addition, the latter condition corresponds to a device
without intrinsic elasticity, able to perfectly prescribe
the trajectory of the last element of the chain. When
v0 is very small, the system can be studied with the
equilibrium statistical mechanics. In particular, this
case is thoroughly discussed in the Section 3 by means
of the method of the spin variables. On the other hand,
when v0 assumes arbitrary values, the problem can be
approached by the direct integration of Eq.(3). To do
this, we have to specify the energy profile U(x), which
represents the bistable character of the system units.
As a particularly simple example, we will analyse a real
bistable system described by the following potential

energy (see Fig.1c)

U(x) =


1
2kF (x− `)2 if x ≤ xα,
∆B − 1

2k0(x− χ0`)
2 if xα < x ≤ xβ ,

∆E + 1
2kU (x− χ`)2 if x > xβ .

(4)

The parameter kF represents the elastic constant of
the folded state, k0 the (reverse) elastic constant of
the concave barrier between the wells, and kU the
elastic constant of the unfolded state. Here, kF > 0,
k0 > 0, kU > 0, 1 < χ0 < χ, ∆B represents the
energy barrier between the wells, and ∆E measures
the energy jump between the two states. While ` is
the position of the first well, the parameters χ0 and χ
are geometrical factors fixing the position of the barrier
and of the second well, respectively. The points xα
and xβ represent the boundaries separating the three
different regions (the first well, the spinodal region, and
the second well).

If the elastic constants of the two wells assume the
same value (see Fig.1c with kU = kF ), the conditions
of continuity and derivability of U at points xα and xβ
give the relations

χ0 =

√
∆B −∆E + χ

√
∆B

√
∆B −∆E +

√
∆B

, (5)

1

k0
=

`2(χ− 1)2

2
(√

∆B −∆E +
√

∆B
)2 −

1

kF
, (6)

xα =
kF + k0χ0

kF + k0
`, (7)

xβ =
kFχ+ k0χ0

kF + k0
`. (8)

Therefore, once fixed ∆E, ∆B, kF , χ and `, we can
easily find xα, xβ , k0 and χ0.

In order to further investigate the behaviour of
the bistable chain, we will also analyse the case with a
different elastic constant in the two wells (see Fig.1c
with kU 6= kF ). The conditions of continuity and
derivability of U at points xα and xβ give now

(∆B −∆E) (χ0 − 1)2

−∆B(χ− χ0)2 =
2∆B (∆B −∆E) (kU − kF )

kUkF `2
, (9)

which is a second degree equation for χ0, and

k0 =
2∆BkF

kF `2(χ0 − 1)2 − 2∆B
, (10)

xα =
kF + k0χ0

kF + k0
`, (11)

xβ =
kUχ+ k0χ0

kU + k0
`. (12)

Therefore, once fixed ∆E, ∆B, kF , kU , χ and `, we
can easily find xα, xβ , k0 and χ0. The behaviour of
the whole system (with either kU = kF or kU 6= kF )
can be studied through the numerical solution of the
Langevin equation (see details in the Appendix A). The
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results of this analysis will be described in Sections 4
and 5.

The model so far introduced is represented by
a chain of N bistable units with the last unit
directly connected to the device (without the intrinsic
elasticity) able to apply a traction defined by the
uniform motion xN (t) = v0t + N` (see Fig.1a).
Actually, a force spectroscopy device is typically
characterized by its intrinsic elasticity, which is
rather important for the understanding of the system
behaviour [32, 33]. Therefore, we also introduce a
second model where the last unit of the chain is
connected to a device with a given finite elasticity (see
Fig.1b). It means that Eq.(3) must be substituted by
the following system of equations

m
dxi
dt

= − 1

β
U ′(xi − xi−1)

+
1

β
U ′(xi+1 − xi) +

√
KBTm

β
ni(t), (13)

for i = 1, ..., N − 1 and

m
dxN
dt

= − 1

β
U ′(xN − xN−1) (14)

+
1

β
kd(xN+1 − xN − `d) +

√
KBTm

β
nN (t),

for the device performing the force-spectroscopy
measurement. Here, kd represents the intrinsic
elasticity of the device, `d its intrinsic length, and the
traction is described by xN+1(t) = v0t+N`+ `d.

3. Spin variables approach at thermodynamic
equilibrium

Before showing the results of the integration of the
Langevin equations stated in previous Section 2, we
introduce here the spin variables approach, which is
a mathematical method useful to obtain the force
extension relations for very low traction speeds v0

(ideally v0 → 0) [36–44]. It means that in this Section
we consider rate-independent processes. We describe
the application of this technique to both the cases of
force spectroscopy devices with and without intrinsic
elasticity.

In the first case with a device without intrinsic
elasticity, we consider a one-dimensional chain with
N units described by the energy potential given in
Eq.(4), and with prescribed position xN of the last
element of the chain (Helmholtz condition). In order
to obtain the result for the Helmholtz ensemble, the
proposed approach starts with the analysis of the
Gibbs ensemble, characterized by the application of an
external force f to the last element of the chain [36].
Then, the total potential energy for the Gibbs ensemble
is given by UG =

∑N
i=1 U(xi− xi−1)− fxN , where the

last term describes the application of the force f to
xN . Moreover, the spin variable approach considers
the following approximation to the potential energy of
the bistable units: since the bistable shape of U(x)
with two potential wells is too complex to calculate
the partition function in closed form, we consider two
independent parabolic wells and we add a discrete spin
variable (similarly to a bit) to control the switching
processes between them (see Fig.1c). It means that
the potential energy U can be approximated with Us,
defined as

Us(x, s) =
1

2
kF (x− `)2(1− s)

+

[
1

2
kU (x− χ`)2 + ∆E

]
s, (15)

where the second variable s is the spin variable
assuming the values 0 (folded or native state) or 1
(unfolded state). Since for v0 = 0 the system is
considered at thermodynamic equilibrium, the energy
barrier ∆B can be neglected. Indeed, it is known
that it influences only the dynamical behaviour of the
system. This is coherent with the classical reaction-
rate theory of Kramers [64,80]. Both the spin variables
and the continuous coordinates belong to the phase
space of the system and therefore we can write the
Gibbs partition function as

ZG(f) =

1∑
s1=0

...

1∑
sN=0

∫
<
...

∫
<
e
− UG
KBT dx1...dxN , (16)

where UG =
∑N
i=1 Us(xi−xi−1, si)−fxN , being the the

form of Us given in Eq.(15). The explicit calculation of
ZG can be performed in two steps. First, we can apply
the change of variables xi − xi−1 = ξi ∀i = 1, ..., N ,

from which we get xN =
∑N
i=1 ξi (with x0 = 0).

Second, we use the classical integral∫ +∞

−∞
e−αx

2

eβx =

√
π

α
e
β2

4α (α > 0), (17)

and we eventually obtain the result in the form

ZG(f) = (2πKBT )
N
2

{
1√
kF

e
f2

2kFKBT
+ f`
KBT

+
1√
kU

e
f2

2kUKBT
+ χ`f
KBT

− ∆E
KBT

}N
. (18)

Once determined the Gibbs partition function, we can
use the Fourier transform to obtain the Helmholtz
partition function [36]. Indeed, the following relation
holds

ZH(x) =

∫ +∞

−∞
ZG(−iωKBT ) exp(iωx)dω. (19)

To determine ZH , we can develop the power of the sum
in Eq.(18) by means of the binomial expansion

ZH(x) = (2πKBT )
N
2

N∑
c=0

(
N

c

)
φc

√
1

kN−cF

√
1

kcU
(20)



Rate-dependent force-extension models for single-molecule force spectroscopy experiments 6

×
∫ +∞

−∞
exp

[(
−ω

2KBT

2kF
− iω`

)
(N − c)

]
× exp

[(
−ω

2KBT

2kU
− iωχ`

)
c

]
exp (iωx) dω,

with φ = exp
(
− ∆E
KBT

)
. By simplifying this expression

and using the well-known integral∫ +∞

−∞
e−αx

2

eiβx =

√
π

α
e−

β2

4α (α > 0), (21)

we obtain the final result for the Helmholtz partition
function of the chain with bistable units as

ZH(x) = (2πKBT )
N
2

N∑
c=0

(
N

c

)
φc

1

k
N−c

2

F

1

k
c
2

U

(22)

×
√√√√ 2π

KBT
[

(N−c)
kF

+ c
kU

]
× exp

− (`c− `N − cχ`+ x)2

2KBT
(
N−c
kF

+ c
kU

)
 .

We have now the possibility to determine the
force-extension relation of the chain through the
thermodynamic relation [28,36,80]

〈f〉 = −KBT
∂ logZH(x)

∂x
, (23)

and, in the next Section, we can compare this result
with the numerical solution of the Langevin system,
see Eq.(3), for low values of the traction velocity v0

(not far from the thermodynamic equilibrium).
We can consider the second case, which takes

into account a more realistic device with its intrinsic
stiffness kd and equilibrium length `d. In this case,
the total potential energy within the Gibbs ensemble

is given by U
(d)
G =

∑N
i=1 Us(xi−xi−1, si)+ 1

2kd(xN+1−
xN − `d)2 − fxN+1, being the the form of Us defined
in Eq.(15), as before. The second term of this
expression describes the elastic energy stored in the
device, represented by a linear spring with parameters
kd and `d. Moreover, the third term represents the
force f applied by the device. It follows that the new

partition function Z
(d)
G (f) can be written as

Z
(d)
G (f) =

1∑
s1=0

...

1∑
sN=0

∫
<
...

∫
<
e
−
U

(d)
G

KBT dx1...dxN+1.(24)

As before, we can calculate Z
(d)
G by firstly applying the

change of variable xi−xi−1 = ξi ∀i = 1, ..., N+1, from

which we get xN+1 =
∑N+1
i=1 ξi (with x0 = 0), and

then by using the integral in Eq.(17). This procedure
eventually delivers

Z
(d)
G = ZG

∫ +∞

−∞
e

1
KBT

[ 1
2kd(ξN+1−`d)2−fξN+1]dξN+1

= (2πKBT )
N+1

2
1√
kd
e

f2

2kdKBT
+

f`d
KBT (25)

×
{

1√
kF

e
f2

2kFKBT
+ f`
KBT +

φ√
kU

e
f2

2kUKBT
+ χ`f
KBT

}N
,

where, as before, φ = exp
(
− ∆E
KBT

)
is the Boltzmann

factor calculated with the energy jump between the
folded and unfolded states. Now, we can calculate the

partition function Z
(d)
H (x) of the Helmholtz ensemble

through the Fourier relation

Z
(d)
H (x) =

∫ +∞

−∞
Z

(d)
G (−iωKBT ) exp(iωx)dω, (26)

which remains valid also for the case with a device with
intrinsic elasticity [32, 33, 36]. Again, by means of the
binomial expansion and by the integral in Eq.(21), we
get the final result

Z
(d)
H (x) = (2πKBT )

N+1
2

N∑
c=0

(
N

c

)
φc

1

k
N−c

2

F

1

k
c
2

U

1

k
1
2

d

(27)

×
√√√√ 2π

KBT
(
N−c
kF

+ c
kU

+ 1
kd

)
× exp

− (`c− `N − cχ`− `d + x)2

2KBT
(
N−c
kF

+ c
kU

+ 1
kd

)
 .

Therefore, the force-extension relation can be directly
obtained through the classical expression [28,36,80]

〈f〉 = −KBT
∂ logZ

(d)
H (x)

∂x
, (28)

which will be used to compare this result with the
solution of the Langevin system given in Eqs.(13) and
(14), for low values of the traction velocity v0.

It is interesting to observe that the Gibbs partition
functions (see Eqs.(18) and (25)) are always written as
a power with exponent N . It means that the units
are statistically independent when a force is applied
for stretching the macromolecule [31, 36, 81]. On the
other hand, the Helmholtz partition functions (see
Eqs.(22) and (27)) can not be written as a power
with exponent N , proving that prescribing the total
extension induces an implicit interaction among the
bistable units [31, 36, 81]. This interaction is imposed
by the fixed total length of the chain, and is different
from a real explicit interaction introduced for example
by an Ising scheme [38]. Besides, it is worth mentioning
that the Gibbs and the Helmholtz ensembles become
equivalent under the hypothesis of thermodynamic
limit, i.e. for a very large number N of units (ideally
for N →∞) [28,82,83].

The knowledge of the system response for low
values of v0 is attractive from the theoretical point
of view since allows the direct analysis of the bistable
chains with simple closed form expressions. Besides,
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Figure 2. Results for a chain with equal elastic constants for the two wells and unfolded through a device without intrinsic elasticity.
Bistable potential energy of the chain units (a), average force exerted on the N -th unit for different pulling velocities v0 ≥ 0 (average
curves determined over M=2000 trajectories) (b), and force peaks versus the applied pulling velocity (symbols: data; dashed lines:
linear least squares approximations) (c). In panels (b) and (c), we adopted different pulling velocities from 0.95 to 10 µm/s. The
dotted black curve in panel (b) represents the force-extension response at thermodynamic equilibrium (see Eqs.(22) and (23)). The
results have been obtained with ∆B = 18KBT , ∆E = 10KBT , T = 300K, N=4, ` = 0.42nm, χ = 2, kF = kU = 5.63N/m, and η
variable ranging from η = 2.5×10−3m/N with ∆t = 1.47×10−8s for v = 0.95 µm/s, to η = 2.36×10−4m/N with ∆t = 1.4×10−9s
for v = 10 µm/s.
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Figure 3. Results for a chain with different elastic constants for the two wells and unfolded through a device without intrinsic
elasticity. Bistable potential energy of the chain units (a), average force exerted on the N -th unit for different pulling velocities
v0 ≥ 0 (average curves determined over M=2000 trajectories) (b), and force peaks versus the applied pulling velocity (symbols:
data; lines: dashed linear least squares approximations) (c). In panels (b) and (c), we adopted different pulling velocities from 0.95
to 10 µm/s. The dotted black curve in panel (b) represents the force-extension response at thermodynamic equilibrium (see Eqs.(22)
and (23)). The results have been obtained with ∆B = 18KBT , ∆E = 10KBT , T = 300K, N=4, ` = 0.42nm, χ = 2, kF = 5.63N/m,
kU = 2.81N/m, and η variable ranging from η = 2.5× 10−3m/N with ∆t = 1.47× 10−8s for v = 0.95 µm/s, to η = 2.36× 10−4m/N
with ∆t = 1.4 × 10−9s for v = 10 µm/s.

it is useful to check the numerical code developed for
solving the Langevin equations and to appreciate the
deviations observed for increasing values of the traction
velocity.

4. Analytical and numerical results

Here, we discuss the results obtained through the
analytical and numerical approaches introduced in
previous Sections. In particular, we will analyse four
different cases dealing with a bistable chain (typically
representing a protein) having the following properties:
i) the same elastic constants kF and kU in the folded
and unfolded states, and a device without intrinsic
elasticity; ii) different elastic constants kF and kU ,
and a device without intrinsic elasticity; iii) the same

elastic constants kF and kU , and a realistic device with
kd and `d; iv) different elastic constants kF and kU ,
and a realistic device with kd and `d. The comparison
of these four different cases is important to deduce
some general features of the force-extension relation,
useful to better interpret and decipher the single-
molecule experimental results. In particular, this
analysis will be able to shed light on the role of the force
spectroscopy device in the measured force-extension
curves. We underline that in this Section the numerical
calculations have been performed with reasonable
parameters with respect to real macromolecules but
we decided to not refer to specific biological systems in
order to show some general trends. However, we will
show in Section 5 a direct comparison with experiments
conducted on filamin and titin proteins.
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Figure 4. Results for a chain with equal elastic constants for the two wells and unfolded through a device with intrinsic elasticity.
Potential energy of units and device (a), average force exerted on the N -th unit of the chain versus the position xN+1 of the device
(average curves determined over M=2000 trajectories) (b), force peaks versus the applied pulling velocity in linear scale (c), and
force peaks versus the applied pulling velocity in semi-log scale (symbols: data; dashed lines: linear least squares approximations)
(d). In panels (b), (c) and (d), we adopted different pulling velocities from 0.081 to 10 µm/s. The dotted black curve in panel (b)
represents the force-extension response at thermodynamic equilibrium (see Eqs.(27) and (28)). The results have been obtained with
∆B = 18KBT , ∆E = 10KBT , T = 300K, N=4, ` = `d = 0.42nm, χ = 2, kF = kU = 5.63N/m, kd = 0.704N/m, and η variable
ranging from η = 3.2 × 10−2m/N with ∆t = 1.9 × 10−7s for v = 0.081 µm/s, to η = 2.6 × 10−4m/N with ∆t = 1.54 × 10−9s for
v = 10 µm/s.

4.1. Device without intrinsic elasticity

In Fig.2, we can find the results for the first case dealing
with a chain with equal elastic constants for the two
wells and unfolded through a device without intrinsic
elasticity. We considered a macromolecule with N = 4
domains. In Fig.2a, we show the energy profile of the
bistable units, where we can observe the energy barrier
∆B = 18KBT and the energy jump ∆E = 10KBT .
Then, in Fig.2b, we show the force-extension curves
for different pulling velocities v0. The dashed black
curve corresponds to the theoretical result obtained
with v0 = 0, and given in Eqs.(22) and (23). The
other coloured curves represent the response of the
chain with an increasing pulling velocity. Each force-
extension curve is obtained by averaging the solution
of the Langevin equation (see Eq.(3) or (41)) over
M = 2000 Monte Carlo realizations of the process.
The deviation between each coloured curve and the

dashed black curve measures how the process is far
from the thermodynamic equilibrium. We remark
that, while the case with v0 = 0 is accessible with
closed form mathematical expressions based on the
canonical distribution of the statistical mechanics, the
out-of-equilibrium behaviour can be only numerically
explored by means of the Langevin formalism. The
important point is that the force peaks, representing
the sequential unfolding of the chain units (or protein
domains), are more pronounced for larger values of the
pulling velocity. Therefore, following the experimental
protocol, it is interesting to analyse the behaviour
of these force peaks in terms of the applied pulling
velocity. This result can be found in Fig.2c, where
the intensity of the four peaks (symbols) are plotted
versus v0. The error bars of these results are of the
same order of magnitude of the fluctuations observed
in the curves of Fig.2b. Then, they are not represented
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Figure 5. Results for a chain with different elastic constants for the two wells and unfolded through a device with intrinsic elasticity.
Potential energy of units and device (a), average force exerted on the N -th unit of the chain versus the position xN+1 of the device
(average curves determined over M=2000 trajectories) (b), force peaks versus the applied pulling velocity in linear scale (c), and
force peaks versus the applied pulling velocity in semi-log scale (symbols: data; dashed lines: linear least squares approximations)
(d). In panels (b), (c) and (d), we adopted different pulling velocities from 0.081 to 10 µm/s. The dotted black curve in panel (b)
represents the force-extension response at thermodynamic equilibrium (see Eqs.(27) and (28)). The results have been obtained with
∆B = 18KBT , ∆E = 10KBT , T = 300K, N=4, ` = `d = 0.42nm, χ = 2, kF = 5.63N/m, kU = 2.81N/m, kd = 0.704N/m, and η
variable ranging from η = 4.1×10−2m/N with ∆t = 2.42×10−7s for v = 0.081 µm/s, to η = 3.3×10−4m/N with ∆t = 1.96×10−9s
for v = 10 µm/s.

in Fig.2c since are smaller than the symbols used to
represent the force peaks. This remains true for all
results of Sections 4 and 5. The first important result
is that the four force peaks are linearly increasing with
the pulling velocity for a chain with kF = kU , unfolded
through a device without intrinsic elasticity. This is
confirmed by the linear least squares approximations
(dashed straight lines), shown in Fig.2c. We remark
that this behaviour does not correspond to the typical
experimental observation, where the force peaks show
a logarithmic trend with the pulling velocity. This
trend, sometimes called Evans and Ritchie law, is
based on the classical Bell theory [65], and it is valid
with the extension speed varying over several orders of
magnitude [66,84,85]. However, we remark that such a
logarithmic trend can sometimes be inexact, especially
for quite large pulling velocities [55–59]. In order
to understand the specific features characterizing the

response observed in single-molecule force spectroscopy
experiments, we therefore explore the cases with kF 6=
kU and/or with a real device.

In Fig.3, we can find the results for a chain with
kF 6= kU , unfolded by means of a device without
intrinsic elasticity. We considered kU = kF /2 and
we assumed all the other parameters exactly as in the
case shown in Fig.2. The results shown in Fig.3 are
quite similar to the ones presented in Fig.2 and, in
particular, the linear trend between force peaks and
pulling velocity is confirmed also in this case with kF 6=
kU . It means that the different elastic constants of the
two energy wells describing the bistable units are not
at the origin of the dynamic behaviour experimentally
observed (with the force peaks proportional to the
logarithm of the pulling velocity). Consequently, we
consider in the following Section the cases with a real
device characterized by an intrinsic elasticity and an
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intrinsic equilibrium length.
A final comment concerns the shape of the force-

extension curves represented in Figs.2 and 3. In both
cases, we observe that some lower peaks of the curves
correspond to a negative force. This is a specific
behaviour induced by the fact that we are studying
one-dimensional systems. In fact, for one-dimensional
systems, the idea of a protein chain as a random coil
with a complex distribution of domains is degenerated
to a simple alignment of units on one axis with a
preferred total length given by j` + (N − j)χ` (with
j = 0, ..., N). Since the total length is exactly imposed
by the device within the Helmholtz ensemble, it is not
difficult to imagine configurations with either a pushing
force (negative) or a pulling one (positive), applied
to the device. Of course, this apparently paradoxical
behaviour disappears for two- or three-dimensional
geometries, where the exploration of the phase space
is more pertinent to polymer models [48]. Indeed,
in these real multi-dimensional cases, the pulling
(negative) forces induce the geometrical rearrangement
of the chain and are not directly observed in the
total force measured on the device. It is important
to underline that also the theoretical results obtained
with the spin variables for v0 → 0 exhibit the same
behavior confirming that it is related to the one-
dimensional geometry of our system. In spite of this
limitation of our approach, we underline that the
model is able to correctly evaluate the force versus
pulling velocity relation since at the transition points
the macromolecule is quite aligned along the traction
direction.

4.2. Device with intrinsic elasticity

In Fig.4, we show the results for a chain with equal
elastic constants for the two wells and unfolded through
a realistic device with intrinsic elasticity. Typically,
the elastic constant of the devices is much smaller than
the elastic constant characterizing the protein domains.
For the sake of definiteness, in our case, we assume that
kd = kF /8 = kU/8. The comparison between kF = kU
and kd can be observed in Fig.4a, where the potential
energy of the units and of the device are represented.
In Fig.4b, the force extension response is shown with
different values of the pulling velocity. We remark that
in this figure the curves are represented by plotting
the force fN directly applied to the macromolecule
versus the traction xN+1 prescribed by the device.
The dashed black curve in Fig.4b represents the
force-extension relation at thermodynamic equilibrium
(v0 → 0), obtained in Eqs.(27) and (28) by means
of the spin variables approach. The peaks of force
shown in Fig.4b represent the sequential unfolding
of the units and are quantified in Figs.4c and 4d.
Here, these peaks are represented in terms of the

pulling speed in both linear and logarithmic scales,
respectively. From Fig.4c, characterized by the linear
scale of pulling velocity, we deduce that the linearity
between peaks and velocity is not confirmed in the
presence of a device with intrinsic elasticity. Indeed,
by observing Fig.4d, we conclude that we have in
this case a linear dependence between force peaks and
the logarithm of the pulling velocity, as observed in
most of experiments. We also observe that this linear
relation is not verified for large values of the pulling
velocity. Coherently, deviations from the linearity
between force peaks and the logarithm of the pulling
velocity have been experimentally observed in high-
speed single-molecule measurements [55–59]. The
dashed straight lines in Fig.4d represent the linear least
squares approximations of the peaks data (for v0 <
2.5µm/s) and confirm the linear relation between the
force peaks and log10 v0, at least for small values of v0.
This result underlines the crucial role of the realistic
device, with its specific stiffness, in determining the
force-extension response and the force peaks observed
during the molecule unfolding. This scenario is also
confirmed for the case with kF 6= kU , as reported in
Fig.5. Finally, the model developed on the base of
the Langevin equation is able to thoroughly take into
consideration the bistable character of the units of a
given macromolecule as well as the elasticity of the
device used to generate the unfolding process. This
point is further substantiated by a direct comparison
with two different experiments, as discussed in the
following Section.

5. Theory meets experiments

In this Section, we draw a comparison between the
results obtained through the numerical solution of the
Langevin equations and two experiments concerning
the force spectroscopy analysis of filamin and titin.
The investigated filamin protein is composed of a
single unit, which represents the fourth domain of
Dictyostelium discoideum filamin (ddFLN4) [49, 50].
On the other hand, the studied titin molecule is
composed by 8 repetitions of the 27th domain from
the band of the human cardiac titin (I27) [51,67].

5.1. The stretching of filamin

Filamin belongs to the family of the actin-crosslinking
proteins, involved in the constant reorganization of
the cytoskeleton, consisting in the moving and the
multiplication of cells [86]. These proteins attach to the
actin and stabilise the structure of the latter, and they
are therefore called actin-binding-protein (ABP). As a
reminder, actin plays with myosin a very important
role in the contracting of the muscle. We focus
our attention on the filamin found in Dictyostelium
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Figure 6. Realistic and simplified potential energy for the
filamin domain. The simplified potential has been obtained
with ∆B = 18.2KBT , ∆E = 4.5KBT , ` = 4.1nm, χ = 1.58,
kF = 0.295N/m, kU = 0.059N/m.

discoideum (ddFLN), a species of amoeba living in soil,
commonly referred to as slime mold whose many of
genes are homologous to those of humans and share
similar organizations. The ddFLN structure is also
known as gelation factor or ABP-120. Experiments
were made on several domains of ddFLN, especially
on ddFLN4, the fourth domain of ddFLN, entirely
composed of β-sheets [50]. When investigated through
force spectroscopy, domain 4 unfolds at a lower force
than all the other domains in the Dictyostelium
discoideum filamin [87]. Therefore, it has been selected
to study the unfolding forces in terms of the pulling
speed [49].

Our approach is a strong simplification of the
reality. To begin, our model is one-dimensional
whereas the real structure exhibits a complex three-
dimensional geometry. Moreover, since we are
interested in understanding the relation between the
force peak and the pulling velocity, the important
features are concentrated in the transition region of
the dynamics. It means that, for our application,
the relevant parts of the potential energy are the first
energy well and the following energy barrier. In fact,
the peak force is determined by the barrier crossing.
Since, for the sake of simplicity, we represent the
potential energy with the three parabola expression
given in Eq.(4), we are able to correctly represent
the first well and the barrier and we are forced
to neglect the exact geometry of the second well.
This simplification should not affect the force-velocity
relation and can be found in Fig.6, where we compare
the realistic and the simplified potential energy.
We remark that several theoretical approximations
discussed in the Introduction consider only kF and ∆B
(and kd) for estimating the force-velocity relation. It
is therefore important to remember that our model is
quite accurate from the point of view of this force-
velocity relation, but it does not take into account

the correct geometry as previously discussed. The
parameters used to model the first energy well and the
barrier correspond to the values of the recent literature,
obtained by means AFM experiments (under isometric
condition) [49,50]. Importantly, the realistic geometry
of the filamin domain has been completely detected
by using magnetic tweezers force spectroscopy (under
isotensional condition) [88, 89]. It has been clearly
proved that the step size (difference between the energy
minima corresponding to the folded and unfolded
states) is around 12-18nm and the total contour
length of the unfolded domain is around 25-30nm, as
schematically shown in Fig.6.

In Fig.7a, one can find the force-spectroscopy
AFM configuration applied to the ddFLN4 domain.
The structure represented in Fig.7a has been gener-
ated with the nuclear magnetic resonance (NMR) spec-
troscopy data reported in Ref. [90]. The comparison
between the numerical Langevin approach and the ex-
perimental data obtained by force spectroscopy can be
found in the other panels of Fig.7. In Fig.7c, we can
observe the potential energies of domain (simplified as
discussed above) and device with intrinsic elasticity,
and we can observe that the device is much softer that
the protein under investigation. From Fig.7b, we de-
duce the shape of the force extension curves for case
with a single unit. We remark that in these curves
the force intensity is correct but the geometry of the
domain (its step size) has not been respected as dis-
cussed above. Moreover, we can observe that the force
spectroscopy experiment is conducted under conditions
quite far from thermodynamic equilibrium. Indeed, the
coloured curves corresponding to the different pulling
speeds are rather far from the dashed black curve repre-
senting the thermodynamic equilibrium. Nevertheless,
we can see in Figs.7d and e that the force peaks are lin-
early depending on the logarithm of the applied pulling
speed. We underline the good agreement between our
numerical results based on the Langevin equation and
the experimental ones, confirmed by the linear least
squares approximation shown in Fig.7e. The impor-
tant point emerging from the agreement between nu-
merical and experimental dynamical results is the fol-
lowing. When we perform an experiment at very low
pulling speed, ideally at thermodynamic equilibrium,
the force-extension curve measured depends only on
the energy jump ∆E and not on the energy barrier
∆B between stable and metastable states (see, for in-
stance, the results of Section 3). However, when a finite
pulling speed is applied, the response depends also on
∆B, which governs the transition rates between the
folded and unfolded configurations. Then, perform-
ing experiments in the out-of-equilibrium regime allows
the indirect measurement of the energy barrier ∆B,
which can be obtained by comparing the experimental
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Figure 7. Comparison between numerical results and experimental data for the filamin protein. Panel a): scheme of the force
spectroscopy experiment conducted on the filamin unit (N = 1). Image from the RCSB PDB (rcsb.org) of PDB ID 1KSR generated
by the NGL viewer with NMR data from Ref. [90]. Panel b): average force exerted on the filamin unit versus the prescribed
device position (average curves determined over M=2000 trajectories). Panel c): assumed bistable potential energy of the filamin
and potential energy of the AFM device. Panel d) and e): force peak versus the applied pulling velocity in linear scale, and in
semi-log scale, respectively. In panels b), d) and e), we adopted different pulling velocities from 0.35 to 10 µm/s, coherently with
experimental data [49]. The dashed black curve in panel b) represents the force-extension response at thermodynamic equilibrium
(see Eqs.(27) and (28)). The curves have been obtained with ∆B = 18.2KBT , ∆E = 4.5KBT , T = 300K, N=1, ` = 4.1nm,
χ = 1.58, kF = 0.295N/m, kU = 0.059N/m, kd = 0.00985N/m, and η variable ranging from η = 2.6m/N with ∆t = 2.6 × 10−7s for
v = 0.35 µm/s, to η = 0.09m/N with ∆t = 9.05 × 10−9s for v = 10 µm/s.

results with numerical ones. In our specific case, the
agreement has been obtained with ∆B = 18.2KBT (at
room temperature), confirming the value reported in
the literature [49, 50]. It is interesting to point out
that the dynamic force-spectroscopy method may re-
veal important features of the energy landscape of a
protein, without the necessity to induce the chemical
or thermal unfolding of the molecule.

5.2. The stretching of titin

Titin, also known as connectin, is the largest protein
of the human body, whose role is to assembly and
stabilise the sarcomere, the unit of contraction of the
muscle, composed of three systems of filaments: actin,
myosin and titin. Data of force spectroscopy show that
titin is able to store and to provide energy, mainly by
folding and unfolding its multiple immunoglobulin-like
domains [91]. We especially focus our attention on

domain immunoglobulin-like 27 (I27) of the I band of
the human cardiac titin, also known as domain I91.
Each domain has 89 amino-acids and is composed of
β-sheets.

As before, our analysis is strongly simplified with
respect to the reality. Firstly, the model is one-
dimensional as previously discussed. In addition, since
we are interested in the force-velocity relationship, we
use a simplified geometry, as depicted in Fig.6 for
the filamin. As a matter of fact, also the energy
profile of the titin domain is composed of a very
narrow first well, followed by a quite high barrier
and a long smooth second well (see Fig.7B of Ref.
[51] for details). Given that we search for the force
peaks as function of the pulling velocity, we use
Eq.(4), which allows us to correctly represent the
first well and the barrier, but we cannot represent
the correct geometry of the second well. This point,
however, as previously discussed, should not affect the
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Figure 8. Comparison between numerical results and experimental data for the titin protein. Panel a): scheme of the force
spectroscopy experiment conducted on the titin protein (N = 8). Image from the RCSB PDB (rcsb.org) of PDB ID 1TIT generated
by the NGL viewer with NMR data from Ref. [94]. Panel b): average force exerted on the titin molecule versus the prescribed device
position (average curves determined over M=2000 trajectories). Panel c): assumed bistable potential energy of the titin protein and
potential energy of the AFM device. Panel d) and e): mean of the N = 8 force peaks versus the applied pulling velocity in linear scale,
and in semi-log scale, respectively. In panels b), d) and e), we adopted different pulling velocities from 0.1 to 10 µm/s, coherently with
experimental data [51]. The dashed black curve in panel (b) represents the force-extension response at thermodynamic equilibrium
(see Eqs.(27) and (28)). The curves have been obtained with ∆B = 37.5KBT , ∆E = 8.5KBT , T = 300K, N=8, ` = 0.5nm, χ = 5,
kF = 9.94N/m, kU = 3.32N/m and kd = 0.166N/m, and η variable ranging from η = 8.45 × 10−2m/N with ∆t = 4.2 × 10−7s for
v = 0.1 µm/s, to η = 8.45 × 10−4m/N with ∆t = 4.2 × 10−9s for v = 10 µm/s.

transition forces. While the physical parameters of
first well and barrier have been deduced from AFM
experiments (under isometric condition) [51, 67], the
complete geometrical description of the titin domain
has been obtained with magnetic tweezers spectroscopy
(under isotensional condition) [92,93]. In particular, a
step size of about 10-20nm and a total contour length
of about 30nm have been measured.

Force spectroscopy experiments on mechanical
unfolding of 8 tethered I27 domains were realized
with a pulling speed varying over three orders of
magnitude (from 10−2 to 101µm/s) [51, 67]. The
NMR spectroscopy allowed to determine the stable
I27 structure, which is represented in Fig.8a [94].
In Fig.8b, one can find the force extension curves
numerically obtained for different values of the pulling
velocity and with the potential energy of protein
units and device represented in Fig.8c. We remember
that here the geometry of the second well has not
been respected, being the real step size of about 10-

20nm. Each curve in Fig.8b has been obtained as
the average value of M = 2000 independent Langevin
trajectories. As before, the black dashed curve in
Fig.8b corresponds to the thermodynamic equilibrium.
We remark that some parts of the force-extensions
curves are negative: this behavior comes from the
one-dimensional geometry of the system, as discussed
at the end of Section 4.1. Moreover, we can also
underline that the shape of the force peaks in the
saw-tooth pattern is not as sharp as observed in the
experimental AFM results. This is mainly due to
the fact that in our plot we show the mean value
of several trajectories whereas typical experimental
curves correspond to a single realization of the process.
Moreover, in our simplified approach, we have not
implemented the classical worm-like chain model,
which is able to correctly represent the stretching
of most macromolecules and shows a sharper force-
extension curve. Indeed, in our one-dimensional chain,
we only described the bistable character of the units
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without introducing a specific persistence length. The
observed force peaks are related to the sequential
unfolding of the eight titin domains. Then, in Fig.8d
and e, the mean value of these eight force peaks
are represented versus the pulling velocity in linear
and logarithmic scales, respectively. First of all, we
observe that the good agreement between numerical
and experimental data has been obtained with ∆B =
37.5KBT , which is the value accepted in the literature
[51, 67]. Moreover, it is interesting to observe that
the relation between the mean unfolding force and the
logarithm of v0 is not linear and we can measure a
deviation between the linear fitting (calculated for v0 <
1µm/s) and the numerical and experimental data for
the largest pulling velocities adopted. This behaviour
is coherent with previous investigations [55,67].

6. Bistable snap spring approach

In this Section, we describe a complementary model
to study the out-of-equilibrium dynamics of a bistable
system, based on the combination of the Langevin
equation with the spin variable approach. Such
a model is inspired by the work of Huxley and
Simmons investigating the mechanical myosin power-
stroke in skeletal muscle [34, 42], and by its dynamic
extension proposed for studying the kinetics of SNARE
proteins in neurotransmission [95]. It considers a
further simplified description of the bistable system,
by providing direct access to the spin variable, which
represents the configurational state of the system.

For the sake of simplicity, we present the model for
a single bistable unit, unfolded by means of a device
with intrinsic elasticity, and we show the results for the
case of the filamin molecule, discussed in Section 5.1.
The molecule is described as a mechanical snap spring
that can switch between the two folded and unfolded
configurations, corresponding to the energetic states
UF (x) and UU (x), respectively. We assume a quadratic
dependence of the energy on the displacement and
therefore we can write the energy of a single unit as in
Eq.(15), where the spin variable s takes the two values
0 and 1 for the folded or unfolded state, respectively.
Consequently, the potential energy takes the following
form

Us(x, s) =

{
UF (x) = 1

2kF (x− `)2, s = 0,
UU (x) = ∆E + 1

2kU (x− χ`)2, s = 1.

(29)

The two quadratic functions for the folded and
unfolded states of Eq.(29) are shown in Fig.1 (dashed
blue lines). For comparison, the original bistable
energy is also shown (continuous red curve). Hence,
one crucial difference between the potential energy
defined in Eq.(29) and the previous one defined in
Eq.(4), is that the former is described by two distinct

Figure 9. One realization of the stochastic evolution of the
coupled system bistable unit–device at v0 = 1µm/s. Panel a):
time behaviour of the spin variable s(t). Panel b): elongation
of the molecule xN (t) and pulling ramp xN+1(t). Panel c):
instantaneous force fN [x(t), s(t)] measured by the device. The
adopted parameters are the same than those declared in Fig.7.
Moreover, we used κ = 2 × 108Hz and ∆t = 5 × 10−10s.

quadratic functions, while the latter is described by a
single continuous bistable function. From Eq.(29), we
straightforwardly get the force exerted by the molecule
as

fs(x, s) = − ∂Us(x, s)

∂x
= [kF (s− 1)− kUs] [x− `(1− s)− χ`s] . (30)

According to Eqs.(29) and (30), the overdamped
Langevin equation has now a different dependence on
the force with respect to Eq.(40) (see Appendix A),
and takes the form

x(t+ ∆t) = x(t) + f [x(t), s(t)]
∆t

mβ
+

√
2KBT∆t

mβ
P,

(31)

where, in this case, x ≡ xN , f ≡ fN , and the
total force depends not only on x(t) but also on the
conformational state of the molecule, described by the
spin variable s(t). The total force is computed as
follows

f [x(t), s(t)] = fs [x(t), s(t)] + kd
(
v0t+ `− x(t)

)
, (32)

where the second term represents the force generated
by the device and v0 is the pulling speed (we remark
that in this case, xN+1 ≡ v0t + ` + `d). As before,
the quantity P is a random number drawn from the
standard normal distribution at any time step.

The dynamics of the spin s(t) describes the
switching between the folded and unfolded states at
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transition rates k±. Following Refs. [42, 76], we make
the assumption that the transition from the high to
the low energy state occurs at a constant rate κ,
which establishes the characteristic time-scale of the
conformational change. This hypothesis replaces the
full description of the bistability given by an arbitrary
potential energy (see Eq.(4)), with the advantage of
having a small set of parameters representing the
system. Moreover, this assumption and the detailed
balance [76] lead to the following transition rates

x < x∗ ⇒

{
k−(x) = κ,

k+(x) = κe
− 1
KBT

[UU (x)−UF (x)]
,

(33)

x > x∗ ⇒

{
k+(x) = κ,

k−(x) = κe
− 1
KBT

[UF (x)−UU (x)]
,

(34)

being x∗ the crossover point of the two parabolas,
defined by UF (x∗) = UU (x∗).

It is important to remark that the detailed

balance expression k+(x)/k−(x) = e
− 1
KBT

[UU (x)−UF (x)]

must be mandatorily fulfilled ∀x in classic Langevin
equations (see, e.g., Eq.(3)) as they are overdamped
and with the force derived from a potential energy.
Now, in the present snap spring approach the equations
are still overdamped but the forces cannot in general
derived from a potential (see Eq.(32)). Indeed, the
presence of the spin variable s is able to break the
typical structure of the overdamped Langevin equation
with a force described by a potential. Therefore, we are
not obliged to consider the detailed balance in this case,
but we have decided to apply it simply to facilitate the
choice of the kinetic terms k+(x) and k−(x). It is worth
noticing that the detailed balance can be effectively
broken in living systems at molecular or mesoscopic
scale [96,97]. Finally, it is important to underline that
the detailed balance is imposed here for the sake of
simplicity, and not because it was generally true in our
out-of-equilibrium process.

The conformational state of the molecule, char-
acterized by the variable s, evolves according to the
stochastic equation

s(t+ ∆t) = s(t) + {1,−1, 0}, (35)

with the outcomes {1,−1, 0}, characterized by the
probabilities

P+1(x, s) = (1− s) k+(x)∆t, (36)

P−1(x, s) = s k−(x)∆t, (37)

P0(x, s) = 1− P+1(x, s)− P−1(x, s). (38)

At each time step, these probabilities are computed,
and the next event is chosen through an acceptance–
rejection condition using a random number uniformly
distributed in (0,1). We underline that the transition
rates k± are functions of the variable x, whose
dynamics is, in turn, controlled by s.

Figure 10. Three force-extension responses for the filamin
molecule obtained with the snap-spring model (red, black
and green curves). Three different pulling velocities (v0 =
0.1, 1, 10µm/s) have been used. These results are compared with
three averaged force-extension responses (M = 2000) obtained
through the Langevin equation with the continuous bistable
potential given in Eq.4 (orange, purple and blue curves).

To sum up, at any time step, the position x is
updated together with s, by means of the following
steps: (i) compute P+1, P−1, and P0 through Eqs.(36),
(37), and (38); (ii) update the conformational state
of the molecule s(t + ∆t); (iii) compute the force
f [x(t), s(t)] with Eq.(32); finally, (iv) update the
position x(t + ∆t) for the next iteration through
Eq.(31). In order to have the convergence of the
procedure, the time step ∆t must fulfil these two
conditions, induced by two characteristic times of the
system: (i) since the diffusion coefficient is given by
D = KBT

mβ and the diffusion process is governed by the

law
〈
x2
〉

= Dt, we must have ∆t � mβa2/(KBT ),
where a can be considered as the largest length within
the unit, i.e. the step size a = (χ−1)`; (ii) in addition,
we also consider that ∆t < 1/k. These conditions
should ensure a reasonable trajectory sampling.

We investigate the time evolution of the unfolding
of a single bistable unit starting from an initial state,
in which the molecule is fully folded. So, we take
as initial conditions y(0) = 0 and x(0) = `. A
typical example of the stochastic trajectory, obtained
by solving numerically Eqs.(31) and (32) at v0 =
1µm/s, is shown Fig.9. The mechanical parameters
correspond to the filamin, apart from ∆B, which is
substituted by the new dynamical parameter κ = 2 ×
108Hz. Moreover, we used a time step ∆t = 5×10−10s.
The value of the energy barrier can be defined now
as ∆B = UF (x∗) = UU (x∗) = 22.3KBT , which is
obviously slightly larger than ∆B = 18.2KBT adopted
for the filamin molecule. The evolution of the system
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Figure 11. Dynamic force spectrum of the filamin unfolding
process over a large range of the pulling velocities v0. The snap
spring results (red squares) are compared with the continuous
Langevin approach (blue stars) and with the experimental data
(orange circles), reported in Fig.7. The up and bottom error
bars for each point represent the deviation of the first and the
third quartiles from the median.

can be decomposed into two stages. During the first
stage, the system remains in its initial configuration,
and only rare transitions are observed. Then, the
bistable unit starts the switching from the folded to
the unfolded state (see Fig.9a). The transitions are
accompanied by a change of the molecule elongation
xN (t) (see Fig.9b). We see that before the transition
at x∗, the bistable unit undergoes several transitions
between the two states. Finally, during the second
stage, the system remains constantly in the unfolded
state. The instantaneous force measured by the device
fN [x(t), s(t)], is represented in Fig.9c.

In Fig.10, three numerical force-extension curves
are shown, for v0 = 0.1, 1, and 10µm/s respectively.
At low velocity (v0 = 0.1µm/s), the rupture force
(around 55pN, red curve) arises from the applied
pulling combined with the stochastic fluctuations. We
underline that in the limit of extremely low pulling
velocities (v0 → 0), the average unfolding force
becomes independent of the pulling speed, and it
can be fully predicted by the equilibrium formalism
discussed in Section 3. On the other hand, at high
velocities, the rupture force increases, reaching the
values of about 60 and 70 pN (black and green curves).
In this case, the stochastic fluctuations along the
unfolding pathway become more and more irrelevant
and the unfolding process becomes quite deterministic.
This is due to the fact the system is pulled fast, and it
has no time to explore its energy landscape.

In Fig.11, we reported the dynamic force spectrum
for the unfolding of the filamin over a large range of

Figure 12. Effect of the time step ∆t on the convergence of the
results. We calculated the force spectrum for different values of
the time step ∆t = 1×10−10, 5×10−10, 5×10−9, 2.5×10−8, 5×
10−8, 2.5 × 10−7, 3.75 × 10−7, 5 × 10−7 s. We observe that the
value ∆t = 5× 10−10s used in Fig.11 is sufficient to have a good
convergence. The three largest values of ∆t are not represented
in the zoomed-up inset.

Figure 13. Histograms of the unfolding or rupture force peaks
for the pulling velocities v0 = 10−2, 10, 104µm/s (the number of
Monte Carlo realizations correspond to M=500, 8000 and 24500,
respectively). We remark that the distributions of the forces are
not gaussian and not symmetric, which explains the use of the
first and third quartiles and their deviations from the median to
define the error bars in Fig. 11.

pulling velocities v0 (including standard AFM and HS-
AFM). As before, we adopted the time step ∆t =
5 × 10−10s. For each value of pulling velocity we
used a number of Monte Carlo simulations given by
M = 500×[log10(v0/(1nm))]

2
, which is increasing with

v0. We can observe the good agreement between the
snap spring model and the numerical and experimental
results discussed in Section 5.1 (see Fig.7) for filamin.

In Fig.12, we studied the convergence of the
numerical results with a varying time step ∆t. We
can clearly observe that the value ∆t = 5 × 10−10s,
used in Fig.11 and in previous simulations, is sufficient
to have a good convergence.

The up and bottom error bars of each point in
Fig.11 represent the deviations of the first and the
third quartiles from the median. The asymmetries of
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these deviations underline the non-gaussian character
of the distributions of the unfolding force. This
point is illustrated in Fig. 13, where the asymmetric
histograms of the unfolding force are reported for
the three pulling velocities v0 = 10−2, 10, 104µm/s.
For instance, this result is useful to directly draw a
comparison with experimental results as reported in
Ref. [49]. To conclude, we underline that in this
analysis we considered the largest range of pulling
speeds, including both AFM and HS-AFM.

7. Discussion

We presented an approach based on the overdamped
Langevin formalism able to predict the force exten-
sion response of biological macromolecules unfolded
through a force spectroscopy device at a given pulling
speed. In particular, we proposed two models, which
are able to work in the out-of-equilibrium regime of
the statistical mechanics. Both models are useful to
analyse the experimental data in order to estimate the
main important biological and biochemical features of
the macromolecule under investigation.

The first model considers an arbitrary continuous
bistable potential energy for describing the units of the
macromolecule. This coarse-grained description has
the advantage to require less computational resources
than those required by the molecular dynamics
approach. As a matter of fact, each unit is defined
by an effective bistable energy, without taking into
account the complete atomistic description of the
molecular architecture. On the other hand, the
continuous description of the bistable potential energy
is more complete than the simplified representation
based on a limited set of parameters, which is
often adopted in several analytical models. In
this regard, the Langevin approach can be seen
as a good compromise between methods based on
molecular dynamics simulations and others based
on analytical approximations. Its implementation
allows for considering pulling speeds ranging from
the standard AFM to the HS-AFM. We show here
a good agreement between the results obtained with
this approach and the experimental data concerning
the unfolding of filamin and titin.

The second (snap spring) model has been
elaborated by combining the Langevin formalism with
the spin variables approach. It is therefore a further
simplification of the first Langevin method. Indeed,
the complete description of a bistable unit is now
substituted by two quadratic wells and a spin variable
(assuming the values 0 and 1), which is able to
identify the explored state during the system evolution.
The switching between the states is regulated by
the two folding and unfolding transition rates, which

are coupled with the continuous variables of the
system (position, force and so on). As an example,
we described an application to the analysis of the
filamin experimental data in a very large range of
pulling speeds. Importantly, this approach gives
direct access to the spin variable during the dynamics
of the system. It means that we can follow the
time evolution of the configurational state of the
system. In particular, this point is crucial for possible
extensions of the model, considering interactions
among the units [38] or heterogeneity of the chain [40].
Indeed, further investigations will concern the out-of-
equilibrium regime of heterogeneous systems. Recent
works have provided evidence that the pulling speed
applied by the device to a heterogeneous protein plays
an important role in defining the unfolding pathway
[78,98–100]. Therefore, it is important to fully analyse
the interplay between the sequence of heterogeneous
units in the chain and the applied pulling speed on the
observed unfolding pathway. The snap spring method
seems to be particularly appropriate to approach this
problem.
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Appendix A: Numerical solution of the
Langevin equation

The numerical solution of Eq.(3), with U defined in
Eq.(4), can be implemented by means of the following
procedure. First of all, we integrate Eq.(3) over an
arbitrary interval (t, t + ∆t). This operation delivers
(i = 1, ..., N − 1)

m [xi(t+ ∆t)− xi(t)] ' −
1

β
U ′ [xi(t)− xi−1(t)] ∆t

+
1

β
U ′ [xi+1(t)− xi(t)] ∆t+

√
KBTm

β

∫ t+∆t

t

ni(t)dt,

(39)

where ∆wi =
∫ t+∆t

t
ni(t)dt are independent incre-

ments of the Wiener process [76, 77]. It follows that
the quantities ∆wi are random Gaussian variables and
fulfil the properties E{∆wi} = 0 and E{∆wi∆wj} =
2∆tδij . We can therefore introduce the random vari-
ables Pi = 1√

2∆t
∆wi, which are independent and nor-

mal Gaussian, thus described by the probability den-
sity f(Pi) = 1√

2π
e−P

2
i /2. The motion equations can be

therefore written as

xi(t+ ∆t)− xi(t) ' −U ′ [xi(t)− xi−1(t)]
∆t

mβ
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+ U ′ [xi+1(t)− xi(t)]
∆t

mβ
+
√

2KBT

√
∆t

mβ
Pi. (40)

We can now observe that the time step ∆t controls the
convergence of the numerical scheme and the solution
must be stable for decreasing values of ∆t. If we
define η = ∆t

mβ , we obtain the final version of the

finite difference scheme of the Langevin equations (i =
1, ..., N − 1)

xi(t+ ∆t)− xi(t) ' −U ′ [xi(t)− xi−1(t)] η

+ U ′ [xi+1(t)− xi(t)] η +
√

2KBT
√
ηPi. (41)

We draw the random numbers Pi [101], and we
generate M realizations of the trajectory to finally
determine their mean value [102].
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