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A B S T R A C T

In this thesis, we provide a picture on the elastic behavior of nanos-
tructured systems. In particular, we focus on the effective nonlinear
elasticity of nanocomposites. We adopt both continuum theory and
atomistic simulations point of view, merging the two approaches in a
sequential multiscale modeling. Several new developments in the field
of continuum elasticity theory are considered. These methods are then
applied down to the nanoscale in order to analyze the onset of atomistic
effects in nanocomposite systems. A universal scaling law is provided,
governing the overall elastic behavior in the range below 10 nm. Fur-
thermore, interface elastic phenomena in embedded nanostructures are
described by means of an atomistically-informed continuum model and
verified through large scale atomistic simulations containing up to 107

atoms. Moreover, a new constitutive force field scheme is developed
with applications in the field of nonlinear elasticity of complex systems.

S O M M A R I O

In questo lavoro è stato studiato il comportamento elastico di sistemi
nanostrutturati ed in particolare l’elasticità non lineare dei mezzi com-
positi. A tal fine, sono state applicate sia la teoria del continuo che
le simulazioni atomistiche. Inoltre, i due approcci sono stati integrati
in descrizioni multiscala afferenti alla classe dei metodi sequenziali.
Nell’ambito della teoria del continuo elastico sono stati ottenuti una
serie di nuovi sviluppi analitici, in seguito applicati all’interpretazione
dei risultati delle simulazioni atomistiche di sistemi nano-strutturati. In
questo modo sono stati identificati e descritti per mezzo di una oppor-
tuna legge di scala gli effetti di taglia dovuti alla natura discreta della
struttura atomica dei materiali. Inoltre, simili fenomeni di scala, dovuti
in questo caso alla presenza di interfaccie strutturate, sono stati descritti
per mezzo di un modello del continuo che implementa efficacemente
questi effetti atomistici. In fine, è stato sviluppato un nuovo campo di
forze applicabile allo studio computazionale dell’elasticità non lineare
di sistemi complessi.
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I N T R O D U C T I O N

During the last decade, the emphasis of the material science community
has been focused on the study of the behavior of the matter at the
atomic- or nano-scale. The proliferation of the theoretical and experi-
mental approaches to the research and development on this subject has
led to the coining of the phrase nano-technology [1]. This term generally A promising route for

modern materials
science: the
nano-technologies

implies the investigation and technological application of the proper-
ties of matter at length scales of one thousand nanometers or smaller.
Nowadays, we have acquired new tools and techniques to synthesize
nanoscale objects and characterize their many specific properties. The
high-resolution electron microscopes that are available today enable
the visualization of aggregates of few atoms. Thus, we have now the
technology to detect single molecules, bacteria or virus particles. Syn-
thesis of advanced materials provides the technology to tailor-design
systems as small as molecules. Furthermore, the manipulation of these
nano-systems is possible using scanning probe techniques.

Advances in the synthesis of nanoscale materials have stimulated
research activities in science and engineering devoted entirely to these
materials and their applications. This is due in large part to the combi-
nation of their expected structural perfection, small size, low density,
high stiffness, high strength and excellent electronic properties. As a
result, nanoscale materials may find use in a wide range of applications.
In fact, there is universal agreement upon the overall potential that, in
particular, nano-mechanics has for the betterment of modern industry.
Nano-composites, nano-alloys and nano-grained/-graded materials or
nano-electro mechanical systems enter yet in most present-day con-
sumer products, as well as in front-end technologies like automated
manufacturing, environmental monitoring, automotive, aerospace, ITC
technologies or even in leading-edge developments in energy-, life-
or materials-science. Several low-dimensional nanostructures, includ-
ing quantum dots (QDs) (nanocrystals or nanoparticles of arbitrary
diameter containing about 10 to 100 atoms) or carbon nanotubes (one-
dimensional structures) have been demonstrated to be efficient field
emitters and are currently being incorporated in several applications,
including flat panel display for television sets or computers. QDs het-
erostructures are also promising materials for solar photovoltaics (PVs).

Protective coatings is another area that has greatly benefited from
nano-mechanics. These coatings have a wide range of applicability,
examples being gears and bearings in the automotive industry. In all
these applications, the goal has been to replace or augment previously
known super hard materials such as diamond in designing tribological
parts that use nanoceramic-type coatings to reduce friction and wear.
Extending the lifetime of these parts is crucial, and will lead to a
massive reduction in maintenance costs for these components. A further
research topic is the development of nanoelectromechanical systems
(NEMS). For example, the storage capacity of computer hard drives has
been increased by orders of magnitude, thanks to magnetic materials
whose thickness is on the order of nanometers. Medicine is another
key area in which NEMS devices have made, and will make, large
contributions. Here, nanotechnology can be used to dynamically image

1



2 introduction

living biological systems, such that the real-time study of bacteria and
diseases can be performed.

In the field of nano-sciences a role of paramount importance isAdvanced structural
materials: the
nano-composites

carried out by nano-composite systems [2]. Generally speaking, composite
materials (also referred as composites) are inhomogeneous engineered
media made by two or more homogeneous constituent materials with
significantly different physical properties which remain separate and
distinct within the finished structure. A key to the success of such
materials is their tailored mechanical or optoelectronic behavior. In
fact, a relatively inexpensive way to obtain macroscopically desired
responses is to enhance a base material’s properties by the addition
of microscopic matter, i.e. to manipulate their inner structure. The
macroscopic characteristics of modified base materials are the aggregate
response of an assemblage of different "pure" components, for example
several particles or fibers embedded in a binding matrix. In structural
engineering applications, the classical choice is a harder particulate
phase that serves as a stiffening agent for a ductile, easy to form, base
matrix material. In photovoltaics applications, the incorporation of QDs
(e.g InAs/InGaAs/GaAs QDs) into existing (e.g. InGaP/GaAs/Ge)
solar cells will result in new devices with higher efficiency and render
solar energy more cost competitive. A further meaningful application
of nanocomposites is in the field of lasers technology. For example, by
capping InAs quantum dots with an InGaAs strain-reducing layer, the
photoluminescence peak of InAs quantum dots can be controlled by
changing the indium composition of the InGaAs strain-reducing layer.

As a matter of fact, macroscopic composites, i.e. composites whereComposites at the
macro-scale the inhomogeneity shows up at the macro-scale (rather than at the

nano-scale), are not a recent development. Thus, macro- or micro-scale
inhomogeneities are encountered in metal matrix composites, concrete,
etc. Accordingly, not even the analysis of such heterogeneous materials
can be considered as a recent topic. In this field, continuum mechanics hasThe continuum

approach been largely applied to describe and modeling the morphology of mi-
croscopic composite materials and estimating their effective mechanical
properties. Such a theory is based on the approximation of continuum
medium: it means that the full set of pointlike atomic masses distributed
within a solid body is replaced by a continuum distribution of mass.
This approximation can be easily applied to macroscopic composites
since the spatial wavelength of the main fields, describing their mechan-
ical behavior, is typically larger than the interatomic distance. Within
the last 150 years, estimates on the effective mechanical responses of
composites have been made under a variety of assumptions on the
internal fields within the microstructure. Works dating back at least to
Maxwell [3, 4] and Lord Rayleigh [5] (published in 1867, 1873 and 1892,
respectively) have dealt with determining overall macroscopic electric
transport phenomena of materials consisting of a matrix and distri-
butions of spherical particles. Voigt [6] (published in 1889) is usually
credited with the first analysis of the effective mechanical properties
of the microheterogeneous solids, with a complementary contribution
given later by Reuss [7]. Within the last 50 years improved estimates
have been pursued. For example, the dilute family methods assume that
there is no particle interaction. With this assumption one requires only
the solution to a single ellipsoidal particle in an unbounded domain.
This is the primary use of the elegant Eshelby [8] formalism, based on
eigenstrain concepts, which is used to determine the solution to the
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problem of a single inclusion embedded in an infinite matrix of material
under uniform exterior loading. Also the studies of heterogeneous materi-
als with nonlinear constitutive behavior go back to the early years of the
century, more precisely to at least Taylor. In 1938 he studied the mechan-
ics of polycrystals [9], and in the subsequent works by Bishop and Hill
[10, 11] and by Drucker [12] they investigated the behavior of ideally
plastic polycrystals and composite materials. Over the past decades
or so, also numerical simulations of nonlinear materials with periodic
microstructures have been carried out (see, for example [13, 14, 15]),
as well as materials with more general microstructures [16, 17, 18]. A
large review of such investigations can be found in the excellent work
of Ponte Castañeda and Suquet [19].

All the continuum-based models are appropriate for microscopic as From macro- to
nano-scalewell as macroscopic length scales, but can no longer provide all the

possible insight into materials properties at the smallest length scales,
namely, into the mechanics of modern nano-composites. In fact, it has
been cleared that these approaches are based on the assumption that the
relevant fields that describe the state of a material vary slowly on the
atomic scale. Otherwise, continuum models that represent macroscopic
behavior of a material by averaging the material’s properties at the
smaller length scales, can lose their meaning. For example, to describe
properties of a material with defects, continuum theories a fortiori
break down in the vicinity of the defects, or, more generally, any other
entity that possesses structure on the atomic scales. In these cases,
it is therefore clear that continuum theories must be "enriched" by
incorporation of additional atomistic informations, and hence avert
their breakdown. This is the realm of condensed matter theories such
as the density functional theory (DFT) and its variants, as well as the
ab initio (CP, i.e. Car-Parrinello) or model-potential (MP) molecular
dynamics (MD).

DFT nowadays represents the standard model for full-quantum, Atomistic approaches

parameter-free prediction of ground-state materials properties. They
can be computed in any arbitrary atomistic state of aggregation, chem-
ical composition, degree of crystalline order or disorder, as well as
under any arbitrary condition of temperature, pressure, stress, or ap-
plication of external perturbing fields. While more fundamental and
superior than continuum models, DFT applications are severly limited
by their computational workload which can possibly be overwhelming.
Accordingly, the straightforward application of DFT to nano-composite
systems often results into a daunting effort. In fact, the mechanical
behavior of these heterogeneous materials is largely influenced not
only by the atomistic details of each inner nano-structures, but also
by the (possibly disordered) complex macroscopic distribution of such
inhomogeneities. In other words, to properly treat the nanocomposites
mechanics, we need to take into account the atomistic description of the
nano-sized inclusions as much as their actual distribution that spreads
over the meso- or macro-scale. The last aspect results in the need of
considering the effective response of systems involving millions of
atoms, largely out of the capability of DFT-based techniques. To a less
extent, similar limitations hold for the CPMD simulations. This method,
pioneered by Car and Parrinello, is based on the Hellmann-Feynman
theorem, which greatly simplifies the task of computing the physical
forces on the particles. Even with such a simplification, the CPMD
scheme is only limited to systems containing up to few thousands
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atoms. Alternatively, the tight-binding molecular dynamics (TBMD)
can be adopted, where the covalent bonding is incorporated into the
computation from its underlying electronic structure which, in turn, is
solved by a semi-emprical quantum scheme. In a TBMD simulation,
electronic calculations require a few atomic orbitals for each atom,
hence allowing a comparatively larger number of atoms (up to several
thousands) to be used. Unfortunately, because of its semi-empirical
formulation, TBMD has reduced chemical transferability and, therefore,
it can be hardly adopted as a universal computational tools for nano-
technology. Under this respect, model-potential MD could offer a wider
perspective, despite its validity can only be proved heuristically. The
increasing popularity of MD methods is due just to the fact that highly
efficient simulation techniques have been developed in order to treat
simultaneously up to millions of atoms.

In any case, the straightforward application of the atomistic mod-The multiscale
approaches els, as much as of a pure continuum approach, are not feasible for

a complete description of the mechanics of nano-composites. On the
contrary, atomistic and continuum models must reinforce each other in
some suitable hierarchical combination. This key idea has generated the
modern and fascinating concept of multiscale modeling of materials [20, 2].
Extensive discussions and overviews pertaining to this subject are given
for example in [21] and [22]. Generally speaking, there are two types
of multiscale approach for modeling various physical phenomena that
occur in materials containing several disparate length scales. These ap-
proaches are either parallel or sequential methods, in the sense described
below.

The first method is not as well-developed as the sequential approach,parallel methods...

because it requires very significant computing power which, up until
very recently, was not available. In this method, different computational
methods, ranging from those for atomic scales to continuum scales, are
coupled for a simultaneous attack on a given problem. The reason for
this coupling is that many physical phenomena are in fact inherently
multiscale; that is, one must know what is happening simultaneously
in different regions and scales of the system in order to understand and
predict its macroscopic behavior. A good example is fracture propaga-
tion in solid materials. The atoms that constitute the material interact
with each other, and nucleation of a crack and its propagation are due
to what happens at this length scale, namely, breaking of the bonds
between the atoms. As the nucleated crack starts to propagate, complex
phenomena, such as plastic deformation, happen at a larger length
scale which includes the tip of the propagating fracture. At still larger
length scales, which include the region far from the tip of the crack,
the material behaves as a continuum which may be described by the
classical continuum mechanics.

The Sequential Multiscale Approach has been developed and used...and sequential
methods much more extensively than the parallel multiscale modeling. In this

method, beginning with the smallest length scales of the problem,
the results of a series of computations are used as the input to the
next one performed, hierarchically, at a larger length scale. Hence, the
essential idea is to pass informations from finer to coarser scales. A
beautiful example of implementation of this strategy is the pioneering
work of Clementi [23]. In 1988, he used accurate quantum-mechanical
computations in order to evaluate the interaction of several water
molecules, from which he developed an accurate empirical interatomic
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potential that involved two-, three-, and four-body interactions. The
potential was then utilized in a MD simulation for evaluating the
viscosity of water. Subsequently, motion of water in a channel with
or without obstacles was studied, using as input the viscosity that
had been computed in the previous step. The resulting understanding
was then employed in a fluid dynamics computation for predicting
tidal circulations obtaining a first example of Atomistically-Informed
Continuum Model.

Another example of sequential multiscale modeling is provided by
work of Zepeda-Ruiz et al. [24]. Their goal was designing experimental
protocols toward the development of engineering strategies for strain
relaxation of semiconductor films which are grown heteroepitaxially on
semiconductor substrates. The strain, caused by the lattice mismatch
between the film and substrate, generates defects in the material. By con-
trolling such effect the optimal design of the optoelectronic properties
of the film can be obtained. Using a multiscale approach, Zepeda-Ruiz
et al. studied layer-by-layer semiconductor heteroepitaxy, such as InAs
on GaAs(110) and InAs on GaAs(111). The continuum theory provided
a parameterization scheme for the atomistic simulations. A Keating-
type potential [25], which contains the contributions of the stretching
and bond-bending forces, was utilized for representing the interatomic
interactions, and total energy minimization was used for determining
the most stable configuration. A major conclusion of this work was that
the continuum theory of elasticity can be accurate all the way down to
the monolayer thickness, which is the finest possible length scale for the
theory in the context of layer-by-layer expitaxial growth. In addition,
the theory was shown, in conjunction with the atomistic simulations,
to provide quantitative predictions for various properties of interest.
Indeed, even the linear isotropic elasticity was capable of fitting the
results of the atomistic simulations.

In this thesis, we have worked on the elastic behavior of nanocom- The present thesis

posites by combining the continuum approach, namely the elasticity
theory, with large scale atomistic simulations based on MP molecular
dynamics. As discussed in the following, the philosophy of our ap-
proach can be framed within the sequential multiscale scheme above
defined.

Mainly, we have faced the linear and nonlinear elastic behavior of
embedded nanostructures with the aim of investigating the breakdown
of the corresponding continuum theory predictions due to the onset
of scale-effects. In other words, our goal is the characterization of the
elastic behavior of these heterogeneous structures as the size of the in-
clusion changes; the continuum theory is inherently scale independent
and, therefore, such a dependence must be related to the actual discrete
distribution of the atoms within the solid body.

As first step, in the context of the continuum elasticity theory, we Continuum-based
investigationshave developed a couple of original generalizations of the existing

results on the elastic behavior of a single inhomogeneity embedded in
a matrix with different elastic properties (Eshelby theory). Such gener-
alizations are intended to describe, within the continuum formalism,
some typical features or phenomena occurring in the atom resolved
systems. One of the main features of the heterogeneous systems at the
nanoscale is the presence of a structured interface between different
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media. Typically, this feature is not introduced in the macroscopic con-
tinuum framework since the interface is assumed devoid of any specific
mechanical response (perfect interface approximation). Thus, we have
considered the case of a prestressed (or prestrained) single inclusion,
i.e. an embedded inhomogeneities that exhibits a state of deformation
also in absence of any external load. As we have verified by means of
a series of atomistic simulations, such an effect can be induced at the
atomic level by the possible lattice mismatch at the interface between
the inclusion and the surrounding matrix. In the continuum model,
we have introduced this prestressed state by considering a size (and
possibly a shape) of the inclusion different from the corresponding host-
ing hole in the matrix. Moreover, a inherent character of the atomistic
systems is the nonlinearity of their mechanical response induced by
the complexity of the atomic interactions. This consideration leads us
to consider the effect of nonlinear constitutive equations for the media
involved in the heterogeneous structure. Thus, Eshelby theory has been
generalized to such a case.

As for the atomistic approach, we have firstly considered some basicThe atomistic
approach concepts in the microscopic theory of elasticity. More precisely, we have

investigated the relation between the atomic interaction and the result-
ing macroscopic elastic behavior of the overall material. In other words,
we have correlate the elastic properties of a medium with the details
of the interatomic potential (taking into account both two-body and
three body interactions) establishing the minimum level of complexity
that any microscopic dynamical model must exploit in order to obtain
results consistent with the continuum theory. Furthermore, we have
analyzed the identification of the elastic fields defined, at the macro-
scopic level, within the continuum elasticity theory (classic fields) with
suitable quantities achievable in MD simulations (ensemble averages
of dynamical variables). Interesting enough, we have verified that the
standard dynamical variable for the stress field, the so-called virial
stress, does not allow for a correct evaluation of the Cauchy stress in
the nonlinear formulation of the elasticity theory adopted in the present
work (physical nonlinearity).

As a first computational analysis, we have considered some paradig-
matic configurations of inhomogeneous (Silicon-based) systems, namely,
a planar interface between two elastically different media and an atom-
istic model of a single inclusion embedded in a matrix. As for the first
system, the continuity conditions for the elastic field across the interface
have been derived and applied to the atomistic system. Furthermore,
by means of large scale simulations (up to 107 atoms in the simulation
cell for a maximum size of the sample as large as 400 nm) based on a
high efficient parallel software1 we have applied our continuum results
for the elastic behavior of prestressed inclusions to the atomistic model
of an embedded inclusion. A good capability of such a continuum
model to mimic the observed interface induced scale-effects has been
verified. We note that this continuum model can be considered as a
first example of atomistically-informed continuum model where the
interface-induced atomistic features are introduced by considering a a
size of the inclusion different from the corresponding hosting hole in
the matrix.

1 The "CMPTool" HPC code developed by the CASPUR (Rome, Italy) computing center
staff and improved by the present author.
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In the above described computational works, we have modeled
the atomistic interaction through realistic interatomic potentials, i.e. by
means of model-potential intended to reproduce any possible ther-
modynamic and structural properties of the specific elements under
consideration (namely the Stillinger-Weber [26] and Tersoff [27] poten-
tials parametrized for Si-based systems). The performed investigations
on the elastic behavior of nano-structured systems have shown that An Atomistic Virtual

Laboratory for
Nano-elasticity based
on a novel
constitutive force field

different atomistic effects are possible: bulk disorder, interface effects,
relaxation induced prestrains. These effects strongly depend on the
details of the atomic structure and of the considered interaction. In
order to better understand the general rules underlying the onset of
the atomistic effects in nanocomposites, we have developed a versa-
tile model system, based on a new class of constitutive force fields, that
allow us to control these features by tuning the structural and elastic
properties of the medium. The key idea of such an Atomistic Virtual
Laboratory is based on the development of a coarse graining proce-
dure of the physical information that allows for the reduction of the
otherwise over-rich interatomic potentials nowadays available into a
new force field optimized to describe the elastic behaviors of complex
nano-systems. The above force field is quite dissimilar to ordinary in-
teratomic potentials for molecular dynamics simulation: in fact, it is
intended as general-purpose functional form (containing a given set
of material-specific parameters), exploiting a fully-atomistic coding of
elastic features, i.e. able to mimic any observed elastic behavior at any
order of nonlinearity.

The implementation of the constitutive force field in a parallel com-
puting tool, and the application of this Atomistic Virtual Laboratory to
the investigation of the elastic response of a single, as much as of a
dispersion of nonlinear inclusions have provided a series of results on
the onset of both linear and nonlinear size-effects in nanocomposites.
In particular, a full characterization of the scaling laws governing such
effects has been derived.

The Thesis is organized as follows: Outline

• In Part I we treat the continuum approach to composites materials:

– In Chapter 1, a brief outline of the main concepts and of
the formalism of continuum elasticity theory is reported. In
particular, we present a discussion of the elasticity formalism
in two-dimensional systems.

– Chapter 2 is addressed to the description of two novel gener-
alizations of the Eshelby theory. The first one considers the
elastic behavior of prestressed inclusions while the second
solves the case of a nonlinear inclusion.

– In Chapter 3, the effective behavior of a dispersion of nonlin-
ear inhomogeneities (nanocomposite) is calculated by means
of an homogeneization procedure based on the nonlinear
Eshelby theory.

• Part II deals with the atomistic modeling of solid mechanics:

– Chapter 4 provides an insight into some basic concepts un-
derlying the the atomistic approach to nanomechanics. In



8 introduction

particular, it contains a review of model-potentials for molec-
ular dynamics and a discussion on the identification of the
Cauchy stress field at the atomic level.

– In Chapter 5 we report some meaningful atomistic investi-
gations on the interface elasticity of Si-based nanostructures.
A planar interface between a-Si and c-Si and a single Si
inclusion embedded in a matrix are considered.

• Part III is addressed to the foundation of the constitutive force
field:

– Chapter 6 supplies a detailed description of the basic idea
underlying the constitutive force field and a paradigmatic
implementation in the case of a planar two-dimensional
triangular lattice.

– Finally, in Chapter 7 we report the results of the atomistic
investigations on the elastic behavior of nanocomposites
performed through our Atomistic Virtual Laboratory based on
the constitutive force field approach.
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1.1 outline of the elasticity theory

The classical theory of elasticity is based on the approximation of contin-
uum medium, which consists in replacing the full set of pointlike atomic
masses distributed within a solid body by a continuum distribution
of mass. This approximation is valid when the spatial wavelength of
the displacement field (describing the imposed deformation) is much
greater than the interatomic distance. In this case the crystalline struc-
ture is not relevant for determining the variation of the shape of the
solid body: the continuum macroscopic description is in fact sufficient
to study its mechanical response. The next most important ideas of elas-
ticity theory are the concepts of strain and the stress, both of which are
easily described by means of specific mathematical objects [28, 29, 30].

A deformation relates two configurations (or states) of the material.
The initial state is called the reference configuration and usually refers to
the initial time; the other is called the current configuration and refers to
a following time (which may be regarded conveniently as the present
moment) [31, 32]. In linear elasticity the strains (typically extensions
and shears) and the angles of rotation are considered small [33]. In this
case we use the infinitesimal strain tensor (or small strain tensor), which
is the main object introduced in order to describe all the deformation
features [34, 35].

To calculate the force of interaction between volume elements situ-
ated in an arbitrary closed region (imagined to be isolated within the
body) and volume elements situated outside this region, it was found
advantageous to introduce the concept of the averaged force of interac-
tion between them. This approach provides us with the definition of
the stress tensor, which takes into consideration all the interaction forces
among the volume elements of the continuum body [36, 37].

11
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The strain in a given body can be considered as the effect of the
applied stress. The relationship between the strain tensor and the stress
tensor depends on the material under consideration and, therefore, it is
called the constitutive equation [36]. The empirical Hooke law establishes
a linear relation between stresses (forces inside the body) and strains
(deformations of the body itself). In its general form, Hooke’s law is
able to describe an arbitrary inhomogeneous and anisotropic behavior
of the material under consideration [34]. However, the most simple
and important constitutive equation used in elasticity theory applies
to materials that are homogeneous (the elastic behavior is the same
at any point of the body) and isotropic (the direction of application
of the stress is not relevant). The linear, homogeneous and isotropic
constitutive equation is obtained and discussed in the following Section.

1.1.1 The strain tensor definition

Let ~x be the position vector of a volume element within a body in its
reference (equilibrium) configuration and let ~X be the position of the
same volume element in the current configuration. Both configurations
are framed within the same cartesian coordinate system (see Fig.1).
Since ~X is a function of ~x, we can write

~X = ~f (~x) = (f1 (~x) , f2 (~x) , f3 (~x)) (1.1)

We observe that the function ~f, connecting the vector ~X to the vector
~x, is a vector field. Of course, the relation ~f (~x) 6= ~f (~y) is verified for
any pair of volume elements with ~x 6= ~y in the reference configuration.
This means that ~f is a biunivocal vector function and, therefore, the
inverse function ~f−1 always exists. We also assume that ~f and ~f−1 are
differentiable functions. Basically, the vector field ~f (~x) contains all the
information about the deformation driving the solid body from the
reference to the current configuration. In the theory of elasticity the
deformation gradient F̂ =

{
Fij, i, j = 1, 2, 3

}
Deformation gradient

Fij =
∂fi

∂xj
(1.2)

is introduced. The matrix F̂ is also referred to as the Jacobian matrix of
the transformation and has two important properties: (i) it is not singu-
lar because of the invertibility of ~f (∃ F̂−1 such that F̂F̂−1 = F̂−1F̂ = Î);
(ii) its determinant is always strictly positive (det F > 0) [31]. We can bet-
ter exploit the concept of deformation by introducing the displacement
field ~u(~x) as

Displacement field
~X = ~f (~x) = ~x+ ~u(~x) (1.3)

The Jacobian matrix of the displacement Ĵ = {Jij, i, j = 1, 2, 3} (i.e., the
displacement gradient) is therefore calculated as

Displacement
gradient

Jij =
∂ui

∂xj
(1.4)

From the definitions of F̂ and Ĵ we have F̂ = Î+ Ĵ or Ĵ = F̂− Î.
In linear elasticity the extent of the deformations is assumed small.

While this notion is rather intuitive, it can be formalized by imposing
that for small deformations F̂ is very similar to Î or, equivalently, that Ĵ
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Figure 1: Reference configuration and current configuration after a deformation.

is very small. Therefore, we adopt as an operative definition of small
deformation the relation

Small deformation
conditionTr(ĴĴT ) � 1 (1.5)

i.e., a deformation will be hereafter regarded to as small provided that
the trace of the product ĴĴT is negligible. We observe that Ĵ can be writ-
ten as the sum of a symmetric and a skew-symmetric (antisymmetric)
part as follows

Jij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
︸ ︷︷ ︸

symmetric

+
1

2

(
∂ui

∂xj
−
∂uj

∂xi

)
︸ ︷︷ ︸
skew−symmetric

= εij +Ωij (1.6)

Accordingly, we define the (symmetric) infinitesimal strain tensor (or
small strain tensor) as

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(1.7)

and the (antisymmetric) local rotation tensor as

Ωij =
1

2

(
∂ui

∂xj
−
∂uj

∂xi

)
(1.8)

Such a decomposition [34] is useful to obtain four very important
properties of the small strain tensor, which is the key quantity to
determine the state of deformation of an elastic body:

• for a pure local rotation (a volume element is rotated, but not The strain tensor does
not take into account
the local rotations

changed in shape and size) we have Ĵ = Ω̂ and therefore ε̂ =

0. This means that the small strain tensor does not take into
account any local rotation, but only the changes of shape and size
(dilatations or compression) of that element of volume [36]. Let
us clarify this fundamental result. We consider a point ~x inside a
volume element which is transformed to ~x+ ~u(~x) in the current
configuration. Under a pure local rotation we have: ~x+ ~u(~x) = R̂~x,
where R̂ is a given orthogonal rotation matrix (satisfying R̂R̂T = Î).
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We simply obtain ~u(~x) = (R̂ − Î)~x or, equivalently, Ĵ = R̂ − Î.
Since the applied deformation (i.e., the local rotation) is small
by hypothesis, we observe that the difference R̂− Î is very small
too. The product ĴĴT will be therefore negligible, leading to the
following expression

0 ∼= ĴĴT =
(
R̂− Î

) (
R̂T − Î

)
= R̂R̂T − R̂− R̂T + Î

= Î− R̂− R̂T + Î = −Ĵ− ĴT (1.9)

Therefore Ĵ = −ĴT or, equivalently, Ĵ is a skew-symmetric tensor.
It follows that Ĵ = Ω̂ and ε̂ = 0. We have verified that a pure
rotation corresponds to zero strain. In addition, we remark that
the local rotation of a volume element within a body cannot be
correlated with any arbitrary force exerted in that region (the
forces are correlated with ε̂ and not with Ω̂): for this reason
the infinitesimal strain tensor is the only relevant object for the
analysis of the deformation due to applied loads in elasticity
theory.

• the infinitesimal strain tensor allows for the determination of theThe strain tensor
components εii

(i=1,2,3) represent
the lenght variations
along the axes of the
reference frame

length variation of any vector from the reference to the current
configuration. By defining ε~n as the relative length variation in
direction ~n, it is possible to prove that [36]

ε~n = ~n · (ε̂ ~n) (1.10)

If ~n is actually any unit vector of the reference frame, it is straight-
forward to attribute a geometrical meaning to the components
ε11, ε22, ε33 of the strain tensor. Since ε~ei

= ~ei · (ε̂ ~ei) = εii,
they describe the relative length variations along the three axes of
the reference frame.

• the infinitesimal strain tensor allows for the determination of theThe strain tensor
components εij

(i 6= j) represent half
the variation of the
right angles between
the axes i and j

angle variation between any two vectors from the reference to the
current configuration. The variation of the angle defined by the
two orthogonal directions ~n1 and ~n2 is given by [36]

∆α ~n1,~n2
= 2~n1 · (ε̂ ~n2) (1.11)

The present result is also useful for giving a direct geometrical
interpretation of the components ε12, ε23 and ε13 of the infinites-
imal strain tensor. As an example, we take into consideration the
component ε12 and we assume that ~n1 = ~e1 and ~n2 = ~e2. The
quantity ∆α~n1,~n2

represents the variation of a right angle lying
on the plane (x1, x2). Since ε12 = ~e1 · (ε̂ ~e2), we easily obtain
the relationship ∆α ~n1,~n2

= 2ε12 = ∂u1
∂x2

+ ∂u2
∂x1

. In other words,
ε12 is half the variation of the right angle formed by the axis x1

and x2. Of course, the same interpretation is valid for the other
components ε23 and ε13.

• knowing the ε̂ tensor field within a strained (i.e., deformed)The trace Tr(ε̂) of
the strain tensor
represent the local
variations of the
volumes

elastic body allows us to calculate the volume change ∆V of a
given region. We get ∆V =

∫
V Tr(ε̂)d~x, where V is the volume of

the unstrained region [31].
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The above discussion states that, given a displacement field ~u(~x), the
components of the infinitesimal strain tensor are easily calculated by
direct differentiation. The inverse problem is much more complicated
[31, 36]. Given an arbitrary infinitesimal strain tensor ε̂(~x) we could
search for that displacement field ~u(~x) generating the imposed defor-
mation. In general, such a displacement field may not exist. There are,
however, suitable conditions under which the solution of this inverse
problem is actually found. These conditions are written in the very
compact form

Infinitesimal strain
compatibility or
Beltrami
Saint-Venant
equations

ηqkiηphj
∂2εij

∂xk∂xh
= 0 (1.12)

where η’s are the Levi-Civita permutation symbols. Eqs.(1.12) are
known as infinitesimal strain compatibility equations or Beltrami Saint-
Venant equations [32]. A detailed discussion of this relation is given in
the next Section.

1.1.2 Compatibility equations

Given a displacement field ~u(~x), the components of the infinitesimal

strain tensor, εij = 1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, are easily calculated by direct dif-

ferentiation. The inverse problem is much more complicated [31, 36].
Given an arbitrary infinitesimal strain tensor εij we can search for a
displacement field ~u(~x) fulfilling the same relations. However, a dis-
placement field satisfying these relations for the given strain may not
exist. We now consider what conditions must be satisfied by the com-
ponents εij to ensure the existence of the displacement components. To
this aim we follow the following reasoning.

We suppose to consider a given εij and we also suppose that the
corresponding displacement ui exists. Therefore, some coefficients Ωij

must exist (see Eq. (1.6)) such that

∂ui

∂xj
= εij +Ωij (1.13)

The previous equations has solutions with respect to the components ui

if the irrotationality conditions is fulfilled. For an arbitrary vector field
~V the following property is true: if ~∇× ~V = 0 (i.e. if ∂Vk

∂xh
= ∂Vh

∂xk
), then

a scalar function V exixts such that ~V = ~∇V (i.e. such that Vj = ∂V
∂xj

)
[31, 36]. Therefore, the following relation must be satisfied

∂ (εik +Ωik)

∂xh
=
∂ (εih +Ωih)

∂xk
(1.14)

or, equivalently

∂εik

∂xh
−
∂εih

∂xk
=
∂Ωih

∂xk
−
∂Ωik

∂xh
(1.15)

A simple calculation gives

∂Ωih

∂xk
−
∂Ωik

∂xh
=

1

2

∂

∂xk

(
∂ui

∂xh
−
∂uh

∂xi

)
−
1

2

∂

∂xh

(
∂ui

∂xk
−
∂uk

∂xi

)
=
∂Ωhk

∂xi
(1.16)
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Therefore, Eq.(1.15) assumes the form

∂εik

∂xh
−
∂εih

∂xk
=
∂Ωkh

∂xi
(1.17)

The components Ωkh are still unknown and they exist if the following
further irrotationalty condition is satisfied

∂

∂xj

(
∂εik

∂xh
−
∂εih

∂xk

)
=

∂

∂xi

(
∂εjk

∂xh
−
∂εjh

∂xk

)
(1.18)

Finally, the previous relation leads to the following compatibility equa-
tion for the strain

∂2εij

∂xh∂xk
+
∂2εhk

∂xi∂xj
−
∂2εik

∂xj∂xh
−
∂2εjh

∂xi∂xk
= 0 (1.19)

It can be also written in the very compact form of Eq.1.12

Eq.(1.19) or Eq.(1.12) consists of six independent relations which
must be necessarily satisfied by the components of the infinitesimal
strain tensor

∂2ε22

∂x2
3

+
∂2ε33

∂x2
2

− 2
∂2ε23

∂x2∂x3
= 0

∂2ε33

∂x2
1

+
∂2ε11

∂x2
3

− 2
∂2ε31

∂x3∂x1
= 0

∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

− 2
∂2ε12

∂x1∂x2
= 0

∂2ε11

∂x2∂x3
+
∂2ε23

∂x2
1

−
∂2ε12

∂x1∂x3
−
∂2ε13

∂x1∂x2
= 0

∂2ε22

∂x1∂x3
+
∂2ε13

∂x2
2

−
∂2ε21

∂x2∂x3
−
∂2ε23

∂x2∂x1
= 0

∂2ε33

∂x1∂x2
+
∂2ε12

∂x2
3

−
∂2ε31

∂x3∂x2
−
∂2ε32

∂x3∂x1
= 0 (1.20)

Inspection of Eq.(1.12) reveals that they fall into two groups, the equa-
tions in each group having similar form. The first group may be ob-
tained by taking the suffixes p and q to be equal and the secon group is
obtained by taking p 6= q. These conditions are known as infinitesimal
strain compatibility equations. They are also sufficient to ensure the
existence of the displacement components. The proof here reported
is due to Beltrami (1889). However, such conditions have been called
Saint-Venant equations [32].

1.1.3 The stress tensor definition

In continuum mechanics we must consider two kinds of forces acting
on a given region of a material body, namely body forces and surface
forces.

Body forces depend on the external fields acting on the elastic body.Body forces

They are described by the vector field ~b(~x), representing their volume
density. The total force d~FV applied to a small volume dV centered on
the point ~x is given by d~FV = ~b(~x)dV . A typical example is given by
the gravitational forces, proportional to the mass of the volume under
consideration. In this case we can write d~FV = ~gdm where ~g is the
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gravitational acceleration and dm is the mass of the volume dV . If we
define ρ = dm

dV as the density of the body, we simply obtain ~b(~x) = ρ~g.
Surface forces are concerned with the interaction between neighboring Surface forces

internal portions of deformable bodies. Although such an interaction
results from the full set of interatomic forces, we can make the simpli-
fying assumption that its overall effect can be adequately represented
by a single vector field defined across the surface.

In principle, it is possible to introduce more complicated forces, such
as volume and surface distributions of couples. However, the elastic
behavior of most materials is adequately described by body and surface
forces only. More advanced formulations, based on non-classical or
multipolar continuum theories, can be found elsewhere [38].

It is useful to introduce the following notation for the surface force
d~FS applied to the area element dS

d~FS = ~fdS (1.21)

where ~f assumes the meaning of a surface density of forces. The Cauchy Cauchy stress tensor

theorem [31] states that a tensor T̂ exists such that

~f = T̂~n (1.22)

where ~n is the external normal unit vector to the surface delimiting the
portion of body subjected to the force field ~f. The quantity T̂ has been
called the Cauchy stress tensor or simply the stress tensor. The proof of
this theorem is not trivial and can be found in any standard book on
continuum mechanics [36, 34]. The forces applied to the area element
can be therefore written in the following form

d~FS = T̂~ndS (1.23)

or, equivalently, dFS,i
dS = Tijnj. We identify the stress tensor T̂ with the

opposite of a vector pressure. Typical stress values in solid mechanics
range from MPa and GPa.

To better understand the physical meaning of the stress tensor we
consider the cubic element of volume shown in Fig.2, corresponding
to an infinitesimal portion dV = (dl)3 taken in an arbitrary solid body.
The six faces of the cube have been numbered as shown in Fig.2. We
suppose that a stress T̂ is applied to that region: the Tij component
represents the pressure applied on the j-th face along the i-th direction.

1.1.4 The formal structure of elasticity theory

The relationships among the mathematical objects introduced in the pre-
vious Sections represent the formal structure of the theory of elasticity
(for small deformations).

The first two equations can be derived from the balance equations
holding for the linear and angular momentum [30, 31, 35]. In solid
mechanics the two key quantities are the linear and angular momentum
densities for a continuum material system. We consider a portion V

within a material body limited by the close surface S and we define: ~P

as its total linear momentum, ~F as the resultant of the applied forces,
~L as the total angular momentum, and ~M as the resultant torque. The
momentum balance equation of Newtonian dynamics d~P

dt = ~F for a
portion V is written in the form

d
dt

∫
V
ρ
∂uj

∂t
d~x =

∫
S
TjinidS+

∫
V
bjd~x (1.24)
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Figure 2: Geometrical representation of the stress tensor T̂ : the Tij component
represents the pressure applied on the j-th face of the cubic volume
along the i-th direction.

where we made use of body and surface forces as described in the
previous Section. The density of mass ρ is assumed to be constant and
uniform under the small deformation assumption. By means of the
Gauss divergence theorem, we get

d
dt

∫
V
ρ
∂uj

∂t
d~x =

∫
V

∂Tji

∂xi
d~x+

∫
V
bjd~x (1.25)

Since the volume V is arbitrary, we easily obtain
The linear momentum
balance equation ∂Tji

∂xi
+ bj = ρ

∂2uj

∂t2
(1.26)

which represents a first important relation. We turn now to the angular
momentum balance equation d~L

dt = ~M which can be written in the
following form

d
dt

∫
V
~x× ∂~u

∂t
ρd~x =

∫
S
~x×

(
T̂~n
)

dS+

∫
V
~x× ~b d~x (1.27)

As before, the surface integral can be simplified with the application of
the Gauss divergence theorem∫

S
~x×

(
T̂~n
)

dS =

∫
V

[
Tkh + xh

∂Tkp

∂xp

]
ηhkj~ejd~x (1.28)

and we get∫
V

{
xh

[
∂2uk

∂t2
ρ−

∂Tkp

∂xp
− bk

]
− Tkh

}
ηhkj~ejd~x = 0 (1.29)

Because of Eq.(1.26) we obtain
∫

V Tkhηhkj~ejd~x = 0 or, equivalently,
Tkhηhkj = 0. This leads to

The angular
momentum balance
equation
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Tij = Tji (1.30)

This second fundamental equation states that the stress tensor is sym-
metric.

Eqs.(1.7), (1.12), (1.26) and (1.30) hold for most materials regardless of
their constitution and microstructure. To complete the formal structure
of the theory of elasticity we need to introduce the specific constitutive
equations, characterizing the elastic behavior of the material under
investigation [39, 40]. They are written as

Tij = f({εij}) (1.31)

defining, at any point of the solid, a biunivocal correspondance between
stress and strain. When a perfect elastic behavior is observed, the body
relaxes back to its equilibrium configuration when applied forces are
removed. In other words T̂ = 0 if and only if ε̂ = 0. For most materials
Eq.(1.31) is linear for small deformations. The following Section is de-
voted to the study of the linear constitutive equations for both isotropic
and anisotropic materials. The actual form of the constitutive equations
cannot be determined within continuum mechanics: it is an input infor-
mation of elasticity theory. Typically, it is determined experimentally
[40] and formalized a posteriori [31]. We remark that in this work we
only concern ourselves with fully-recoverable small deformations and
point out that possible variations from a purely elastic behavior (e.g.,
plasticity) are treated elsewhere [41].

1.1.5 Constitutive equations

Because of the symmetry of T̂ , the elastic stress-strain relation is defined
by six relations of the form Tij = f({εij}) which are uniquely solvable
for each different component of the strain. A thermo-elastic material
is one whose state of stress depends on the present strain and on the
temperature (or entropy). In what follows we shall always assume that
the temperature (or entropy) is constant so that, effectively, we have a
pure stress-strain relationship [39].

For most materials Eq.(1.31) is linear if the strain is small [31, 33]. This
corresponds to the generalized Hooke’s law which has the following
general form

Generalized Hooke’s
lawTij = Cijkhεkh (1.32)

where Cijkh are constants (for homogeneous materials). Eq.(1.32) is
of general validity, including all possible crystalline symmetries or, in
other words, any kind of anisotropy. The fourth-rank tensor (with 81

components) of the elastic constants satisfies the following symmetry
rules:

• Symmetry in the first pair of indices: since Tij = Tji we have

Cijkh = Cjikh (1.33)

• Symmetry in the last pair of indices: since εkh = εhk we have

Cijkh = Cijhk (1.34)

• Symmetry between the first pair and the last pair of indices:

Cijkh = Ckhij (1.35)
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This result is easily proved if we suppose that an elastic energy
density U = U(ε̂) exists, being dependent only on the state of
strain. From the energy density we derive the constitutive relation
Tij =

∂U(ε̂)
∂εij

(just think about the case of the one-dimensional

harmonic spring, where U = 1
2kx

2 and F = kx). Drawing a
comparison between the energy based constitutive relation Tij =
∂U(ε̂)
∂εij

and Eq. (1.32) we simply obtain

Cijkh =
∂Tij

∂εkh
=

∂2U(ε̂)

∂εkh∂εij
(1.36)

The symmetry of the second order derivative directly leads to
Eq.(1.35).

According to the above universal symmetry properties, Cijkh has at
most 21 independent components. Further reductions of the number
of independent elastic constants depend upon the possible crystalline
symmetry of the material body [42, 39].

The linear relation can be written in tensor compact form T̂ = Ĉε̂,Stiffness and
Compliance tensors where the elastic tensor Ĉ is called stiffness tensor. We also introduce

the inverse relation ε̂ = D̂ T̂ with D̂ = Ĉ−1. The new tensor D̂ is called
compliance tensor.

As above said, the stiffness and the compliance tensors describe all
the behaviors of all the crystal classes. We may recapitulate the number
of independent parameters (elastic moduli) for the classes of various
crystalline systems [39]:

Triclinic → 21 independent components

Monoclinic → 13 independent components

Orthorhombic → 9 independent components

Tetragonal (C4,S4,C4h) → 7 independent components

Tetragonal (C4v,D2d,D4,D4h) → 6 independent components

Rhombohedral (C3,S6) → 7 independent components

Rhombohedral (C3v,D3,D3d) → 6 independent components

Hexagonal (transverse isotropy) → 5 independent components

Cubic → 3 independent components

The above discussion relates, of course, to single crystals. Polycrystalline
bodies whose component crystallites are sufliciently small may be
regarded as isotropic bodies (since we are concerned with deformations
in regions large compared with the dimensions of the crystallites). Like
any isotropic body, a polycrystal has only two independent moduli of
elasticity.

1.1.6 The Voigt notation

The above described symmetries of the stress and strain tensor and
those of the stiffness tensor allow us to introduce the so called Voigt
notation largely adopted in continuum mechanics. In fact , the six
independent components of a symmetric 3-dimensional second-rank-
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tensor can be arranged in a simpler 6-dimensional first-rank tensor by
means of the following role:

 T11 T12 T13

T12 T22 T23

T13 T23 T33

→



T11

T22

T33

T12

T23

T31


(1.37)

Consistently, the 21 independent components of the 3-dimensional
fourth-rank stiffness tensors, can be arranged in a 6-dimensional sym-
metric second-rank tensor through the following scheme.

Cαβγδ → Cij (1.38)

αβ(or γδ) = 11, 22, 33, 12, 23, 31 → i(or j) = 1, 2, 3, 4, 5, 6

Through the Voigt notation the constitutive equation (1.32) can be
expressed in a 6-dimensional vector space by the relation Ti = Cijεj

(i, j = 1, ..., 6) .

1.2 the isotropic and homogeneous elastic body

The paradigmatic system investigated by elasticity theory is the linear,
isotropic and homogeneous medium. The homogeneity property im-
plies that the elastic behavior of the medium is the same in all its points:
the stiffness and the compliance tensors are constant everywhere in the
medium. The isotropy property implies that the mechanical response
does not depend on the direction considered: stiffness or compliance
tensors are invariant under arbitrary rotations. For a linear, isotropic
and homogeneous body we will prove that only two elastic moduli are
independent. They are typically called Lamé coefficients and they are
referred to as µ (shear modulus) and λ, respectively. Alternatively, we
may use the Young modulus E and the Poisson ratio ν. A bulk modulus
K can be used as well.

Let us now derive the constitutive equation for a linear, isotropic and
homogeneous elastic body. Because the stress tensor T̂ is symmetric,
we can select a suitable reference frame where T̂ is diagonal [28]. In
this reference frame we refer to T̂∗ as the diagonal representation of T̂ ,
where the only components different from zero are T∗11, T∗22 and T∗33.
To begin we consider the case of a uniaxial traction, i.e., an elongation,
along the x1 axis, which means T∗11 6= 0, T∗22 = 0 and T∗33 = 0. For most
materials the experimental observation [29, 36] shows that the body
will be elongated along the direction x1, while it shrinks in the plane
(x2, x3). We can formalize this response by writing the linear relations

ε∗11 = +
1

E
T∗11

ε∗22 = −
ν

E
T∗11

ε∗33 = −
ν

E
T∗11

ε∗12 = ε∗23 = ε∗31 = 0 (1.39)

The Young modulus E describes the length variation along the direction Young modulus and
Poisson ratio
definition

x1 while the Poisson ratio ν describes the contractions in the two
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perpendicular directions. Of course, in these conditions we can not
observe shear deformations.

When the diagonal stress T̂∗ assumes triaxial character Eq.(1.39) can
be easily generalized as

ε∗11 =
1

E
[T∗11 − ν (T∗22 + T∗33)]

ε∗22 =
1

E
[T∗22 − ν (T∗11 + T∗33)]

ε∗33 =
1

E
[T∗33 − ν (T∗22 + T∗11)]

ε∗12 = ε∗23 = ε∗31 = 0 (1.40)

The constitutive relations given in Eq.(1.40) are valid only in the refer-
ence frame where the stress tensor is diagonal. We remark that Eq.(1.40)
can be written in the following more compact form

ε̂∗ =
1

E

[
(1+ ν)T̂∗ − νÎ Tr

(
T̂∗
)]

(1.41)

If we make an arbitrary change of reference frame by means of a
rotation matrix R̂, the stress tensor T̂∗ is transformed into T̂ and the
strain tensor ε̂∗ is transformed into ε̂ (ε̂ = R̂T ε̂∗R̂ and T̂ = R̂T T̂∗R̂) [28].
By means of such transformations, we obtain the isotropic constitutive
equation in an arbitrary reference frame in the form

Constitutive equation
in terms of the Young
moduli and Poisson
ratio

ε̂ =
1

E

[
(1+ ν)T̂ − νÎ Tr

(
T̂
)]

(1.42)

This is in fact the constitutive equation of a linear, isotropic and homo-
geneous elastic material. Eq.(1.42) can be inverted, thus obtaining the
stress tensor in terms of the strain tensor

T̂ =
E

1+ ν
ε̂+

νE

(1+ ν)(1− 2ν)
Î Tr (ε̂) (1.43)

We now introduce the Lamé coefficients µ and λ defined by the follow-
ing relations

µ =
E

2(1+ ν)
λ =

νE

(1+ ν)(1− 2ν)
(1.44)

which, inserted into Eq.(1.43), provide the constitutive equation in its
most popular form

Lamé coefficients
T̂ = 2µε̂+ λÎTr(ε̂) (1.45)

Similarly, Eq.(1.42) can be also written in terms of the Lamé coefficients

ε̂ =
1

2µ
T̂ −

λ

2µ(2µ+ 3λ)
ÎTr(T̂) (1.46)

In order to introduce the bulk modulus K, we consider an hydrostatic
stress described by the tensor

T̂ =

 σ 0 0

0 σ 0

0 0 σ

 (1.47)

By means of Eq.(1.46) we easily obtain the corresponding state of strain

ε̂ =
1

3

1

λ+ 2
3µ
σÎ (1.48)
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This simple result allows us to define the bulk modulus K as
Bulk modulus

K = λ+
2

3
µ (1.49)

Therefore, the stress-strain relation in hydrostatic condition can be
summarized as ε̂ = 1

3KσÎ where σ represents the (scalar) pressure
applied to the system. The further relation Tr(ε̂) = σ

K has an important
physical interpretation: it describes the local volumetric variation under
the assumption of hydrostatic stress.

To conclude, we observe that the stress-strain relation (Hooke’s law)
for an isotropic elastic medium can be written in terms of any two
independent material constants, chosen in the set λ,µ,K,E,ν. In Table
1 one can find all the possible conversions among the above defined
elastic moduli. The elastic moduli E, λ, µ and K are measured in Pa
while the Poisson ratio ν is dimensionless being defined as a ratio
between deformations.

Table 1: Relations among the different elastic moduli.

(λ,µ) (K,µ) (µ,ν) (E,ν) (E,µ)

λ K− 2
3µ

2µν
1−2ν

νE
(1+ν)(1−2ν)

µ(E−2µ)
3µ−E

µ E
2(1+ν)

K 3λ+2µ
3

2µ(1+ν)
3(1−2ν)

E
3(1−2ν)

Eµ
3(3µ−E)

E
µ(3λ+2µ)

λ+µ
9Kµ

3K+µ 2(1+ ν)µ

ν λ
2(λ+µ)

3K−2µ
2(3K+µ)

E−2µ
2µ

1.2.1 Elasticity in a two-dimensional system

If we deal with an elastic system defined in a two-dimensional space
a different set of elastic moduli can be adopted. This is due in order
to obtain the same physical interpretation of the corresponding three-
dimensional coefficients. First of all, we note that in the two-dimensional
case, the stress tensor components and, as a consequence, the elastic
moduli are calculated as a force per unit of lenght (e.g N/m). The two-
dimensional Lamè coefficients, λ2d and µ2d, are introduced through
the relation

T̂ = 2µ2dε̂+ λ2dÎTr(ε̂) (1.50)

that is formaly equal to Eq.(1.45) but involves two-dimensional tensors.
The bulk modulus is defined so as to represent the area variation due to
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an hydrostatic strain εij = εδij, being ε the scalar parameter governing
the hydrostatic deformation

1

2
Tr(T̂hydro) = 2K2dε (1.51)

where T̂hydro is the stress due to the hydrostatic deformation. If we cal-
culate the trace of the stress tensor for such a deformation by means of
the equation (1.50) we obtain the relation between the two-dimensional
bulk modulus K2d and the two-dimensional Lamé moduli

Two-dimensional
Bulk modulus K2d = λ2d + µ2d (1.52)

The Young modulus and the Poisson ratio physically corresponds to
the parameters describing respectively the longitudinal and transverse
deformation due to an applied uniaxial stress. In particular, if we
consider a uniaxial stress applied along the direction 1 of magnitude σ:
T11 = σ and Tij = 0 for (i, j) 6= (1, 1), we have

ε11 =
σ

E2d
(1.53)

ε22 = −ν2dε11 (1.54)

These relations impliy that the constitutive equation must assumes the
following form

T̂ =
E2d

1+ ν2d
ε̂+

ν2dE2d

1− (ν2d)2
Tr(ε̂)Î (1.55)

By confronting this equation with Eq.(1.50) we easily find the relation
between the two-dimensional Young modulus and Poisson ratio and
the corresponding Lamè coefficients

two-dimensional
Young modulus and
Poisson ratio E2d =

4µ2d(λ2d + µ2d)

λ2d + 2µ2d
(1.56)

ν2d =
λ2d

λ2d + 2µ2d
(1.57)

By means of Eqs(1.52), (1.56) and (1.57) we can derive the conversions
among all the two-dimensional elastic moduli. These relations are
reported in Table 2 (two-dimensional counterpart of the Table 1).

1.2.2 Governing equations of elasticity and border conditions

When we are dealing with a linear, isotropic and homogeneous material
the governing equations of the elasticity theory can be summed up as
follows

∂Tij

∂xj
+ bi = ρ

∂2ui

∂t2

εij = 1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
Tij = 2µεij + λεkkδij

(1.58)

From the above equations we can obtain a pure equation describing the
time behavior of the displacement field during the deformation process.
To this aim we begin substituting the constitutive equation into the
motion equation

2µ
∂εij

∂xj
+ λ

∂εkk

∂xi
+ bi = ρ

∂2ui

∂t2
(1.59)
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Now, we can substitute the definition of the strain tensor into the
previous Eq. (1.59), by obtaining

(µ+ λ)
∂2uj

∂xi∂xj
+ µ

∂2ui

∂xj∂xj
+ bi = ρ

∂2ui

∂t2
(1.60)

We have obtained an equation of motion where the displacement field
is the single unknown, which have been called Lamé or Navier equationLamé or Navier

equation [31, 36]. It can be also written in vector notation as

(λ+ µ) ~∇
(

~∇ · ~u
)

+ µ~∇2~u+ ~b = ρ
∂2~u

∂t2
(1.61)

Such a motion equation for a isotropic elastic body can be also written

in a different form by utilizing the general property ~∇×
(

~∇× ~u
)

=

~∇
(

~∇ · ~u
)

− ~∇2~u, which holds for the differential operators. The result
is

(λ+ µ) ~∇×
(

~∇× ~u
)

+ (λ+ 2µ)~∇2~u+ ~b = ρ
∂2~u

∂t2
(1.62)

Both Eq. (1.61) and Eq. (1.62) are partial differential equations of the
second order with a vector field ~u (~r) as unknown. In order to find
a solution of Eq. (1.61) or Eq. (1.62) we must impose some boundary
conditions depending on the physical problem under consideration
[34, 35]. From the mathematical point of view some different forms of
the boundary conditions can be taken into consideration. We consider
a body with an external surface S. A first type of boundary conditionBoundary conditions

fixes the values of the displacement field on this surface at any time. It
means that ~u = ~g(~x, t) for any ~x ∈ S and for any t in a given interval.
When the entire external surface is described by these conditions we
say that we are solving an elastic problem of the first kind, subjected to
the Dirichlet conditions. A second kind of boundary conditions fixes
the stress applied on the external surface. It means that Tijnj = fi(~x, t)
for any ~x ∈ S and for any t in a given interval. When the entire external
surface is described by these conditions we say that we are solving
an elastic problem of the second kind, subjected to the Neumann
conditions. Finally, a third case can be defined by dividing the surface
S in two parts and by applying the Dirichlet conditions to the first part
and the Neumann conditions to the second part. In this case we say that
we are solving an elastic problem of the third kind, subjected to mixed
boundary conditions. These problems can be considered with a time
dependent behavior of all the elastic fields (dynamics theory leading,
in particular, to the propagation of elastic waves [43]) or under static
condition, leading to the analysis of the equilibrium of an elastic solid
body [44]. One of the most largely applied approach for solving these
problems is based on the use of the Green functions which are well
known in closed form both for static problems (static Green function)
and for dynamic ones (dynamic Green function) [43, 45].

It is important to observe that the governing equations for the elastic-
ity theory as stated in Eq.(1.58) are useful to obtain the final relations
(Eq. (1.61) and Eq. (1.62)) in terms of the displacement. Alternatively,
for many static problems, it is useful to use pure equations in terms of
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the stress tensor. To obtain them, insted of the system stated in Eq.(1.58),
we start with the following one

∂Tij

∂xj
+ bi = 0

ηqkiηphj
∂2εij

∂xk∂xh
= 0

εij = 1
2µTij − λ

2µ(2µ+3λ)Tkkδij

(1.63)

formed by the static version of the linear momentum principle, the
compatibility conditions for the strain and the constitutive equation
(in its inverse form). By substituting the constitutive relation in the
compatibility equations for the strain we obtain a system where the
stress tensor appears as the unknown

∂Tij

∂xj
+ bi = ρ

∂2ui

∂t2

∇2Tik + 1
1+ν

∂2Tjj

∂xi∂xk
= − ν

1−νδik
∂bj

∂xj
−
(

∂bi
∂xk

+ ∂bk
∂xi

) (1.64)

The second equation of this system is referred to as the Beltrami-Michell Beltrami-Michell
compatibility
equation

compatibility equation for the stress tensor (in static regime) [29]. This
formulation of the governing equations of the elasticity theory is the
most convenient set to be used in the solution of the second boundary-
value problem, subjected to the Neumann conditions.

The formulations described in the present section concern three-
dimensional problems of the elasticity theory. In many cases of great
practical interest the setting of a given problem can be considerably
simplified. For example, many elastic systems can described by means
of two-dimensional equations, which can be solved with a series of
very efficient specific methodologies. In the following sections we will
consider three particular problems which can be described by two-
dimensional equations:

• plane strain condition

• plane stress condition

• anti-plane shear condition

We first introduce the plane strain border condition, which consider to
be a displacement field described by u1 (x1, x2, x3), u2 (x1, x2, x3) and
u3 (x1, x2, x3). A state of plane strain is said to exist in a body if the dis-
placement components take the form u1 = u1 (x1, x2), u2 = u2 (x1, x2)

and u3 = 0. In other words, these conditions are fulfilled if the displace-
ment vector belongs to the plane x1, x2 and it does not depend on the
coordinate x3. Of course, the definition of the plane strain conditions
can be generalized to any arbitrarily-oriented plane. It is easy to prove
that the plane strain conditions impose the following relations on the
strain tensor: ε33 = 0, ε13 = 0 and ε23 = 0. The constitutive equations
given in Eq.(1.43) take (in the Voigt notation) the following simplified
form

Constitutive
equations under
plane strain
boundary conditions

 T11

T22

T12

 =
E

(1+ ν)(1− 2ν)

 1− ν ν 0

ν 1− ν 0

0 0 1− 2ν


 ε11

ε22

ε12

 (1.65)

The inverse constitutive equation is therefore given by ε11

ε22

ε12

 =
1

E

 1− ν2 −ν(1+ ν) 0

−ν(1+ ν) 1− ν2 0

0 0 1+ ν


 T11

T22

T12

 (1.66)
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The relation T33 = E
1+ν

ν
1−2ν (ε11 + ε22) is not included in the previous

sets, but it is still valid and it can be useful for some applications.
We now introduce the plane stress border condition. A state of plane

stress is said to exist when the stress tensor satisfies the property T̂~n = 0

for a given unit vector ~n, in any point of the material. We consider ~n

parallel to the x3 axis. It follows that T33 = 0, T13 = 0 and T23 = 0.
Moreover we suppose that T11 = T11 (x1, x2), T22 = T22 (x1, x2) and
T12 = T12 (x1, x2). With these assumptions the constitutive relation
given in Eq.(1.42) can be simplified as follows

Constitutive
equations under
plane stress boundary
conditions

 ε11

ε22

ε12

 =
1

E

 1 −ν 0

−ν 1 0

0 0 1+ ν


 T11

T22

T12

 (1.67)

They can also be inverted as follows T11

T22

T12

 =
E

1− ν2

 1 ν 0

ν 1 0

0 0 1− ν


 ε11

ε22

ε12

 (1.68)

As above, the relation ε33 = −ν
E (T22 + T11) is not included in the

previous sets, but it too is still valid and it can be useful for some
applications.

It is important to observe that a simple formal substitution transforms
Eqs.(1.67) and (1.68) for plane stress conditions into the corresponding
Eqs.(1.65) and (1.66) for plane strain condition. In fact, if we consider in
Eqs.(1.67) and (1.68) the change of variables E→ E

1−ν2 and ν→ ν
1−ν

we obtain Eqs.(1.65) and (1.66) exactly . This property is very useful in
many practical applications.

The anti-plane shear boundary condition imposes a displacement fieldAnti-plane shear
boundary condition with the following form ~u = (0, 0,u3(x1, x2, t)). It means that each

point of the body can move only along a line parallel to the x3 axis.
The term anti-plane means that the motion occour in lines perpendic-
ular to the (x1, x2) plane. The simple calculation of the strain tensor
leads to the results ε13 = 1

2
∂u3
∂x1

and ε23 = 1
2

∂u3
∂x2

. The other compo-
nents of the strain are zero. The corresponding stress tensor can be
obtained by means of the constitutive relation, obtaining T13 = µ

∂u3
∂x1

and T23 = µ
∂u3
∂x2

. Therefore, only two shear components of the stress
are present in this system. We also suppose that the body forces fulfill
the additional conditions b1 = 0,b2 = 0 and b3 = b3(x1, x2, t). Under
these conditions, it is easy to observe that only the third component of
the linear momentum principle is meaningful

∂T13

∂x1
+
∂T23

∂x2
+ b3 = ρ

∂2u3

∂t2
(1.69)

By considering the above described components of the stress tensor, we
obtainTwo-dimensional

D’Alambert equation

µ∇2u3 + b3 = ρ
∂2u3

∂t2
(1.70)

which is a second order partial differential equation in the unknown
displacement component u3. In order to solve this kind of equation we
must take into account the boundary conditions on the external surface
of the body. Of course, under the anti-plane shear condition the shape
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of the body is an arbitrary cylinder aligned along the x3 axis. Therefore,
the boundary conditions will be applied to a closed line γ on the (x1, x2)

plane. For a mixed problem, on a first part of the border γ1 we take into
consideration the Dirichlet condition u3 = v3(x1, x2, t) for any point
belonging to γ1. On the second part γ2 of the closed line (γ = γ1 ∪ γ2)
we must impose the applied stress. Since T̂~n = (0, 0,n1T13 + n2T23)

we have (T̂~n)3 = µn1
∂u3
∂x1

+ µn2
∂u3
∂x2

= µ~n · ~∇u3 = µ
∂u3
∂n . So, we

consider the Neumann condition µ∂u3
∂n = f3(x1, x2, t) on γ2. In the

case of a static elastic regime without body forces applied to the system,
Eq.(1.70) can be simplified to the two-dimensional Laplace equation
∇2u3 = 0. Therefore, a body in elastic equilibrium under anti-plane Two-dimensional

Laplace equationshear conditions is analogous, from the mathematical point of view, to
a two-dimensional electrostatic system without free charge distributed
in the space.

1.2.3 Two-dimensional elastic moduli under plane border conditions

As shown in the previous section, under the described plane bondary
conditions the three-dimensional fourth rank stress and strain tensors
can be reduced to two-dimensional tensor (or, in the Voigt notation,
we can simplify the six-dimensional second rank tensors with two
three-dimensional tensors). Therefore, we can describe the elasticity
of such systems with the same formalism adopted in the actual two-
dimensional case of Section 1.2.1, i.e. through the two-dimensional
parameters above defined. Nevertheless, in this case these parameters
are again expressed as a force per unit of area.

The relations between the two-dimensional moduli and the corre-
sponding three-dimensional parameters depend on the adopted bound-
ary condition. If we assume the plane strain boundary condition the Two-dimensional

moduli for a
three-dimensional
system under plane
strain boundary
conditions

constitutive equation in terms of the three-dimensional moduli is re-
ported in Eq.(1.65) and it can be expressed in the following form

T̂ =
E

1+ ν
ε̂+

νE

(1+ ν)(1− 2ν)
ÎTr(ε̂) (1.71)

where T̂ and ε̂ are represented by two-dimensional tensors. By compar-
ing this equation with Eq.(1.55) we obtain

E2d

1+ ν2d
=

E

1+ ν
(1.72)

ν2dE2d

1− (ν2d)2
=

νE

(1+ ν)(1− 2ν)
(1.73)

and, therefore, the following conversion formulas

E2d =
E

1− ν2
(1.74)

ν2d =
ν

1− ν
(1.75)

By means of Eqs.(1.74) and (1.72) and by confronting the results in
Table 1 and Table 2, we can see that the Lamé coefficients assumes the
same value of the three-dimensional case, i.e.

µ2d = µ (1.76)

λ2d = λ (1.77)
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Finaly, the above results allows us to obtain the conversion formula for
the bulk modulus

K2d = K+
1

3
µ (1.78)

On the other hand, if we adopt the plane stress boundary condition,Two-dimensional
moduli for a
three-dimensional
system under plane
stress boundary
conditions

the constitutive equation is reported in Eq.(1.68), i.e.

T̂ =
E

1+ ν
ε̂+

νE

1− ν2
ÎTr(ε̂) (1.79)

where T̂ and ε̂ are two-dimensional tensors. By means of Eq.(1.55), we
easily verify that

E2d = E (1.80)

ν2d = ν (1.81)

and, by confronting once again Table 1 and Table 2, we get

µ2d = µ (1.82)

λ2d =
2λµ

λ+ 2µ
(1.83)

and

K2d =
9Kµ

3K+ 4µ
(1.84)

This relation concludes the set of conversion equations for the two-
dimensional formulation of a three-dimensional elastic system under
plane stress conditions. All the derived conversion formulas are sum-
marized in Table 3.

Table 3: Relations among two-dimensional elastic moduli and the correspond-
ing three-dimensional coefficients under plane boundary conditions.

modulus plane strain plane stress

E2d E
1−ν2 E

ν2d ν
1−ν ν

λ2d λ 2λµ
λ+2µ

µ2d µ µ

K2d K+ 1
3µ

9Kµ
3K+4µ

1.3 elastic energy

In general the constitutive equation of an elastic material can be derived
by the strain energy function by means of the relation [36]

Tij =
∂U(ε̂)

∂εij
(1.85)
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We consider a linear elastic body described by the constitutive relation
given in Eq.(1.32). It is possible to obtain the explicit form of its energy
density U in terms of the strain tensor. From the relation

dU
dt

=
∂U

∂εij

dεij

dt
= Tij

dεij

dt
(1.86)

giving the rate of change of the energy density during a time-dependent
deformation, we obtain

dU
dt

= Cijkhεkh
d
dt
εij (1.87)

which, by using the symmetry given in Eq.(1.35), can be written as

dU
dt

=
1

2
Cijkh

d
dt
(
εijεkh

)
(1.88)

It follows that the energy density can be placed in the very general
form

Strain energy
function for linear
media

U =
1

2
Cijkhεijεkh (1.89)

This expression can be further simplified when the material is linear,
isotropic and homogeneous. Indeed, it assumes the very compact form
[39]

U(ε̂) =
1

2
Tijεij = µεijεij +

1

2
λεkkεii (1.90)

where we have made use of the Lamé coefficients defined in a previous
Section. Since εkk = εii = Tr(ε̂) and εijεij = Tr(ε̂2) we obtain the final
tensor form

U(ε̂) = µTr(ε̂2) +
1

2
λ [Tr(ε̂)]2 (1.91)

which represents the elastic energy density for an isotropic material.
For an elastic solid body at equilibrium, i.e., for εij = 0 ∀ i, j, the

function U(ε̂) must exhibit a minimum (i.e., the equilibrium configura-
tion is stable). Because U(ε̂ = 0) = 0, we conclude that the quadratic
form defined in Eqs.(1.89) or (1.91) is positive definite. In other words, Thermodynamics

bounds for the elastic
coefficients

we have proved that the stiffness and the compliance tensors are always
positive definite for real materials. We search for the specific conditions
assuring a positive definite energy density for an isotropic material. To
this aim, we apply a deformation satisfying the relation εii = 0, leading
to U = µεijεij > 0 or, equivalently, µ > 0. Moreover, if we apply an
hydrostatic deformation εij = εδij, where ε is a constant, we obtain
U = 3ε2 (3λ/2+ µ) > 0 or, equivalently, 3λ+ 2µ > 0. By means of Tab.1
we obtain the additional relations K > 0 and E > 0. Finally, by means
of the expression ν = 3K−2µ

2(3K+µ) we can easily prove that −1 < ν < 1
2 .

It is interesting to observe that the last result admits negative values
for the Poisson ratio. This point was considered controversial for a
long time. In fact, standard natural materials exhibit a non negative
Poisson ratio meaning that all traditional materials, when elongated
in a given direction, always display a shrinking in the transverse (per-
pendicular) directions. However, during last decades many composite Negative Poisson

ratioand complex materials have been realized with negative values of the
Poisson ratio [46, 47, 48]. Hence, when elongated in a given direction,
these materials show an unconventional extension in the transverse
directions. Although intriguing, this phenomenon, as above proved,
does not violate thermodynamics.
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2.1 standard eshelby theory

Probably, the most important result in the extensive literature on elastic
composites is the Eshelby theorem on the response of a single ellipsoidal
elastic particle in an elastic space to a strain imposed at infinity. Between
1957 and 1973 Eshelby published three seminal papers [8, 49, 50] sys-
tematically studying this problem and founding that a uniform strain The Eshelby theorem

at infinity results in a uniform strain within the ellipsoidal inclusion.
Therefore, this property was used in more detailed calculations in order
to obtain the fourth-rank tensor relating these two uniform strains.
This is the so-called Eshelby tensor and it depends on the geometry
of the ellipsoid (i.e. on the three semi-axes length) and on the elastic
properties of the homogeneous hosting matrix. The tensor entries are
not simple since they involve elliptic integrals, but Eshelby was able
to enumerate and explicitly evaluate all of these integrals for simple
shapes like spheres, oblate and prolate spheroids, needles, and disks.
Some years later, a similar property was proved also for the elastic field
of an anisotropic particle embedded in an anisotropic medium [51].

The Eshelby solutions, in their first version, have been found within
the elastostatics regime. Nevertheless, Somethe determination of the Generalization of the

Eshelby theory to
dynamic inclusion
problem

elastodynamic fields due to ellipsoidal inclusions and inhomogeneities
are of fundamental interest in a wide range of problems in the mechan-
ics of heterogeneous solids. Therefore, the dynamic Eshelby inclusion
problem for an ellipsoidal inclusion in a three-dimensional isotropic
medium was recently considered [52]. The dynamic Eshelby tensor has
been expressed in terms of solutions of the Helmholtz equation. This
approach leads to closed-form expressions in the particular cases of
spheres and cylinders coinciding with those given in [53] and in [54],
obtained by employing different techniques.

Two different problems concerning the elastic fields generated by par-
ticular inclusions have been solved by L.J. Walpole [55, 56]. In the first
case a rigid inclusion of ellipsoidal shape is bonded firmly at arbitrary
orientation to a surrounding, unbounded, homogeneous elastic matrix
of arbitrary anisotropy, and is translated infinitesimally by the action of

33
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an externally imposed force. Walpole [55] founds out the complete solu-
tion by utilizing an approach very similar to that of Eshelby. A second
problem deals with a rigid inclusion of ellipsoidal shape, bonded firmly
at arbitrary orientation to a surrounding matrix of arbitrary anisotropy,
and rotated infinitesimally, about an axis through its centre, by means
of an externally imposed couple. Also in this case an exact solution has
been found with very elegant procedures [56].

Some other interesting generalization have been made to obtain theGeneralizations of the
Eshelby for different
physical situations

counterpart of the (elastic) Eshelby property for different physical situ-
ations. It has shown [57] how the Eshelby theory may be generalized
to both poroelasticity and thermoelasticity. The resulting formulas are
important for applications to analysis of poroelastic and thermoelas-
tic composites, including but not restricted to rocks [58]. Moreover, a
simple and unified explicit expression for electroelastic Eshelby ten-
sors is presented by Yu and Huang [59]. They extended Eshelby’s
tensors for elastic isotropic inclusions to the piezoelectric cases. As in
the uncoupled elastic cases, the resulting electroelastic Eshelby tensors
are functions of the shape of the inclusion and the properties of the
surrounding matrix. Furthermore, the magneto-electro-elastic Eshelby
tensors that represent the stress, electric displacement, and magnetic
induction in an inclusion resulting from the constraint of the surround-
ing matrix of piezomagnetic-piezoelectric composites have been found
[60]. Finally, the Eshelby theory has been applied to the dielectric char-
acterization of anisotropic inhomogeneities [61] and graded structures
[62].

The most important aspect of the Eshelby work is that the interior
points Eshelby tensor is constant for an ellipsoidal inclusion. This fact
implies that an uniform strain at infinity results in a uniform strain in
the ellipsoidal inclusion. In his third paper on this subject [50], Eshelby
conjectured that, among all the closed surfaces, the ellipsoid alone has
this convenient property. The search for a correct answer to this con-
jecture has produced a series of important investigations. To frame the
question in more rigorous terms, we must distinguish two different ver-
sions of the conjecture. The strong Eshelby conjecture is: if the inducedEshelby conjecture:

strong formulation elastic fields inside an inclusion are uniform under a single uniform
loading, the inclusion is of elliptic or ellipsoidal shape. Moreover, theEshelby conjecture:

weak formulation weak Eshelby conjecture is: if the induced elastic fields inside an inclu-
sion are uniform under all (any) uniform loadings, the inclusion is of
elliptic or ellipsoidal shape. Of course, the strong conjecture implies
the weak conjecture. The first result was found by Sendeckyj [63] who
proved the strong Eshelby conjecture for a two-dimensional inclusion
under plane strain or plane stress conditions. Successively [64], the
strong Eshelby conjecture has been verified for the anti-plane problem.
More recently [65], it has been proved the weak Eshelby conjecture for
three-dimensional inclusions for isotropic materials by using the max-
imum principle of harmonic potentials. Finally, Liu showed [66] that
the strong Eshelby conjecture is false in three and higher dimensions,
by constructing explicit counterexamples.

The Eshelby result and its generalizations have been found to be
immensely useful also in the analysis of composite materials, since
most inclusion shapes commonly of interest can be approximated by
some ellipsoid.

The investigations on the physical properties of heterogeneous materi-Homogenization
approach to
heterogeneous
material

als have been focused on the search for the effective physical properties
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exhibited at the macroscopic scale [67, 68]. Typically, such investigations
are based on homogenization techniques. They basically contain at first
the exact mathematical analysis of the mechanical behavior induced by
a single inhomogeneity [45], and then proceed by considering the more
general case of interacting particles [69, 70]. This approach is generally
carried out in the limit of a low density defect population [71]. Such
an hypothesis can be partially removed by means of different methods,
such as iterated homogenizations [72] and differential schemes [73, 74].
These techniques have been applied with great accuracy both to the case
of embedded inhomogeneities [75, 76, 77] and to the case of dispersed
defects, such as micro-cracks in a matrix [78, 79, 80].

2.1.1 Outline of the Eshelby theory

The main purpose of this Section is to define the basic equations de-
scribing the elastic field inside and outside an ellipsoidal inclusion Ω
embedded into a homogeneous matrix. The materials are supposed to
be linear elastic, homogeneous and isotropic. We suppose to consider
an infinite medium with stiffness tensor Ĉ(1); it means that the homo-
geneous solid matrix (hereafter labelled as material 1) is characterized
by the relation T̂ = Ĉ(1)ε̂ Moreover, we define an embedded ellipsoidal The eigenstrain and

the concept of
inclusion

inclusion Ω as a region of space described by the constitutive equation
T̂ = Ĉ(1) (ε̂− ε̂∗). (see Fig.3)

Tij = C
(1)
ijkh (ǫkh − ǫ∗kh)

Tij = C
(1)
ijkhǫkh

ǫij (~r) = S∞ijkh (~r) ǫ∗kh

ǫij = Sijkhǫ
∗
kh

Figure 3: Scheme of an ellipsoidal inclusion

The strain ε̂∗ is a-priori given and it is called eigenstrain (or stress-free
strain). In other words, throughout this paper we denote as an inclusion
a region containing a distribution of eigenstrains with the same moduli
as the matrix. It is important to remark that the concept of inclusion is
different from that of inhomogeneity. The inhomogeneity is defined as The concept if

inhomogeneityfollows: we consider an infinite medium with stiffness tensor Ĉ(1) in
<3\Ω (matrix) and Ĉ(2) in the ellipsoidal regionΩ (inhomogeneity). We
remotely load the system with a uniform strain ε̂∞ or, equivalently, with
the uniform stress T̂∞ = Ĉ(1)ε̂∞. This configuration can be analyzed by
means of the Eshelby equivalence principle as discussed in a following
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Sections. For an isotropic matrix the stiffness tensor can be represented
as

C
(1)
ijkh =

(
K1 −

2

3
µ1

)
δijδkh + µ1

(
δikδjh + δihδjk

)
(2.1)

where the elastic moduli are named K1 (bulk modulus) and µ1 (shear
modulus). The bulk and the shear moduli can be replaced when
needed by the Young modulus E1 = 9K1µ1

µ1+3K1
and the Poisson ratio

ν1 = 3k1−2µ1
2(µ1+3k1) . The displacement ui induced by the presence of theInclusion

displacement field as
a function of the
harmonic and
biharmonic potentials

inclusion (i.e. of the equivalent eigenstrain ε̂∗) can be evaluated in term
of the so-called harmonic potential Φ(~r) and biharmonic potential Ψ(~r)

[8, 49]:

ui (~r) = ε∗kh

[
1

8π (1− ν1)
Ψ,ikh −

δih

4π
Φ,k −

δik

4π
Φ,h −

ν1

1− ν1

δkh

4π
Φ,i

]
(2.2)

where ~r = (x1, x2, x3) is the position vector. Hereafter we write the
symbol f,i = ∂f

∂xi
and we extend this notation to higher order deriva-

tives. Eq. (2.2) is valid anywhere. The harmonic potential is defined, as
well known, by the Poisson equation ∇2Φ = −4π if ~r ∈ Ω, 0 if ~r /∈ Ω
and the integral form of its solution is Φ (~r) =

∫
Ω

1
‖~r−~x‖d~x where the

symbol ‖·‖ indicates the standard Euclidean norm. Similarly, the bi-
harmonic potential is defined by means of the biharmonic equation
∇4Ψ = −8π if ~r ∈ Ω, 0 if ~r /∈ Ω and the standard integral represen-
tation is Ψ (~r) =

∫
Ω

‖~r−~x‖d~x [8, 45]. Such harmonic and biharmonic

potentials only contain geometrical information about the embedded
ellipsoid (i.e. the semi-axes lenghts b1,b2 and b3). It is worthwhile
recalling some explicit expressions providing the above potentials or
their derivative as used to determine the elastic fields [45]:

Φ (~r) = πb1b2b3

+∞∫
η(~r)

1−f(~r,s)
R(s) ds

Ψ,i (~r) = πb1b2b3xi

+∞∫
η(~r)

1−f(~r,s)
R(s)

s
b2

i +s
ds

(2.3)

where f (~r, s), η (~r) and R (s) are defined as follows:
f (~r, s) =

x2
1

b2
1+s

+
x2

2

b2
2+s

+
x2

3

b2
3+s

η (~r) : f (~r,η (~r)) = 1

R (s) =
√(
b2

1 + s
) (
b2

2 + s
) (
b2

3 + s
) (2.4)

The quantity η (~r) is defined in implicit form and it is considered as
the largest positive root of the equation f (~r,η (~r)) = 1. The integrals
defined in Eq. (2.3) are used for the external region assuming η (~r)

given in Eq. (2.4) and for the internal region assuming η (~r) = 0. We
summarize the solution of the problem in terms of the gradient of the
displacement and of strain tensor. The gradient of the displacement
is given by Jij = ui,j and the strain is defined as εij = 1

2

(
ui,j + uj,i

)
.

They can be evaluated accordingly to the relations

Jij =
∂ui

∂xj
= Dijkh (~r) ε∗kh (2.5)

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
= Sijkh (~r) ε∗kh (2.6)
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where Sijkh (~r) is the Eshelby tensor and Dijkh (~r) is a new tensor
useful to determine the gradient of the displacement over the whole
space. We observe that Sijkh is the symmetrization of the tensor Dijkh

with respect to the first couple of indexes: Sijkh = 1
2

(
Dijkh + Djikh

)
.

The generic forms of such tensors, which is correct both inside the
inclusion and outside it, can be written by means of the elastic potentials
as follows

The Eshelby tensor

Sijkh (~r) =
1

8π (1− ν1)
Ψ,ijkh −

ν1

1− ν1

δkh

4π
Φ,ij +

−
1

8π

(
δihΦ,jk + δikΦ,jh + δjhΦ,ik + δjkΦ,ih

)
(2.7)

Dijkh (~r) =
1

8π (1− ν1)
Ψ,ijkh −

ν1

1− ν1

δkh

4π
Φ,ij +

−
1

4π

(
δihΦ,kj + δikΦ,hj

)
(2.8)

The notation adopted for the tensors is different for the internal points
and for external ones:

Sijkh (~r) = Sijkh Dijkh (~r) = Dijkh if ~r ∈ Ω
Sijkh (~r) = S∞

ijkh (~r) Dijkh (~r) = D∞
ijkh (~r) if ~r /∈ Ω

(2.9)

Taking a different notation for the internal and the external region
is particularly efficient in order to remind that the internal tensors
are constant and, therefore, the internal stress, strain and gradient of
displacement are uniform tensor fields. By defining the depolarization

Depolarization factorsfactors of the first kind as

Γi =
b1b2b3

2

+∞∫
0

ds(
b2

i + s
)
R (s)

ds (2.10)

and the depolarization factors of the second kind

Θij =
b1b2b3

2

+∞∫
0

sds

(b2
i + s)(b2

j + s)R (s)
ds (2.11)

we obtain the explicit expressions for the derivatives of the elastic
potentials within the region Ω

Φ,ij = −4πδijΓi (2.12)

Ψ,ijkh = −4π
(
δijδkhΘki + δikδjhΘhi + δihδjkΘji

)
(2.13)

Therefore, the internal tensors assume the explicit forms

Dijkh = −
1

2 (1− ν1)

(
δijδkhΘki + δikδjhΘhi + δihδjkΘji

)
+

ν1

1− ν1
δkhδijΓi + δihδkjΓk + δikδhjΓh (2.14)

Sijkh =
1

2

(
Dijkh + Djikh

)
(2.15)

2.1.2 Eshelby equivalence principle

In the previous section, we have described the Eshelby solution for the
ellipsoidal inclusion problem (see Fig. 3). This configuration is com-
posed by a matrix made of an homogeneous isotropic elastic medium
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(material 1) characterized by the stiffness tensor C
(1)
ijkh and by a standard

constitutive relation T̂ = Ĉ(1)ε̂ . Into this infinite matrix we suppose to
identify an ellipsoidal region Ω with the same stiffness tensor of the ma-
trix but with an elastic behavior described by Tij = C

(1)
ijkh

(
εkh − ε∗kh

)
involving the eigenstrain ε̂∗. In this Section, the solution of the in-
clusion problem will be applied in order to solve the inhomogeneity
configuration (see Fig. 4) where the elastic behavior of the region Ω
is described by a standard consitutive equation with a stiffness ten-
sor C

(2)
ijkh different from the matrix. To this aim, we will describe the

so-called Eshelby equivalence principle.

x1

x2

x3

a1

a2

a3

Ω
0

ℜ3 \ Ω

x1

x2

x3

Ĉ(2)

T̂
∞

Ω
0

Ĉ(1)

T̂
∞

−a3

−a2

−a1

ℜ3 \ Ω

Figure 4: Scheme of an ellipsoidal inhomogeneity.

We suppose to submit the overall inhomogeneity configuration to
a remote load so that the asymptotic strain field, ε∞

ij , is uniform. As
a consequence, the corresponding asymptotic stress field, T∞

ij , results
to be uniform and related to the remotely applied strain by the con-
stitutive relation of the medium 1, i.e. T∞

ij = C
(1)
ijkhε

∞
kh. According

to Eshelby equivalence principle, this configuration can be obtained byEshelby equivalence
principle superimposing the solutions of two different problems (see Fig. 5).

The first one, problem A, corresponds to the application of the remote
uniform load to a simple homogeneous elastic system with stiffness
tensor C

(1)
ijkh. The second configuration, problem B, corresponds to an

inclusion, with a suitable eigenstrain ε̂∗, placed into the matrix. In this
case the overall system is not subjected to any remote load. At this
stage of the derivation we must derive the value of the eigenstrain that
allows for a complete equivalence of the superimposition A+B with
the inhomogeneity problem. Before proceeding with such a derivation,
is useful to fix some further notation. In the following we will indicate
the strain and stress fields into the region Ω with εin

ij and T in
ij for

the total (or inhomogeneity) problem, with εA,in
ij and TA,in

ij for the

problem A and with εB,in
ij and TB,in

ij for the problem B. Moreover, the
corresponding external stress fields will be indicated with εout

ij , Tout
ij ,

ε
A,out
ij , TA,out

ij , εB,out
ij and TB,out

ij .
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Tij = C
(1)
ijkhǫkh

Tij = C
(1)
ijkhǫkh Tij = C

(1)
ijkhǫkh

Tij = C
(1)
ijkhǫkh

Tij = C
(2)
ijkhǫkh

Tij = C
(1)
ijkh(ǫkh − ǫ∗kh)

+

T∞
ij , ǫ∞kh

T∞
ij , ǫ∞kh

A) B)

Figure 5: Scheme of the Eshelby equivalence principle. The inhomogeneity prob-
lem is obtained as the superimposition of the a configuration where
an homogeneous medium is subjected to a remote load (problem A)
with the inclusion configuration (problem B).

In terms of the above stated formalism, and by means of the results
reported in the previous Section, we can find the solution of the problem
A

ε
A,in
ij = ε∞

ij

ε
A,out
ij = ε∞

ij

T
A,in
ij = T∞

ij

T
A,out
ij = T∞

ij

(2.16)

and the solution of the problem B

ε
B,in
ij = Sijkhε

∗
kh

ε
B,out
ij (~r) = S∞

ijkh(~r)ε∗kh

T
B,in
ij = C

(1)
ijkh

(
ε

B,in
kh − ε∗kh

)
T

B,out
ij (~r) = C

(1)
ijkhS∞

khnm(~r)ε∗nm

(2.17)
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Regarding the total problem, we have the following boundary condi-
tions

uin(~r) = uout(~r) if ~r ∈ Γ
T̂ in(~r)~n = T̂out(~r)~n if ~r ∈ Γ
T in
ij = C

(2)
ijkhε

in
kh in Ω

Tout
ij = C

(1)
ijkhε

out
kh in <3 −Ω

εout
ij (~r) → ε∞

ij if |~r| → ∞
Tout
ij (~r) → T∞

ij if |~r| → ∞
(2.18)

being uin(~r) and uout(~r) the displacement fields inside and outside Ω
and Γ stands for the boundary of Ω The continuity of the displacement
fields at the interface between inhomogeneity and matrix (boundary Γ )
corresponds to the assumption that the two pieces are perfectly glued.

By superimposing the solutions of the problems A and B we get the
following equation

εin = εA,in + εB,in = ε∞ + Sε∗

T in = TA,in + TB,in = C(1)ε∞ + C(1)
(
εB,in − ε∗

)
= C(1)ε∞ + C(1) (Sε∗ − ε∗) (2.19)

Moreover, we can note that into the inhomogeneity the constitutive
relation T in = C(2)εin holds. Therefore, the value of the eigenstrain,
ε∗ that allows for the complete equivalence of A+ B problem with
the required inhomogeneity solution, can be derived by solving the
following equation

C(1)ε∞ + C(1) (Sε∗ − ε∗)︸ ︷︷ ︸
T in

= C(2) (ε∞ + Sε∗)︸ ︷︷ ︸
εin

(2.20)

obtaining

ε∗ =

[(
I−
(
C(1)

)−1
C(2)

)−1

− S

]−1

ε∞ (2.21)

By means of Eqs.(2.19) and (2.20) we find also

C(2)εd = C(1)
(
εin − ε∗

)
(2.22)

Finaly, by exploiting the result in Eq.(2.21), and solving the last equation
the internal strain εin is found

εin =

[
I− S

(
I−
(
C(1)

)−1
C(2)

)]−1

ε∞ (2.23)

and

T in = C(2)

[
I− S

(
I−
(
C(1)

)−1
C(2)

)]−1

ε∞ (2.24)

Moreover, the solution for the external fields can be obtained by super-
imposing the corresponding solutions for the problem A and B

εout
ij (~r) = ε

A,out
ij (~r) + εB,out

ij (~r) = ε∞
ij + S∞

ijkh(~r)ε∗kh (2.25)

Tout
ij (~r) = T

A,out
ij (~r) + TB,out

ij (~r) = C
(1)
ijkh [ε∞

kh + S∞
khnm(~r)ε∗nm]

These equations, together with the eigenstrain given in Eq.(2.21) sup-
plies us the complete solution for the external fields.
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2.2 generalized eshelby theory for prestressed inclusions

In this Section we consider a generalization of the Eshelby theory,
concerning the elastic behavior of prestrained or prestressed inhomo-
geneities. The theory, in its original version, deals with a configuration
where both the ellipsoidal particle and the surrounding matrix are in
elastostatic equilibrium if no external loads are applied to the system.
Here, we consider slightly different shapes and sizes for the particle
and the hosting cavity (whose surfaces are firmly bonded together)
and, therefore, we observe a given state of strain (or stress) even with-
out externally applied loads. In particular, we develop a mathematical Prestressed Eshelby

configurationprocedure able to quantify the prestrains (or prestresses) induced by
the differences between the particle and the cavity. It means that we
analyze the deformations necessary to create the perfect bonding be-
tween the external surface of the particle and the internal surface of the
cavity. Moreover, we determine the uniform elastic field induced in an
arbitrarily prestrained particle subjected to arbitrary remote loadings.

Typical examples of prestressed systems are represented by semicon- Actual prestressed
systemsductor quantum dots or quantum wires, embedded in a matrix with

different properties. In fact, the mechanical behavior of nanostructured
materials is strongly affected by interface features, occurring at the
boundary between phases characterized by different elastic constitutive
equations or crystalline structures. In particular, the embedding of a
given nanoinclusion in a hosting homogeneous matrix is deeply influ-
enced by the lattice mismatch. In fact, both the inclusion and the matrix
accomplish an elastic relaxation to accommodate these mismatches and,
therefore, they admit a state of deformation even if no external load
is applied. For example, in Fig.6 one can find the atomistic structure

Figure 6: Example of an atomistically resolved prestrained cylindrical inhomo-
geneity.

of an interface between a matrix and a cylindrical inhomogeneity: the
effects of the lattice mismatch and of the different radius of cylinder
and cavity are evident in the region close to the interface.

First of all we will analyze inhomogeneities with circular symmetry,
namely cylinders and spheres of radius R2, embedded in a matrix with
a cavity of different radius R1. The radius difference is considered very
small, thus allowing for the application of the infinitesiaml theory of
elasticity [39, 31]. It is important to remark that this configuration cor- Equivalence with the

Volterra dislocationresponds to a continuum dislocation distributed over the (cylindrical
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or spherical) interface between the materials [81, 82]. It must be consid-
ered as a Volterra dislocation with constant Burger vector of modulus
R1 − R2 and radial direction (referred to as ~n). More specifically, if we
start from a situation with R1 = R2 and we consider such a dislocation
of the inhomogeneity with Burger vector ~b = (R1 − R2)~n, we obtain
the final configuration corresponding to the prestrained inhomogeneity.
In this work we approach this problem with the theory of the inho-
mogeneities, based on the Eshelby tensor. The solution through the
dislocation theory is much more complicated since we are dealing
with a heterogeneous structure. The same problem is solved for an
ellipsoidal inhomogeneity embedded in a different ellipsoidal cavity
of the matrix. Also in this case there is a direct correspondence with
the dislocation theory. In particular, the elastic fields can be attributed
to a Somigliana dislocation distributed over the interface. In such a
case the Burger vector connects a point of the inhomogeneity surface
(in elastostatic equilibrium) with the corresponding point of the cavity
surface in the matrix.

2.2.1 Spherical or cylindrical inclusions

The first step in considering inhomogeneities with shape and size
slightly different from the hosting cavity is given by the analysis of
spherical or cylindrical particles embedded in similar cavities with
different radius. A following Section will deal with the most general
case of an ellipsoidal particle embedded in a different ellipsoidal cavity.
More precisely, in this Section, we consider a (spherical or cylindrical)
particle of radius R2 and stiffness Ĉ(2) which must be enclosed in the
(spherical or cylindrical) cavity of radius R1 in a matrix with stiffness
Ĉ(1). We suppose a perfect gluing of the spherical or cylindrical sur-
faces obtained by means of radial deformations of both bodies. We also
suppose that a system of forces remotely applied generates an uniform
stress in a homogeneous matrix Ĉ(1) (without the inhomogeneity). The
corresponding elastic state is fully described by the following fields:

linear displacement u∞
i (~y), constant strain ε∞

kh = 1
2

(
∂u∞

k
∂yh

+
∂u∞

h
∂yk

)
and

constant stress T∞
ij = C

(1)
ijkhε

∞
kh. If we now embed the inhomogeneity in

the matrix, we must cope with the problem of evaluating the perturba-
tion induced in the elastic fields, both inside and outside the particle. In
order to utilize the infinitesimal theory of elasticity we must consider
R1 ≈ R2 or, equivalently |ε0| � 1 if ε0 = R1/R2 − 1. All the quantity in
our system are reported in Fig.7, together with the conceptual scheme
utilized to solve the problem. We start with the description of the equiv-
alence principle used to obtain the elastic fields in the system. The
original problem with the prestrained (or prestressed) inhomogeneity
is approached through the superimposition of two subproblems A and
B. The subproblem A is described by an entirely homogeneous matrix
subjected to the remote load ε̂∞ or T̂∞ = Ĉ(1)ε̂∞. In this simple case
the following elastic fields apply at any point of the body

ε̂A = ε̂∞ and T̂A = T̂∞ = Ĉ(1)ε̂∞ (2.26)

The subproblem B corresponds to a spherical or cylindrical inclusion
(with radius R1) described by the eigenstrain ε̂∗. The results summa-
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Figure 7: Scheme of a prestrained (cylindrical or spherical) inhomogeneity
(stiffness Ĉ(2) and radius R2) embedded into a homogeneous matrix
(stiffness Ĉ(1) and cavity with radius R1). One can see the initial
deformation ε̂0 and the superimposition of the subproblems A and B
corresponding to the homogeneous loaded matrix and to the inclusion
with eigenstrain ε̂∗.

rized in the previous Section allow us to obtain the following uniform
elastic fields in the region of the inclusion

ε̂B = Ŝε̂∗ and T̂B = Ĉ(1)
(
ε̂B − ε̂∗

)
(2.27)

The superimposition of the stress and the strain for the situations A
and B leads to the relations

ε̂ = ε̂A + ε̂B = ε̂∞ + Ŝε̂∗ (2.28)

T̂ = T̂A + T̂B = Ĉ(1)ε̂∞ + Ĉ(1)
(
ε̂B − ε̂∗

)
= Ĉ(1)ε̂∞ + Ĉ(1)

(
Ŝε̂∗ − ε̂∗

)
which are correct for any point in the region of the inclusion. At
this point, it is important to investigate the relation between ε̂ and T̂
inside the inhomogeneity, i.e. the constitutive relation of the embedded
particle. This is a crucial point because this relation is described by
the stiffness tensor Ĉ(2) in the reference frame {~x}, where the particle
is not deformed (see Fig.7). However, this is not true in the reference
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frame {~y} where the particle is radially deformed in order to achieve
the radius R1 of the cavity. It must be underlined that the equivalence
principle must be used with the constitutive equation of the particle
written in the reference frame where the particle itself has the same
shape and size of the cavity. The linear displacement field changing
the radius of the particle from R2 to R1 is ~u0 (~x) = (R1 − R2)/R2~x and,
therefore, the corresponding strain tensor is ε̂0 = (R1 − R2)/R2Î2 =

ε0Î2 for a cylinder and ε̂0 = (R1 − R2)/R2Î3 = ε0Î3 for a sphere,
where ε0 = (R1 − R2)/R2. In other words, each point of the particle is
transformed accordingly to ~y = ~x+ ε̂0~x in order to fit the cavity. In this
configuration the surfaces of the prestrained circular inhomogeneity
and of the cavity are firmly bonded. An arbitrary deformation ~uT (~x) of
the particle can be described by two successive steps: a first deformation
described by ~u0 (~x) and a further deformation ~u (~y) defined on the
reference frame {~y}. Therefore, the arbitrary deformation ~uT (~x) can
be written in the form ~uT (~x) = ~u0 (~x) + ~u (~y) = ~u0 (~x) + ~u (~x+ ε̂0~x).
The subscript T means true, i.e. the displacement ~uT (~x) is the actual
or total displacement measured in the reference configuration where
the material is in own elastic equilibrium. On the other hands, the
second step of the deformation, described by the vector ~u (~y), defines a

standard strain tensor εij(~y) = 1
2

(
∂ui
∂yj

+
∂uj

∂yi

)
working in the reference

frame {~y}. The relation between ε̂T (~x) and ε̂(~y) is

εT ,ij =
1

2

(
∂uT ,i

∂xj
+
∂uT ,j

∂xi

)
(2.29)

=
1

2

(
∂u0,i

∂xj
+
∂u0,j

∂xi
+
∂ui

∂yj
+
∂uj

∂yi
+
∂ui

∂ys
ε0,sj +

∂uj

∂ys
ε0,si

)
= ε0δij + (1+ ε0) εij

In the reference frame {~x} we have the standard constitutive equation
T̂(~x) = Ĉ(2)ε̂T (~x) while, in the reference frame {~y} (where the particle
has the same radius of the hosting cavity) we simply obtain T̂(~y) =

Ĉ(2)
[
ε0Î+ (1+ ε0)ε̂(~y)

]
where Î = Î2 for a cylindrical particle and

Î = Î3 for a spherical one. By considering that ε0 = (R1 − R2)/R2 we
obtain

T̂(~y) = Ĉ(2)

[
R1 − R2

R2
Î+

R1

R2
ε̂(~y)

]
=
R1

R2
Ĉ(2)

[
ε̂(~y) −

R2 − R1

R1
Î

]
(2.30)

This is the constitutive equation of the prestrained (or prestressed)
inhomogeneity in the reference frame {~y}. It must be utilized with the
strain and stress fields defined in Eq.(2.28), by obtaining

Ĉ(1)ε̂∞ + Ĉ(1)
(
Ŝε̂∗ − ε̂∗

)
︸ ︷︷ ︸

T̂(~y)

=
R1

R2
Ĉ(2)

(ε̂∞ + Ŝε̂∗
)

︸ ︷︷ ︸
ε̂(~y)

−
R2 − R1

R1
Î

 (2.31)

Eq.(2.31) represents an equation for the eigenstrain ε̂∗ assuring the
equivalence between the original (prestrained) inhomogeneity problem
and the superimposition of the subproblems A and B. The eigenstrain
ε̂∗ can be obtained through straightforward tensor calculations

ε̂∗ =

[(
Î −

R1

R2

(
Ĉ(1)

)−1
Ĉ(2)

)−1

− Ŝ

]−1

(2.32)

×

[
ε̂∞ −

(
Î −

R2

R1

(
Ĉ(2)

)−1
Ĉ(1)

)−1
R2 − R1

R1
Î

]
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where Î stands for the fourth-rank identity operator. Moreover, Eq.(2.31)
can be written in the alternative form

Ĉ(1)

(ε̂∞ + Ŝε̂∗
)

︸ ︷︷ ︸
ε̂(~y)

−ε̂∗

 =
R1

R2
Ĉ(2)

(ε̂∞ + Ŝε̂∗
)

︸ ︷︷ ︸
ε̂(~y)

−
R2 − R1

R1
Î

 (2.33)

which is useful to evaluate the strain ε̂(~y) in the inhomogeneity. A long
manipulation leads to the following relation between the internal strain
ε̂(~y) and the eigenstrain ε̂∗

ε̂ =

[
Î −

R1

R2

(
Ĉ(1)

)−1
Ĉ(2)

]−1

ε̂∗ +[
Î −

R2

R1

(
Ĉ(2)

)−1
Ĉ(1)

]−1
R2 − R1

R1
Î (2.34)

Now, we can substitute Eq.(2.32) in Eq.(2.34), obtaining the internal
strain measured in the reference frame {~y}

ε̂ = Â

[
ε̂∞ + Ŝ

(
Ĉ(1)

)−1
Ĉ(2)R2 − R1

R2
Î

]
(2.35)

where we have defined the tensor Â as

Â =

{
Î − Ŝ

[
Î −

R1

R2

(
Ĉ(1)

)−1
Ĉ(2)

]}−1

(2.36)

It is also important to obtain the true internal strain, measured in the
reference frame {~x}. To this aim we obtain from Eq.(2.29) the relation
giving the true strain ε̂T as

ε̂T =
R1 − R2

R2
Î+

R1

R2
ε̂ =

R1

R2
Â

[
ε̂∞ −

(
Î − Ŝ

) R2 − R1

R1
Î

]
(2.37)

Finally, by recalling the definition of Â in Eq.(2.36), we obtain the
explicit expression

Internal strain of a
prestressed
cylindrical or
spherical inclusion
under remote loading

ε̂T =
R1

R2

{
Î − Ŝ

[
Î −

R1

R2

(
Ĉ(1)

)−1
Ĉ(2)

]}−1

×
[
ε̂∞ −

(
Î − Ŝ

) R2 − R1

R1
Î

]
(2.38)

This is the most important result of the present Section. It is important
to remark that, if we consider R1 = R2, we obtain the standard Eshelby
result for not prestrained inhomogeneities. In fact, if R1 = R2 both
Eqs.(2.35) and (2.38) reduce to Eq.(2.23) , as expected. Furthermore,
we can calculate the state of strain in the sourrounding matrix; the
counterpart of Eq.(2.28) for the external region reads

ε̂ (~y) = ε̂∞ + Ŝ∞
ijkh (~y) ε̂∗ (2.39)

T̂ (~y) = Ĉ(1)ε̂∞ + Ĉ(1)Ŝ∞
ijkh (~y) ε̂∗

where the eigenstrain ε̂∗ is given by Eq.(2.32). The final expression for
the external strain assumes the form

External strain of a
prestressed
cylindrical or
spherical inclusion
under remote loading

ε̂ (~y) = ε̂∞ + Ŝ∞
ijkh (~y)

[(
Î −

R1

R2

(
Ĉ(1)

)−1
Ĉ(2)

)−1

− Ŝ

]−1

×

[
ε̂∞ −

(
Î −

R2

R1

(
Ĉ(2)

)−1
Ĉ(1)

)−1
R2 − R1

R1
Î

]
(2.40)
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The spherical inhomogeneity

Here, we apply the result stated in Eq.(2.38) to the specific case of a
spherical particle. The constitutive equations for the sphere (j = 2) and
the matrix (j = 1) can be represented in the explicit form T̂ = Ĉ(j)ε̂ =

2µjε̂+ λjTr (ε̂) Î3. We also introduce the notation Kj = λj + 2
3µj for the

three-dimensional bulk moduli (see 1) in the medium j. The explicit
expression of the Eshelby tensor for a sphere embedded in a matrix
with Poisson ratio ν1 is reported in literature [68, 45]

Sijkh =
1

15(1− ν1)

[(
δikδjh + δihδjk

)
(4− 5ν1)

+ δkhδij(5ν1 − 1)
]

(2.41)

To obtain a more useful form, we can evaluate the effect of Sijkh over
an arbitrary tensor wkh, getting

Sijkhwkh =
2(4− 5ν1)

15(1− ν1)
wij +

5ν1 − 1

15(1− ν1)
wkkδij (2.42)

Now, the Poisson ratio ν1 of the matrix can be written in terms of
the moduli K1 and µ1 through the standard relation ν1 = 3K1−2µ1

2(3K1+µ1) ,
obtaining

Ŝε̂ =
6

5

K1 + 2µ1

3K1 + 4µ1
ŵ+

1

5

3K1 − 4µ1

3K1 + 4µ1
Tr (ŵ) Î3 (2.43)

At this point we have in hand all the ingredients to develop Eq.(2.38).
We define the parameters

L3 = 1+
6

5

K1 + 2µ1

3K1 + 4µ1

(
R1

R2

µ2

µ1
− 1

)
(2.44)

M3 =
1

5 (3K1 + 4µ1)

[
5
R1

R2
K2 −K1

(
3+ 2

R1

R2

µ2

µ1

)
− 4

(
R1

R2
µ2 − µ1

)]
which are useful to write in explicit form the effect of Â defined in
Eq.(2.36) over an arbitrary tensor ŵ

Âŵ =
1

L3
ŵ−

M3

L3

1

L3 + 3M3
Tr (ŵ) Î3 (2.45)

The following expression is useful in the following calculations

L3 + 3M3 =
3

R1
R2
K2 + 4µ1

3K1 + 4µ1
(2.46)

By means of a long but straightforward calculation we obtain the final
expression for the true strain in the following form

ε̂T =
R1

R2

1

L3
ε̂∞ −

R1

R2

M3

L3

1

L3 + 3M3
Trε̂∞Î3

−
R2 − R1

R2

4µ1

3
R1
R2
K2 + 4µ1

Î3 (2.47)

The cylindrical inhomogeneity

We apply now Eq.(2.38) to the case of a cylindrical particle embedded in
the homogeneous matrix. We suppose to deform both the particle and
the matrix under the plane strain condition defined in Section 1.2.2 (on
the plane perpendicular to the axis of the cylindrical particle). Therefore
(see 1.2.3 and Table 3), we introduce the two-dimensional bulk moduli
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kj = Kj + 1
3µj (j = 1, 2). Accordingly, we adopt the constitutive relations

in the form T̂ = Ĉ(j)ε̂ = 2µjε̂+
(
kj − µj

)
Tr (ε̂) Î2 where j = 1 for the

matrix and j = 2 for the inhomogeneity. Moreover, we remember that
the result of the application of the Eshelby tensor Ŝ (for a cylindrical
geometry) over an arbitrary tensor ŵ is given by [45]

Ŝŵ =
1

2

k1 + 2µ1

k1 + µ1
ŵ+

1

4

k1 − 2µ1

k1 + µ1
Tr (ŵ) Î2 (2.48)

The development of Eq.(2.38) can be made easier by the definition of
the parameters

L2 = 1+
1

2

k1 + 2µ1

k1 + µ1

(
R1

R2

µ2

µ1
− 1

)
(2.49)

M2 =
1

4 (k1 + µ1)

[
2
R1

R2
k2 − k1

(
1+

R1

R2

µ2

µ1

)
− 2

(
R1

R2
µ2 − µ1

)]
which are useful to write in explicit form the effect of Â defined in
Eq.(2.36) over an arbitrary tensor ŵ

Âŵ =
1

L2
ŵ−

M2

L2

1

L2 + 2M2
Tr (ŵ) Î2 (2.50)

The following expression is useful in the following calculations

L2 + 2M2 =

R1
R2
k2 + µ1

k1 + µ1
(2.51)

A straightforward algebraic manipulation leads to the following final
result

ε̂T =
R1

R2

1

L2
ε̂∞ −

R1

R2

M2

L2

1

L2 + 2M2
Trε̂∞Î2

−
R2 − R1

R2

µ1
R1
R2
k2 + µ1

Î2 (2.52)

Since Eq.(2.52) is a result obtained for the two-dimensional elasticity
(plane strain condition), it can be also verified by means of the complex
potentials method [83, 84, 85] (see Section 5.2.4).

Features of the generalized Eshelby model

For nano-science applications the typical sizes of the particles range in
the interval 5 nm < R1 ≈ R2 < 50 nm, while the possible difference
between the radii lies in the range 0 Å< |R2 − R1| < 5 Å. In order to
describe the new features of the generalized inclusion model, in this
Section we show an example of cylindrical particle (with moduli µ2 =
85 GPa and k2 = 115 GPa) embedded in a matrix (having moduli µ1 =
50 GPa and k1 = 110 GPa). By means of Eq.(2.52) we obtain the true
internal strain field ε̂T for 2 nm< R1 <20 nm and 0.1 Å< R2 − R1 <0.5
Å. In Fig. 8 (a) one can find the results for the case without external
loads applied to the system. In this case the isotropy leads to the
hydrostatic condition εxx = εyy. The effect generated by the condition
R1 6= R2 can be compared with the constant value of the strain predicted
by the classical Eshelby theory when R1 = R2. Moreover, in Fig. 8 (b)
the effects of a remotely applied uniaxial load are shown. We note
that, for a given value of |R2 − R1|, the difference between the two
predictions decreases with increasing radius of the inclusion. Therefore,
the condition R1 6= R2 induces a scale effect that become negligible only scale effects...
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Figure 8: Internal components εxx and εyy of the strain tensor ε̂T for a pre-
strained cylindrical inhomogeneity (stiffness Ĉ(2) and radius R2)
embedded into a homogeneous matrix (stiffness Ĉ(1) and cavity with
radius R1). One can find the results without external load (a) and the
effects of a remotely applied deformation (b).

when the radius R1 is larger than a given threshold.
We have also analyzed the external fields, described by Eq.(2.40). In

particular, in Fig. 9 the true displacement field components ux(x, 0) −

u∞
x (x, 0) (a) and uy(0,y)−u∞

y (0,y) (b) are shown for ε∞xx = 0.01, ε∞yy =

0 and ε∞xy = 0. We have used the fixed radius R1 =20 nm and the
difference 0.1 Å< |R2 − R1| < 1Å. The dashed lines correspond to
the Eshelby theory (R1 = R2) and, therefore, they are continuous at
the cylinder-matrix interface. When R1 6= R2 the displacement field
shows a discontinuity at the interface due to the gluing of the surfaces
having different radius (it is the typical behavior of the elastic fields
generated by a dislocation distributed over the interface). The jump
of the discontinuity is an increasing function of R2 − R1 both for the
longitudinal and the transversal components. By comparing the Eshelby
solution with the results for R1 6= R2 we note that the behavior can
be largely different, depending on the quantity R2 − R1. As for the
longitudinal component, we observe that a value of R2 − R1 exists (of
about 0.7 Å for the example shown in Fig. 9 (a)) which leads to a very
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fast decay to zero of ux(x, 0) − u∞
x (x, 0). In other words, in such a case, ...and localizations

effectsthe prestrain causes a strong localization of the elastic fields around the
interface. On the other hand, the transversal component shown in Fig.
9 (b) shows a decay to zero that is more and more slower for incrasing
values of R2 − R1.
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Figure 9: True displacement field components ux(x, 0) − u∞
x (x, 0) (a) and

uy(0,y) − u∞
y (0,y) (b) for a prestrained cylindrical inhomogeneity

(radius R2) embedded into a homogeneous matrix (cavity with radius
R1).

All the features described in this Section have been confirmed by
molecular dynamics experiments conducted in order to show the role
of the interface elasticity in nanostructured silicon [86] (see Section 5.2).
It is interesting to observe that such atomistic simulations perfectly take
into account both the fast decay and the displacement discontinuity,
being in good agreement with the present model.

2.2.2 Ellipsoidal inclusions

We consider an elastic particle (stiffness Ĉ(2)) with an ellipsoidal shape
given by ~x · â−2~x = 1 in the reference frame {~x}. This particle must
be embedded in the matrix (stiffness Ĉ(1)) showing an ellipsoidal
cavity described by ~y · b̂−2~y = 1 in the reference frame {~y} (see Fig.10
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for details). These ellipsoids have the semiaxes aligned to reference
frames and, therefore, the tensors â and b̂ are diagonal and their
entries represent the semiaxes length of the ellipsoids. To begin, we
search for the geometrical transformation, which converts the first
ellipsoid (representing the particle) in the second ellipsoid (representing
the cavity). The general form of such a transformation is assumed in
the form ~y = F̂~x where F̂ is an unknown non singular tensor (the
inverse transformation is ~x = F̂−1~y). The application of the tensor
F̂ to the ellipsoid ~x · â−2~x = 1 leads to the transformed ellipsoid ~y ·
F̂−T â−2F̂−1~y = 1. Therefore, the tensor F̂ must fulfill the condition

Figure 10: Scheme of a prestrained ellipsoidal inhomogeneity (stiffness Ĉ(2))
embedded into a matrix (stiffness Ĉ(1)). One can see the initial
rotation R̂, the further deformation V̂ and the superimposition of the
subproblems A and B corresponding to the homogeneous loaded
matrix and to the inclusion with eigenstrain ε̂∗.

b̂−2 = F̂−T â−2F̂−1 (2.53)

It is easy to recognize that it exists an infinite number of tensors F̂
fulfilling the previous relation: in fact, reasoning in <n, the tensor F̂
corresponds to n2 unknowns, while Eq.(2.53) corresponds to n(n+ 1)/2
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equations (in fact, both sides are symmetric). In order to characterize
all the possible tensors satisfying Eq.(2.53) we invoke the polar decom-
position F̂ = R̂Û = V̂R̂, which is correct for any non singular tensor
F̂. We adopt the left version F̂ = V̂R̂ where R̂ is an orthogonal tensor
and V̂ is symmetric and positive definite. From the above statement we
simply obtain F̂−1 = R̂T V̂−1 and F̂−T = V̂−1R̂. Therefore, Eq.(2.53) can
be rewritten in the form

b̂−2 = V̂−1R̂â−2R̂T V̂−1 (2.54)

Now, we suppose to consider a given orthogonal tensor R̂ and we prove
that it exists a unique tensor V̂ fulfilling Eq.(2.54). In other words, we
have decomposed the transformation ~y = F̂~x in two steps: ~z = R̂~x and
~y = V̂~z (see Fig.10 for details). In the reference frame {~z} the ellipsoid
assumes the form ~z · ĉ−2~z = 1 where ĉ = R̂âR̂T is a positive definite
symmetric tensor. Since the tensor R̂ is now considered fixed, Eq.(2.54)
can be written as follows

b̂−2 = V̂−1ĉ−2V̂−1 (2.55)

We must now find the solution V̂ of the previous Eq.(2.55). This equation
can be represented in the form ĉ−1b̂−2ĉ−1 = (ĉ−1V̂−1ĉ−1)(ĉ−1V̂−1ĉ−1)

or, equivalently, in the form ĉ−1b̂−2ĉ−1 = (ĉ−1V̂−1ĉ−1)2. Therefore,
we obtain ĉ−1V̂−1ĉ−1 =

√
ĉ−1b̂−2ĉ−1 since the tensor ĉ−1b̂−2ĉ−1 is

symmetric and positive definite (having a regular square root). At the
end, the transformation tensor F̂−1 or F̂−T is explicitely given

F̂−1 = R̂T V̂−1 = R̂T ĉ
√
ĉ−1b̂−2ĉ−1ĉ (2.56)

= âR̂T
√

(R̂âR̂T )−1b̂−2(R̂âR̂T )−1R̂âR̂T

F̂−T = V̂−1R̂ = ĉ
√
ĉ−1b̂−2ĉ−1ĉR̂ (2.57)

= R̂âR̂T
√

(R̂âR̂T )−1b̂−2(R̂âR̂T )−1R̂â

It is simple to verify by substitution that our solution satisfies Eq.(2.53)
as requested. Moreover, if R̂ = Î3 we obtain the simple solution F̂ =

â−1b̂ as expected.
For the following purposes we suppose to fix the rotation tensor R̂

and to obtain the transformation tensors V̂ and F̂ through the previous
procedure based upon the knowledge of the shape of the ellipsoids
(the tensors â and b̂). Moreover, the shape of the ellipsoid assumed in
the reference {~z} must be very similar to that assumed in the reference
{~y} in order to satisfy the requirements of the infinitesimal theory of
elasticity.

We suppose to measure the true strain of the embedded ellipsoid in
the reference frame {~z}, i.e. after the first rotation. The ellipsoid in the
reference frame {~z} assumes the role of reference configuration. In order
to describe the generalized version of the Eshelby equivalence principle,
the complete transformation, from the reference configuration to the
deformed one, can be accomplished in two steps: firstly, we apply the
tensor V̂ , which gives to the elliposidal particle the exact shape of the
cavity (in the reference frame {~y}) and, successively, we consider the
final change leading to the actual current configuration.

The transformation ~y = V̂~z between the reference frames {~z} and {~y}

corresponds to a displacement field ~uV (~z) = ~y−~z =
(
V̂ − Î

)
~z. In this

configuration the surfaces of the prestrained ellipsoidal inhomogeneity
and of the cavity are firmly bonded. The current configuration, after
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relaxation, is then reached through a further displacement field ~u (~y),
which represents the main unknown in our system, depending upon
the shape tensors â and b̂ and on the externally applied loadings. It is
now important to find a relation between the true strain measured in
the reference frame {~z} and the displacement fields ~uV (~z) and ~u (~y); the
total displacement is ~uT (~z) = ~uV (~z) + ~u (~y) = ~uV (~z) + ~u [~z+ ~uV (~z)].
The strain in the reference frame {~y} is defined as εij(~y) = 1

2

(
Jij + Jji

)
where Jij(~y) = ∂ui

∂yj
and, therefore, the true strain is given by

εT ,ij (~z) =
1

2

(
∂uT ,i

∂zj
+
∂uT ,j

∂zi

)
(2.58)

=
1

2

(
∂uV ,i

∂zj
+
∂uV ,j

∂zi
+
∂ui

∂ys

∂ys

∂zj
+
∂uj

∂ys

∂ys

∂zi

)
=

1

2

[
Vij − δij + Vji − δji + Jis(~y)Vsj + Jjs(~y)Vsi

]
~y=V̂~z

Since the tensor V̂ is symmetric we simply obtain

ε̂T (~z) = V̂ − Î+
1

2

[
Ĵ(~y)V̂ + V̂ Ĵ>(~y)

]
~y=V̂~z

(2.59)

where ĴV̂ and V̂ Ĵ> represent two standard matrix multiplications and
Ĵ> is the transpose of Ĵ. The constitutive equation in the reference frame
{~z} is T̂ (~z) = Ĉ(2)ε̂T (~z) and, consequently, in the reference frame {~y}

we immediatly obtain

T̂ (~y) = Ĉ(2)

{
V̂ − Î+

1

2

[
Ĵ(~y)V̂ + V̂ Ĵ>(~y)

]}
(2.60)

It is important to remark that, in order to adopt the equivalence princi-
ple approach, we must utilize in the region Ω the constitutive equation
of the inhomogeneity written in the reference frame {~y}, i.e. in the
deformed configuration close-fitting the cavity of the homogeneous
matrix. In these conditions, the problem can be splitted in the super-
imposition of two different subproblems (see Fig.10): the problem A

corresponds to a very simple situation of an entirely homogeneous
material (stiffness Ĉ(1) without inclusions or inhomogeneities) loaded
by the remotely applied stress T̂∞. The corresponding elastic fields can
be summed up as follows

ε̂A = ε̂∞, ĴA = ε̂∞ and T̂A = T̂∞ = Ĉ(1)ε̂∞ (2.61)

The second problem B corresponds to an inclusion confined in the
region Ω and described by the eigenstrain ε̂∗. The related fields have
been discussed in Section 2 and they are summarized below

ε̂B = Ŝε̂∗, ĴB = D̂ε̂∗ and T̂B = Ĉ(1)
(
ε̂B − ε̂∗

)
(2.62)

where the tensors D̂ and Ŝ have been defined in Eqs.(2.14) and (2.15),
respectively. The superimpositions of strain, gradient of displacement
and stress in the schemes A and B define the elastic field in the region
Ω as follows

ε̂ = ε̂A + ε̂B = ε̂∞ + Ŝε̂∗ (2.63)

Ĵ = ĴA + ĴB = ε̂∞ + D̂ε̂∗

T̂ = T̂A + T̂B = Ĉ(1)ε̂∞ + Ĉ(1)
(
ε̂B − ε̂∗

)
= Ĉ(1)ε̂∞ + Ĉ(1)

(
Ŝε̂∗ − ε̂∗

)
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The equivalence principle becomes operative by combining Eq.(2.63)
for the fields in the region Ω with the constitutive relation given in
Eq.(2.60)

Ĉ(1)ε̂∞ + Ĉ(1)
(
Ŝ − Î

)
ε̂∗ (2.64)

= Ĉ(2)

{
V̂ − Î+

1

2

[
(ε̂∞ + D̂ε̂∗)V̂ + V̂(ε̂∞ + D̂ε̂∗)>

]}
This is an equation for the eigenstrain ensuring the equivalence be-
tween the superimposition of the problems A and B and the original
prestrained inhomogeneity problem. This relation can be written in the
following form

Ĉ(1)ε̂∞ − Ĉ(2)
(
V̂ − Î

)
−

1

2
Ĉ(2)

(
ε̂∞V̂ + V̂ε̂∞) (2.65)

= −Ĉ(1)
(
Ŝ − Î

)
ε̂∗ +

1

2
Ĉ(2)

[
(D̂ε̂∗)V̂ + V̂(D̂ε̂∗)>

]
which represents a linear equation in the eigenstrain ε̂∗. It can be
written in components through the standard form Mij = Nijkhε

∗
kh,

where

Mij = C
(1)
ijstε

∞
st − C

(2)
ijst (Vst − δst) −

1

2
C

(2)
ijst (ε∞

skVkt + Vskε
∞
kt) (2.66)

Nijkh = C
(1)
ijkh − C

(1)
ijstSstkh +

1

2
C

(2)
ijst [DsrkhVrt + DtrkhVrs] (2.67)

Alternatively, Eq.(2.65) can be solved in tensor notation by means of the
definition of the following operation[

D̂� V̂
]
ε̂∗ =

1

2

[
(D̂ε̂∗)V̂ + V̂(D̂ε̂∗)>

]
(2.68)

where the tensor D̂� V̂ corresponds to the components[
D̂� V̂

]
stkh

=
1

2
[DsrkhVrt + DtrkhVrs] (2.69)

By this definition, Eq.(2.65) can be easily solved and the equivalent
eigenstrain is eventually obtained as

ε̂∗ =
[
Ĉ(2)

(
D̂� V̂

)
− Ĉ(1)

(
Ŝ − Î

)]−1
(2.70)

×
[
Ĉ(1)ε̂∞ − Ĉ(2)

(
V̂ − Î

)
−
1

2
Ĉ(2)

(
ε̂∞V̂ + V̂ε̂∞)]

Moreover, the true internal strain, defined in the reference frame {~z} is
given by Eq.(2.59). By utilizing Eqs.(2.63) and (2.64), it assumes, after
some straightforward calculations, the following final form

Internal strain

ε̂T (~z) =
(
Ĉ(2)

)−1
Ĉ(1)

{
ε̂∞ +

(
Ŝ − Î

) [
Ĉ(2)

(
D̂� V̂

)
− Ĉ(1)

(
Ŝ − Î

)]−1

×
[
Ĉ(1)ε̂∞ − Ĉ(2)

(
V̂ − Î

)
−
1

2
Ĉ(2)

(
ε̂∞V̂ + V̂ε̂∞)]} (2.71)

This is the most important result of this Section, stating that the in-
ternal strain is uniform inside the inhomogeneiy having shape and
size different from those of the hosting cavity. We remark that if one
is interested in the true internal strain in the original reference frame
{~x} it is sufficient to use the rotation ε̂T (~x) = R̂>ε̂T (~z) R̂. When V̂ = Î
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the inhomogeneity is not strained (deformed) to fit the cavity and the
results of the standard Eshelby theory must be obtained. In fact, if
V̂ = Î we have D̂� V̂ = Ŝ and the true strain assumes the simpler form

ε̂T =

{
Î − Ŝ

[
Î −
(
Ĉ(1)

)−1
Ĉ(2)

]}−1

ε̂∞, as expected.

Furthermore, we can calculate the state of strain in the sourrounding
matrix; the equivalence principle for the external region reads

ε̂ (~y) = ε̂∞ + Ŝ∞
ijkh (~y) ε̂∗ (2.72)

T̂ (~y) = Ĉ(1)ε̂∞ + Ĉ(1)Ŝ∞
ijkh (~y) ε̂∗

where the eigenstrain ε̂∗ is given by Eq.(2.70). The final expression for
the external strain assumes the formExternal strain

ε̂ (~y) = ε̂∞ + Ŝ∞
ijkh (~y)

[
Ĉ(2)

(
D̂� V̂

)
− Ĉ(1)

(
Ŝ − Î

)]−1
(2.73)

×
[
Ĉ(1)ε̂∞ − Ĉ(2)

(
V̂ − Î

)
−
1

2
Ĉ(2)

(
ε̂∞V̂ + V̂ε̂∞)]

Example of application

Figure 11: Planar components εxx, εyy and εxy of the strain ε̂T versus the
angle ϑ [rad], in both reference frames {~z} and {~x} with the following
parameters: K1 = K2 = 1, µ1 = µ2 = 0.1, â = diag(δ, 1, 1) with
0.9 < δ < 1.1 and b̂ = diag(1.1, 1, 1). The load is given by ε̂∞ =

diag(0.1, 0.1, 0). Dotted red lines: prestrain before relaxation; black
lines with circles: strain after relaxation without load; green lines
with triangles: strain after relaxation with applied load.

We describe now a series of examples of application of the previ-
ous theory to prestrained ellipsoidal inhomogeneities inserted into
different ellipsoidal cavities. For the sake of simplicity we have used
the same material for the embedded particle and the hosting matrix
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Figure 12: Planar components εxx, εyy and εxy of the strain ε̂T versus the
angle ϑ [rad], in both reference frames {~z} and {~x} with the following
parameters: K1 = K2 = 1, µ1 = µ2 = 0.1, â = diag(δ, 1, 1) with
0.9 < δ < 1.1 and b̂ = diag(1, 1, 1). The load is given by ε̂∞ =

diag(0.1, −0.1, 0). Dotted red lines: prestrain before relaxation; black
lines with circles: strain after relaxation without load; green lines
with triangles: strain after relaxation with applied load.

(K1 = K2 = 1 and µ1 = µ2 = 0.1 in arbitrary units). The geometry of
the inhomogeneity is described by the tensor â = diag(δ, 1, 1) (a.u.) for
0.9 < δ < 1.1, in order to investigate the effects of the aspect ratio on
the elastic response of the system. More precisely, we have utilized nine
values of δ regularly distributed over its range of variation (moving
from prolate to oblate ellipsoid of revolution). On the other hand, for
the geometry of the cavity we have chosen three different possibilities,
namely b̂ = diag(1.1, 1, 1) (a.u.) (prolate spheroid), b̂ = diag(1, 1, 1)
(a.u.) (sphere) and b̂ = diag(0.9, 1, 1) (a.u.) (oblate spheroid). For any
possible geometry of the ellipsoids, the inhomogeneity is embedded in
the cavity after a rotation of an angle ϑ around the x3 ≡ z axis of the
reference frame {~x}. It corresponds to a rotation matrix of the form

R̂ =

 cos ϑ − sin ϑ 0

sin ϑ cos ϑ 0

0 0 1

 (2.74)

We have explored the entire interval 0 < ϑ < π/2 [rad] by means of 25

regularly spaced values. The results have been organized as follows:
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Figure 13: Planar components εxx, εyy and εxy of the strain ε̂T versus the
angle ϑ [rad], in both reference frames {~z} and {~x} with the follow-
ing parameters: K1 = K2 = 1, µ1 = µ2 = 0.1, â = diag(δ, 1, 1)
with 0.9 < δ < 1.1 and b̂ = diag(0.9, 1, 1). The load is given by
ε̂∞ = diag(−0.1, −0.1, 0). Dotted red lines: prestrain before relax-
ation; black lines with circles: strain after relaxation without load;
green lines with triangles: strain after relaxation with applied load.

• in Fig. 11 the planar components εxx, εyy and εxy of the true
strain ε̂T are shown versus the angle ϑ [rad], in both reference
frames {~z} and {~x}, for b̂ = diag(1.1, 1, 1). The load is given by
ε̂∞ = diag(0.1, 0.1, 0).

• in Fig. 12 the planar components εxx, εyy and εxy of the true
strain ε̂T are shown versus the angle ϑ [rad], in both reference
frames {~z} and {~x}, for b̂ = diag(1, 1, 1). The load is given by
ε̂∞ = diag(0.1, −0.1, 0).

• in Fig. 13 the planar components εxx, εyy and εxy of the true
strain ε̂T are shown versus the angle ϑ [rad], in both reference
frames {~z} and {~x}, for b̂ = diag(0.9, 1, 1). The load is given by
ε̂∞ = diag(−0.1, −0.1, 0).

In each plot the dotted red lines correspond to the prestrain before
relaxation, i.e. ε̂T (~z) = V̂ − Î and ε̂T (~x) = R̂>ε̂T (~z) R̂ = R̂>

(
V̂ − Î

)
R̂

(this is the deformation of the inhomogeneity applied for fitting closely
the undeformed cavity); the black lines with circles correspond to the
strain after relaxation without load, i.e. to Eq.(2.71) with ε̂∞ = 0 or its
rotated version; finally, the green lines with triangles correspond to the
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strain after relaxation with applied load, i.e. to Eq.(2.71) with ε̂∞ 6= 0

or its rotated version.
It is interersting to observe the following properties of the plots:

for ϑ = 0 we have εxx(~z) = εxx(~x) (see dark-blu arrows in Figs.11-
13) and εyy(~z) = εyy(~x) (see red arrows in Figs.11-13); similarly, for
ϑ = π/2 we have εxx(~z) = εyy(~x) (see sky-blu arrows in Figs.11-13)
and εyy(~z) = εxx(~x) (see green arrows in Figs.11-13). These properties
simply derive from the rotation of the strain tensor and, therefore, hold
on for all the strain plots (unrelaxed, relaxed without load and relaxed
with load).

Some more comments of the results follow. In Fig.11, related to the
case with the prolate cavity b̂ = diag(1.1, 1, 1), the unrelaxed strain
εxx(~z) (dotted red lines) in the reference frame fixed on the matrix
must start at the value (1.1− δ)/δ for ϑ = 0 and it must end at the
value (1.1− 1)/1 = 0.1 for ϑ = π/2; on the other hand, the unrelaxed
strain εxx(~x) (dotted red lines) in the reference frame fixed on the
inhomogeneity must start at the value (1.1− δ)/δ for ϑ = 0 as before
while it must end at the value (1− δ)/δ for ϑ = π/2. Moreover, for
the same case, the unrelaxed strain εyy(~z) (dotted red lines) in the
reference frame fixed on the matrix must start at the value 0 for ϑ = 0

and it must end at the value (1− δ)/δ for ϑ = π/2; on the other hand,
the unrelaxed strain εyy(~x) (dotted red lines) in the reference frame
fixed on the inhomogeneity must start at the value 0 for ϑ = 0 as
before while it must end at the value (1.1− 1)/1 = 0.1 for ϑ = π/2.
These considerations, dealing with the unrelaxed strains, are related
just to geometrical factors. On the contrary, the elastic response can
be observed in the relaxed strain curves (black lines without load and
green lines with load), obtained by means of the present theory, i.e.
through Eq.(2.71). It is interesting to observe that the intersection points
of the curves (of εxx(~z) for ϑ = π/2 and of εyy(~z) for ϑ = 0) of the
unrelaxed strains (dotted red lines) are shifted by the elastic relaxation
process to a different value of the angle ϑ (see black lines), preserving
the property that all the curves pass through the same point. This
property is manteined also with an externally applied load (see green
lines). We also note that a shear strain appear inside the inhomogeneity
when it is rotated of an angle ϑ different from 0 and π/2.

The second case, represented in Fig.12, is simpler because the cavity
is a sphere (of radius 1) and, therefore, the embedding of the inhomo-
geneity does not depend on the angle ϑ. This can be seen by means
of the (dotted red) curves of the unrelaxed strain εxx(~x), which are
constant at the values (1− δ)/δ and the curves of the unrelaxed strain
εyy(~x), which are constant at the values 0. Also the relaxed version of
these strain curves (black lines without load) are constant for the same
reasons. Only when the load is applied to the system we observe the
dependence on the angle ϑ, due to the rotation of the reference frame
{~x}, rigidly bonded to the inhomogeneity (see green lines). As for the
reference frame {~z}, fixed in the matrix, we observe in Fig.12 that the
red lines for εxx(~z) start at (1− δ)/δ and end in 0. Conversely, the red
lines for εyy(~z) start at 0 and end in (1− δ)/δ. The elastic relaxation
with or without load allows us to conclude that the intersection points
of the curves have the same behavior described for the previous case,
represented in Fig.11.

The third case, shown in Fig.13 is similar to the first one. Here an
oblate particle with b̂ = diag(0.9, 1, 1) is considered.
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2.3 nonlinear eshelby theory

In this Section, we develop a further generalization of the original
Eshelby theory. Such a new development [87] allows us to treat the
inclusion configuration also under the hypothesis of nonlinear elastic
behavior of the inclusion. In the following, we firstly describe several
different approach to nonlinear elasticity.

2.3.1 Nonlinear Elasticity

It is known that the concept of nonlinearity can be introduced in the
theory of elasticity in two different ways [31]. Firstly, nonlinearity can
be taken into account by means of the exact relation for the strain
not limited to small deformations (see Section 1.1.1). This approach
is referred to as geometrical nonlinearity since it is related to the equa-
tions not depending on the material under consideration. Secondly,geometrical

nonlinearity and
physical nonlinearity

another nonlinear aspect can be considered through the arbitrarieness
of the (generically not Hookean) stress-strain constitutive relation. This
approach is referred to as physical nonlinearity since it is related to prop-
erties of the material under consideration. Therefore, by combining the
two previous contributions, it follows that there are four different types
of problems in the theory of elasticity [33]

• those having both physical and geometrical linearity;

• those which are physically nonlinear but geometrically linear;

• those linear physically but nonlinear geometrically;

• those nonlinear both physically and geometrically.

The problems of the first type are the subject of the classical theory of
elasticity (small deformation in Hookean materials). In this work, we
adopt the second conceptual framework. Therefore, the deformations
are still represented by the strain tensor ε̂ defined in Eq.(1.7), but, the
elongations can exceed the Hookean limit of proportionality between
stress and strain: this requires a nonlinear stress-strain relationship. This
conceptual framework is sometimes referred to as hypoelasticity: it is in-
tended to model perfectly reversible nonlinear stress-strain behavior but
restricted to infinitesimal strains. Such a description has been already
adopted in the past in order to model nonlinear cubic polycrystals with
perturbative and self consistent methods [88].

Nonlinear elastic constitutive equations

In geometrically linear but physically nonlinear elasticity, the balance
of linear and angular momentum still holds for all materials, regardless
of their constitution. Therefore, the balance of the linear momentum
leads to the equation of motion in the usual form of Eq.1.26, while the
balance of the angular momentum leads to the symmetry of the stress
tensor (Tij = Tji). As stated above, in this case the nonlinearity of the
mechanical response of the material is taken into account by means of
a nonlinear constitutive equation

Tij = fij (ε̂) or T̂ = f (ε̂) (2.75)

where the functions fij are chosen so that fij = fji in order to satisfy
the required symmetry. In particular, this generic stress-strain relation
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can be developped up to the second order term in the strain taking into
account the deviation from the stress-strain proportionality [89, 90]

Tij = Cijkhεkh +
1

2
Lijkhnmεkhεnm + O(ε2

kh) (2.76)

where Cijkh are the components of the, linear, stiffness tensor while the
coefficients Lijkhnm represent the nonlinear behavior of the system.
Such a constitutive relation can also be written in the following form

Tij = CNL
ijkh (ε̂) εkh (2.77)

where

ĈNL (ε̂) =

(
Cijkh +

1

2
Lijkhnmεnm

)
(2.78)

is the nonlinear (strain dependent) stiffness tensor. It can be noticed that
while the tensor Ĉ has 21 independent entries, the second order tensor
L̂ has 56 independent components. Tables for the values of Cijkh and
Lijkhnm can be found in literature [88]. These values can be obtained
by experimental procedure [91, 92] and by computational techniques
(e.g., molecular dynamics [93] or first-principles calculations [94]). For
the following purpose we are interested in the isotropic nonlinear
constitutive equations expanded up to the second order in the strain
components. In order to introduce these forms of physical nonlinearities
we can take into account two different approaches, as described below.

Isotropic nonlinear constitutive equations in Cauchy elasticity

The Cauchy approach to the constitutive equations is the less restrictive
starting point for the elasticity theory since it does not consider the
strain energy function. It is simply based on the Eq.(2.75). To develop
this approach in an isotropic context an assumption must be made
concerning the behavior of Eq.(2.75) under rigid-body rotations. The Invariance under

rotation of the stressfunction f (ε̂) must satisfy the identity [31]

R̂T f (ε̂) R̂ = f
(
R̂T ε̂R̂

)
(2.79)

for all proper orthogonal tensor R̂ representing the rotation. A function
satisfying the previous identity is known as an isotropic tensor function,
and it can be represented in the form [31]

T̂ = f (ε̂) = q1Î+ q2ε̂+ q3ε̂
2 (2.80)

where Î is the identity operator and q1, q2 and q3 are scalar functions
of the invariants Tr(ε̂), Tr(ε̂2) e Tr(ε̂3) of the strain tensor ε̂

qα = qα

(
Tr(ε̂), Tr(ε̂2), Tr(ε̂3)

)
(2.81)

The development of Eq.(2.80), up to the second order in the powers of
ε̂, provides the following constitutive equation

Second order Cauchy
elasticityT̂ = 2µε̂+ λTr (ε̂) Î (2.82)

+ Aε̂2 +BTr
(
ε̂2
)
Î+C [Tr (ε̂)]2 Î+Dε̂Tr (ε̂)

where µ and λ are the standard Lamè moduli concerning the linear con-
tribution and A,B,C and D are the coefficients describing the nonlinear
behavior of the material.



60 eshelby theories

Isotropic nonlinear constitutive equations in Green elasticity

The Green elasticity is based on Eq.(2.75) with an additional hypothesis:
we suppose that the stress power, in a given deformation, is absorbed
into a strain energy function U(ε̂), representing the density of elastic
potential energy (see Section 1.3). The existence of such a function
and the consideration of energy balance in the continuum, lead to the
evolution equation

dU(ε̂)

dt
= Tij(ε̂)

dεij

dt
(2.83)

affirming that the function U(ε̂) is an exact differential form such that

Tij(ε̂) =
∂U(ε̂)

∂εij
(2.84)

So, if a function U(ε̂) exists, the (arbitrarily nonlinear) constitutive
equation for a given material can be determined by Eq.(2.84) [36, 39].
From the thermodynamics point of view, the strain energy function can
be identified with the internal energy per unit volume in an isentropic
process, or with the Helmholtz free energy per unit volume in an
isothermal process. Such an approach can be further developed for
isotropic media: in this case, the function U(ε̂) must satisfy the relation
[31]Invariance under

rotation of the elastic
energy

U(ε̂) = U
(
R̂T ε̂R̂

)
(2.85)

for any rotation tensor R̂. Eq.(2.85) represents the scalar counterpart of
the tensor relation Eq.(2.79). If Eq.(2.85) is true then it follows that the
function U(ε̂) can depend only on the principal invariants of the strain
tensor

U = U
(

Tr(ε̂), Tr(ε̂2), Tr(ε̂3)
)

(2.86)

We may expand Eq.(2.86) up to the third order in the strain components,
obtaining [39]

U(ε̂) = µTr
(
ε̂2
)

+
λ

2
[Tr (ε̂)]2 (2.87)

+
A

3
Tr
(
ε̂3
)

+BTr (ε̂) Tr
(
ε̂2
)

+
C

3
[Tr (ε̂)]3

Finally, performing the derivatives indicated in Eq. (2.84), we obtain the
nonlinear isotropic constitutive equation (within the Green approach)
expanded up to the second order in the strain tensor

Second order Green
elasticity T̂ = 2µε̂+ λTr (ε̂) Î (2.88)

+ Aε̂2 +B
{

Tr
(
ε̂2
)
Î+ 2ε̂Tr (ε̂)

}
+C [Tr (ε̂)]2 Î

It is evident by comparison of Eq.(2.82) and Eq.(2.88) that the Green
elasticity is more restrictive than the Cauchy elasticity: we obtain the
Green formulation from the Cauchy formulation by imposing D = 2B.
We use four independent parameters (A,B,C and D) in the CauchyLandau coefficients

elasticity and three independent parameters (A,B and C) in the Green
elasticity. These parameters are called Landau coefficients [39].
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2.3.2 Eshelby theory for nonlinear inhomogeneities

A nonlinear isotropic and homogeneous ellipsoid can be generically
described by the relation T̂ = Ĉ(2) (ε̂) ε̂ (see Eq.(2.77)). Let’s now place
this inhomogeneity in a linear matrix characterized by a stiffness tensor
Ĉ(1) (see Fig.4) and let’s calculate the strain field inside the particle
when a uniform field T̂∞ = Ĉ(1)ε̂∞ is remotely applied to the system.
If the particle were linear, with Ĉ(2) independent from the strain, we
would have, inside the ellipsoid, a uniform strain field ε̂s given by the
Eq.(2.23) [8, 49] Conversely, if the ellipsoid were nonlinear, it is easy to
prove that the internal uniform field must satisfy the equation

Internal strain field
for nonlinear
inclusionsε̂s =

[
Î− Ŝ

(
Î−
(
Ĉ(1)

)−1
Ĉ(2) (ε̂s)

)]−1

ε̂∞ (2.89)

obtained form Eq.(2.23) through the substitution Ĉ(2) → Ĉ(2) (ε̂s). If
a solution ε̂s∗ exists for a given ε̂∞, it means that the nonlinear inho-
mogeneity could be replaced by a linear one with constant stiffness
Ĉ(2) = Ĉ(2) (ε̂s∗), without modifications of the elastic fields at any point.
Therefore, if a solution exists, then Eq.(2.89) exactly describes, through
self-consistency, the elastic behavior of the nonlinear anisotropic inclu-
sion. This is not a trivial result: for instance, such a generalization of
Eq.(2.23) is not valid if a nonlinear behavior is assumed for material
1 (matrix). The calculation of the internal strain field from Eq.(2.89) is
very complicated and it strongly depends on the kind of nonlinearity
T̂ = Ĉ(2) (ε̂) ε̂. This task will be accomplished in the following, dealing
with a sphere or a cylinder described by physical nonlinearities as those
in Eq.(2.82) (Cauchy) or Eq.(2.88) (Green).

To conclude, we have verified the following general statement: if the
linear elastic space with a single inhomogeneity of ellipsoidal shape
is subjected to remote uniform loading, the stress field inside the
inhomogeneity will be uniform independently of the constitutive law
for the inhomogeneity, provided that both the matrix and the particle be
homogeneous bodies. Some similar properties can be found in earlier
literature [95, 96, 97].

When the Green approach is considered it is also possible to verify
the existence and the uniqueness for the solution of Eq.(2.89). The proof
is reported in the following Section.

Nonlinear Eshelby theory within Green elasticity

In order to prove the existence and the uniqueness of the solution of
Eq.(2.89), we adopt the Green formulation of the elasticity theory. A
strain energy function U(ε̂) defines the constitutive equation T̂(ε̂) =
∂U(ε̂)

∂ε̂ of the inhomogeneity, which is equivalent to T̂(ε̂) = Ĉ(2) (ε̂) ε̂. In
these conditions, the existence and uniqueness of a solution for Eq.(2.89)
can be exactly proved under the sole hypothesis of convexity for the



62 eshelby theories

strain energy function U(ε̂). To prove this statement, we rearrange
Eq.(2.89) as follows{

Î− Ŝ

[
Î−
(
Ĉ(1)

)−1
Ĉ(2) (ε̂s)

]}
ε̂s = ε̂∞

ε̂s − Ŝ

[
Î−
(
Ĉ(1)

)−1
Ĉ(2) (ε̂s)

]
ε̂s = ε̂∞

ε̂s − Ŝε̂s + Ŝ
(
Ĉ(1)

)−1
Ĉ(2) (ε̂s) ε̂s = ε̂∞[

Î− Ŝ
]
ε̂s + Ŝ

(
Ĉ(1)

)−1 ∂U(ε̂s)

∂ε̂s
= ε̂∞

Ĉ(1)
[
Ŝ−1 − Î

]
ε̂s − Ĉ(1)Ŝ−1ε̂∞ +

∂U(ε̂s)

∂ε̂s
= 0 (2.90)

Now, the first linear term can be converted to the gradient of a quadratic
form and the second constant term can be converted to the gradient of
a linear form. At the end we observe that the internal strain field must
satify the following relation

∂

∂ε̂

{
1

2
ε̂Ĉ(1)

[
Ŝ−1 − Î

]
ε̂− ε̂Ĉ(1)Ŝ−1ε̂∞ +U(ε̂)

}
= 0 (2.91)

which is exactly equivalent to Eq.(2.89). The first term represents a sym-
metric and positive definite quadratic form in ε̂. In fact, in Appendix
A.2, we prove the symmetry and the definiteness of the tensor

q̂ = Ĉ(1)
[
Ŝ−1 − Î

]
(2.92)

The second term in Eq.(2.91) is a linear function of ε̂. Therefore, the
sum of these two terms is a convex functional with relative minimum at[
Î− Ŝ

]
ε̂∞. This value represents the strain field in a void (Ĉ(2) (ε̂) = 0

in Eq.(2.89) or U(ε̂) = 0 in Eq.(2.91)) embedded in the matrix with
stiffness Ĉ(1). If U(ε̂) is a convex functional (with U(0) = 0) the brackets
in Eq.(2.91) contain the sum of two convex terms: they result in an
overall convex functional with a unique minimal extremum at ε̂s.
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3.1 state of the art and present development

In recent years the characterization of linear and nonlinear heteroge-
neous materials has attracted an ever increasing interest. A problem of
considerable technological importance is the evaluation of the effective
physical properties governing the behavior of a given composite mate-
rial on the macroscopic scale, taking into account the actual microscale
material features [98]. At present, it is well known that it does not Effective properties of

heterogeneous
materials

exist a universal mixing formula giving the effective properties of the
heterogeneous materials as some sort of average of the properties of the
constituents. In fact, the details of the morphology or micro-geometry
play a central role in determining the overall properties, particularly
when the crystalline grains have highly anisotropic or nonlinear behav-
ior or when there is a large difference in the properties of the constituent
materials. The primary aim in the study of materials is to understand
and classify the relationship between the internal micro-structure and
the physical properties. Such a relationship may be used for designing
and improving materials or, conversely, for interpreting experimental
data in terms of micro-structural features. A great number of theoretical
investigations have been developed in order to describe the behavior
of composite materials when a specific microstructure is considered.
On the other hands, a different class of theories does not assume a
given microstructure, searching for general results of broad applicabil-
ity. The most important properties are the classical Hashin-Shtrikman
variational bounds [99, 100], which provide an upper and lower bound Hashin-Shtrikman

boundsfor composite materials properties, and the expansions of Brown [101]
and Torquato [102, 103] which take into account the spatial correlation
function of the constituents.

Dispersions or suspensions of inhomogeneities in a matrix are exam-
ples of widely studied heterogeneous materials: these media have been
extensively analyzed both from the electrical and the elastic point of
view. One of the first attempts to characterize dielectric dispersions of
spheres was developed by Maxwell [104], which found out a famous
formula valid for very diluted suspensions. A better model has been

63
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provided by the differential scheme [67, 105]. In this case the results
maintain the validity also for less diluted suspensions.

Recent progresses in this field concern dielectrically linear and nonlin-
ear spheroidal inhomogeneities with geometric factors probabilistically
distributed [106]. The size-dependent Bruggeman theory, which consid-
ers the effective particle dimension for non dilute dispersions, has been
introduced as well [107]. A wide survey of mixture theory applications
to metamaterials can be found in literature [108]. Finally, the dielectric
(focusing or defocusing) Kerr nonlinearity [109] has been utilized to
explore the importance of the particle shape [110].

On the other hands, dealing with the elastic characterization of dis-
persions, a similar line of research has been developed [68, 111]. A
famous result exists for a material composed by a very dilute concen-
tration of linear spherical inhomogeneities dispersed in a linear solid
matrix [69]. To adapt this theory to the case of any finite volume frac-
tion, the differential method is also applied to the elastic theories for
spherical [112], cylindrical [73] and ellipsoidal particles [74]. Recent
works focus on microstructures that can be characterized as continuous
matrices containing inhomogeneities of diverse shapes, properties and
orientations [77, 70]. The evaluation of the effective elastic properties of
a body containing a given distribution of cracks belongs to the field of
homogenization techniques as well [113]. Recent investigations consider
the effects of the orientational statistical distribution of cracks in a given
material [80, 114].

In heterogeneous materials the nonlinear elastic regime has been
investigated under specific conditions [115, 116, 117]. Nevertheless, theEffective nonlinear

elastic behavior of
heterogeneous
materials

general nonlinear elastic features are relevant in many materials science
problems. For example, in biomechanics, transient elastography has
shown its efficiency to map the nonlinear properties of soft tissues and
it can be used as diagnostic technique [118, 119]. In material science the
linear theory is incapable of fully capturing all fracture phenomena and
hyperelasticity plays a governing role in the dynamics of fracture [120,
121]. The quantum dots growth, ordering and orientation (occuring
during processing) are largely affected by elastic phenomena, even
beyond the linear regime [122, 123]. Finally, many problems of fracture
mechanics in composite materials do contain nonlinear features like,
e.g., the interaction between a moving crack and a fiber (or, more
generally, an inclusion) [124].

In this Section we consider[125] the linear and nonlinear elastic be-
havior of a composite material. In particular we take into account a
dispersion of isotropic nonlinear inhomogeneities (spheres or parallel
cylinders) embedded into a linear isotropic host matrix. The nonlinear-
ity of the inhomogeneities is described either by the Cauchy model (four
parameters) or by the energy-based Green approach (three parameters)
discussed in Section 2.3.1.

We have introduced two simplifying hypotheses: the small volume
fraction of the embedded particles and the small deformations of the
whole solid body. Nevertheless, we obtain useful results both for analyz-
ing the mechanical properties of a given heterogeneous structure and
for designing a composite material with a desired linear and nonlinear
elastic behavior.

The main concept applied in order to homogenize the heterogeneousThe homogenization
method is based on
the nonlinear
generalization of the
Eshelby theory

structures is the nonlinear generalization of the Eshelby theory de-
veloped in the previous Chapter. This approach has been analytically
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applied to perform a linear and nonlinear micromechanical averaging
in the composite structure and, therefore, to develop a complete ho-
mogenizing procedure yielding the mechanical behavior of the solid
body at the macro-scale.

As for the linear properties, we have obtained a series of results in
perfect agreement with earlier researches on this subject. This point
can be considered as a check of the mathematical procedure. As for
the nonlinear properties, firstly, we have obtained the expressions of
the four effective elastic moduli of the composite medium with inho-
mogeneities described by the Cauchy constitutive equations, which
represent the less restrictive way to model the nonlinear elasticity. Then,
we have considered, as a particular case, the Green elasticity to describe
the nonlinear behavior of the particles. In this case we have verified
that if a strain energy function exists for the inhomogeneities, then an
overall strain energy function exists for the whole composite structure.
This point confirms the perfect coherence between our micromechan-
ical averaging procedure and the thermodynamics of the composite
material.

3.2 dispersion of spherical inclusions

3.2.1 Effective elastic moduli

We consider an assembly of spherical inhomogeneities (see Fig.14)
described by a Cauchy constitutive relation

T̂s = 2µ2ε̂
s + λ2Tr (ε̂s) Î+A (ε̂s)2 (3.1)

+ BTr
[
(ε̂s)2

]
Î+C [Tr (ε̂s)]2 Î+Dε̂sTr (ε̂s)

randomly embedded in a linear matrix with stiffness tensor Ĉ(1) (mod-
uli λ1 and µ1). We also introduce the bulk moduli K1 = λ1 + 2

3µ1 and
K2 = λ2 + 2

3µ2. If needed, we can easily move to the Green elasticity
by assuming D = 2B. We suppose that the volume fraction c of the
embedded phase is small (dilute dispersion). Since the elastic interac-

K2, µ2

K2, µ2

K2, µ2

K2, µ2

K2, µ2

K2, µ2

K1, µ1

1 − c

c

V

Ve

Vo

A, B, C,D

A, B, C,D

A, B, C,D

A, B, C,D

A, B, C,D

A, B, C,D

Keff , µeff , Aeff , Beff , Ceff , Deff

Figure 14: Scheme of a dispersion of nonlinear spheres embedded in a linear
matrix

tions can be neglected, each sphere behaves as an isolated one under
the effect of a remote load T̂∞ = Ĉ(1)ε̂∞. The starting point for the
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evaluation of the induced internal strain ε̂s is Eq.(2.89), which can be
usefully rearranged as follows

ε̂s − Ŝε̂s + Ŝ
(
Ĉ(1)

)−1
T̂s = ε̂∞ (3.2)

Here, we have introduced the internal stress given by the relation

T̂s = Ĉ(2) (ε̂s) ε̂s. The result of the application of
(
Ĉ(1)

)−1
over the

stress tensor T̂s can be easily written in explicit form(
Ĉ(1)

)−1
T̂s =

1

2µ1
T̂s −

λ1

2µ1 (2µ1 + 3λ1)
Tr
(
T̂s
)
Î (3.3)

Moreover, the explicit expression of the Eshelby tensor for a sphere is
reported in literature [68, 45]

Sijkh =
1

15(1− ν1)

[(
δikδjh + δihδjk

)
(4− 5ν1) (3.4)

+ δkhδij(5ν1 − 1)
]

We can evaluate the effect of Sijkh over an arbitrary strain εs
kh, getting

Sijkhε
s
kh =

2(4− 5ν1)

15(1− ν1)
εs

ij +
5ν1 − 1

15(1− ν1)
εs

kkδij (3.5)

Now, the Poisson ratio ν1 of the matrix can be written in terms of
the bulk modulus K1 and the shear modulus µ1 according to Table 1,
obtaining

Ŝε̂s =
6

5

K1 + 2µ1

3K1 + 4µ1
ε̂s +

1

5

3K1 − 4µ1

3K1 + 4µ1
Tr (ε̂s) Î (3.6)

In order to find a single equation for the internal strain ε̂s, we can sub-
stitute Eqs.(3.1), (3.3) and (3.6) in Eq.(3.2). A long algebraic calculation
leads to the important equation

Lε̂s + MTr (ε̂s) Î+N (ε̂s)2 +Oε̂sTr (ε̂s) (3.7)

+ PTr
[
(ε̂s)2

]
Î+Q [Tr (ε̂s)]2 Î = ε̂∞

which completely defines the internal strain induced in a nonlin-
ear sphere by the uniform remote deformation ε̂∞. The parameters
L,M,N,O,P and Q have been written in terms of the shear moduli,
bulk moduli and nonlinear coefficients as follows

L = 1+
6

5

K1 + 2µ1

3K1 + 4µ1

(
µ2

µ1
− 1

)
(3.8)

M =
1

5 (3K1 + 4µ1)
(3.9)

×
[
5K2 −K1

(
3+ 2

µ2

µ1

)
− 4 (µ2 − µ1)

]
N =

3

5

A

µ1

K1 + 2µ1

3K1 + 4µ1
(3.10)

O =
3

5

D

µ1

K1 + 2µ1

3K1 + 4µ1
(3.11)

P =
1

15 (3K1 + 4µ1)

[
15B−A

(
1+ 3

K1

µ1

)]
(3.12)

Q =
1

15 (3K1 + 4µ1)

[
15C−D

(
1+ 3

K1

µ1

)]
(3.13)
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At this point we take into consideration the actual dispersion of spheres.
We define V as the total volume of the composite material, Ve as the
volume corresponding to the spheres and Vo as the volume of the matrix
(V = Vo ∪ Ve , see Fig.14). Since we are working under the hypothesis of
small volume fraction c, we can consider the average value of the strain
in the matrix equal to the externally applied strain ε̂∞. Therefore, the
average value of the strain in the overall system is given by

〈ε̂〉 = cε̂s + (1− c)ε̂∞ (3.14)

On the other hand, the average value of the stress over the entire
structure can be calculated as follows

〈T̂〉 =
1

V

∫
V
T̂dv =

1

V
Ĉ(1)

∫
Vo

ε̂dv+
1

V

∫
Ve

T̂dv

=
1

V
Ĉ(1)

∫
Vo

ε̂dv+
1

V

∫
Ve

T̂dv

+
1

V
Ĉ(1)

∫
Ve

ε̂dv−
1

V
Ĉ(1)

∫
Ve

ε̂dv (3.15)

=
1

V
Ĉ(1)

∫
V
ε̂dv+

1

V

[∫
Ve

T̂dv+ Ĉ(1)

∫
Ve

ε̂dv
]

= Ĉ(1) 〈ε̂〉+ c
[
T̂s − Ĉ(1)ε̂s

]
In order to obtain the macroscopic characterization of the material, we
search for the relationship between 〈T̂〉 and 〈ε̂〉, given in Eqs.(3.14) and
(3.15), respectively.

By substituting Eq.(3.7) in Eq.(3.14), we obtain the average strain 〈ε̂〉
in terms of the internal strain ε̂s

〈ε̂〉 = [c+ (1− c)L] ε̂s

+ (1− c)
{
MTr (ε̂s) Î+N (ε̂s)2 (3.16)

+ Oε̂sTr (ε̂s) + PTr
[
(ε̂s)2

]
Î+Q [Tr (ε̂s)]2 Î

}
and by substituting the constitutive relations in Eq.(3.15), we obtain the
average stress 〈T̂〉 in terms of ε̂s

〈T̂〉 = 2µ1〈ε̂〉+
(
K1 −

2

3
µ1

)
Tr〈ε̂〉Î

+ c {2 (µ2 − µ1) ε̂s

+

[
K2 −K1 −

2

3
(µ2 − µ1)

]
Tr (ε̂s) Î (3.17)

+ A (ε̂s)2 +BTr
[
(ε̂s)2

]
Î

+ C [Tr (ε̂s)]2 Î+Dε̂sTr (ε̂s)
}

The last two expressions, although in implicit form, define the macro-
scopic contitutive equation relating 〈T̂〉 and 〈ε̂〉. In fact, we may obtain
ε̂s in terms of 〈ε̂〉 from Eq.(3.16) and this result can be replaced in
Eq.(3.17), leading to the final characterization. In order to follow this
scheme, we rewrite Eq.(3.16) in a simpler form

〈ε̂〉 = L ′ε̂s +M ′Tr (ε̂s) Î+N ′ (ε̂s)2 (3.18)

+ O ′ε̂sTr (ε̂s) + P ′Tr
[
(ε̂s)2

]
Î+Q ′ [Tr (ε̂s)]2 Î
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where we have used the definitions

L ′ = c+ (1− c)L (3.19)

M ′ = (1− c)M (3.20)

N ′ = (1− c)N (3.21)

O ′ = (1− c)O (3.22)

P ′ = (1− c)P (3.23)

Q ′ = (1− c)Q (3.24)

Starting from Eq.(3.18), we can straightforwardly calculate the quanti-

ties Tr 〈ε̂〉, 〈ε̂〉2, 〈ε̂〉Tr 〈ε̂〉, Tr
(
〈ε̂〉2

)
and [Tr 〈ε̂〉]2 in terms of the internal

strain ε̂s (by using the relation Tr(Î) = 3). These set of relations can be
written neglecting the terms of order greater than two in ε̂s, since we
are interested in the characterization of the nonlinear elastic properties
of the dispersion up to the second order. Therefore, this set of equations
can be arranged in a matrix form, as follows

Ũ



ε̂s

Tr (ε̂s) Î

(ε̂s)2

ε̂sTr (ε̂s)

Tr
[
(ε̂s)2

]
Î

[Tr (ε̂s)]2 Î


=



〈ε̂〉

Tr 〈ε̂〉 Î

〈ε̂〉2

〈ε̂〉Tr〈ε̂〉

Tr
[
〈ε̂〉2

]
Î

[Tr 〈ε̂〉]2 Î


(3.25)

The elements of the matrix Ũ have been written in terms of the parame-
ters defined in Eqs.(3.19)-(3.24)

Ũ =



L ′ M ′ N ′ O ′ P ′ Q ′

0 L ′ + 3M ′ 0 0 N ′ + 3P ′ O ′ + 3Q ′

0 0 L ′2 2L ′M ′ 0 M ′2

0 0 0 L ′ (L ′ + 3M ′) 0 M ′ (L ′ + 3M ′)

0 0 0 0 L ′2 M ′ (2L ′ + 3M ′)

0 0 0 0 0 (L ′ + 3M ′)2


(3.26)
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Finally, by using Eq.(3.17) and by inverting Eq.(3.25), we may obtain
the matrix form of the complete constitutive relation

〈T̂〉 =


c



2(µ2 − µ1)

K2 −K1 − 2
3 (µ2 − µ1)

A

D

B

C



T

Ũ−1 (3.27)

+



2µ1

K1 − 2
3µ1

0

0

0

0



T



〈ε̂〉

Tr 〈ε̂〉 Î

〈ε̂〉2

〈ε̂〉Tr 〈ε̂〉

Tr
(
〈ε̂〉2

)
Î

[Tr 〈ε̂〉]2 Î


(3.28)

The constitutive equation in the form of Eq.(3.28) can be written in
terms of the effective linear and nonlinear elastic moduli as follows

〈T̂〉 = 2µeff〈ε̂〉+
(
Keff −

2

3
µeff

)
Tr〈ε̂〉Î (3.29)

+ Aeff〈ε̂〉2 +BeffTr
[
〈ε̂〉2

]
Î

+ Ceff [Tr〈ε̂〉]2 Î+Deff〈ε̂〉Tr〈ε̂〉

As for the linear elastic moduli, we obtain
Effective linear elastic
moduli for a
dispersion of spheres

µeff = µ1 + c
µ2 − µ1

L ′
(3.30)

Keff = K1 + c
K2 −K1

L ′ + 3M ′ (3.31)

and, as for the nonlinear elastic moduli, we have
Effective nonlinear
elastic moduli for a
dispersion of spheresAeff = c

A

L ′2
− 2c

N ′ (µ2 − µ1)

L ′3
(3.32)

Beff = 2c
(N ′M ′ − L ′P ′) (µ2 − µ1)

L ′3 (L ′ + 3M ′)
+ (3.33)

− c
(N ′ + 3P ′)

[
K2 −K1 − 2

3 (µ2 − µ1)
]

L ′2 (L ′ + 3M ′)
+ c

B

L ′2
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Ceff =
1

9

c (9C+ 3B+ 3D+A)

(L ′ + 3M ′)2
+
1

9

c (A− 3B)

L ′2

−
4

9

N ′ (µ2 − µ1) c

L ′3
−
1

9

c (3D+ 2A)

L ′ (L ′ + 3M ′)

+
1

9

c(4N ′ + 6O ′)(µ2 − µ1)

L ′2 (L ′ + 3M ′)
(3.34)

+
1

9

c(3N ′ + 9P ′)(K2 −K1)

L ′2 (L ′ + 3M ′)

−
1

3

c(9Q ′ + 3O ′ + 3P ′ +N ′)(K2 −K1)

(L ′ + 3M ′)3

Deff = 2c
(2N ′M ′ − L ′O ′) (µ2 − µ1)

L ′3 (L ′ + 3M ′)
(3.35)

− 2c
M ′A

L ′2 (L ′ + 3M ′)
+ c

D

L ′ (L ′ + 3M ′)

If we use the definitions of the parameters L ′ andM ′, given in Eqs.(3.19)
and (3.20), we obtain for the effective shear and bulk moduli the explicit
expressions

µeff = µ1 + c
µ2 − µ1

c+ (1− c)
[
1+ 6

5

(
µ2
µ1

− 1
)

K1+2µ1
3K1+4µ1

] (3.36)

Keff = K1 +
(3K1 + 4µ1) (K2 −K1) c

3K2 + 4µ1 − 3c(K2 −K1)
(3.37)

These two expressions are coincident with those obtained for a lin-
ear dispersion of elastic spheres [69]. However, they are completed
by Eqs.(3.32)-(3.35) in order to characterize the nonlinear properties
of the mixture. These expressions are a generalization[125] of those
presented in recent literature, obtained within the framework of the
Green elasticity [87].

3.2.2 Properties of the dispersion of spheres

The set of results obtained in the previous Section for the effective
moduli of a dispersion of nonlinear spheres fulfills a series of important
general properties:

1. Eqs.(3.32)-(3.37) are also true for c = 1; in this case (very high
volume fraction of spheres) the procedure is not expected to be
valid but nonetheless the results appears to be exact (if c = 1 then
µeff = µ2, Keff = K2, Aeff = A, Beff = B, Ceff = C, Deff = D).

2. The nonlinear elastic moduli A, B, C and D influence the effec-Universal mixing
scheme tive nonlinear moduli of the composite material following the

universal scheme showed in Fig.15. Therefore, there is a com-
plicated mixing of the nonlinear elastic modes induced by the
heterogeneity of the structure. The results for the nonlinear ef-
fective parameters, obtained with a single coefficient (A, B, C or
D) different from zero, are reported in Appendix A.3 , in form
of series expansions in the volume fraction up to the first order.
They are coherent with the scheme shown in Fig.15.
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Figure 15: Mixing scheme for the nonlinear modes

3. If the linear elastic moduli of the matrix and of the spheres are the
very same (K1 = K2 and µ1 = µ2), we simply obtain Keff = K1,
µeff = µ1 and the following special set of results for the nonlinear
components

Aeff = cA (3.38)

Beff = cB (3.39)

Ceff = cC (3.40)

Deff = cD (3.41)

It means that the nonlinearity of the overall system is simply
proportional to the nonlinearity of the spheres.

4. We have developed our procedure under the hypotesis of Cauchy
nonlinear elasticity for the spheres embedded in the linear matrix. From Cauchy

elasticity to Green
elasticity

If we let D = 2B we move from the Cauchy elasticity to the Green
elasticity, assuming the existence of a strain energy function for
the inhomogeneities. It is important to remark that the following
property holds: if D = 2B then the relation Deff = 2Beff is true
for the effective nonlinear moduli. It can be verified by direct
calculation and it means that our approach is perfectly consistent
with the energy balance of the composite material. In other words,
we have verified that if a strain energy function exists for the
embedded spheres, then an overall strain energy function exists
for the whole composite structure.

5. If we consider the special value of the Poisson ratio ν1 = ν2 = 1/5

(both for the matrix and the spheres) and different values for the Special value of the
Poisson ratio
ν = 1/5

Young moduli E1 6= E2, we obtain another interesting result: the
effective Poisson ratio assume the same value νeff = 1/5, the
effective Young modulus Eeff assumes the value

Eeff =
E1 (1− c) + E2 (1+ c)

E1 (1+ c) + E2 (1− c)
E1 (3.42)

and the effective nonlinear elastic moduli can be calculated as
follows

Xeff =
8E3

1c

[E1 (1+ c) + E2 (1− c)]3
X (3.43)

where the symbol X represents any modulusA, B, C orD (the four
effective parameters exhibit the same behavior). Therefore, we can
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say that the special value ν1 = ν2 = 1/5 uncouples the behavior of
the nonlinear elastic modes (described at the point 2), generating a
direct correspondence among the nonlinear moduli of the spheres
and the effective nonlinear moduli. Furthermore, if we add the
condition E1 = E2, we get back to the point 3. The special value
1/5 for the Poisson ratio comes out in several issues considering
a dispersion of spheres. For example, for linear porous materials
(with spherical pores) and for linear dispersions of rigid spheres
the value 1/5 is a fixed points for the Poisson ratio: if ν1 = 1/5,
then we have νeff = 1/5 for all spheres concentrations [74, 126].
Moreover, there is another interesting behaviour of the effective
Poisson ratio for high volume fraction of pores or rigid spheres:
in both cases for c→ 1 the effective Poisson ratio converges to the
fixed value νeff = 1/5, irrespective of the matrix Poisson ratio
[74, 126].

6. Finally, we analyze the properties of the dispersion when incom-Incompressible
inhomogeneities pressible material is utilized for the embedded spheres: the consti-

tutive relation Eq.(3.1) describes an incompressible medium in the
limit λ2 → ∞ (or, equivalently, K2 → ∞ since K2 = λ2 + 2µ2/3);
by inverting Eq.(3.1), writing the strain tensor in terms of the
stress tensor and performing such a limit, we obtain (up to the
second order)

ε̂s =
1

2µ2
T̂s −

1

6µ2
Tr
(
T̂s
)
Î−

A

8µ3
2

(
T̂s
)2

(3.44)

+
A

24µ3
2

Tr
[(
T̂s
)2]

Î−
A

36µ3
2

[
Tr
(
T̂s
)]2

Î

+
A

12µ3
2

T̂sTr
(
T̂s
)

which describes a nonlinear isotropic and incompressible material.
We remark that only the nonlinear modulus A intervenes in
defining such a constitutive equation and that Eq.(3.44) imposes
Tr (ε̂s) = 0, as requested by the incompressibility. In this limiting
condition, as for the effective linear moduli, we observe that
Eq.(3.36) for µeff remains unchanged and Eq.(3.37) leads to

Keff = K1 +

(
K1 +

4

3
µ1

)
c

1− c
(3.45)

On the other hand, the nonlinear elastic moduli have been even-
tually found as

Aeff = 125Aθ (3.46)

Beff = −
125

3
Aθ (3.47)

Ceff =
250

9
Aθ (3.48)

Deff = −
250

3
Aθ (3.49)

where

θ =
c (3K1 + 4µ1)3 µ3

1

ψ3
(3.50)

ψ = 6 (K1 + 2µ1) [cµ1 + (1− c)µ2] (3.51)

+ µ1 (9K1 + 8µ1)
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One can observe that, as expected, the effective nonlinear elastic
moduli depend only on the modulusA describing the nonlinearity
of the spheres, as shown in Eq.(3.44). Moreover, we remark that
a single modulus A for the spheres can generate four different
effective nonlinear moduli, as predicted by the scheme in Fig.15.

To conclude we present some numerical results obtained by the
implementation of Eqs.(3.32)-(3.37). In Fig. 16 we have considered
Green nonlinear elasticity and the mixture parameters: µ1 = 1,µ2 =

4,K1 = 7,K2 = 1,A = 2,B = 3,C = 5,D = 2B in arbitrary units. In
Fig. 17 we have considered Cauchy nonlinear elasticity and the mixture
parameters: µ1 = 1,µ2 = 4,K1 = 10,K2 = 1,A = 2,B = −3,C =

−5,D = 4 in arbitrary units. The results have been presented in terms

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

c

E
ffe

ct
iv

e 
el

as
tic

 m
od

ul
i [

a.
u.

]

Keff

µeff
Aeff
Beff
Ceff
Deff

µ
1
=1,µ

2
=4

K
1
=7,K

2
=1

A=2
B=3
C=5
D=2B

Figure 16: Linear and nonlinear effective elastic moduli of a dispersion of
spheres in terms of the volume fraction c. We have used the values
µ1 = 1,µ2 = 4,K1 = 7,K2 = 1,A = 2,B = 3,C = 5,D = 2B in
arbitrary units.

of the volume fraction c of the spheres. In both cases we may observe
a consistent amplification of the nonlinear effective modulus Ceff.
We have verified that such a phenomenon is always exhibited when
K1 � K2 (i.e. when the matrix is much more incompressible than the
spheres) and that the higher values of Ceff appear for small values of
the volume fraction c, belonging to the range of applicability of the
present theory.

As it is well known, simple limitations for the values of the linear
effective moduli are well established

Voigt and Reuss
bounds1

1−c
K1

+ c
K2

6 Keff 6 (1− c)K1 + cK2 (3.52)

1
1−c
µ1

+ c
µ2

6 µeff 6 (1− c)µ1 + cµ2 (3.53)

The lower bounds in Eqs.(3.52) and (3.53) are referred to as the Voigt
bounds, and the upper bounds are designated as the Reuss bounds
[111]. Unfortunately, these bounds are of no practical value, but more
refined bounds, with realistic applications, have been derived by Hashin
and Shtrikman [100]. From our numerical results, shown in Figs.16 and
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Figure 17: Linear and nonlinear effective elastic moduli of a dispersion of
spheres in terms of the volume fraction c. We have used the values
µ1 = 1,µ2 = 4,K1 = 10,K2 = 1,A = 2,B = −3,C = −5,D = 4 in
arbitrary units

17, we may observe that the nonlinear properties, contrarily to the linear
ones, are not bounded by some given values, exhibiting, in certain
conditions, a strong amplification leading to nonlinear effective moduli
much greater than those of the constituents. This point is important in
the topic of designing materials with desired properties and functions.

3.3 dispersion of parallel cylindrical inclusions

3.3.1 Effective elastic moduli

We take now into consideration an assembly of parallel cylinders, as
represented in Fig.18, described by an arbitrary Cauchy constitutive re-
lation (see Eq.(3.1)). As before, when needed, we can easily move to the
Green elasticity by assuming D = 2B. The cylindrical inhomogeneities
are randomly embedded in a linear matrix with elastic moduli K1 and
µ1. This is a simple but complete way for modeling a nonlinear fibrous
material. In earlier works the linear analysis for a parallel distribution
of fibres has been developed by means of the Eshelby methodology and
of the differential effective medium theory [73, 127]. Moreover, the me-
chanical response of elastic and inelastic fibre-strengthened materials
has been investigated, also with self-consistent models [128, 129, 130].
Here, in order to deal with the nonlinear properties, we suppose that
the volume fraction c of the embedded phase is small (dilute disper-
sion). It means that each cylinder can be considered isolated in the
space (non interacting with other inhomogeneities) and subjected to the
same external loading. In order to simplify the modeling and consider-
ing that the system shows a transverse isotropic symmetry (otherwise
said uniaxial symmetry), we assume the plane strain condition on an
arbitrary plane π (see Fig.18) orthogonal to the cylinders. It means
that we are dealing with a problem belonging to the two-dimensionalTwo-dimensional

elasticity approach elasticity. Moreover, in plain strain condition, it is a common choice
to introduce the two dimensional elastic moduli (see Section 1.2.1)



3.3 dispersion of parallel cylindrical inclusions 75

K2, µ2

K1, µ1
1 − c

c

V

Ve

Vo

Keff , µeff , Aeff , Beff , Ceff , Deff

K2, µ2 A, B, C,D

K2, µ2 A, B, C,D

A, B, C,D

K2, µ2 A, B, C,D

π

Figure 18: Scheme of a dispersion of nonlinear parallel cylinders embedded in
a linear matrix

µ2D = µ and K2D = K+ µ/3 , where K and µ are the customarily used
three-dimensional moduli [127]. Throughout this Section we indicate
for brevity K and µ alluding to the two-dimensional version of the
elastic moduli. It means that the linear matrix is described by

T̂ = 2µ1ε̂+ (K1 − µ1) Tr (ε̂) Î (3.54)

and the cylindrical inhomogeneities are described by the Cauchy con-
stitutive relation

T̂s = 2µ2ε̂
s + (K2 − µ2) Tr (ε̂s) Î+A (ε̂s)2 (3.55)

+ BTr
[
(ε̂s)2

]
Î+C [Tr (ε̂s)]2 Î+Dε̂sTr (ε̂s)

where any strain or stress tensor is represented by a square matrix of
order two, working in the framework of the two-dimensional elasticity.
Now, we remark that Eq.(2.89) or, equivalently, Eq.(3.2) are correct for
any geometry and, therefore, they can be directly used in the present
analysis. Nevertheless, in order to use Eq.(3.2) we need to consider
some ingredients: the result of the application of the compliance tensor
of the matrix on the stress tensor T̂s can be written as(

Ĉ(1)
)−1

T̂s =
1

2µ1
T̂s −

K1 − µ1

4µ1K1
Tr
(
T̂s
)
Î (3.56)

Moreover, the effect of the Eshelby tensor Ŝ for a cylinder over an
arbitrary strain tensor ε̂s is given by [45]

Ŝε̂s =
1

2

K1 + 2µ1

K1 + µ1
ε̂s +

1

4

K1 − 2µ1

K1 + µ1
Tr (ε̂s) Î (3.57)

Now, in order to obtain a single equation for the internal strain ε̂s, we
can substitute Eqs.(3.55), (3.56) and (3.57) in the starting Eq.(3.2). A
tedious calculation leads to the equation

Lε̂s + MTr (ε̂s) Î+N (ε̂s)2 +Oε̂sTr (ε̂s) (3.58)

+ PTr
[
(ε̂s)2

]
Î+Q [Tr (ε̂s)]2 Î = ε̂∞
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which completely defines the internal strain induced in a nonlinear
cylinder by the uniform externally applied deformation ε̂∞. The pa-
rameters L,M,N,O,P and Q have been defined as

L = 1+
1

2

K1 + 2µ1

K1 + µ1

(
µ2

µ1
− 1

)
(3.59)

M =
1

4 (K1 + µ1)
(3.60)

×
[
2K2 −K1

(
1+

µ2

µ1

)
− 2 (µ2 − µ1)

]
N =

A

4µ1

K1 + 2µ1

K1 + µ1
(3.61)

O =
D

4µ1

K1 + 2µ1

K1 + µ1
(3.62)

P =
1

8 (K1 + µ1)

(
4B−A

K1

µ1

)
(3.63)

Q =
1

8 (K1 + µ1)

(
4C−D

K1

µ1

)
(3.64)

We follow a procedure similar to that described in Section 4. We use
again Eqs.(3.15) and (3.18) for the average values of the stress and
the strain over the whole composite material. At this point, starting
from Eq.(3.18), we obtain the system given in Eq.(3.25) (by using the
two-dimensional relation Tr(Î) = 2). It is defined by the matrix Ũ where
the elements depend on the parameters defined in Eqs.(3.19)-(3.24) and
calculated by means of Eqs.(3.59)-(3.64)

Ũ =



L ′ M ′ N ′ O ′ P ′ Q ′

0 L ′ + 2M ′ 0 0 N ′ + 2P ′ O ′ + 2Q ′

0 0 L ′2 2L ′M ′ 0 M ′2

0 0 0 L ′ (L ′ + 2M ′) 0 M ′ (L ′ + 2M ′)

0 0 0 0 L ′2 2M ′ (L ′ +M ′)

0 0 0 0 0 (L ′ + 2M ′)2


(3.65)
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Finally, by inverting Eq.(3.25), we may obtain the matrix form of the
complete constitutive relation

〈T̂〉 =


c



2(µ2 − µ1)

K2 −K1 − (µ2 − µ1)

A

D

B

C



T

Ũ−1

+



2µ1

K1 − µ1

0

0

0

0



T



〈ε̂〉

Tr 〈ε̂〉 Î

〈ε̂〉2

〈ε̂〉Tr 〈ε̂〉

Tr
(
〈ε̂〉2

)
Î

[Tr 〈ε̂〉]2 Î


(3.66)

The constitutive equation in the form of Eq.(3.66) can be written in
terms of the effective linear and nonlinear elastic moduli as follows

〈T̂〉 = 2µeff〈ε̂〉+ (Keff − µeff) Tr〈ε̂〉Î (3.67)

+ Aeff〈ε̂〉2 +BeffTr
[
〈ε̂〉2

]
Î

+ Ceff [Tr〈ε̂〉]2 Î+Deff〈ε̂〉Tr〈ε̂〉

As for the linear elastic moduli, we obtain
Effective linear
moduli of a dispersion
of a dispersion of
cylinders

µeff = µ1 + c
µ2 − µ1

L ′
(3.68)

= µ1 + c
µ2 − µ1

c+ (1− c)
[
1+ 1

2

(
µ2
µ1

− 1
)

K1+2µ1
K1+µ1

]
Keff = K1 + c

K2 −K1

L ′ + 2M ′ (3.69)

= K1 + c
K2 −K1

c+ (1− c)µ1+K2
µ1+K1

It is important to remember that the bulk modulus Keff represents the
two-dimensional version, as above defined. Moreover, the two linear
results given in Eqs.(3.68) and (3.69) are perfectly coincident with earlier
literature [76]. As for the effective nonlinear elastic moduli, we have the
following results

Effective nonlinear
moduli of a dispersion
of a dispersion of
cylinders

Aeff =
Ac

L ′2
− 2c

N ′ (µ2 − µ1)

L ′3
(3.70)

Beff =
c [N ′ (µ2 − µ1) +BL ′]

L ′3
(3.71)

−
c (2P ′ +N ′) (K2 −K1)

L ′2 (L ′ + 2M ′)
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Ceff = c
4C+ 2B+ 2D+A

4 (L ′ + 2M ′)2
+ c

A− 2B

4L ′2
(3.72)

+ c
2 (O ′ +N ′) (µ2 − µ1) + (2P ′ +N ′) (K2 −K1)

2L ′2 (L ′ + 2M ′)

−
c (2P ′ +N ′ + 4Q ′ + 2O ′) (K2 −K1)

2 (L ′ + 2M ′)3

−
cN ′ (µ2 − µ1)

L ′3
− c

A+D

2L ′ (L ′ + 2M ′)

Deff = 2
(2N ′M ′ − L ′O ′) (µ2 − µ1) c

L ′3 (L ′ + 2M ′)
(3.73)

− 2c
M ′A

L ′2 (L ′ + 2M ′)
+

cD

L ′ (L ′ + 2M ′)

They represent the complete nonlinear characterization of the random
dispersion of parallel cylinders.

3.3.2 Properties of the dispersion of parallel cylinders

It is interesting to observe that all the properties described in Section
3.2.2 for the dispersion of spheres (points 1-6) can be easily verified
also for the present case. In particular, the scheme represented in Fig.
15 remains valid. In Appendix A.4 we have reported the explicit results
giving the first order expansions of the nonlinear elastic moduli with
respect of the volume fraction, corresponding to the simple cases where
only one nonlinear parameter of the cylinders is different from zero.
We analyze the case corresponding to the point 5 of Section 3.2.2:
we consider the special value of the three-dimensional Poisson ratio
ν1 = ν2 = 1/4 (corresponding to the two-dimensional Poisson ratio
ν2D = ν3D/(1− ν3D) = 1/3 [127]) and different values for the three-
dimensional Young moduli E1 6= E2. In this case, the effective 3D
Poisson ratio assume the value νeff = 1/4 and the effective 3D Young
modulus Eeff assumes the value

Eeff =
E1 (1− c) + E2 (2+ c)

E1 (1+ 2c) + 2E2 (1− c)
E1 (3.74)

Moreover, the effective nonlinear elastic moduli can be calculated as
follows

Xeff =
27E3

1c

[E1 (1+ 2c) + 2E2 (1− c)]3
X (3.75)

where the symbol X represents any modulus A, B, C or D (the four
effective parameters exhibit the same behavior). Therefore, as before, we
can say that the special value ν1 = ν2 = 1/4 uncouples the behavior of
the nonlinear elastic modes, generating a direct correspondence amongSpecial value of the

Poisson ratio
ν = 1/4

the nonlinear moduli of the spheres and the effective nonlinear moduli.
Finally, we have numerically implemented Eqs.(3.68)-(3.73) in order

to shown some explicit result. In Fig. 19 we have considered Green
nonlinear elasticity and the mixture parameters: µ1 = 1,µ2 = 5,K1 =

10,K2 = 1,A = −8,B = −2,C = −1,D = 2B in arbitrary units. In Fig.
20 we have considered Cauchy nonlinear elasticity and the mixture
parameters: µ1 = 1,µ2 = 5,K1 = 10,K2 = 1,A = 8,B = −2,C =

−1,D = 6 in arbitrary units. As in the previous section, we may observe
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a consistent amplification of the nonlinear effective modulus Ceff. We
have also verified that such a phenomenon is exhibited when K1 � K2

(i.e. when the matrix is much more incompressible than the spheres)
and that the higher values of Ceff appear for small values of the volume
fraction c, belonging to the range of applicability of the present theory.
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Figure 19: Linear and nonlinear effective elastic moduli for a dispersion of
cylinders in terms of the volume fraction c. We have used the values
µ1 = 1,µ2 = 5,K1 = 10,K2 = 1,A = −8,B = −2,C = −1,D = 2B in
arbitrary units

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

c

E
ffe

ct
iv

e 
el

as
tic

 m
od

ul
i [

a.
u.

]

 

 

Keff

µeff

Aeff

Beff

Ceff

Deff

µ
1
=1,µ

2
=5

K
1
=10,K

2
=1

A=8
B=−2
C=−1
D=6

Figure 20: Linear and nonlinear effective elastic moduli for a dispersion of
cylinders in terms of the volume fraction c. We have used the values
µ1 = 1,µ2 = 5,K1 = 10,K2 = 1,A = 8,B = −2,C = −1,D = 6 in
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In this Chapter we present an introduction to the atomistic theory
of elasticity where the macroscopic elastic properties of a material are
obtained by explicitly taking into account its atomic-scale structure
and the fundamental interactions among its constituents. Although this
subject has been widely investigated in the past [131], the connection
between the continuum and the atomistic approach still remains a topic
of crucial importance in modern materials science.

Firstly, we will show the connection between the macroscopic elastic
moduli of a medium and the features of the interatomic potential de-
scribing the microscopic dynamics of the corresponding atom-resolved
system. In particular, we will elaborate a general conceptual framework
that can be used to generate improved force fields for applications
in the realm of solid mechanics [132] (In Chapter 6 we will discuss a
straightforward application of such a framework). In the second part
of the Chapter we introduce some typical interaction potentials used
in molecular dynamics simulations. Finally, we work out the complete
theory for the calculation of the stress tensor at the atomic scale. We
will discuss the calculation of the nonlinear elastic effects and we will
address some important conceptual and technical issues which are
tricky and often cause incorrect implementations of stress calculations.

4.1 macroscopic elastic properties of atomistic models

We develop an atomistic version of the elasticity theory for an isotropic
and homogeneous material and we establish the minimum level of
complexity that any microscopic model of atomic interactions must ex-
ploit in order to obtain results consistent with the continuum theory. In
particular, we will examine two situations: a two-dimensional triangular
lattice with two-body interactions and a two-dimensional triangular
lattice with both two-body and three-body interactions. Such a case
study is paradigmatic under two remarkably important standpoints.
On one hand, the two-dimensional (perfect) triangular lattice is the only

83
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(homogeneous) isotropic crystal structure; therefore, it represents the
simplest crystalline counterpart of the continuum medium discussed
in the previous Sections. On the other hand, by considering either a
two-body or a more sophisticated force field we can understand the
role of the microscopic interaction model in predicting elastic features.The role of the

microscopic
interactions in
predicting the
macroscopic elastic
behavior

Anyway, we remark that our conclusions will be of general validity,
although our arguments are developed for two-dimensional crystals
only. We will prove that two-body force fields provide an elastic picture
that is not consistent with continuum mechanics, because they describe
the elastic behavior of the material with only one elastic modulus.
On the contrary, force fields including both two-body and three-body
interactions provide results in formal agreement with continuum elas-
ticity theory, i.e., they predict the existence of two independent elastic
constants.

4.1.1 Atomistic interaction with central forces

We begin by considering an arbitrary lattice of point masses that interact
through simple central forces (two-body interaction), acting between
nearest neighbors only. We focus on a pair of particles placed in posi-
tions ~r

(0)
1 and ~r

(0)
2 at equilibrium or, equivalently, in a configuration of

minimum energy. If a small deformation is applied, the new positions
will be given by

Atomistic
displacement ~rα = ~r

(0)
α + ~u

(
~r

(0)
α

)
(4.1)

where, according to Eq.(1.3), we have introduced the displacement

vector field ~u
(
~r

(0)
α

)
for any equilibrium lattice site. We further assume

that the two-body interaction may be represented by an harmonic
spring of constant ks. If the particles in ~r1 and ~r2 are nearest neighbors,
the force on the first particle due to the second one is

~F2B
1 = ks~n (|~r2 −~r1| − l) (4.2)

where l =
∣∣∣~r(0)

2 −~r
(0)
1

∣∣∣ is the equilibrium distance and ~n is the unit
vector in the direction of the central force (see Fig.21 for details).
This force corresponds to a two-body interaction potential energy
U2B = (1/2)ks (|~r2 −~r1| − l)2. By assuming slow variations of the dis-
placement over the atomic scale (this is actually the case of deformations
due to applied loads at the macroscale), we can expand this force up to

the first order in the difference ~u
(
~r

(0)
2

)
− ~u

(
~r

(0)
1

)
. Then, writing

~u
(
~r

(0)
2

)
= ~u

(
~r

(0)
1

)
+

[
∂~u

∂~r

] (
~r

(0)
2 −~r

(0)
1

)
(4.3)

we obtain

~F2B
1 = ks l ~n

(
~n ·
[
∂~u

∂~r

]
~n

)
(4.4)

Finally, defining the strain tensor as in Eq.(1.7), we find

~F2B
1 = ks l ~n (~n · ε̂ ~n) (4.5)

This is the force acting on a given particle caused by a neighboring
atom, placed at distance l and aligned in direction ~n, when the local



4.1 macroscopic elastic properties of atomistic models 85

Figure 21: Displacement (~u) and distance (~r) vectors for a pair of atoms, before
(this configuration is labelled by suffix (0)) and after deformation.
The unit vector ~n along the direction of the central force acting
between atoms 1 and 2 is shown as well.

deformation is characterized by the strain tensor ε̂. In this derivation
we have implicitly assumed the Cauchy-Born rule [133] stating that Cauchy-Born rule

within a body under a small strain the positions of the atoms follow the
overall deformation of the material. This approximation generally holds
for face-centered cubic and body-centered cubic crystals (in general for
Bravais lattices), while for lattices with a basis of two (or more) atoms
in the unit cell the rule has to be modified to allow for internal degrees
of freedom between the sublattices.

Figure 22: Planar (2-dimensional) triangular crystal with lattice constant l. One
can easily find the area S of the unit cell and the six first-next-
neighbors A, B, C, D, E, and F of atom 1.

We now apply the result given in Eq.(4.5) to the specific case of the
two-dimensional triangular lattice shown in Fig.22 and representing
the only case of isotropic crystal. Any particle has six nearest neighbors
placed at distance l (corresponding to the edge of the triangular mesh).
By computing the force due to the opposite neighbors A and B of atom
1, we find ~F 2B

1,AB = ks l ~n · (ε̂A − ε̂B) ~n where we indicated the unit
vector connecting A to B with ~n. The total force on atom 1 is given by
the sum of three terms calculated along the three directions A-B, C-D
and E-F (see Fig.22). In order to match the continuum formalism we
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must divide the total force by S = l2
√
3/2, namely by the area occupied

by each atom. The resulting force density is

~f 2B
1,AB =

2
√
3

3
ks ~n ·

(ε̂A − ε̂B)

l
~n (4.6)

The ratio 1
l (ε̂A − ε̂B) in Eq.(4.6) is identified with (~n · ∂/∂~r) ε̂, i.e. with

the projection of the gradient of the strain tensor. Therefore, the total
force due to the couple AB is written as

~f 2B
1,AB =

2
√
3

3
ks ~n · (~n · ∂/∂~r) ε̂~n (4.7)

Finally, the Newtonian law describing the motion of atom 1 is obtained
as ~f 2B

1,AB + ~f 2B
1,CD + ~f 2B

1,EF + ~b = ρ ~̈u where ~b is the density of external
forces applied to the system, ρ is the mass density and ~̈u is the acceler-
ation. Each force term can be developed through the Eq.(4.7), leading
to the final elasticity equation

√
3

4
ks

[
∇2~u+ 2∇ (∇ · ~u)

]
+ ~b = ρ ~̈u (4.8)

By comparing Eq.(4.8) to Eq.(1.61) we obtain the effective elastic moduli
of the triangular lattice

Elastic properties of
an atomistic model
with two-body
interactions

λ = µ =

√
3

4
ks (4.9)

or, equivalently, the Young modulus and the Poisson ratio

E =
5
√
3

8
ks and ν =

1

4
(4.10)

Eqs.(4.9) and (4.10) prove that an atomistic model for the triangular
lattice with first next-neighbors central forces only is not able to take
into account all the elastic features predicted by the continuum elastic
theory (and confirmed experimentally). In particular, Eq.(4.9) indicates
that, according to this model, the material should have only one charac-
teristic elastic constant, while Eq.(4.10) implies that a universal value
of the Poisson ratio should exist, independent of the actual physical
properties of the material.

4.1.2 Atomistic model with two-body and three-body interactions

We now consider a more refined force field, including three-body
interactions among nearest neighbors. In this case we begin by defining
a potential function involving three atomic positions ~r1, ~r2 and ~r3. We
assume that the three angles ϑ1, ϑ2 and ϑ3 (see Fig.23) are respectively
equal to α1, α2 and α3 at equilibrium.

Therefore, we can choose a potential energy of the form

U3B =
1

2

{
H1 [cos ϑ1 − cosα1]2 +H2 [cos ϑ2 − cosα2]2

+H3 [cos ϑ3 − cosα3]2
}

(4.11)

where H1,H2,H3 are suitable constants. For a triangular lattice, we
have α1 = α2 = α3 = π/3 and therefore

U3B =
1

2
hl2

{[
cos ϑ1 −

1

2

]2

+

[
cos ϑ2 −

1

2

]2

+

[
cos ϑ3 −

1

2

]2
}

(4.12)



4.1 macroscopic elastic properties of atomistic models 87

Figure 23: Distances and angles for a three-atom cluster. The unit vector ~n (~m)
in the direction of the central force acting between atoms 1 and 2 (1
and 3) is shown as well.

where for simplicity we set H1 = H2 = H3 = hl2, with l being the
interatomic distance in the unstrained lattice. In such a way, the constant
ks (describing the two-body interactions) and the constant h (describing
the three-body interactions) usefully assume the same physical units.

By applying the same approximations used to derive Eq.(4.5), we
find the following net force on atom 1

~F3B
1 =

3

2
h l

{(
~m · ε̂ ~n+

1

2
~m · ε̂ ~m− ~n · ε̂ ~n

)
~m

+

(
~m · ε̂ ~n+

1

2
~n · ε̂ ~n− ~m · ε̂ ~m

)
~n

}
(4.13)

where ~m and ~n are the unit vectors defined in Fig.23. We remark that
the bilinear form ~m · ε̂ ~n is directly connected to the variation of the
angle between ~m and ~n, induced by the deformation described by ε̂.
As expected, the force term given in Eq.(4.13) depends on the angular
distortion of the triangle represented in Fig.23. Moreover, if ϑ2 and ϑ3

are equal, then the force is oriented along the bisector of the angle ϑ1

in such a way to increase ϑ1 if ϑ1 < π/3 and to decrease ϑ1 if ϑ1 > π/3.
By adopting the angular dependent force defined in Eq.(4.13), we can

itemize the full set of forces at work as follows: (i) two-body interaction
forces, as given in Eq.(4.7); (ii) three-body interaction forces: six angular
terms are working on atom 1 of Fig.22, as calculated in Eq.(4.13) (they
correspond to the angles A1C, C1F, F1B, B1D, D1E and E1A); (iii) the
external forces applied to the lattice. Following the same procedure
outlined in the previous Section, we get

3

4

(√
3

3
ks +

3

2
h

)
∇2~u+

√
3

2
ks∇ (∇ · ~u) + ~b = ρ ~̈u (4.14)

By comparing Eq.(4.14) to Eq.(1.61) we easily find the effective elastic
moduli of the lattice

Elastic properties of
an atomistic model
with two-body and
three-body
interactions

λ =
3

4

(√
3

3
ks −

3

2
h

)
and µ =

3

4

(√
3

3
ks +

3

2
h

)
(4.15)

or, equivalently, the Young modulus and the Poisson ratio

E =
3
√
3

8
ks

(√
3

3
+
3

2

h

ks

)(
5
√
3

3
−
3

2

h

ks

)
and ν =

1

4
−
3
√
3

8

h

ks
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(4.16)

In conclusion, only this improved lattice model can correctly describe
the elastic behavior of any isotropic media, since it provides the atom-
istic expression for both independent elastic constants. In other words,
we can state that at least three-body interactions are mandatory to
reproduce the complex mechanical behavior of real isotropic materials
accurately.

Finally, we introduce some energetic considerations. The Lamé con-
stants must obey the inequalities µ > 0 and 2µ+ 3λ > 0. Consequently,
the interaction parameters ks and h must be as follows: ks > 0 and
−2

√
3

9 ks < h <
10
√

3
9 ks. When h approaches the value −2

√
3

9 ks, the
Poisson ratio becomes equal to 1/2 (a situation found in rubbery mate-
rials): the system is volume (area) preserving since the three-body interac-
tions are working contrarily (h < 0) to what is expected. On the other
hand, when h approaches the value 10

√
3

9 ks, the Poisson ratio has the
negative value of −1 (a situation common in some re-entrant polymer
foams [46]): in this case the structure is shape preserving, allowing only
deformations described by isotropic rescaling of the body.

In our approach we considered some hypotheses in order to simplify
the mathematical complexity of the interaction models. The main as-
sumptions are summarized here: (i) we described only two-dimensional
systems; (ii) the interaction potentials are linear (springs); (iii) their ac-
tion is limited to between nearest neighbors only; (iv) we have analyzed
simple Bravais lattices where internal strains do not occur. Nevertheless,
the final conclusions, about the primary importance of the three-body
interactions for obtaining the correct number of independent elastic
constants, can be applied to arbitrary crystals (in three dimensions)
with arbitrarily nonlinear and long-range interaction potentials.

In many earlier publications the method of homogeneous deforma-Method of the
homogeneous
deformation

tions was used to analytically derive expressions for the elastic constants
of a crystalline solid in which the energy density can be separated into
contributions from many-body interactions of different order [134, 135].
For example the exact explicit expressions for the body-centered cubic
lattice [136, 137] and for hexagonal closed packing lattice [138, 139]
have been derived for an arbitrary many-body interatomic potential. In
these complicated expressions, if we reset the three-body interaction
(and higher order multi-body terms) to zero, we then obtain a reduc-
tion in the number of the independent elastic constants, confirming
our predictions. We remark however that this result is valid only if
we determine the elastic constants of the crystalline structure in the
reference equilibrium configuration, i.e., when the external pressure
applied to the body is exactly reset to zero. In a recent publication
[140], the two-dimensional triangular lattice with two-body (arbitrarily
nonlinear and long-range) interactions was studied under an external
pressure P and it was proved that the lattice can show a negative Pois-Effect of the external

pressure on the
Poisson ratio

son ratio behavior, as long as certain conditions involving the two-body
interaction potential are satisfied. The result is given by the relation
[140]

ν(P) =
1+ 2PKT

4
(4.17)

where P = −dU
dV is the applied pressure and KT = − 1

V
dV
dP is the com-

pressibility (U is the total energy and V is the volume of the body).
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If we let P = 0 in Eq.(4.17) we obtain the value of the Poisson ratio
given in Eq.(4.10). Therefore, Eq.(4.10) is exact also with nonlinear and
long-range interaction potentials. Moreover, Eq.(4.17) shows that with
P < 0 we can obtain a negative Poisson ratio.

4.2 interatomic potentials for solid mechanics

In computational atomic-scale solid mechanics it is important to use
interatomic interaction potentials that can correctly describe the mechan-
ical properties of the atomistic systems under consideration subjected
to arbitrary deformations. The development of accurate and predictive
representations of the interaction forces is an open and active research
field.

An accurate description of interatomic forces can be achieved by
ab initio quantum mechanical methods. They are more fundamental
and often superior with respect to empirical force fields. Nevertheless,
such methods are computationally very demanding, so, their use is
limited to a relatively small number of atoms (typically < 1000) which
is not large enough to investigate many important problems in the
mechanics of solids. In fact, dealing with heterogeneous materials,
the typical sizes of the systems needed to properly reproduce their
structural complexity (> 104) is much larger than those achievable
through quantum mechanical methods. Moreover, the main theoretical
tool devoted to the analysis of the elastic behavior of materials, the
continuum theory of elasticity, has been developed in order to consider
actual macroscopic systems (where the number of atoms approaches
the Avogadro number). So, in order to apply (and verify) such a theory
to atom-resolved systems we need to increase the sizes of the simulated
systems as much as possible. Therefore, while ab initio methods have
been successfully applied to study specific aspects of homogeneous
materials, the development of more general pictures usually exploits
empirical methods. In the following a brief review of the main adopted
potentials, with increasing complexity, is reported.

The simplest interatomic potential is obtained by taking into account
only two-body interactions

The two-body
interactionU =

∑
α<β

U2B(xαβ) (4.18)

As explained earlier, such a two-body interaction is not sound enough
for simulations in the realm of solid mechanics. However, it can be used
in this field when simple, qualitative and paradigmatic computations
must be performed on very large systems. This is the case of the
renowned Lennard-Jones potential, originally developed for describing
the properties of gases. In this model two distinct forces are considered
in the interaction between two atoms: in the limit of large separation an
attractive force (van der Waals force, or dispersion force) and a repulsive
force at short ranges (the result of overlapping electron orbitals). The
Lennard-Jones potential (also referred to as the L-J potential or 6-12

potential) was proposed in 1924 by John Lennard-Jones [141]. It assumes
the form

The Lennard-Jones
potentialU2B(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

(4.19)

where ε is the depth of the potential well and σ is the distance at which
the interparticle potential is zero and r is the distance between the
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particles. The (1/r)12 term describes repulsion and the (1/r)6 term
describes attraction.

The L-J potential is particularly accurate for describing noble gas.
Concerning condensed matter, the L-J is able to describe, at a qualitative
level, the physics of metals with a close-packed crystalline structure. As
a matter of fact the lowest energy arrangement of an infinite number of
atoms is the hexagonal close-packing. Upon raising temperature, the
lowest free energy arrangement becomes cubic close packing and then
liquid. Under pressure the lowest energy structure switches between
cubic and hexagonal close packing [142]. Accordingly the applicability
of the L-J model for solids is limited.

To achieve more realistic interatomic force models, it is necessary
to go beyond the two body approximation. An important example is
the Stillinger-Weber (SW) potential, which was developed to describe
covalently bonded silicon [26]. The SW potential takes into accountThe Stillinger and

Weber potential both two-body and three-body terms

U =
∑
α<β

U2B(xαβ) +
∑

α<β<γ

U3B(~xα,~xβ,~xγ) (4.20)

where ~xα is the position of the α-th atom and xαβ = |~xα − ~xβ|. The
potential terms for two-body interactions can be written as U2B(xαβ) =

εf2(xαβ/σ) and U3B(~xα,~xβ,~xγ) = εf3(~xα/σ,~xβ/σ,~xγ/σ). The func-
tion f2 is given by

f2(r) = A
(
Br−p − r−q

)
exp

[
(r− a)−1

]
(4.21)

if r < a and f2 = 0 if r > a, where A,B,p,q and a are positive constants.
The three-body term is given by

f3(~xα,~xβ,~xγ) = h(xβα, xβγ, θαβγ) + h(xαβ, xαγ, θβαγ)

+h(xγα, xγβ, θαγβ) (4.22)

where θαβγ is the angle between ~xα and ~xγ subtended at vertex β and

h(xβα, xβγ, θαβγ) = λ exp
[
ξ
(
xβα − a

)−1
+ ξ

(
xβγ − a

)−1
]

×
(

cos θαβγ +
1

3

)2

(4.23)

where λ and ξ are constants. The object of the three-body component of
the potential is to enforce the tetrahedral bond angle (109.47

◦) among
triplets of bonded atoms. This model has been developed for describing
interactions in solid and liquid forms of Si but it appears only moder-
ately accurate to describe the amorphous phase [143]. Deficiencies of
the SW force model are furthermore found when studying the brittle
cleavage of silicon [144].

To improve the reliability of the models and to extend their appli-
cability to configurations far from equilibrium, it is possible to use
higher-order (up to five-body) expansion terms [145]. Despite the in-
creased complexity, similar models improve only selectively the de-
scription of the solid system and often at a considerable increase of the
computational cost.

A computationally more convenient approach is to use an Environ-
ment Dependent Interatomic Potential (EDIP) [146, 147]. The interactionThe EDIP potential

model includes only two-body and three-body terms as is the case of
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the SW model but, in addition, it has an explicit dependence on the
local atomic environment through an effective coordination number

Zα =
∑
γ6=α

f(xαγ) (4.24)

where f(xαγ) is a cutoff function that measures the contribution of
neighbor γ to the coordination of atom α in terms of the separation xαγ.
In the case of silicon [146, 147], the environment-dependent formulation
is able to capture successfully (i) the energetics and elastic properties
of the ground-state diamond lattice, (ii) the covalent rehybridization
of undercoordinated atoms, and (iii) a smooth transition to metallic
bonding for overcoordinated atoms.

The primary importance of the local coordination Zα to describe
bonding in solids properly was first pointed out by Abell [148]. In
fact, it can be shown by quantum-mechanical arguments that the more
neighbors an atom has, the weaker the bond to each neighbor will
be. Abell proposed an interatomic potential formed by a sum over
nearest-neighbors two body terms in the form

U =
1

2

∑
α6=β

[
fr(xαβ) + bαβfa(xαβ)

]
(4.25)

where fr(rαβ) and fa(rαβ) are pair-additive repulsive and attractive
interactions, respectively. The bond strength bαβ(Zα) (also named
bond order) is a monotonically decreasing function of the coordination

number bαβ ∼ Z
− 1

2
α . With Morse-type repulsive and attractive pair

interactions

fr(r) = A exp (−λ1r) (4.26)

fa(r) = −B exp (−λ2r) (4.27)

the above Eq.(2.25) yields an energy versus volume relationship similar
to the universal binding energy curve for solids [149]. Furthermore, at
variance with a simple two-body potential, by using the bond order
bij environment dependence it is possible to reproduce both the open
(e.g., diamond) or close-packed crystalline structures depending on the
actual choice of the parameters. This point is crucial for determining
the equilibrium state of a crystal structure.

Recognizing the utility of the Abell’s approach, Tersoff proposed a
model for Si, Ge, C and SiC by taking into account the environment-
dependent bond strength [27]. In Tersoff formulation the total energy The Tersoff potential

is

U =
1

2

∑
α6=β

fc(xαβ)
[
fr(xαβ) + bαβfa(xαβ)

]
(4.28)

where a cutoff function is introduced to limit the sum over nearest
neighbors

fc(r) =


1 r < R−D
1
2 − 1

2 sin [π(r− R)/D] R−D < r < R+D

0 r > R+D

(4.29)

The bond-order parameter bαβ is given by

bαβ =
(
1+βζn

αβ

)−1/(2n)
(4.30)
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with

ζαβ =
∑

γ 6=α,β

fc(xαγ)g(θαβγ) exp [λ3
3(xαβ − xαγ)3] (4.31)

g(θ) = 1+
c2

d2
−

c2

d2 + (h− cosθ)2
(4.32)

The function bαβ is a measure of the bond-order, and it is assumed to
be a monotonically decreasing function of the coordination of atoms α
and β. In addition, terms that act to limit the range of interaction to the
first neighbor shell are included in bαβ. This model can be modified in
order to describe multicomponent mixtures, and more specifically SiC
and SiGe mixtures.

In 1990 [150] Brenner extended the analytic form of the Tersoff po-The Brenner potential

tential by introducing two additional ad hoc terms into the bond order
to counter the overbinding of radicals. A second-generation Brenner
potential [151] leads to a significantly better description of bond ener-
gies, lengths, and force constants for hydrocarbon molecules, as well
as elastic properties of diamond. This prominent model has been ap-
plied successfully in several atomic scale studies of complex processes
involving hydrocarbon molecules, graphite, graphene and diamond
lattice.

4.3 atomic-scale stress

In order to properly compare the results obtained through molecu-
lar dynamics simulations with those achieved within the continuum
elasticity theory, the identification of the macroscopic stress tensor
with a suitable atomistic quantity is a crucial point. In the following a
straightforward derivation of the standard atomistic expression of the
stress, the so-called viral stress, is presented. Moreover, we show how
this expression is modified in order to allow for the calculation of the
nonlinear elastic behavior within the Green elasticity.

4.3.1 The virial stress

To obtain the atomic-scale counterpart of the Cauchy stress tensor (see
Eqs.(1.22) and (1.23)), we consider a small portion of a given elastic
body with volume V and surface S. We suppose that in this region there
are N atoms, described by positions ~xα for α = 1, ...,N. The number of
the atoms is large enough to allow the definition of the macroscopic
elastic fields (stress and strain) in that region, but it is also small enough
to identify the local stress with its average on the volume. To get the
continuum-to-molecular equivalence it is useful to introduce the so-
called virial form

∑N
α=1 ~xα ⊗~Fα where the symbol ⊗ represents theDefinition of virial

tensor product of vectors. The quantity ~Fα is the total force acting on
the α-th atom and, therefore, the equation of motion ~Fα = mα~aα (mα

is the mass of the α-th atom) leads to the balance

N∑
α=1

~xα ⊗~Fα =

N∑
α=1

mα~xα ⊗ ~aα (4.33)

Now, the total force ~Fα can be written as the sum of two contributions:
~Fint

α , which is the internal force on the α-th atom due to the atoms
contained in the volume V ; and ~Fext

α , which is the external force on the
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α-th atom due to the atoms falling outside the volume V and by any
external action. By exploiting this contributions we get

N∑
α=1

~xα ⊗~Fint
α +

N∑
α=1

~xα ⊗~Fext
α =

N∑
α=1

mα~xα ⊗ ~aα (4.34)

The external force ~Fext
α is, in turn, given by the surface force ~Fext

α (S)

(due to atoms nearby the surface S) and by the body force ~Fext
α (V) (due

to external fields). Therefore, Eq.(4.34) can be cast in the form
N∑

α=1

~xα ⊗~Fint
α +

N∑
α=1

~xα ⊗
[
~Fext

α (V) +~Fext
α (S)

]
(4.35)

=

N∑
α=1

mα~xα ⊗
d~vα
dt

where ~vα is the velocity of the α-th atom. We observe that the velocity
~vα of each atom is the sum ~vα = ~vd

α +~v th
α of a macroscopic drift ~vd

α and
a thermal fluctuation ~v th

α . The macroscopic drift velocities ~vd
α of the

α-th atom is defined as the mean value of the velocities ~vβ of the atoms
belonging to a given neighborhood of the α-th site. Evidently, this mean
value removes the statistical fluctuations, resulting in a macroscopic
quantity. Therefore, we get

N∑
α=1

~xα ⊗~Fint
α +

N∑
α=1

~xα ⊗~Fext
α (V) +

N∑
α=1

~xα ⊗~Fext
α (S) (4.36)

=

N∑
α=1

mα~xα ⊗
d~vd

α

dt
+

N∑
α=1

mα~xα ⊗
d~v th

α

dt

Any quantity appearing in Eq.(4.36) must be understood as instanta-
neous. To obtain the corresponding average values, we introduce the
time average 〈·〉 = limτ→∞ 1

τ

∫τ
0 (·) dt. As for the last term of the right

hand side of Eq.(4.36) we get〈
N∑

α=1

mα~xα ⊗
d~v th

α

dt

〉
(4.37)

=

〈
N∑

α=1

mα

[
d
dt

(
~xα ⊗~v th

α

)
−~vα ⊗~v th

α

]〉

= lim
τ→∞ 1

τ

∫τ

0

N∑
α=1

mα
d
dt

(
~xα ⊗~v th

α

)
dt−

〈
N∑

α=1

mα~vα ⊗~v th
α

〉

= lim
τ→∞ 1

τ

N∑
α=1

mα~xα ⊗~v th
α

∣∣∣∣∣
t=τ

t=0

−

〈
N∑

α=1

mα~vα ⊗~v th
α

〉
We are dealing with an elastic solid body which is a stable bound
system, i.e., a system that hangs together forever. In other words, coor-
dinates and velocities for all particles are expressed by finite quantities
forever. In this case, the function G(t) =

∑N
α=1mα~xα⊗~v th

α is bounded
between two extremes, Gmin and Gmax, and the first term in Eq.(4.37)
is therefore zero in the limit of very long times τ

lim
τ→∞ 1

τ

N∑
α=1

mα~xα ⊗~v th
α

∣∣∣∣∣
t=τ

t=0

= lim
τ→∞ G(τ) −G(0)

τ
(4.38)

6 lim
τ→∞ Gmax −Gmin

τ
= 0
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On the other hand, the last term in Eq.(4.37) can be easily computed〈
N∑

α=1

mα~vα ⊗~v th
α

〉
=

〈
N∑

α=1

mα~vd
α ⊗~v th

α

〉
+

〈
N∑

α=1

mα~v th
α ⊗~v th

α

〉
(4.39)

The first term is zero since
〈
~v th

α

〉
= 0 (we have also used the statistical

indipendence of ~vd
α and ~v th

α ). Conversely, the second term is quadratic
in the fluctuation ~v th

α and it is not negligible. So far, we have proved
the following important result〈

N∑
α=1

mα~xα ⊗
d~v th

α

dt

〉
= −

〈
N∑

α=1

mα~v th
α ⊗~v th

α

〉
(4.40)

and, therefore, the virial balance given in Eq.(4.36) can be written as〈
N∑

α=1

~xα ⊗~Fint
α

〉
+

〈
N∑

α=1

~xα ⊗~Fext
α (V)

〉
+

〈
N∑

α=1

~xα ⊗~Fext
α (S)

〉
(4.41)

=

〈
N∑

α=1

mα~xα ⊗
d~vd

α

dt

〉
−

〈
N∑

α=1

mα~v th
α ⊗~v th

α

〉

To proceed further we must link some atomic terms with their contin-
uum counterparts. In fact, we have that: the term depending on body
forces corresponds to a volume integral; the term depending on surface
forces corresponds to a surface integral; the first term in the right hand
side can be converted to a volume integral by observing that d~vd

α/dt is
the macroscopic acceleration field ~a. Accordingly,〈

N∑
α=1

~xα ⊗~Fint
α

〉
+

〈∫
V

~x⊗~Fext(V)d~x

〉
+

〈∫
S
~x⊗~Fext(S)dS

〉
(4.42)

=

〈∫
V
ρ~x⊗ ~ad~x

〉
−

〈
N∑

i=1

mα~v th
α ⊗~v th

α

〉

As described in Sec.1.1.3, in continuum elasticity we have external bulk
forces ~Fext(V) = ~b and surface external forces ~Fext(S) = T̂~n. Therefore,
the balance equation given in Eq.(4.41) becomes〈

N∑
α=1

~xα ⊗~Fint
α

〉
+

〈∫
V

~x⊗ ~bd~x

〉
+

〈∫
S
~x⊗

(
T̂~n
)

dS
〉

(4.43)

=

〈∫
V
ρ~x⊗ ~ad~x

〉
−

〈
N∑

α=1

mα~v th
α ⊗~v th

α

〉

or, equivalently〈
N∑

α=1

xα,kF
int
α,h

〉
+

〈∫
V
xkbhd~x

〉
+

〈∫
S
xkThpnpdS

〉
(4.44)

=

〈∫
V
ρxkahd~x

〉
−

〈
N∑

α=1

mαv
th
α,kv

th
α,h

〉
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By applying the divergence theorem to the surface integral, we get〈
N∑

α=1

xα,kF
int
α,h

〉
+

〈∫
V
xkbhd~x

〉
+

〈∫
V

∂

∂xp

(
xkThp

)
d~x

〉
l(4.45)

=

〈∫
V
ρxkahd~x

〉
−

〈
N∑

α=1

mαv
th
α,kv

th
α,h

〉

We can now develop the derivative〈
N∑

α=1

xα,kF
int
α,h

〉
+

〈∫
V
xkbhd~x

〉
+

〈∫
V

(
δkpThp + xk

∂Thp

∂xp

)
d~x

〉

=

〈∫
V
ρxkahd~x

〉
−

〈
N∑

α=1

mαv
th
α,kv

th
α,h

〉
(4.46)

so that 〈
N∑

α=1

xα,kF
int
α,h

〉
+

〈∫
V
Thkd~x

〉
(4.47)

+

〈∫
V
xk

(
∂Thp

∂xp
+ bh − ρah

)
d~x

〉
+

〈
N∑

α=1

mαv
th
α,kv

th
α,h

〉
= 0

The third term is zero because of Eq.(1.26). Moreover, we can define the
local average value

Thk =
1

V

∫
V
Thkd~x (4.48)

of the stress tensor over the volume V . In conclusion, the balance
equation for the virial sum leads to the following definition of stress

〈Thk〉 = −
1

V

〈
N∑

α=1

mαv
th
α,kv

th
α,h

〉
−
1

V

〈
N∑

α=1

xα,kF
int
α,h

〉
(4.49)

where only atomic-scale quantities are used, namely: particle positions
and velocities, and interatomic forces. This very important relation links
atomistic to continuum elasticity; it can be written in tensor form The microscopic form

of the Cauchy stress〈
T̂
〉

= −
1

V

〈
N∑

α=1

mα~v th
α ⊗~v th

α

〉
−
1

V

〈
N∑

α=1

~xα ⊗~Fint
α

〉
(4.50)

This result has innumerable applications in molecular dynamics sim-
ulations of mechanical properties. In fact, it enables us to evaluate
the macroscopic Cauchy stress in an elastic solid system defined at
the atomic or molecular level. We remark that we have identified a
macroscopic field (the stress tensor introduced in Sec.1.1.3) with a
combination of microscopic quantities by means of two average pro-
cedures: the first one performed over the volume V (denoted by T̂)
and the second one over the time (denoted by the angle brackets). It
is also important to observe that the first kinetic term depends on the
velocity contribution due to thermal fluctuations only, while it does
not depend on drift velocities. This contribution plays a key role in
finite-temperature thermoelasticity [152]. We point out that Eq.(4.50)
is exactly correct for systems undergoing arbitrary time-dependent
deformations.
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It is possible to reformulate the result given in Eq.(4.50) by writing〈
T̂
〉

= −
1

Nω

〈
N∑

α=1

mα~v th
α ⊗~v th

α

〉
−

1

Nω

〈
N∑

α=1

~xα ⊗~Fint
α

〉
(4.51)

where we have attributed to any atom the same average volume
ω = V/N. Although this assumption is widely used in atomistic simula-
tions on materials mechanical behavior, it should be nevertheless noted
that it is in principle correct for atomic-scale homogeneous systems only.
Actually, many interesting problems in modern nano-mechanics (in-
cluding fracture) refer to systems that do not fulfill such an assumption.
We need therefore to better refine the volume concept, by introducing a
suitable criterion for dividing the space into locally proper sub-domains
that we will refer to as atomic volumes ωα〈

T̂
〉

= −
1

N

〈
N∑

α=1

mα

ωα
~v th

α ⊗~v th
α

〉
−
1

N

〈
N∑

α=1

1

ωα
~xα ⊗~Fint

α

〉
(4.52)

A possible solution is offered by the following discretization procedure.
We can work out a partitioning of the total available space into elemen-
tary volumes (much smaller than ωα). Then, each elementary volume
is uniquely assigned to its next-neighbor atom site [153]. The atomic
volume of any given lattice site is finally defined as the sum of the
elementary volumes attributed to that atom site. It can be proved that
such a discretization procedure is basically equivalent to the Voronoi
tessellation, it is unique, and unambiguously attributes to each atom a
proper value of the volume.

Finally, we observe that, at thermodynamic equilibrium, the first
tensor term in Eq.(4.50) is directly proportional to the temperature since
it contains the average values of the kinetic quantities mα~v th

α ⊗~v th
α .

Therefore, in the thermal linear approximation, we can write

−
1

V

〈
N∑

α=1

mα~v th
α ⊗~v th

α

〉
= −Ĉα̂T (4.53)

where Ĉ is the (fourth-order) stiffness tensor, α̂ is the (second-order)
thermal expansion coefficient tensor (satisfying the symmetry relation
αij = αji) and T is the temperature. So, Eq.(4.50) assumes the form〈

T̂
〉

= −Ĉα̂T −

〈
1

V

N∑
α=1

~xα ⊗~Fα

〉
(4.54)

Now, in the following Section we prove that, in linear elasticity

∂U

∂ε̂
= −

〈
1

V

N∑
α=1

~xα ⊗~Fα

〉
(4.55)

and, therefore〈
T̂
〉

= −Ĉα̂T +
∂U

∂ε̂
(4.56)

Moreover, for a linear elastic material we have ∂U
∂ε̂ = Ĉε̂ and, therefore,

Eq.(4.56) is simplified as〈
T̂
〉

= −Ĉα̂T + Ĉε̂ = Ĉ (ε̂− α̂T) (4.57)

When the stress tensor is zero we must have ε̂ = α̂T , obtaining the
physical meaning of the thermal expansion coefficient tensor α̂: itThe thermal

expansion coefficient
tensor

represents the thermal-induced strain for any degree of temperature.
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4.3.2 The atomistic nonlinear Cauchy stress

It is possible to find a direct relation between the atomic stress and
the Cauchy stress tensor derived by the strain energy function, as in
Eq.(2.84). By means of such a derivation, we find that the viral stress
in Eq.(4.50) corresponds to the Cauchy stress only under the linear
approximation. While, if we are interested in the nonlinear elastic
behavior of the system, a different form of the atomistic stress have to
be considered.

In a given dynamic system, the strain energy function U(ε̂) can
be identified with the thermodynamic potential of the corresponding Thermodynamical

identification of the
strain energy

statistical ensemble (i.e. the internal energy for an isolated system, the
Helmholtz free energy for a system in equilibrium with a thermal bath,
etc...). By considering the basic case of an isolated system at T = 0 K,
the internal energy corresponds to the interatomic potential energy
U that is a function of the atomic positions ~xα α = 1, ...,N, namely:
U = U({~xα}). In absence of any external load, the system lies in the
minimum energy configuration

{
~x0

α

}
. On the contrary, if a uniform

strain field ε̂ is applied, the new atomic positions can be expressed
as ~xα = (Î+ ε̂)~x0

α and the corresponding internal energy is given by
U
({

(Î+ ε̂)~x0
α

})
. Therefore, the strain energy density is

U(ε̂) =
1

V
U
({

(Î+ ε̂)~x0
α

})
(4.58)

where V is the volume of the system. According to Eq.(2.84), the stress
tensor is given by The nonlinear form of

the Cauchy stress

T̂ =
∂U(ε̂)

∂ε̂
=

1

V

N∑
α

∂U

∂~xα

∂~xα

∂ε̂
(4.59)

=
1

V

N∑
α

∂U

∂~xα

∂

∂ε̂
(Î+ ε̂)~x0

α

=
1

V

N∑
α

∂U

∂~xα
⊗~x0

α

= −
1

V

N∑
α

~x0
α ⊗~Fint

α

This expression corresponds to that in Eq.(4.50) if the positions ~xα in
the deformed configuration are replaced by the positions ~x0

α of the
system in the minimum energy state. It easy to prove that Eq.(4.50) is
coincident with the first order expansion in ε of Eq.(4.59). In fact

~x0
α = ~xα + o(ε) (4.60)

and ∂V
∂~xα

= o(ε) , therefore

1

V

N∑
α

∂U

∂~xα
⊗~x0

α =
1

V

N∑
α

∂U

∂~xα
⊗~xα + o(ε2) (4.61)

This means that if we are interested in the evaluation of the stress up to
the second order in the strain (nonlinear Green elasticity described in
Section 2.3.1) we have to apply the expression in Eq.(4.59) in spite of
that in Eq.(4.50).
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4.3.3 A different definition of the virial stress

We add some comments so the reader can avoid possible misunder-
standings, which are often encountered in literature when discussing
the stress concept. As a matter of fact, the virial stress is one of the most
commonly used stress-like quantities in discrete particle systems (it is
also called the pressure tensor) and it is sometimes defined as [154, 155]

〈
T̂
〉

= −
1

V

〈
N∑

α=1

mα
d~xα

dt
⊗ d~xα

dt

〉
−
1

V

〈
N∑

α=1

~xα ⊗~Fint
α

〉
(4.62)

Such a virial stress concept is typically obtained by generalizing the
Clausius and Maxwell theories for pressure [156, 157]. The first term
depends on the mass and on the absolute velocity of atomic particles,
reflecting that mass transfer generates a pressure on stationary spa-
tial surfaces external to an atomic-particle system. The second term
depends on interatomic forces and atomic positions, providing a contin-
uum measure for the internal mechanical interactions between particles.
However, the virial stress defined in Eq.(4.62) is not a measure of the
Cauchy mechanical stress within an elastic body undergoing an arbi-
trary deformation [158]. As shown in the previous Section, it can be
proved that the absolute velocities ~vα = d~xα/dt in Eq.(4.62) must be
replaced with thermal velocities ~v th

α in order to properly obtain the
Cauchy stress [159].

We also remark that the virial approach or virial theorem (ClausiusVirial Stress and
external pressure

1870), as applied to gas systems for the evaluation of external pressure,
captures this effect correctly. The key concept is that the pressure
represents external forces between an atomic system and a container
(where the pressure is generated by the collisions of the atoms on the
inner surface of the container). In contrast, stress represents internal
forces between particles inside a body (and it is not generated by
collisions against a wall). Indeed, Eq.(4.62) describes the macroscopic
pressure of a gas system correctly under the three following conditions:
(i) the system is in statistical equilibrium, (ii) the pressure is to be
interpreted in a time and volume averaged sense, i.e., fluctuations at
the molecular level are assumed to average out over time and space
and, (iii) the pressure must be recognized as the average force per unit
area on the wall of a physical container holding the gas system. The
virial stress given in Eq.(4.62) must be applied in molecular dynamics
simulations when one is analyzing the pressure (or pressure tensor) of
a gas or a fluid at thermodynamic equilibrium onto the inner surface
of its container.

We recall that, in continuum mechanics, the Lagrangian reference
frame is a way of looking at the motion where the observer follows
individual body particles as they move through space and time. There-
fore, in this picture, the key quantity is the trajectory of a given volume
element identified by its initial conditions. On the other hand, the Eule-
rian reference frame is a way of looking at the motion that focuses on
specific locations in the space through which the body particles pass.
In this case the physical observables are described by scalar or vector
fields, defined in a given point of the space. Eq.(4.50) represents the
atomic counterpart of the Cauchy stress when it is considered in an
Eulerian (spatial) reference frame. Andia, Costanzo, and Gray [160, 161]
have taken a Lagrangian (material) frame of reference to show that the
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stress in the atomic system does not contain a velocity term at all, by
obtaining the further relation Microscopic stress in

Lagrangian reference
frame〈

T̂L

〉
= −

1

V

〈
N∑

α=1

~xα ⊗~Fint
α

〉
(4.63)

Gao and Weiner [162] clearly show that the dynamic term is included
only in an Eulerian (spatial) reference frame and not in a Lagrangian
frame of reference. They also show the equivalence between the Eulerian
(spatial) and the Lagrangian (material) definitions of virial stress [162].
Anyway, in molecular dynamics simulations the Eulerian point of view
must be always considered in order to draw meaningful comparisons
among numerical and continuum results [152].

4.3.4 Implementation of the atomic stress

In the previous Sections we have derived the atomistic counterpart
of the Cauchy stress. It has been obtained from the calculation of the
virial defined in terms of the atomic positions, Eq.(4.50). On the other
hand, in Molecular Dynamics, typically the so-called Periodic Boundary
Conditions (PBC) are applied. In such a case, in spite of the absolute
positions of the particles, the interatomic distances carry on all the
informations on the dynamics of the system. Therefore, as discussed in
Section 4.3.5, it is crucial to express all the system properties in terms
of the atomic distances.

Two-body interactions

Here, we specialize the general result given in Eq.(4.50) to the case of
two-body interactions between the atoms within a solid elastic body.
The quantity ~Fint

α can be written as the sum
∑N

β6=α
~fαβ, where ~fαβ is

the force applied on atom α by atom β. Eq.(4.50) can be converted to

〈
T̂
〉

= −
1

V

〈
N∑

α=1

mα~v th
α ⊗~v th

α

〉
−
1

V

〈
N∑

α=1

~xα ⊗
N∑

β6=α

~fαβ

〉
(4.64)

The last term can be split into two identical terms as follows

〈
T̂
〉

= −
1

V

〈
N∑

α=1

mα~v th
α ⊗~v th

α

〉
(4.65)

−
1

2V

〈
N∑

α=1

~xα ⊗
N∑

β6=α

~fαβ

〉
+
1

2V

〈
N∑

α=1

~xα ⊗
N∑

β6=α

~fβα

〉

since ~fβα = −~fαβ. After some algebra we get

〈
T̂
〉

= −
1

V

〈
N∑

α=1

mα~v th
α ⊗~v th

α

〉
+
1

2V

〈
N∑

α=1

N∑
β6=α

~xαβ ⊗ ~fαβ

〉
(4.66)

where ~xαβ = ~xβ −~xα. This form is particularly useful for molecular
dynamics simulations because the force term ~fαβ is linked directly
with the interaction potential energy U2B (r)

~fαβ =
dU2B (r)

dr

∣∣∣∣
r=|~xαβ|

~xαβ

|~xαβ|
(4.67)
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By substituting Eq.(4.67) into Eq.(4.66) we obtain

〈
T̂
〉

= −
1

V

〈
N∑

α=1

mα~v th
α ⊗~v th

α

〉
(4.68)

+
1

2V

〈
N∑

α=1

N∑
β6=α

~xαβ ⊗~xαβ

(
1

r

dU2B (r)

dr

)∣∣∣∣
r=|~xαβ|

〉

This form is useful because it depends only on quantities available
during any simulations and it is well suited for being used under the
typical assumption of periodic boundary conditions.

Many-body interactions

We derive now a formulation of Eq.(4.50) in terms of the atomic dis-
tances that can be used for any many-body force field. We observe
that many-body interactions such as Stillinger-Weber, Tersoff, Brenner
and EDIP, as well as tight-binding ones, have a total potential energy
U which can be written in terms of all the possible (scalar) distances
between each couple of atoms. If we define xαβ = |~xαβ| = |~xβ −~xα|,
we then get U = U(

{
xαβ

}
).

For a system of N atoms we have N(N− 1)/2 independent distances
xαβ which define the positions of the particles up to a nonessential
roto-translation (the potential energy U must be invariant under roto-
translation of the particle system). From Eq.(4.49) we obtain

〈Thk〉 = −
1

V

〈
N∑

α=1

mαv
th
α,kv

th
α,h

〉
−
1

V
〈Γhk〉 (4.69)

where

Γhk =

N∑
α=1

xα,kF
int
α,h = −

N∑
α=1

xα,k
∂U

∂xα,h

= −

N∑
α=1

xα,k
1

2

N∑
δ=1

N∑
ρ=1

∂U

∂xδρ

∂xδρ

∂xα,h
(4.70)

where ∂U/∂xγγ is zero by definition (U does not depend on xγγ since
xγγ = 0 for any atom γ). We simply obtain

∂xδρ

∂xα,h
=
∂|~xρ −~xδ|

∂xα,h
=

(δδα − δρα)
(
xδ,h − xρ,h

)
xδρ

(4.71)

We also define xαβ,s = ~xαβ ·~es and therefore

Γhk =

N∑
α=1

xα,k
1

2

N∑
δ=1

N∑
ρ=1

∂U

∂xδρ

(δδα − δρα) xδρ,h

xδρ
(4.72)

=

N∑
α=1

N∑
ρ=1

xα,k

2

∂U

∂xαρ

xαρ,h

xαρ
−

N∑
β=1

N∑
δ=1

xβ,k

2

∂U

∂xδβ

xδβ,h

xδβ

=

N∑
α=1

N∑
ρ=1

xα,k

2

∂U

∂xαρ

xαρ,h

xαρ
−

N∑
ρ=1

N∑
α=1

xρ,k

2

∂U

∂xαρ

xαρ,h

xαρ

= −

N∑
α=1

N∑
ρ=1

xαρ,hxαρ,k

2

1

xαρ

∂U

∂xαρ
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By substituting Eq.(4.72) in Eq.(4.69) we get

〈Thk〉 = −
1

V

〈
N∑

α=1

mαv
th
α,kv

th
α,h

〉

+
1

V

〈
N∑

α=1

N∑
β=1

xαβ,hxαβ,k

2

1

xαβ

∂U

∂xαβ

〉
(4.73)

or, equivalently, in tensor form〈
T̂
〉

= −
1

V

〈
N∑

α=1

mα~v th
α ⊗~v th

α

〉

+
1

2V

〈
N∑

α=1

N∑
β6=α

~xαβ ⊗~xαβ
1

xαβ

∂U

∂xαβ

〉
(4.74)

Note that when the interaction energy represents a system of two-body
interactions, Eq.(4.74) reduces to Eq.(4.68), as expected. Once again and
as discussed in the next Section, Eq.(4.74) can be used under the typical
assumption of Periodic Boundary Conditions.

4.3.5 Virial stress and Periodic Boundary Conditions

As a final consideration on the stress definition in Molecular Dynamics,
we present a discussion on the calculation of the virial stress in a
system under Periodic Boundary Conditions. More precisely, we will
clarify that the expressions obtained in Section 4.3.4 (where the virial is
expressed in terms of the interatomic distances, Eqs.(4.66) and (4.74),
in spite of the atomic positions as in Eq.(4.50)) are suitable for the
implementation under PBC. To this aim, we can consider the simple
case of a one-dimensional chain of atoms at zero temperature. We
assume that the system is subjected to nearest neighbors interactions of
magnitude fint.

Firstly, in Fig.24 we show a configuration of such a system where the The volume is fixed
by external forcesvolume (the length L of the chain) is kept fixed by the external forces

fext. In such a case, the virial stress can be obtained by means of its

Figure 24: One-dimensional chain of atoms subjected to a nearest neighbors
internal interaction, fint, and to external forces fext.

expression in terms of the atomic positions xα:

T =
1

L

∑
α

xαF
int
α = −

1

L
xNf

int (4.75)

where Fint
α is the total internal force acting on the atom α. We note that,

at the equilibrium, the total force on each atoms is zero. Therefore, the
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internal force acting on the atom in xN, i.e. −fint, is equal in absolute
value to the external one fext. As a consequence, the virial stress is

T = fext (4.76)

that is zero, as expected, only in absence of external forces.

Figure 25: One-dimensional chain of atoms subjected to internal forces and to
Periodic Boundary Conditions.

On the other hand, in Molecular Dynamics simulations (typically)The volume is fixed
by the P.B.C. the system is not subjected to surface forces but the volume is fixed

by means of the Periodic Boundary Conditions, i.e. by the interactions
with the periodic images of the atoms (see Fig.25). In order to apply
such conditions the interatomic distance xαβ are calculated by

Interatomic distances
under Periodic
Boundary Conditions xαβ|PBC = xα − xβ − L int

[
(xα − xβ)

l
−
1

2

]
(4.77)

In particular, this means that x1N|PBC = a, being a the lattice parame-
ter.

Now, if we calculate the stress in terms of the atomic positions, i.e.
by a straightforward application of Eq.(4.50), we get

T =
1

L

∑
α

xαF
int
α = −

1

L

∑
α

xα(fint − fint) = 0 (4.78)

In this calculation we have not take into account the effect of the PBC.
obtaining T = 0 independently of the possible deformation of the
system. In order to get the correct result, we must properly consider the
boundary conditions. This can be done by calculating the virial stress
in terms of the interatomic distances xαβ|PBC

T =
1

L

∑
αβ

xαβ|PBCf
int =

1

L

∑
αβ

a fint =
1

L
N a fint = fint (4.79)

which was to be demonstrated.
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Interface between different media is the most common structure in
composites and complex materials. It represents the main feature of
atomistic models of materials generally not taken into account by con-
tinuum theories. In fact, in the continuum based theory the interface
between media is considered devoid of any inner structure or specific
elastic response. On the other hand, the effective elastic behavior of
heterogeneous materials where the inhomogeneity shows up at the
nano-scale (i.e. nanocomposite, multi-layered or nanostructured materi-
als) is deeply affected by interface features, occurring between phases
characterized by different elastic moduli and different atomic structure
[98, 163, 164]. In particular, a key issue consists in evaluating the stress
and the strain fields nearly or just across the interface between such
phases. While this problem has been extensively investigated by contin-
uum mechanics [165, 166, 167, 168], comparatively little work has been
based on atomistic simulations. This is in spite of the maturity they
reached in dealing with solid mechanics [169] and even though they
allow for a detailed atomic-scale modeling of the structural complexity
of heterogeneous materials [170, 171, 172, 173]. In the first Section of
this Chapter, we show the analysis of the elastic features of a planar
interface. We describe its macroscopic behavior by means of a set of con-
tinuity conditions. Moreover, through atomistic simulations, we apply
such a general scheme to a specific atom-resolved interface model. In
the second part of the Chapter, we consider a rather different physical
system where the interface between different media plays a crucial role.
We describe the elastic behavior of an inclusion embedded in matrix
with different elastic properties. This is the subject of the Eshelby theory
described in the previous Chapters. In particular, we show that the
interface formation at the boundary between matrix and inclusion leads
to prestrain (or prestress) effects not considered by the standard Es-
helby approach. This effects shows up only at the nanoscale, i.e. when
an inclusion size of a few nanometers is considered. Furthermore, we
apply the generalization of the Eshelby theory discussed in Section 2.2
to the qualitative and quantitative description of these size-effects.
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5.1 flat interface elastic properties : the a-si/c-si case

In this Section we compare [174] continuum and atomistic solid mechan-
ics to establish a general picture about the continuity of the elastic fields
(i.e. strain and stress) across a planar interface between two different
media. In particular, we firstly derive, in the framework of continuum
elasticity, a set of conditions for strain and stress at the interface. Then,
we apply such relations of general validity to an atom-resolved interface
system. To this aim, we atomistically model an amorphous/crystalline
silicon interface (a-Si/c-Si) which involves both elastically different
phases and structures quite differing at the atomic scale. In other words,
the a-Si/c-Si interface is an interesting model system containing the two
most relevant features of heterogeneous materials. It also represents a
system of paramount importance for applications in microelectronics,
photovoltaics, or opto-electronics.

5.1.1 Continuity conditions at the interface

In continuum mechanics the dynamics of a deformable body under
infinitesimal strain is described by the equation of motion in Eq.(1.26).
Let us consider a plane interface between two different linear elastic

Figure 26: Infinitesimal volume across an interface between two elastically
different media.

media, having stiffness Ĉ(a) and Ĉ(b). Close to the interface, the stress
and the strain fields within material a (b) are, respectively, T̂ (a) and
ε̂(a) (T̂ (b) and ε̂(b)).

The first continuity condition is obtained by integrating the equation
of motion Eq.(1.26) on the infinitesimal volume V across the interface
(see Fig.26)∫

V

~∇T̂dV +

∫
V

~bdV =

∫
V
ρ~adV (5.1)

By applying the divergence theorem to the first term of the last equation

∫
S
T̂~ndS+

∫
V

~bdV =

∫
V
ρ~adV (5.2)
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where ~n is the unitary vector orthogonal to the interface plane defined
in Fig.26. We now consider the integration volume as V = ∆S h where
h is the infinitesimal quantity. Therefore

T̂ (b)∆S ~n− T̂ (a)∆S ~n+ o(h) + ~b ∆S h = ρ ~a ∆S h (5.3)

In the limit of vanishing h we finally find a first set of continuity
conditions

Continuity of the
orthogonal projection
of stress field

T̂ (a)~n = T̂ (b)~n (5.4)

for the stress field projected along the direction orthogonal to the
interface plane.

In order to derive the continuity condition for the strain field, we
preliminary consider the general expressions for the variation of length
∆l and the variation of angle ∆θ in a bulk material under deformation
ε̂. According to Eqs. (1.10) and (1.11), if ~t is the unit vector aligned with
a segment of length l, then its length variation is

∆l =
(
~t · ε̂ ~t

)
l (5.5)

Similarly, if ~t and ~s are unit vectors defining an angle θ, its variation
under the same deformation is

∆θ =
1

sin(θ)

[
cos(θ)

(
~t · ε̂ ~t+~s · ε̂ ~s

)
− 2

(
~s · ε̂ ~t

)]
(5.6)

We suppose now that ~t and ~s are arbitrary unit vectors lying on the
interface plane. If we assume that interface debonding or sliding do not
occur, then ∆l and ∆θ must to be continuous, i.e.

Continuity of the
strain field
projections

~t · ε̂(a) ~t = ~t · ε̂(b) ~t (5.7)

~s · ε̂(a) ~t = ~s · ε̂(b) ~t

These relations state the continuity of the strain field.
For linear elastic media, the interface relations provided by Eqs.(5.4)

and (5.7) supply the further boundary conditions
Further continuity
conditions under the
linear hypothesis

Ĉ(a)ε̂(a)~n = Ĉ(b)ε̂(b)~n

~t ·
[
Ĉ(a)

]−1
T̂ (a) ~t = ~t ·

[
Ĉ(b)

]−1
T̂ (b) ~t (5.8)

~s ·
[
Ĉ(a)

]−1
T̂ (a) ~t = ~s ·

[
Ĉ(b)

]−1
T̂ (b) ~t

They predict a discontinuity in some of the components of the strain
and stress fields and allow for their evaluation.

In order to further proceed, we need to define the interface orienta-
tion, as well as the state of deformation. We therefore define a cartesian
frame of reference (x,y, z), where (x,y) is the interface plane, and we
assume that the unit vectors ~s,~t and ~n are aligned along the x-, y-
and z-axis, respectively (see Fig.27). Moreover, in order to reduce the
complexity of the stiffness tensors involved in the model, we fix a given
symmetry for the elastic behavior of the media under consideration. For
the following application, we can assume a cubic symmetry so that the
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Figure 27: Atomistic structure of the a-Si/c-Si interface. The reference frame
(x,y, z) and the basis (~s,~t, ~n) have been represented.

behavior is described by three independent elastic moduli (see Section
1.1.5) and the resulting stiffness tensor is, in Voigt notation

Ĉ =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


(5.9)

Therefore, by imposing a uniaxial strain εzz (and εij = 0 ∀ i, j 6= z) we
get

The full set of
continuity conditions
at the interface
between two linear
media under uniaxial
elongation

T
(a)
zz = T

(b)
zz (5.10)

ε
(a)
zz

ε
(b)
zz

=
C

(b)
11

C
(a)
11

(5.11)

D
(a)
12

(
T

(a)
yy + T

(a)
zz

)
+ D

(a)
11 T

(a)
xx

= D
(b)
12

(
T

(b)
yy + T

(b)
zz

)
+ D

(b)
11 T

(b)
xx (5.12)

D
(a)
12

(
T

(a)
xx + T

(a)
zz

)
+ D

(a)
11 T

(a)
yy

= D
(b)
12

(
T

(b)
xx + T

(b)
zz

)
+ D

(b)
11 T

(b)
yy (5.13)

Equation (5.10) states the continuity of the longitudinal component of
the stress, while Eq.(5.11) predicts a discontinuity in the longitudinal
strain; similarly, Eqs.(5.12) and (5.13) prove the discontinuity of the
transverse components of the stress. Moreover, we note that the last
two equations correspond to ε(a)

xx = ε
(b)
xx and ε(a)

yy = ε
(b)
yy (i.e. they

correspond to Eq.(5.7) with ~t = (1, 0, 0) or ~t = (0, 1, 0)). If an uniaxial
deformation is considered, these transverse components of the strain
vanish everywere and, therefore, both the left and right members of
Eqs.(5.12) and (5.13) will be zero.

5.1.2 The a-Si/c-Si interface model

In our atomistic model, material (a) corresponds to a-Si and material
(b) corresponds to c-Si. Therefore, we need at first to generate a bulk
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Table 4: Elastic stiffness and compliance constants (at T = 0 K) for c-Si and a-Si
obtained by present atomistic simulations (Stillinger-Weber potential).
Ab initio calculations and experimental estimates for c-Si are reported
as well. Results based on molecular dynamics simulations are also
reported for the a-Si.

Elastic a-Si c-Si c-Si[94] a-Sia[175] c-Sib[176]

Moduli (ab initio) (MD) (Expt.)

C11[GPa] 135 151.26 162.07 150 166

C12[GPa] 94 76.14 63.51 86 64

C44[GPa] 20 56.4 77.26 33 79

D11[GPa−1] 0.017 0.009988 0.00792 0.0114 0.0077

D12[GPa−1] -0.0071 -0.003347 -0.00222 -0.00417 -0.0021

D44[GPa−1] 0.049 0.0177 0.0129 0.0303 0.013

aT = 294K, bT = 300K

a-Si sample. By using the Stillinger-Weber interatomic force field (de-
scribed in the previous Chapter) an a-Si sample containing as many as
24000 atoms was obtained by quenching from the melt at the same den- The a-Si bulk is

obtained by
quenching from the
melt

sity of c-Si. A simple cubic lattice of Si atoms was melted at T = 2500K.
Then, a first quenching led to the liquid phase at T = 1800K. Finally, it
was quenched again to the solid phase at T = 0K with a rate as slow
as 3 · 1012 K/s obtaining the amorphous configuration.Then, through
small variations of the metric tensor (defining the volume and the shape
of the periodically repeated simulation box) followed by relaxation of
the internal degrees of freedom (through damped dynamics), all the
components of the stress tensor have been reset to zero (actually to a
value smaller than 10−2 GPa). In the amorphous structure so obtained
8% of the atoms are 3-fold coordinated, 75% are 4-fold coordinated and
17% are 5-fold coordinated corresponding to an average coordination
close to 4.1 in agreement with experimental data. A c-Si sample con-
taining the same number of atoms in the a-Si one has been arranged as
well.

In order to verify the continuity conditions in our atomistic system,
we need to calculate the bulk elastic properties, i.e. the stiffness tensor
components, of the two materials involved in the interface model. As
for the c-Si, its lattice structure exhibits a cubic symmetry, therefore
its macroscopic elastic behavior is described by the stiffness tensor in
Eq.(5.9). On the other hand, the amorphous Si is a disordered atomic
structure and, therefore, it exhibits an isotropic elastic behavior. In
this case the stiffness tensor assumes the same form of the c-Si case
but with the further (Cauchy) condition 2C44 = C11 − C12. By appling
a suitable set of uniaxial deformations in the range 0 6 εzz 6 0.1,
we have obtained the longitudinal and transverse stress-strain curves
reported in Fig.28 for both the media.

We remember that the local stress field deserves a careful definition
and calculation: we have adopted the expression derived from the virial
of the forces, as described in details in Section 4.3. Elastic and compli-
ance constants have been obtained as the numerical derivative of the
stress-strain curves at vanishing strain. In fact, if the uniaxial elongation
in the z direction ε̂ = (0, 0, εzz, 0, 0, 0) is applied to the system, the
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Figure 28: Longitudinal (Tzz) and tranverse (Txx) stress-strain relations for the
a-Si (top panel) and c-Si (bottom panel), obtained with molecular
dynamics simulations.

resulting stress can be obtained from the constitutive equation T̂ = Ĉε̂

and from Eq.(5.9)

Txx = Tyy = C12εzz (5.14)

Tzz = C11εzz (5.15)

Moreover, in order to calculate the third elastic constants C44, we have
applied a shear deformation ε̂ = (0, 0, 0, εxy, 0, 0) as well:

Txy = C44εxy (5.16)

Present atomistic data are summarized in Table 4.
While for c-Si we have found three independent elastic moduli (cubic

symmetry), in the case of the amorphous system the Cauchy relation is
well reproduced. This proves that our computational procedure indeed
generated an isotropic amorphous material: the a-Si slab, therefore,
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represents the atomistic counterpart of an isotropic continuum. In Table
4 we also report experimental and ab initio elastic moduli for c-Si
[94, 176] and molecular dynamics data for the amorphous phase [175].
The c-Si data show that our present simulations based on the Stillinger-
Weber potential provide reasonably good elastic moduli. As for the
a-Si, we observe that our results show a sizeable elastic softening with
respect to the perfect crystal. The observed softening of the elastic
properties of a-Si is consistent with previous investigations [175], as
reported in Table 4. Overall these results stand for the reliability of the
present estimation of bulk elastic properties.

The a-Si/c-Si interface was obtained by glueing the slabs and by
relaxing the system by a damped molecular dynamics, thus allowing
for the formation of chemical bonds across amorphous/crystalline
boundary. A set of uniaxial homogeneous deformations in the range
0 6 εzz 6 0.1 was eventually applied to our composite system. After a
suitable equilibration time, the linear applied displacement uz = εzzz

relaxed to uz = εzzz+∆uz(z), where ∆uz is the difference between
the final and the applied displacement. In Fig.29 we show the results
for a deformation as large as εzz = 0.04. In Fig.29 (a) we report the
perturbation ∆uz versus z: it is interesting to observe the fluctuations
of the displacement in the a-Si slab induced by the structural disorder.
Moreover, in Figs.29 (b) and (c), we show the longitudinal and the
transverse components of the stress tensor, respectively. We plot the
average value of the stress taken over slabs (normal to z) as thin as an Planar average of the

stressinterplanar distance. These planar averages will be hereafter referred to
as T ij(z). As a matter of fact, while in the crystalline system the atomic
stress is practically uniform inside the sample, in the amorphous slab
we find very large fluctuations due to the structural disorder. In order
to point out the line-up of the stress tensor at the interface, we further
average T ij(z) over a distance d along the z-direction (Simple Moving
Average) by defining Simple Moving

Average of the noise
in the amorphous
bulkT ij(z) =

1

2d

∫z+d

z−d
T ij(z

′)dz ′ . (5.17)

This is in fact the stress represented in Fig.29 (b) and (c) . Typically, we
use d ' 20 Å, corresponding to 6 interplanar distances. This procedure
allows for the estimation of Tzz(z) in both the a-Si and c-Si, providing
a typical value within each slab as large as 5.42 GPa and 5.48 GPa,
respectively. So, as axpected from Eq.(5.10), the average zz-component
of the stress is continuous. Similarly, the ratio between the average strain
field in a-Si and the corresponding strain field in c-Si is found to be
1.108. On the other hand, from Table 4 we get C

(c−Si)
11 /C

(a−Si)
11 = 1.12.

Once again, this result is in excellent agreement with the continuum
condition given in Eq.(5.11). By inserting in Eqs.(5.12) and (5.13) the
average stress values for any component, we obtain an almost perfect
identity. We conclude that continuum and atomistic interface elasticity
are perfectly consistent, provided that atomic-scale elastic fields are
properly averaged.

Finally, we observe that the relaxed strain within the a-Si (c-Si) slab
is always larger (smaller) than the applied strain εzz. This can be
understood in terms of the quantity ∆uz(z), previously defined and
reported in Fig.30 for different values of the applied εzz. We can write:
ε

(a−Si)
zz = εzz + d∆u

(a−Si)
z /dz and ε

(c−Si)
zz = εzz + d∆u

(c−Si)
z /dz,

where d∆u(a−Si)
z /dz and d∆u(c−Si)

z /dz are easly obtained from Fig.30.
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Figure 29: Perturbation to the imposed displacement after relaxation (a), trans-
verse (b) and longitudinal (c) stress versus the z coordinate. For
stress data the Simple Moving Average (SMA) has been considered
to reduce the intensity of the fluctuations (dashed lines for Tzz and
Tyy, solid line for Txx).

It is evident that d∆u(a−Si)
z /dz > 0 and d∆u(c−Si)

z /dz < 0 for any
applied strain. Since this behavior is independent of the intensity of the
applied strain, we conclude that the longitudinal stress-strain relations
for a-Si and c-Si (see Fig.28) can not have intersection points: in other
words, the amorphous phase is always softer than the crystalline one,
for any state of deformation.

To conclude, we have verified that atomistic simulations for the
interface behavior are consistent with continuum results, provided
that appropriate averages are applied to the atomistic elastic fields.
Moreover, we have obtained the stress-strain curves (transverse and
longitudinal) of the Si amorphous and crystalline phases, proving
that the a-Si is always softer than c-Si. Finally, we point out that the
nonlinear character of amorphous silicon is larger than in crystallineNonlinear elastic

behaviors of a-Si and
c-Si

silicon. This is qualitatively due to the complex disordered structure
and to the rearrangements occurring during deformation. As a matter
of fact, within a-Si atoms lie at distances that typically differ from the
equilibrium crystalline ones. This means that they feel deviations from
a purely harmonic potential.
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Figure 30: Perturbation to the imposed displacement obtained through relax-
ation for nine different values of the imposed strain (ranging from
εzz = 0.02 to εzz = 0.1).

5.2 prestrain effect into a si nanoinclusion

The mechanical behavior of nanostructured materials is strongly af-
fected by interface features, occurring at the boundary between phases
characterized by different elastic constitutive equations or crystalline
structures [167, 168]. In particular, the embedding of a given nanoin-
clusion in a hosting homogeneous matrix is deeply influenced by the
lattice mismatch, which ultimately governs the effective elastic prop-
erties of the heterogeneous system. In fact, both the inclusion and the
matrix accomplish an elastic relaxation to accommodate this mismatch
and, therefore, they admit a state of deformation even if no external
load is applied. We will refer to such a complex system as a prestressed
(or, equivalently, prestrained) composite.

A typical example of prestressed system is represented by semi-
conductor quantum dots or quantum wires, embedded in a matrix Prestress effect on the

electronic behavior of
actual nanostructures

with different lattice parameter [122, 123]. Several works have been
addressed to the calculation of the strain state in buried quantum dots
[177, 178, 179]. Both quantitative and qualitative knowledge of stress
and strain distributions are essential for characterizing and tailoring
their optoelectronic properties [180, 181], as well as for understand-
ing their self-organization [182]. Typically, the state of deformation
is estimated using continuum elasticity and, then, used as input for
an electronic structure calculation [183]. However, while continuum
elasticity is inherently scale-independent, the elastic relaxation of a
nanostructure depends on the actual length scale at which the hetero-
geneity shows up. In other words, surface effects become important, at
the nanoscale, due to the increasing surface-to-volume ratio and induce
a size dependency in the overall elastic behavior [184, 185].

In this Section we use [86] a combination of atomistic and contin-
uum methods to describe the elastic behavior of a silicon nano-wire
embedded in a silicon homogeneous matrix with different crystal ori-
entation. This structure represents a good model for real systems of
large technological interest [186, 187, 188]. Moreover, it also represents
a conceptually relevant case where the atomic structure leads to de-
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viations from the standard continuum picture. We describe how the
presence of a disordered interface affects the elastic fields and generates
a size-dependent prestrain in both the nano-wire and the surrounding
matrix. In addition, by looking at the mechanical response of this model
system to a remote load, we show how the prestrain induces a strong
localization of the elastic fields nearby the inclusion. The atomistic
simulations are developed to obtain a fully-resolved picture of the
structural complexity of the disordered interface. On the other hand,
the generalization of the Eshelby theory of Section 2.2 is here applied,
fully reproducing the observed atomistic phenomena. This proves that
such a generalization represents an atomically informed continuumAtomically informed

continuum model model that includes the size-dependent effects described above.

5.2.1 The atomistic model

We consider a crystalline silicon (c-Si) homogeneous matrix and we fix
the x-axis along the (100) crystallographic direction of the diamond
lattice (see Fig.31). The lattice parameter is set to the equilibrium value
so as to obtain a stress-free configuration. A cylindrical portion of the
matrix of radius R is then rotated by an angle ϑ around the z-axis
(see Fig.31). Because of the cubic symmetry of the diamond lattice, the
rotated cylinder behaves, upon loading along the y-axis, as an inclusion
with a different elastic response than the hosting matrix. In addition,
the elastic mismatch between the inclusion and the matrix depends on
the angle of rotation and vanishes for ϑ = kπ/2 (k=integer). In most of
our simulations we fixed ϑ = π/4 since this angle supplies the largest
difference in the elastic response between the inclusion and the matrix
(see Sec. 5.2.3 for details).

Figure 31: A c-Si inclusion of radius R embedded in a Si matrix. General scheme
of the system geometry (left panel) and snapshot of an atomistic
sample (right panel). The elastic mismatch between the inclusion
and the matrix is obtained through a rotation by an angle ϑ of the
inclusion. We also show the direction of the applied deformation
(y-axis) and those of the longitudinal (L) and of the transverse (T)
displacements.

The interaction among silicon atoms is described by the Tersoff poten-
tial (Section 4.2 and [189]). The simulation cell is a thin slab orthogonal
to the z-axis; the PBC are applied so as to obtain an infinite cylindrical
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inclusion. To minimizing the interaction between the periodic images,
the width of the slab is ten times larger than the diameter of the in-
clusion, both in the x and in the y directions. As for the mechanical
behavior, this structure is described by two dimensional elastic fields
(plain strain conditions). It means that all the relevant quantities are
functions only of the x and y coordinates.

By generating the input structure as above, we have arranged several
samples with 2 nm < R < 20 nm. The largest simulated system con- Large scale atomistic

simulations: 107

atoms in a 0.4 µm
Si slab

tains as many as 1.3× 107 atoms and the corresponding length of the
simulation cell along x and y is as large as 400 nm.

The initial configurations have been relaxed through damped dynam-
ics in order to allow for chemical bonding at the interface between the
inclusion and the matrix. The convergence criterion is set so to have
interatomic forces in the final configuration not larger than 10−5 eV/Å.
After this relaxation, we have computed the atomic displacement field
~u0(x,y) and we have found that the disordered interface generates
a uniform hydrostatic compression within the inclusion. Therefore,
the present atomistic model correctly predicts that even in absence
of any external load, the inclusions exhibit a state of uniform inter-
nal prestrain. In Fig.32 we show the variation of such a prestrain
ε0 = ∂u0

x/∂x = ∂u0
y/∂y as function of the radius R. In order to obtain

ε0 for each sample, we have fit the u0
x(x,y) and u0

y(x,y) surfaces inside
the inclusion guessing a linear dependence on x and y. In order to test
the linear hypothesis, i.e. the uniformity of the internal strain field, we
have used several fitting domains obtaining a constant trend.
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Figure 32: Internal prestrain ε0 within the nano-wire as a function of the inclu-
sion radius R. We report the atomistic result (full symbols) and the
continuum theory prediction (solid line).

In Fig.32 we note that the prestrain ε0 (in absolute value) reduces
with increasing R. This effect can be explained as follows. In Fig.33 we
report the atom number density and the energy per atom as a function
of the distance r from the center of the inclusion; data are obtained from
the sample with R = 10 nm. We note that the atom number density
at a distance r = R, corresponding to the position of the interface, is
lower than its value in the surrounding crystalline bulk. The interface
region behaves as a coating of constant thickness d inserted between
the matrix and the inclusion. Therefore, the volume available for the
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inclusion is reduced with respect to the initial configuration by a factor(
R−d

R

)2
. When R increases this volume variation and the resulting

prestrain tend to zero. We remark that, in principle, the thickness of
the disordered interface could depend on the value of the angle ϑ
defined in Fig.31. Nevertheless, in our calculations such a thickness was
found to be pretty constant, as discussed below (see Sec.5.2.2). Further
investigations about the disordered structure at an interface can be
found elsewhere [190, 191].
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Figure 33: Energy per atom and atom number density as a function of the
distance r from the center of the inclusion of radius R. The data
correspond to a sample with R = 10.0 nm. For r ' R the local
number density is much smaller than elsewhere while the energy, as
expected, is higher.

5.2.2 The continuum model

Here, we discuss the capability of the generalized Eshelby theory (see
Section 2.2) to reproduce the size-dependent interface effects reported
in the previous Section. As reported above, in the atomistic model,
the prestress inside the inclusion is induced by the reduction of the
available volume due to the interface formation. In order to mimic
this volume variation in the context of continuum elasticity theory, we
consider the configuration represented in Fig.34, where a cylinder of
radius R2 is forced to fit a similarly shaped void with radius R1 6= R2. If
R2 > R1 a uniform compression inside the cylinder is generated, as well
as a radially decreasing compression in the external region. Actually
such a configuration is the subject of Section 2.2.1 where we have
calculated the complete solutions for the elastic fields assuming that
both the hosting matrix and the cylinder are made of isotropic materials
described by the elastic moduli (µ1, ν1) and (µ2, ν2), respectively. In
order to apply these solutions to the problem described in Sec.5.2.1, we
have to set its elastic parameters (i.e. µ1, ν1, µ2 and ν2) consistently.
This implies that we must introduce two different isotropic media,
respectively describing the elastic behavior of the nano-wire and of the
matrix. If the linear elasticity of the matrix is described by the stiffness
tensor Ĉ(100), then the inclusion is represented (in the same system of
reference) by the tensor Ĉ(100) rotated upon the z-axis, namely Ĉ(ϑ)

(remember that in our case both the matrix and the inclusion are made
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Figure 34: Scheme of the continuum theory model of a prestrained inclusion.
Its radius R2 is bigger then the radius R1 of the hole in the host
matrix (both defined in the reference undisturbed configuration).
The elastic properties of the two media are represented by the shear
modulus µα and by the Poisson ratio να, where α = 1, 2.

of c-Si). On the other hand, the isotropic elastic moduli µ and ν for the
two phases depend upon the stiffness tensor components through the
following relations:

µ = (C11 − C12)/2 (5.18)

ν = C12/(C11 + C12)

Therefore, we set

µ1 = (C
(100)
11 − C

(100)
12 )/2 (5.19)

ν1 = C
(100)
12 /(C

(100)
11 + C

(100)
12 )

in the matrix and

µ2 = (C11(ϑ) − C12(ϑ))/2 (5.20)

ν2 = C12(ϑ)/(C11(ϑ) + C12(ϑ))

in the inclusion. This approach is fully justified because we have calcu-
lated the exact internal strain field for some paradigmatic configurations
with the anisotropic Eshelby model [45, 192] and we have verified that
our isotropic approximation does not affect the results under uniaxial
elongations or hydrostatic external loadings. On the other hand, the
formalism for the isotropic case is much lighter than for the anisotropic
one [32], thus providing a more clean picture.

In the last Section of this Chapter, we calculate the solution of the
present prestressed configuration by means of a method rather differ-
ent from that applied in Section 2.2. This calculation, suitable for the
two-dimensional case only, has been applied in order to check the con-
sistency of our Eshelby-like approach to prestressed system. The results
obtained by means of the two methodologies are in perfect reciprocal
agreement.

The atomistic data (full symbols in Fig.32) have been fitted by means
of the following analytic expression (see Eq.(5.42)) for the prestrain

The continuum
expression for the
prestress effect at the
nanoscale

ε0 =
µ1 (χ2 − 1) (R1 − R2)

2µ2R1 − µ1R2 + R2µ1χ2
(5.21)
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where χ2 = 3 − 4ν2. The radius difference ∆R = R2 − R1 has been
considered as the fitting parameter. Moreover, in order to draw the
comparison with the atomistic simulations we have imposed (R1 +

R2)/2 = R. Therefore, Eq.(5.21) is recast in the form

ε0 = −
µ1 (1− 2ν2)∆R

µ2

(
R− ∆R

2

)
+ µ1(1− 2ν2)

(
R+ ∆R

2

) (5.22)

The fitting procedure provided a value ∆R = R2 − R1 = 0.6Å and
proved that the present continuum model is consistent with atomistic
data, as shown in Fig.32. This important result stands for the fact
that the width of the disordered interface region can be considered
independent from the curvature of the interface (at least in the present
context); rather, it depends only on the crystalline structure of the two
materials.

5.2.3 The effect of external loading

An uniaxial homogeneous elongation of 1% along the y direction (cor-
responding to a displacement field ux = 0 and uy = ε∞yyy, where
ε∞yy = 0.01) was applied to the samples described in Sec.5.2.1. After
the relaxation of the atomistic structure (performed through damped
dynamics with the same convergence criterion reported in Sec.5.2.1),
we have computed both the longitudinal uy(x,y) and the transverse
ux(x,y) displacement fields inside and outside the embedded inclusion.

As a first step, we checked whether the internal strain could be
considered as a uniform field, as predicted by the continuum elasticity.
We have found that this prediction is indeed well verified by atomistic
simulations, provided that we neglect a narrow disordered coating
(about 0.5 nm thick) close to the interface. In order to obtain these
estimations we have applied a fitting procedure similar to that used for
the prestrain calculation (see Sec.5.2.1).

A further analysis has been performed to investigate the dependence
of the internal strain upon the elastic mismatch between the inclusion
and the matrix described by the rotation angle ϑ as shown in Eqs.(5.19)
and (5.20). In Fig.35, we show the differences εxx − ε0 and εyy − ε0

between the resulting internal strain (after the application of the load)
and the prestrain as function of ϑ for an inclusion with R = 2 nm. As
expected for a cubic crystal like c-Si, both the longitudinal (empty sym-
bols in Fig.35) and transverse (full symbols in Fig.35) strain components
are π/2-periodic. Moreover, the angle ϑ = π/4 leads to the largest differ-
ence between the internal strain and the applied one. In Fig.35 we also
report the results obtained through the atomically informed continuum
model described in Sec.5.2.2 (full and dashed lines). We note a good
agreement between atomistics and continuum and we remark that for
ϑ = π/2 the inclusion has the same crystallographic orientation of the
matrix. Nevertheless, a disordered interface and the corresponding
prestrain are present. This is due to the fact that a pure π/2-rotation
does not arrange the atoms consistently with the surrounding crystal
(in order to obtain such a correspondence we have to apply a suitable
translation along the (111) direction as well). Interesting enough, we
found εxx − ε0 = ε∞xx and εyy − ε0 = ε∞yy for ϑ = π/2, where ε∞xx and
ε∞yy are the components of the remotely applied strain field. In other
words, in spite of the complexity of the continuum equations described
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Figure 35: Longitudinal εyy (empty symbols) and transverse εxx (full symbols)
strain inside the inclusion after the application of the load to the
sample with R = 2 nm. We show the difference between these strain
components and the corresponding prestrain (ε0) as a function
of the rotation angle ϑ. We also report the values (ε∞yy = 0.01 and
ε∞xx = 0) of the strain applied to the overall system (horizontal dotted
lines). The solid and the dashed curve represents the continuum
theory predictions for the longitudinal and for the transverse field,
respectively.

in Appendix 5.2.4, the prestrain roughly acts as an additive constant to
the applied strain.

In Fig.36 we report the longitudinal (εyy) and transverse (εxx) strain
fields inside the inclusion under load versus the inclusion radius R
(for ϑ = π/4). The results of the continuum theory are obtained by
setting the prestrain to the value stated by the fitting procedure of the
atomistic data (see Sec.5.2.2). For large values of the radius, the effect
of the interface-induced prestrain is negligible (see also Fig.32) and
the elastic fields become size-independent. Moreover, in the limit of
vanishing prestrain (or equivalently for R → ∞, as shown in Fig.32),
the constant values approached by the atomistic data correspond to
those predicted by the Eshelby continuum model [8].

Finally, we have investigated the effect of the inclusion on the sur-
rounding matrix. Also in this case, we have found that the prestrain
plays an important role in the determination of the elastic state of
deformation of the system. In Fig.37 we show the longitudinal dis-
placement field across the inclusion (R = 10 nm). In order to magnify
the effects, we report the perturbation uy(xc,y) − ε∞yyy to the uniform
applied displacement (where xc is the abscissa of the center of the in-
clusion). We have reported two different predictions obtained through
the continuum model described in Sec.5.2.2 and in Appendix 5.2.4. Cor-
responding atomistic data (red dots) are reported as well. The dashed
green line represents the effect of the remotely applied load to the pre-
strained system and it is in good agreement with the atomistic scenario.
The dotted blue curve shows the behavior of the system under load
when the prestrain is absent. By comparing the two continuum models,
we note that the internal fields are quite similar and the difference
roughly corresponds to ε0. On the contrary, the external fields are com- Localization of the

strain effect of the
inclusion in the
surrounding matrix

pletely different. In the model including prestrain, the curve in Fig.37
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exhibits a very fast decay to zero. In other words, the prestrain causes a
strong localization of the elastic fields around the interface. This effect
is associated with a loss of continuity of the displacement field due to
the narrow interface region which separates the two bulk zones. It is
interesting to observe that our atomically informed continuum model
perfectly takes into account both the fast decay and the displacement
discontinuity, being in good agreement with the atomistic simulations.
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Figure 36: Longitudinal (εyy) and transverse (εxx) internal strain components
as a function of the radius R of the cylindrical inclusion. Full and
dashed lines represent the continuum theory. We also show by dotted
lines the corresponding asymptotic values approached when the
interface-induced prestrain becomes negligible.

5.2.4 Solution of the continuum model through the complex variable method

In order to solve the model presented in Sec.5.2.2, we use the com-
plex variable method for the two-dimensional elasticity [31]. In each
homogeneous region of the xy-plane the displacement vector field
and the stress tensor field can be represented by means of a couple
of Kolossov-Muskhelishvili elastic potentials [83, 84, 193]. We assume
that the elastic state of a given homogeneous region α is exactly de-
scribed by two holomorphic functions φα(z) and ψα(z), where the
complex number z = x+ iy represents the position on the plane. The
Kolossov-Muskhelishvili equations allow for the determination of the
elastic fields in each region [193]

uα
x + i uα

y =
1

2µα
[χαφα(z) − z φ ′α(z) −ψα(z)] (5.23)

σα
xx + σα

yy = 2[φ ′α(z) +φ ′α(z)] (5.24)

σα
yy − σα

xx + 2 i σ
(α)
xy = 2[zφ ′′α(z) +ψ ′′

α(z)] (5.25)

where f is the conjugate of f while f ′ and f ′′ indicate the first and
the second derivative of the analytic function f, respectively. In our
model the phase with α = 1 corresponds to the matrix and the phase
with α = 2 corresponds to the inclusion. It means that φ1(z) and
ψ1(z) are defined for |z| > R1 and φ2(z) and ψ2(z) are defined for
|z| < R2. Moreover, the parameter χα introduced in Eq.(5.23) is given
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Figure 37: Longitudinal displacement uy(x,y) showing the behavior of the
elastic field across the inclusion (R = 10 nm). The continuum pre-
dictions (blue and green curves) have been obtained by imposing
x = xc, where xc corresponds to the center of the inclusion. The
atomistic data (red dots) represent the displacement in the set of
atoms having x ∈ (xc − ∆x, xc + ∆x) where ∆x = 1 nm. In order
to better detect the effect of the inclusion, we report the difference,
uy(xc,y) − 0.01y, between the longitudinal field and the uniform
applied displacement of 1% in the y direction.

by χα = 3− 4να under the assumed plane strain conditions [193]. The
solution of the elastic problem can be obtained by imposing the perfect
bonding at the interface described by the following continuity relations(

z+ u1
x + i u1

y

)
|z=R1eiθ =

(
z+ u2

x + i u2
y

)
|z=R2eiθ(

σ̂1 · ~n
)

|z=R1eiθ =
(
σ̂2 · ~n

)
|z=R2eiθ

These boundary conditions can be expressed in terms of the elastic
potentials:(

z+
1

2µ1
[χ1φ1 − z φ ′1 −ψ1]

)
|z=R1eiθ = (5.26)(

z+
1

2µ2
[χ2φ2 − z φ ′2 −ψ2]

)
|z=R2eiθ(

φ1 + z φ ′1 +ψ1

)
|z=R1eiθ = (5.27)(

φ2 + z φ ′2 +ψ2

)
|z=R2eiθ

The potentials φ2(z) and ψ2(z) can be represented by Taylor series
and φ1(z) and ψ1(z) by Laurent series [31, 32]. A detailed analysis of
the problem proves that the following simplified representations are
sufficient to solve the problem

ψ1(z) = µ1(ε∞yy − ε∞xx + 2iε∞xy)z+
H1

z
+
H3

z3
(5.28)

φ1(z) =
µ1(ε∞xx + ε∞yy)z

χ1 − 1
+
F

z
(5.29)

ψ2(z) = Az (5.30)

φ2(z) = Bz (5.31)
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The linear terms in φ1(z) and ψ1(z) represent the remotely applied
load described by an arbitrary strain with components ε∞xx, ε∞yy and
ε∞xy. The continuity relations given in Eq.(5.26) and Eq.(5.27) lead to
a linear system for the complex parameters H1, H3, F, A and B. The
parameters H1, H3 and F describe the elastic fields in the matrix around
the inclusion and can be eventually obtained as

<e {H1} = 4
µ1µ2 (R1 − R2)R2

1

2µ2R1 − µ1R2 + R2µ1χ2
(5.32)

+2

(
ε∞xx + ε∞yy

)
[R1µ2 (χ1 − 1) − R2µ1 (χ2 − 1)]µ1R

2
1

(2µ2R1 − µ1R2 + R2µ1χ2) (χ1 − 1)

=m {H1} = 0 (5.33)

<e {H3} =
R4

1µ1

(
ε∞yy − ε∞xx

)
(µ2R1 − µ1R2)

R1µ2χ1 + µ1R2
(5.34)

=m {H3} = 2
µ1R

4
1ε

∞
xy (µ1R2 − µ2R1)

R1µ2χ1 + µ1R2
(5.35)

<e {F} =
R2

1µ1

(
ε∞yy − ε∞xx

)
(µ2R1 − µ1R2)

R1µ2χ1 + µ1R2
(5.36)

=m {F} = 2
µ1R

2
1ε

∞
xy (µ1R2 − µ2R1)

R1µ2χ1 + µ1R2
(5.37)

The parameters A and B represent the uniform field in the cylindrical
inclusion

<e {A} =
R1µ1µ2

(
ε∞yy − ε∞xx

)
(χ1 + 1)

R1µ2χ1 + µ1R2
(5.38)

=m {A} = 2
µ1µ2R1ε

∞
xy (χ1 + 1)

R1µ2χ1 + µ1R2
(5.39)

<e {B} = 2
µ1µ2 (R1 − R2)

2µ2R1 − µ1R2 + R2µ1χ2
(5.40)

+

(
ε∞xx + ε∞yy

)
(χ1 + 1)R1µ2µ1

(2µ2R1 − µ1R2 + R2µ1χ2) (χ1 − 1)

=m {B} = 0 (5.41)

The knowledge of all the parameters allows us to obtain any component
of any elastic field by means of the Kolossov-Muskhelishvili Eqs.(5.23),
(5.24) and (5.25). It is possible to verify that, if we consider R1 = R2,
we exactly obtain the results of the Eshelby theory for a cylindrical
inclusion [45]. Our general solution takes into account both the effects
of the remotely applied loads and those induced by the different size
between the cylinder and the hosting hole (prestrain). If we suppose to
consider the case where no loads are applied to the system, we obtain
only two not vanishing parameters, namely <e {H1} and <e {B}. Indeed,
in both Eq.(5.32) and Eq.(5.40) only the first term is independent on the
applied loads. Therefore, the parameter <e {B} describes the uniform
isotropic compression inside the cylinder (internal prestrain) while
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<e {H1} describes the asymptotically vanishing (as 1/z) compression in
the matrix (external prestrain). By substituting the expression of <e {B}

(with no loads) in Eq.(5.23) we eventually obtain the internal isotropic
prestrain ε0 as

ε0 =
µ1 (χ2 − 1) (R1 − R2)

2µ2R1 − µ1R2 + R2µ1χ2
(5.42)

This equation has been used in the previous Section to obtain the fitting
of the atomistic prestrain fields through suitable values of the difference
∆R = R2 − R1.
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In this Chapter we report the key idea and a paradigmatic imple-
mentation of a new constitutive force field. Such a model is addressed
to the investigation of the mechanical behavior of complex materials
and systems at the nano-scale by exploiting the atomistic features of
condensed matter, but still conceiving the relevant elastic fields and
phenomena according to continuum mechanics.

In the context of atomistic simulations of complex systems, the force
field approach is one of the most utilized methodology. It refers to a
functional form (with a given set of parameters) adopted to describe the
total potential energy of a system of atoms. Typically, the mathematical
form of the potential function and the relative parameters are chosen in
order to fit both experimental data and ab-initio quantum mechanical
results, corresponding to the physical system under investigation. The
standard implementations of the force field models have been devoted The force fields in

molecular dynamicsto perform atomistic simulations of large complex systems such as
proteins (e.g. DNA and RNA) [194, 195] and other biological macro-
molecules. Therefore, the functional forms consider both covalent bonds
and long-range electrostatics and van der Waals interactions. The main
idea is that of introducing in the total potential energy several terms
describing independently different physical phenomena. The advan-
tage is that of controlling and modulating each physical contribution
without affecting the other ones. Moreover, a nontrivial characteris-
tic of these empirical models is the capability to reproduce the main
physical features of complex atomic interactions without considering a,
computationally very demanding, quanto-mechanical description.

Here, we adopt this conceptual scheme in order to introduce a force
field model for applications in the physics and mechanics of solids.
The key idea is that of developing a coarse graining procedure of the
physical information, thus reducing the otherwise over-rich interatomic
potentials nowadays available (see Section 4.2) into constitutive force
fields optimized to describing mechanical behaviors. More specifically,
we introduce a series of potential energy terms which model all the
features of the classical linear and nonlinear elasticity theory. This
approach allows us to lay the foundation of a virtual laboratory pri-
marily focussed to the applications in micro- and nano-mechanics. In
fact, in several fields ranging from the physics of the quantum dots
[177, 178, 179] to the mechanics of composite materials [111], it is very

125
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important to determine the actual strain and stress fields distributed
within micro- and nano-structures.

The development of this force field model in this context is essential
for two main reasons: firstly, the continuum elasticity theory is inher-
ently scale-independent while the elastic behavior of a nano-structure
does depend on the actual length scale. Therefore, it is important to
consider the real discretization of mass distribution in condensed mat-
ter systems i.e., the actual disposition of the atoms within a material
body. Secondly, it allows us to straightforwardly control the nonlinearThe tunable

nonlinear behavior of
the constitutive force
field

elastic effects which have shown a great importance in several topics
such as fracture mechanics [120, 121], interfacial phenomena [196, 197],
nanocomposite [87, 125] and graded structures [198]. Such nonlinear
effects are usually very difficult to be considered through the contin-
uum elasticity theory. Nevertheless, they can be simply introduced and
controlled in a force field model. In other words, we will be able to
construct a potential energy function for a discrete set of atoms corre-
sponding to an arbitrarily nonlinear constitutive equation, relating the
stress and the strain fields within a given medium. Moreover, we may
consider models of complex materials with several different phases
(each with a given constitutive relation) bonded at interfaces with arbi-
trary shape (modeling inclusions, precipitates, grain boundaries and
other heterogeneities) as in a sort of Atomistic Virtual Laboratory for
Nanomechanics applications.

6.1 the constitutive force field

The development of our force field is addressed to the atomic-scale
representation of the elastic behavior of a given material summarized in
its constitutive equation. In continuum elasticity theory the constitutive
equation can be obtained (within the Green formulation) from the strain
energy function giving the elastic energy accumulated per unit volume
of material (see Section 1.3 and, e.g., Ref. [31]). Such a function can be
expressed in terms of the second-order linear elastic moduli and of the
third-order nonlinear elastic moduli (Section 2.3.1). In the correspond-
ing atomistic model we introduce a sufficient number of interactions
so as to exactly reproduce the elastic behavior controlled by all the
linear and nonlinear elastic moduli. More specifically, we introduce
two-body interaction (described by axial springs with both harmonic
and anharmonic behavior) as well as three-body interaction (angular
springs having, as before, harmonic and anharmonic terms) and, pos-
sibly, many-body interactions. In fact, we have proved in Section 4.1
that a pure two-body force field describes the linear elastic behavior
of a material with a single elastic modulus. On the contrary, a force
field including both two-body and three-body interactions supplies the
minimal complexity required to provide results in formal agreement
with continuum elasticity theory, i.e., predicting the existence of two
independent linear elastic constants.

Following this conceptual scheme, we need to understand the effects
of any possible interaction between couples or groups of atoms on the
linear and nonlinear elastic properties of the overall system.

If we take into consideration a system of N interacting particles
the potential energy U must be a function of the vector distances
{~rαβ}α,β=1,...,N between each couple of atoms, i.e. U = U({~rαβ}α,β=1,...,N).
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For our purpose, it is convenient to develop this energy as a power
series

U = U0 +
∑

K
ij
αβγδ riαβ r

j
γδ

+
∑

K
ijk
αβγδζξ riαβ r

j
γδ r

k
ζξ + ... (6.1)

where riαβ (i = x,y, z) is the i−th coordinate of the vector distance

between the atom α and the atom β (U0, Kij
αβγδ, Kijk

αβγδζξ,... are con-
stants). This functional must show a minimum in a given configuration
of the N particles: in the following, we will indicate such a reference
configuration as {~r 0

αβ}α,β=1,N. Of course, this reference configuration
is defined but for an arbitrary roto-traslation of the particles system.

The elastic behavior of a material is described by the linear elastic
moduli Cij and by the nonlinear moduli Cijk. These are the coefficients
of the expansion in power series of the strain energy function U(ε̂) The nonlinear strain

energy function

U(~ε) ' 1

2
Cijεiεj +

1

6
Cijkεiεjεk (6.2)

As discussed in Section 4.3.2, for an atomic system, this strain energy
function can be easily obtained from the potential energy. In fact, if
the system is subjected to a uniform strain field ε̂, the vector distance
between the atom α and the atom β is given by ~rαβ = ~r0

αβ + ε̂ ~r0
αβ.

The strain energy function of this deformed system can be obtained
through the following substitution

U(ε̂) =
1

V
U({~r0

αβ + ε̂ ~r0
αβ}α,β=1,N) (6.3)

being V the volume of the system in reference configuration. By ap-
plying this rule to the interaction energy defined in Eq.(6.1) and by
expanding the obtained energy function in powers of ε̂ is easy to see
that each elastic modulus (Cij and Cijk) must be a linear functions of
the potential parameters Kij

αβγδ, Kijk
αβγδζξ... Therefore, generally speak-

ing, it is possible to obtain any elastic behavior by properly setting the
parameters of the potential. In conclusion, it is important to remark
that a linear relation exists between the set of parameters defining the
force field and the (linear and nonlinear) elastic constants describing
the mechanical behavior of the particles system.

In order to provide an effective picture of the above analysis, we
firstly take under consideration a simple harmonic spring with an
equilibrium length r0 between two interacting atoms placed in ~rα and
~rβ (see figure 38)

The harmonic
two-body interaction

U2b
h (rαβ; κh) =

1

2
κh(rαβ − r0)2 (6.4)

where h means harmonic, rαβ =| ~rαβ |=| ~rα −~rβ | and κh is the spring
constant. If we expand this interaction energy in the form of Eq.(6.1) all
the coefficients Kij

αβγδ, Kijk
αβγδζξ... will be simply proportional to the

spring constant κh.
If the system is subjected to a displacement field ~u, so that ~rαβ =

~r0
αβ +∆~uαβ being ∆~uαβ = ~u(~r0

α) − ~u(~r0
β), the corresponding potential

energy is

U2b
h (| ~r0

αβ +∆~uαβ |) =
1

2
κh(| ~r0

αβ +∆~uαβ | −r0)2 (6.5)
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Figure 38: Definitions of the main quantities introduced to describe the de-
formation of an atomic system. Given three atoms α,β and γ, one
can find the equilibrium positions ~r0α, ~r0β and ~r0γ, the corresponding
displacements ~u, the vector distances ~r0αβ, ~r0αγ and ~rαβ, ~rαγ, before
and after the deformation, respectively and, finally, the angles θ0

and θαβγ.

We can expand this function in powers of ~u, eventually obtaining

U2b
h =

1

2
κh

(
~nαβ ·∆~uαβ

)2
+ O(u3) (6.6)

being ~nαβ =
~r0

αβ

r0
. If the displacement field corresponds to a uniform

strain ε̂, it can be expressed as ∆~uαβ = ε̂ ~r0
αβ and the strain energy

function can be obtained through the rule in Eq.(6.3)

V U(ε̂) =
1

2
κh

(
~nαβ · ε̂ ~r0

αβ

)2
+ O(ε3) (6.7)

By comparing this result with Eq.(6.2), we can verify that the linear elas-
tic moduli Cij are proportional to the potential parameter κh. Moreover,
we can see that, through the O(ε3) term in Eq.(6.7), not explicited for
sake of brevity, the harmonic interaction affects also the nonlinear be-
havior, i.e. the Cijk moduli will be proportional to κh as well. Therefore,
if we are interested in a pure linear elastic system we can apply just the
second order term in Eq.(6.6), by obtaining a particularly simple linear
interaction potential. This consideration suggests to consider another
different contribution to the potential energy: we name this interaction
potential linearized spring and it assumes the form

The linearized
two-body interaction

U2b
l = L

[
1

2
κl

(
rαβ − r0

)2]
=
1

2
κl

(
~nαβ ·∆~uαβ

)2 (6.8)

where we have introduced a new spring constant kl (l means linear)
and the linearization operator L.

A similar analysis can be performed on the following 3-body har-
monic interaction

The harmonic
three-body interaction U3b

h (θαβγ;γh) =
1

2

γh

r0
2
(cos θαβγ − cos θ0)2 (6.9)

where cos θαβγ =
~rαβ·~rαγ

|~rαβ||~rαγ| is the cosine of the angle between the two
bonds of the atom α with the atoms β and γ (see figure 38) and θ0 is
the equilibrium angle of the 3-body interaction. In this case we get

U3b
h =

1

2

γh

r0
4

[
~nαβ ·∆~uαγ + ~nαγ ·∆~uαβ (6.10)

− cos θ0

(
~nαβ ·∆~uαβ + ~nαγ ·∆~uαγ

)]2
+ O(u3)
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As for the two body term in Eq. (6.6), the harmonic interaction intro-
duces both a linear and a nonlinear contribution to the strain energy
function. Therefore, a pure linear elastic interaction can be obtained by
applying to the dynamics the following linearized term

The linearized
three-body interaction

U3b
l = L

[
1

2

γl

r20

(
cos θαβγ − cos θ0

)2]

=
1

2

γl

r0
4

[
~nαβ ·∆~uαγ + ~nαγ ·∆~uαβ

− cos θ0

(
~nαβ ·∆~uαβ + ~nαγ ·∆~uαγ

)]2 (6.11)

Moreover, we may add other anharmonic terms:
The anharmonic
interactions

U2b
a (rαβ; κa) =

1

2
κa(rαβ − r0)3 (6.12)

U3b
a (θαβγ;γa) =

1

2

γa

r0
3
(cos θαβγ − cos θ0)3 (6.13)

which affects only the non linear behavior of the system.
As discussed in the next Section, the potential energy terms given

in Eqs.(6.8) and (6.11) (corresponding to the linearized springs), in
Eqs.(6.4) and (6.9) (corresponding to the harmonic springs) and in
Eqs.(6.12) and (6.13) (corresponding to the anharmonic springs) can
be superimposed for describing a complex behavior of the system of
particles. This procedure is followed in order to increase the number
of independent parameters and to produce the desired linear and
nonlinear elastic behavior of the resulting material. This idea is the
core of the present atomistic virtual laboratory based on the force
field methodology. The elastic moduli of such a system will be linear
combinations of the potential parameters κl, γl, κh, γh, κa and γa. If
necessary, in order to further increase the complexity of the potential
energy and the corresponding number of independent parameters,
four-body (e.g. dihedral angular springs) or, in general, many-body
interactions can be taken into account. In such a case, an analysis can
be performed similarly to the two-body and three-body interactions
discussed above. Finally, all the contributions to the force field can be
extended beyond the first nearest neighbor interaction including, e.g.,
second and third nearest neighbors.

6.2 the force field on a two-dimensional triangular lat-
tice

In this Section we show how the above formal setup is implemented in
order to build a force for a two-dimensional triangular lattice with any
possible linear and nonlinear elastic behavior.

6.2.1 Nonlinear elasticity of the triangular lattice

We consider now a triangular lattice of atoms (shown in Fig.39) be-
longing to the hexagonal crystal system. We search for the continuum
elastic properties of such a structure. To this aim, we apply the fun-
damental principle of crystal physics, known as Neumann’s principle,
namely: the symmetry elements of any macroscopic physical property
of a crystal must include the symmetry elements of the point group of
the crystal [199]. Since the strain energy function is invariant under a
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Figure 39: Scheme of a planar triangular lattice of atoms.

rotation of π/3 about the principal axis (normal to the lattice plane),
the above general statement leads to the following conclusion: there are
two linear moduli and three nonlinear independent elastic coefficients
[200]. In particular, we easily proved that

Nonlinear strain
energy function for
the two-dimensional
triangular lattice

U(ε̂) =
λ

2
[Tr(ε̂)]2 + µ Tr(ε̂2)

+ Λ1(εxx − εyy)[(εxx − εyy)2 − 12ε2xy]

+
1

2
Λ2Tr(ε̂)[2 Tr(ε̂2) − Tr(ε̂)2]

+
1

2
Λ3Tr(ε̂)3 (6.14)

where the nonlinear elastic moduli Λi, i = 1, 2, 3 can be expressed in
terms of the stiffness parameters Cijk in Eq.(6.2)

Λ1 =
1

12
(C111 − C222), Λ2 =

1

4
(C222 − C112),

Λ3 =
1

12
(2C111 − C222 + 3C112). (6.15)

These results means that the triangular lattice shows a linear isotropic
elastic behavior (described by the Lamé coefficients λ and µ) and an
anisotropic nonlinear elasticity characterized by three independent
elastic moduli Λ1, Λ2 and Λ3. In the special case with C111 = C222

we obtain a fully isotropic system. In fact, this nonlinear isotropic
condition leads to Λ1 = 0: in this case (as discussed in Section 7.1.1)
the strain energy function depends only on the strain invariants and,
as a consequence, it is fully invariant under arbitrary rotations. It
is also interesting to remark that the hexagonal symmetry and the
corresponding strain energy function given in Eq.(6.14) are exhibited
by monolayer graphene, as recently discussed [201].

6.2.2 Analysis and Synthesis of the elastic medium

In order to apply the constitutive force field approach to the triangular
lattice elasticity discussed in the previous Section, we consider a poten-
tial energy composed by two-body (U2b) and three-body (U3b) terms.
In each case we can introduced three different interactions, namely:

• linear: U2b
l and U3b

l reported in Eqs. 6.8 and 6.11 respectively

• harmonic: U2b
h and U3b

h reported in Eqs. 6.4 and 6.9 respectively

• anharmonic: U2b
a and U3b

a reported in Eqs. 6.12 and 6.13 respec-
tively
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governed by different spring parameters. The overall interaction poten-
tial is the following

Potential energy of
the constitutive force
fieldU = U0 +

1

2

∑
αβ

[
U2b

l (rαβ) + U2b
h (rαβ) +U2b

a (rαβ)
]

+
∑
αβγ

[
U3b

l (θαβγ) + U3b
h (θαβγ) + U3b

a (θαβγ)
]

(6.16)

where

U2b
l (r; κl) = L

[
1

2
κl (r− r0)2

]
U2b

h (r; κh) =
1

2
κh (r− r0)2

U2b
a (r; κa) =

1

3

κa

r0
(r− r0)3

U3b
l (θ;γl) = L

[
1

2

γl

r20
(cos θ− cos θ0)2

]

U3b
h (θ;γh) =

1

2

γh

r20
(cos θ− cos θ0)2

U3b
a (θ;γa) =

1

3

γa

r20
(cos θ− cos θ0)3 (6.17)

The analytical expressions giving the effects of each term in Eq.(6.16)
on each elastic moduli of the resulting system can be obtained by means
of a procedure similar to that reported in Section 4.1. In particular, we
have shown the calculation of the effects of two-body and three-body
harmonic interactions on the linear elastic parameters (Eq.(4.15) or
Eq.(4.16)). For the present mono-component triangular lattice interact-
ing with the force field in Eq.(6.16) the results of such a calculation
for the linear and the nonlinear elastic moduli are reported in Table
5. These moduli have been calculated with the (rather cumbersome)
algebra as in Section 4.1 and fully confirmed by a series of atomistic
simulations based on our force field.

We can also calculate the dependence of the Poisson ratio and of the
Young modulus from the force field parameters

ν2D =
1

3
−

4(γl + γh)

2(κl + κh) + 3(γl + γh)
(6.18)

and

E2D =
2
√
3

3
(κl + κh)

[
(κl + κh) + 9

2 (γl + γh)

(κl + κh) + 3
2 (γl + γh)

]
(6.19)

The relation in Eq.(6.18) confirms the general result that the Poisson
ratio of a system subjected to only two-body interactions is constant
(with value 1/3) while it can change if angular interactions are present.
Moreover, it is interesting to observe that the linear moduli ν2D and
E2D depend only on the sums κl + κh and γl + γh, which, therefore,
govern the linear elastic behavior of our system.
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Table
5:

Linear
and

nonlinear
stiffness

tensor
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ponents
C

1
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C
1
2 ,

C
1
1
1 ,
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2
2
2 ,
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1
1
2
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elastic
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Λ
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Λ

3
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planar

triangular
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in
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force
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2
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h
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1
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1
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3 √
3
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κ
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2
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3

3
2
γ
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√
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9 √
3
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γ
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√
34 κ
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9 √
3
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γ
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√
34 κ
l
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9 √
3
8
γ
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+
√
34 κ
h

+
9 √
3
8
γ
h

0
0

Λ
1

0
0

+
√
3
3
2
κ
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−
2
7 √
3

6
4
γ
h

−
√
3
4
8
κ
a

+
9 √
3

6
4
γ
a

Λ
2

0
0

+
√
38 κ
h

−
3
6 √
3

3
2
γ
h

+
√
34 κ
a

0

Λ
3

0
0

0
0

+
√
36 κ
a

0
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The results in Table 5 are summarized in the following equations
reporting all the linear and nonlinear elastic constants in terms of all
the contributions of the force field

C11 =
3
√
3

4
(κl + κh) +

9
√
3

8
(γl + γh)

C12 =

√
3

4
(κl + κh) −

9
√
3

8
(γl + γh)

C44 =
C11 − C12

2

C111 =
9
√
3

16
κh −

189
√
3

32
γh +

9
√
3

8
κa +

27
√
3

32
γa

C222 =
3
√
3

16
κh −

27
√
3

32
γh +

11
√
3

8
κa −

27
√
3

32
γa

C112 = −
5
√
3

16
κh +

117
√
3

32
γh +

3
√
3

8
κa −

27
√
3

32
γa (6.20)

This set of five relations (the third one corresponds to the Cauchy Macroscopic stiffness
as a function of the
potential parameters:
analysis of the model

relation for the isotropic linear behavior) solves the problem of the
analysis of the linear and nonlinear behavior of a lattice with given set
of parameters. The five elastic constants of an hexagonal bi-dimensional
lattice (C11, C12, C111, C222 and C112) are linear functions of the six
potential parameters introduced in the force field.

On the other hand, by inverting the system of equations (6.20) we
can obtain the potential parameters for any required elastic behavior.
In fact, a nonsingular system of five linear equations involving five
variables can be obtained by fixing, e.g., γa = 0. In such a case we get

κl =

√
3

3
C11 +

√
3

3
C12

+
38
√
3

9
C111 − 5

√
3C222 +

17
√
3

3
C112

γl =
2
√
3

27
C11 −

2
√
3

9
C12

+
32
√
3

81
C111 −

4
√
3

9
C222 +

4
√
3

9
C112

κh = −
38
√
3

9
C111 + 5

√
3C222 −

17
√
3

3
C112

γh = −
32
√
3

81
C111 +

4
√
3

9
C222 −

4
√
3

9
C112

κa =

√
3

3
C111 −

√
3

6
C222 +

√
3

2
C112 (6.21)

These relations solve the problem of the synthesis of the lattice with an Potential parameters
as a function of the
required macroscopic
stiffness: synthesis of
the model

arbitrary desired elastic behavior.
In Figs.40 one can find some examples of elastic behaviors synthetized

through the above procedure. In particular, two linear materials have
been generated: the first one (a) shows a standard positive Poisson ratio
and the second one (b) exhibits a negative Poisson ratio (see Section
1.3). Moreover, isotropic nonlinear behaviors are reported: the first case
(c) presents a longitudinal softening nonlinearity (C111 = C222 < 0)
while the second one (d) shows a longitudinal stiffening nonlinearity
(C111 = C222 > 0). For semplicity, the transversal behavior is stiffening
in both cases (C112 > 0). The possibility of controlling such softening
and stiffening properties is crucial, i.e., in the dynamics of fracture, as
discussed elsewhere [120, 121].
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Figure 40: Examples of elastic behaviors achievable through our force field: (a)
Isotropic linear, (b) Isotropic linear with negative Poisson ratio. (c)
Isotropic nonlinear softening, (d) Isotropic nonlinear stiffening.
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In this Chapter we show several applications of the constitutive force
field to the analysis of the elasticity of inhomogeneous materials. The
goal of such analysis is the characterization of the possible onset of
atomistic effects in the elastic behavior of complex systems where the
inhomogeneity shows up at the nano-scale. In other words, we want to
quantify the expected discrepancy between the mechanical behaviors
of macroscopic complex materials and those of similar nano-structures.

To this aim, we use the continuum theory as a framework for the
macroscale phenomena while force field-based simulations are con-
sidered in order to model at the atomic level the elastic behavior of
nano-materials.

7.1 nonlinear eshelby problem

As a first application of the constitutive force field approach described in
the previous Chapter, we show an atomistic investigation on the elastic
behavior of a single nano-inclusion embedded in a given matrix under
remote loading. The continuum mechanics supplies us the complete
solution for this paradigmatic configuration in two cases: the first one
considers a pure linear elastic behavior for both the inclusion and
the matrix (standard Eshelby theory developed in Section 2.1). In the
second case the hypotesis of linearity for the inclusion can be removed
by introducing an arbitrary nonlinear behavior (nonlinear Eshelby
theory in Section 2.3). These two situations have been studied through
our atomistic force field in order to investigate the effects at the nano-
scale of the discrete distribution of atoms on continuum-based results.
By varing the radius of the inclusions and by drawing a comparison
between the continuum and the atomistic results, we have quantified
the scale effects on both the linear and the nonlinear behavior of the
overall system. Moreover, we have used the atomistic model to study
the other two configurations that can not be analyzed through the

135
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continuum theory, namely: linear inclusion in nonlinear matrix and
nonlinear inclusion in nonlinear matrix.

In Sections 2.1 and 2.3 we have derived the Eshelby solutions of the
present problem for several shapes of the inclusion. Here, we consider
the case of a two-dimensional circular inclusion embedded in a planar
matrix. Accordingly to Section 1.2.3, from the continuum theory point of
view, this configuration corresponds to the case of a three-dimensional
cylindrical inclusion under plane strain conditions as well. Moreover,
the Eshelby solutions can be exactly evaluated under the hypothesis
of isotropic behavior of the involved materials. Consistently, such a
condition has been introduced also in the atomistic models exploiting
the capability of the constitutive force filed.

7.1.1 Isotropic elastic behavior

In this Section, we derive the nonlinear constitutive equation for a
two-dimensional isotropic material. In particular we show that, in such
a case, the nonlinear behavior is described by two independent elastic
moduli.

When the strain energy function is known, the constitutive equation
is derived as T̂ = ∂U

∂ε̂ . Following the same procedure reported in Section
2.3.2, if the system under consideration is isotropic the strain energy
function must depends only on the invariants of the tensor ε̂. As a
consequence, in the two-dimensional case, the following relation holds

U(ε̂) =
(

Tr(ε̂), Tr(ε̂2)
)

(7.1)

In this case the expansion, up to the third order, becomes
The isotropic
nonlinear strain
energy function

calU(ε̂) =
λ

2
Tr(ε̂)2 + µ Tr(ε̂2) + b Tr(ε̂)Tr(ε̂2) +

c
3

Tr(ε̂)3 (7.2)

where λ and µ are the Lamé constants describing the linear elasticity
of the medium, while the nonlinear behavior is modelled by the two
coefficients b and c, two-dimensional counterpart of the Landau coef-
ficients in Eq.(2.87). The Lamé constants can be expressed in terms of
the stiffness tensor components Cij

λ = C12 (7.3)

µ =
C11 − C12

2
= C44 (7.4)

We remark that, since the system is isotropic, the Cauchy relation
2C44 = C11 − C12 is always fulfilled. Moreover, the coefficients b and c
can be expressed in terms of the standard third order elastic moduli
Cijk through the following relations

b =
1

4
(C111 − C112) c =

3

4
(C112 −

1

3
C111) (7.5)

or, in terms of the three nonlinear coefficients λ1, λ2, and λ3 in Eqs.
(6.14) and (6.15) adopted to describe the nonlinear elasticity of the
hexagonal symmetry

b = Λ2 c =
3

2
(Λ3 −Λ2) (7.6)

As discussed in the previous Chapter, the isotropic condition implies
that Λ3 = 0. Finally, we note that the above system does not represent
any symmetry group of the crystal classification since all of them are
characterized by an anisotropic nonlinear elastic behavior [199].
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7.1.2 Eshelby theory for nonlinear inclusion in two-dimensional isotropic
systems

Here, we apply the nonlinear Eshelby theory described in Chapter 2.3
to the present case of a circular two-dimensional inclusion. The elastic
properties of the linear matrix are described by two Lamé coefficients
µ(1) and λ(1) or, equivalently, by the stiffness tensor Ĉ(1). Moreover, the
nonlinear elastic behavior of the inclusion is described by a constitutive
relation similar to Eq.(7.2) and by the following elastic constants: µ(2),
λ(2) (for the linear elasticity), b and c (for the nonlinear one). It means
that we adopt a nonlinear but isotropic circular inclusion. As above
discussed the Eshelby theory states that the Cauchy stress T̂ (2) and the
strain field ε̂(2) within the inclusion are related to the remotely applied
strain ε̂∞ through the relation

ε̂(2) − Ŝε̂(2) + Ŝ
(
Ĉ(1)

)−1
T̂ (2)(ε̂(2)) = ε̂∞ (7.7)

where Ŝ is the Eshelby tensor for a circular inclusion depending only on
the Poisson ratio of the host matrix. On the other hand, the constitutive
relation in Eq.(7.2) supplies us the following stress strain relation

T̂ (2)(ε̂(2)) = 2µ(2)ε̂(2) + λ(2)Tr(ε̂(2))Î

+2bTr
(
ε̂(2)

)
ε̂(2) + bTr

[
(ε̂(2))2

]
Î

+cTr2
(
ε̂(2)

)
Î (7.8)

By replacing Eq.(7.8) into Eq.(7.7) we obtain the implicit equation for
the internal field ε̂(2)

ε̂∞ = Aε̂(2) +BTr(ε̂(2))Î+CTr(ε̂(2))ε̂(2)

+DTr
[
(ε̂(2))2

]
Î+ ETr2

(
ε̂(2)

)
Î (7.9)

where

A = 1−
λ(1) + 3µ(1)

2(λ(1) + 2µ(1))

(
1−

µ(2))

µ(1))

)

B =
2(λ(2) − λ(1)) +

(
1− µ(2)

µ(1)

)(
λ(1) + µ(1)

)
4(λ(1) + 2µ(1))

C =
1

2µ(1)

λ(1) + 3µ(1)

λ(1) + 2µ(1)
b

D =
1

2

b
λ(1) + 2µ(1)

E =
1

2

c
λ(1) + 2µ(1)

−
λ(1) + µ(1)

4µ(1)

b
λ(1) + 2µ(1)

(7.10)

are constant parameters. In order to solve Eq.(7.9) for ε̂(2) (up to the
second order in ε̂∞), it is useful to calculate the quantities ε̂∞, Tr(ε̂∞)Î,
Tr(ε̂∞)ε̂∞, Tr

[
(ε̂∞)2

]
Î and Tr2 (ε̂∞) Î in terms of ε̂(2). They can be

arranged in matrix form as follows

ε̂∞
Tr(ε̂∞)Î

Tr(ε̂∞)ε̂∞
Tr
[
(ε̂∞)2

]
Î

Tr2 (ε̂∞) Î


= M



ε(2)

Tr(ε̂(2))Î

Tr(ε̂(2))ε̂(2)

Tr
[
(ε̂(2))2

]
Î

Tr2
(
ε̂(2)

)
Î


(7.11)
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where

M =



A B C D E

0 A+ 2B 0 2D C+ 2E

0 0 A(A+ 2B) 0 B(A+ 2B)

0 0 0 A2 2B(A+B)

0 0 0 0 (A+ 2B)2


(7.12)

By inverting the above system of equations and by focusing on the first
unknown we finally get the expression of the internal strain field ε̂(2)

as a function of the applied strain ε̂∞
Internal strain in
terms of the remotely
applied strain ε̂(2) =

ε̂∞
A

−
B

A(A+ 2B)
Tr(ε̂∞)Î

−
1

A2(A+ 2B)

(
CTr(ε̂∞)ε̂∞ +DTr

[
(ε̂∞)2

]
Î
)

+
2B(A+B)(C+D) − EA2

A2(A+ 2B)3
Tr2 (ε̂∞) Î (7.13)

This is the main result of the theory giving the uniform internal strain
in terms of the remotely applied strain. For the following analysis is
convenient to apply Eq.(7.13) for an applied homogeneous uniaxial
elongation corresponding to

ε̂∞ =

(
ε∞11 ε∞12

ε∞21 ε∞22

)
=

(
ε 0

0 0

)
(7.14)

being ε a constant representing the magnitude of the axial deformation.
In this case Eq.(7.13) assumes the form

The elastic coefficients
providing the internal
strain as a nonlinear
function of the
uniaxial applied load

ε̂(2) =

(
εl 0

0 εt

)
=

(
LIε+ LIIε2 0

0 TIε+ TIIε2

)
(7.15)

where we have introduced the simplified notations εl and εt to indicate
the longitudinal strain ε(2)

11 and the transverse strain ε(2)
22 , respectively

(see Fig.41). According to Eqs.(7.13) and (7.15), these two components of
the internal strain field are quadratic functions of the remotely applied
strain ε and the four corresponding coefficients, LI and TI for the linear
response and LII and TII for the nonlinear one, can be obtained as
follows

LI =
A+B

A(A+ 2B)
(7.16)

TI =
−B

A(A+ 2B)
(7.17)

LII =
−(C+D)(A2 + 2AB+ 2B2) − EA2

A2(A+ 2B)3
(7.18)

TII = −
A2(D+ E) + 2B(A+B)(D−C)

A2(A+ 2B)3
(7.19)

If the inclusion behavior is linear (i.e. b = 0 and c = 0) we get LII = 0

and TII = 0 and the original linear Eshelby result is recovered.
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Figure 41: Scheme of the matrix-inclusion system. After the remote application
of an uniaxial load ε we have computed both the longitudinal (εl)
and the transverse (εt) strain fields inside the inclusion.

7.1.3 Atomistic analysis of the Eshelby configuration

In order to analyze the Eshelby configuration from the atomistic point of
view, we have selected two different sets of parameters for the constitu-
tive force field described in Sec.6.2.2 so as to obtain two different elastic
media: a fully isotropic linear system, i.e. with C111 = C222 = C112 = 0,
and an isotropic nonlinear one, i.e. with C111 = C222. According to the
general scheme of Table 5, these requirements can be satisfied by several
sets of the potential parameters. In order to simplify the simulation
framework we have choosen to consider only 2-body terms in Eq.(6.16)
(we note that, generally speaking, the introduction of 3-body interac-
tions demands more computational resources than 2-body interactions).
As a consequence of this choice, both the systems show a fixed Poisson
ratio ν2d = 1

3 (see Eq.(6.18) and following comments). In particular,
we have set for the linear medium κl = K, κh = 0 and κa = 0 where The isotropic linear

atomistic modelK is a constant governing the stiffness of this first system. This setting
corresponds to the application of the only linear 2-body interaction.
As can be easily seen in Eq.(6.20), the resulting elastic behavior of the
medium is

Clin
11 =

3
√
3

4
K

Clin
12 =

√
3

4
K

Clin
111 = 0

Clin
222 = 0

Clin
112 = 0 (7.20)

In the interaction potential of the second system (the nonlinear
medium) we have set κl = 0, κh = K and κa = 3

2K where K is the The isotropic
nonlinear atomistic
model

constant governing the stiffness of the system. This means that the
interaction is here composed by an harmonic term (affecting both the
linear as the nonlinear elasticity) and an anharmoinc term (affecting
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the only nonlinear elasticity) tuned to obtain an isotropic nonlinear
behavior. In fact, in this case, the resulting elastic moduli are

Cnlin
11 =

3
√
3

4
K

Cnlin
12 =

√
3

4
K

Cnlin
111 =

9

4

√
3K

Cnlin
222 =

9

4

√
3K

Cnlin
112 =

√
3

4
K (7.21)

The isotropy is confirmed by the validity of the relation Cnlin
111 = Cnlin

222 .
Subsequently, different inclusion/matrix models have been obtained
by arranging the two above systems according to the geometry shown
in Fig.41. As a first case we have selected two linear media described
by the elastic properties in Eq.(7.20) with different values of K (Kmat

in the matrix and Kinc in the inclusion). This system has been utilized
to validate the linear version of the Eshelby theory. A second analysis
has been performed to investigate the case of a nonlinear inclusion in a
linear matrix. Therefore, we have selected for the inclusion a nonlinear
medium with elastic response given in Eq.(7.21) with K = Kinc as
stiffness parameter and for the matrix the linear medium described in
Eq.(7.20) with stiffness given by Kmat. Finally, we have also studied
the cases, not considered by the Eshelby theory, in which the matrix is
nonlinear.

In order to avoid the formation of a disordered interface at the bound-The interatomic
distance parameter in
the atomistic model

ary between the two phases and the resulting effects on the mechanical
behavior of the system [86], we have set the same equilibrium distance
r0 = 3.405 Å and the same crystallographic orientation for both the
inclusion and matrix materials. In these conditions we have no lattice
mismatches at the interface.

We have applied to the inclusion/matrix system described above a set
of uniaxial elongations in the longitudinal direction (see Eq.(7.14)) with
ε in the range (−0.01, 0.01). For each value of the deformation we have
calculated the internal longitudinal and transverse strain, as defined in
Eq.(7.15). In particular, for each deformed sample, we have computed
the displacement field inside the inclusion in the direction parallel to
the load (the longitudinal displacement u1(x1, x2)) and the displace-
ment field in the direction perpendicular to the load (the transverse
displacement u2(x1, x2)). Subsequently, by fitting these surfaces, we
have computed the longitudinal strain through the relation εl = ∂u1

∂x1

and the transverse strain through εt = ∂u2
∂x2

.
This analysis has been performed for different values of the elastic

contrast between matrix and inclusion defined as log2(Kmat/Kinc).
This definition implies that a positive contrast means that the matrix
is stiffer than the inclusion while a negative contrast means that the
matrix is softer than the inclusion. Moreover, all the simulations are
been repeated for several values of the radius R of the inclusion in order
to study the scale effects.

The theoretical model discussed in Sec.7.1.2 concerns a single in-
clusion embedded into an infinite matrix. Therefore, the conventional
Periodical Boundary Conditions (PBC), usually applied in the atomistic
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simulations to avoid the finite size effects induced by the free surfaces,
are in our case intrinsically inappropriate. So, in the present simulations
we have applied the Asymptotic Boundary Conditions (ABC). To this The Asymptotic

Boundary Conditionsaim, we have calculated for each sample, the theoretical displacement
field due to the applied remote deformation (ε∞) within an infinite
two-dimensional elastic matrix with a single inclusion, as predicted by
the Eshelby theory. Then, we have arranged all the atoms of a finite
square simulation box (of side length equal to twenty times the radius
R of the inclusion) according to this predicted displacement field. In
this configuration, the atoms near the boundaries are subjected to a
system of forces due to the free edges. We have therefore calculated
such a system of forces generated by the atomistic interaction model.
Finally, these values of forces have been applied, with opposite sign, to
the atoms near the boundaries (ABC) so as to obtain the equilibrium
state. After the application of the ABC, the system has been relaxed
through dumped dynamics in order to allow for the relaxation of the
internal degrees of freedom. The convergence criterion has been set so
as to have the final interatomic forces not larger than 10−10 eV/Å.

Atomistic validation of the linear Eshelby theory

In this first analysis we have investigated the basic case of a single
linear inclusion embedded into a linear matrix. The elastic behaviors
of the media in the two phases are represented by the Eq.(7.20) with
K = Kinc in the inclusion and K = Kmat in the matrix. At first, we have
calculated the internal strain components as function of the contrast
log2(Kmat/Kinc) for a radius of the inclusion R = 10 Å (corresponding
to 30 atoms). The results are reported in Fig.42. The uniformity of the
internal strain field is confirmed by the atomistic simulations with high
degree of accuracy.

The zero contrast data corresponds to a system with the same
medium inside and outside the inclusion (homogeneous material).
Therefore, as aspected in this case, the external strain field is equal to
the internal one (LI = 1, TI = 0). Interesting enough, when the contrast
is positive (i.e. when the inclusion is softer than the hosting matrix)
atomistic data show a behavior different from the continuum prediction
while, elsewhere, a perfect agreement between the two approaches is
present. As shown in Fig.43, such an atomistic effect increases with the
contrast.

The observed discrepancy between Eshelby prediction and atomistic
results has been analyzed by varying the radius of the inclusion. We
have found that such an atomistic effect disappears with the increasing The onset of atomistic

effectsradius (see Fig.44). Therefore, we attribute this effect to the discrete
(or atomistic) structure of the matter. The Eshelby theory can not take
into account this phenomenon since it is based on the elasticity theory
which is scale invariant by definition. From Figs.43 and 44 we deduce
that such scale effects are much more pronounced for the longitudinal
coefficient LI than for the transversal one TI.

Atomistic validation of the nonlinear Eshelby theory

By following the generalization of the Eshelby theory discussed in
Section 7.1.2, we take under consideration a nonlinear inclusion em-
bedded in a linear matrix from the atomistic point of view. To this aim,
we have considered for the inclusion medium the nonlinear isotropic
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Figure 42: Mechanical behavior of a linear inclusion embedded in a linear
matrix under remote load. The solid lines represent the Eshelby
prediction (Eqs.(7.16) and (7.17)) while the symbols correspond to
the atomistic results obtained for a radius of the inclusion R = 10

Å (30 particles).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

∆L
I , ∆

T
I  

log2(Kmat/Kinc)

∆LI

∆TI

Figure 43: Atomistic effects on the linear elastic behavior of the inclusion.
Differences ∆LI and ∆TI between the atomistic and continuum
result as a function of the elastic contrast.

force field represented by the Eq.(7.21) with K = Kinc. The matrix is
described by a linear material with K = Kmat as before (see Eq.(7.20)).
In Fig.45 we report the coefficients of the curves εl = LIε+ LIIε2 and
εt = TIε+ TIIε2 for several values of the elastic contrast at fixed in-
clusion radius (R = 10 Å). Also in this case we have observed a quite
perfect uniformity of the internal strain field.

By confronting these results with the corresponding fully linear case
reported in Fig.42, we can note that the coefficients LI and TI assume
exactly the same values. Also the linear atomistic scale effects are
identical in the two models. This means that any feature of the linear
part of the elastic behavior of the inclusion/matrix system is not affected
by the presence of a nonlinearity in the behavior of inclusion. With
respect to the nonlinear coefficients LII and TII we found, similarly
to the linear ones, a perfect agreement between atomistic and Eshelby
results if the inclusion is stiffer than the matrix (negative values of the
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Figure 44: Atomistic effects on the linear elastic behavior of the inclusion.
Linear coefficients LI (top panel) and TI (bottom panel) as a function
of the elastic contrast for several values of the inclusion radius. For
increasing radius the Eshelby results are recovered for each value of
the contrast.

contrast). On the other hand, atomistic effects are present in the case
of positive contrast, as shown in Fig.46 where the differences between
atomistic and continuum results are quantified. We observe that the
atomistic transversal nonlinear coefficient is practically coincident with
the theoretical results for any value of the contrast. On the countrary,
sizeable discrepancies have been found for the longitudinal coefficient.
As represented in Fig.47, these effects depend on the contrast and cancel The atomistic effects

depend on the elastic
contrast

out when the radius of the inclusion increases. Both for the linear and
nonlinear coefficients, we observe that the scale effects disappear for a
radius greater than 10 nm when the lattice constant is about 3.4 Å.

Scaling laws for the atomistic effects

We have shown through the previous simulations that for positive
contrast the Eshelby theory (both for linear and nonlinear behaviors) is
recovered only in the limit of very large radius R of the inclusion. In the
present Section, we show the results of the analysis of the scaling laws
that drive this phenomenon. In Fig.48 we report the atomistic results for
the longitudinal linear LI and nonlinear LII coefficients as a function
of R. We do not take into consideration the transversal coefficients TI

and TII since they show quite negligible scale effects creating some
difficulties in performing the statistical analysis. In order to give an
interpretation of the results, we have tested the following scaling power
law The hypothesis of

scaling power low
LI(R)

LI(∞)
= 1+

a

Rα
(7.22)
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Figure 46: Atomistic effects on the nonlinear elastic behavior of the inclusion.
Differences ∆LII and ∆TII between the atomistic and continuum
results as a function of the elastic contrast.

for the longitudinal linear scale effects, where a and α are the fitting
parameters. This choice implies the relation log10[LI(R)/LI(∞) − 1] =

log10 a− α log10 R which gives the meaning of angular coefficient to
−α when the bi-logarithmic scale is adopted. Similarly, we use the
representation

LII(R)

LII(∞)
= 1+

b

Rβ
(7.23)

for the longitudinal nonlinear scale effects, where b and β are the
fitting parameters. As before, the relation log10[LII(R)/LII(∞) − 1] =

log10 b−β log10 R allows us to define −β as the angular coefficient in
bi-logarithmic scale. Accordingly, in Fig.49, the quantities LI(R)/LI(∞)−

1 and LII(R)/LII(∞) − 1 are represented in bi-logarithmic scale versus
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Figure 47: Atomistic effect on the nonlinear elastic behavior of the inclusion.
Linear coefficients LII (top panel) and TII (bottom panel) as a func-
tion of the elastic contrast for several values of the inclusion radius.
For increasing radius the Eshelby result is recovered for each value
of the contrast.

the radius R of the inclusion. Then, a linear regression procedure has
been utilized to fit all the sets of data. As one can observe, the scaling
exponents α and β assume the quite constant value 1.1 both for linear
and nonlinear data. This result can be interpretated by assuming that The same scaling

exponent
α = β = 1.1 for
both linear and
nonlinear behavior

the linear and nonlinear behaviors of our elastic system belong to the
same universality class. The emergence of the power laws and of the
universality in our system can be attribuited to the fact that both linear
and nonlinear properties depend upon the same force field and the
same fundamental physical laws.

7.1.4 The inclusion problem beyond the Eshelby theory

Linear inclusion into nonlinear matrix

In this Section we consider the case of a linear inclusion embedded
into a nonlinear matrix. As a first step we take under consideration
the following setting of the potential parameters: the elastic behavior
of the inclusion is described by the Eq.(7.20) with K = Kinc while in
the matrix we apply the force field so as to obtain the elastic behavior
in Eq.(7.21) with K = Kmat. In Fig.50 we report the coefficients of
the curves εl = LIε+ LIIε2 and εt = TIε+ TIIε2 giving the internal
strain for several values of the elastic contrast at fixed inclusion radius
(R = 10 Å). In this case the uniformity of the internal strain field is not
demonstrated by the continuum theory but it has been, however, found
by atomistic simulations. By drawing a comparison between Fig.50 and
Fig.45, we discuss the following variations in the elastic behavior. When
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Figure 48: Atomistic effects on the elastic (longitudinal) behavior of the inclu-
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the inclusion is nonlinear the coefficients LII and TII have constant sign
independently from the contrast and they exhibit a minimum and a
maximum, respectively (see Fig.45). On the countrary, when the matrixFor some value of the

contrast, the
nonlinearity of the
matrix does not affect
the internal stain

is nonlinear it is remarkable to observe that two values of contrast exist
which cancel out the second order nonlinear effects in the longitudinal
and transversal direction, respectively (Fig.50).

As mentioned above, in this case a solution of problem within the
continuum theory does not exist. Therefore, we also analyze the elastic
behavior of the inclusion/matrix system by varying the nonlinearity
of the matrix. To this aim, we have considered again a linear inclusion
with elastic behavior represented by Eq.(7.20) with the stiffness constant
K = Kinc governing the linear elastic behavior of the inclusion.
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On the other hand, within the nonlinear inclusion we have set κl = K,
κh = K ′ and κa = 3

2K
′ where K and K ′ are constants. The resulting

elastic behavior of the matrix is the following

Cnlin
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3
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mat

Cnlin
12 =

√
3

4
Kl

mat

Cnlin
111 =

9

4

√
3Knl

mat

Cnlin
222 =

9

4

√
3Knl

mat
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112 =
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3

4
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mat (7.24)

where Kl
mat = K+ K ′ is the stiffness constant governing the linear

elasticity of the matrix and Knl
mat = K ′ is the constant governing its

nonlinear elastic behavior. Therefore, by varing the value of Knl
mat with
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Figure 50: Linear and nonlinear coefficients of the curves εl = LIε+ LIIε2 and
εt = TIε+ TIIε2 giving the internal longitudinal (εl) and transverse
(εt) strain as a function of the magnitude ε of the remote load. The
solid lines represent the linear Eshelby prediction while the symbols
indicate the atomistic simulation results obtained for an inclusion of
radius R = 10 Å.

respect to Kl
mat, we can achieve different levels of nonlinearity. In Fig.51

we report the atomistic results for the nonlinear coefficients LII (top)
and TII (bottom) versus the (linear) elastic contrast log2(Kl

mat/Kinc)

for different values of nonlinearity ratio Knl
mat/K

l
mat in the matrix. We

have not reported the results for the linear coefficients LI and TI since
they are not affected by the nonlinear features of both inclusion and
matrix; indeed, they assume the very same values reported in Fig.50. It
is interesting to underline that the longitudinal coefficient LII assumes
the value zero for a given linear contrast log2(Kl

mat/Kinc) for any
possible value of the nonlinear parameter Knl

mat of the matrix. The
same phenomenon has been observed for the transversal coefficient
TII.

Nonlinear inclusion into nonlinear matrix

In this Section we consider the case of a nonlinear inclusion embedded
into a nonlinear matrix. In a first numerical analysis, the elastic behavior
of both media is described by Eq.(7.21) with K = Kinc in the inclusion
and K = Kmat in the matrix. In Fig.52 we report the coefficients of the
curves εl = LIε+ LIIε2 and εt = TIε+ TIIε2 for several values of the
elastic contrast at fixed inclusion radius (R = 10 Å). In this case the zero
contrast value corresponds to a non linear but homogeneous material
(without inclusion). Therefore, we obtained LII = TII = 0 and LI = 1

for Kmat = Kinc as expected and shown in Fig.52.
As before, since this configuration is not easily handled by continuum

mechanics, we perform a more detailed analysis of the system with dif-
ferent nonlinearities for the hosting matrix. We have fixed the nonlinear
elastic behavior of the inclusion accordingly to Eq.(7.21) with K = Kinc.
Moreover, the matrix has been modelled by means of Eq.(7.24) where
the linear and nonlinear stiffness constants Kl

mat and Knl
mat modulate

the response of the system. In Fig.53 we show the atomistic results for



7.1 nonlinear eshelby problem 149

−2.5

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

−4 −3 −2 −1  0  1  2  3  4

L
II

log2(K
l
mat/K inc)

Knl
mat= Kl

mat   

Knl
mat= 0.5 Kl

mat

Knl
mat= 0.25 Kl

mat

Knl
mat= −0.25 Kl

mat

Knl
mat= −0.5 Kl

mat

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

−4 −3 −2 −1  0  1  2  3  4

T
II

log2(K
l
mat/K inc)

Knl
mat= Kl

mat   

Knl
mat= 0.5 Kl

mat

Knl
mat= 0.25 Kl

mat

Knl
mat= −0.25 Kl

mat

Knl
mat= −0.5 Kl

mat

Figure 51: Atomistic results for the nonlinear coefficients LII (top) and TII

(bottom) versus the (linear) elastic contrast log2(Kl
mat/Kinc) for

different values of nonlinearity ratio Knl
mat/K

l
mat in the matrix.

the nonlinear coefficients LII (top) and TII (bottom) versus the (linear)
elastic contrast log2(Kl

mat/Kinc) for different values of nonlinearity
ratio Knl

mat/K
l
mat in the matrix for a fixed radius R = 10Å. We have

not reported the results for the linear coefficients LI and TI since they
are not affected by the nonlinear features of both inclusion and matrix;
indeed, they assume the very same values reported in Fig.52. Inter-
esting enough, we observe that there is a value of the linear contrast The nonlinear

behavior of the
inclusion can be
independent from the
nonlinearityof the
matrix

log2(Kl
mat/Kinc) which generates a constant value of LII (see Fig.53,

top) for any nonlinearity of the matrix. It means that, in such a specific
condition, the nonlinear effects of the matrix are nullified. The same
behavior is also observed for the transversal coefficient TII (see Fig.53,
bottom).
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Figure 52: Linear and nonlinear coefficients of the curves εl = LIε+ LIIε2 and
εt = TIε+ TIIε2 giving the internal longitudinal (εl) and transverse
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7.2 nonlinear nano-composites

In Chapter 3, we have considered the linear and nonlinear elastic behav-
ior of heterogeneous materials composed by a dispersion of inclusions
with elastic properties different from the hosting matrix. In particular,
we have derived the expressions of the effective elastic properties of
such a composite in terms of the elastic moduli of its components, i.e.
of the homogeneous materials involved in the system. The applied
procedure is based on the homogeneization method and exploits the
nonlinear Eshelby solution for the elasticity of a single inhomogene-
ity. On the other hand, in the previous Sections we have investigated
through atomistic simulations the applicability of the Eshelby theory at
the nano-scale, finding and characterizing the onset of sizable atomistic
scale-effects. We are now interested in the evaluation of these effects on
the effective elastic behavior of nano-composites, i.e. on the elasticity of
a dispersion of nano-inclusions.

We note that the continuum theory prediction supply us the fol-
lowing qualitative result: the effective behavior of the composite only
dependents on the volume fraction v = Ve

V of the particles (see Fig.54).
Nevertheless, in order to investigate the effects of the size of the inho-
mogeneities, we have considered dispersions where the radius of the
inclusions is constant.

Figure 54: Scheme of a composite material. The inclusions exhibit a nonlinear
behavior while the matrix is considered as a linear medium. The
effective elastic behavior depends on the volume fraction v = Ve

V and
on the elastic features of the components.

Following the same procedures adopted in Section 7.1.3, we have
set the constitutive force field so to define, on a triangular lattice, two
elastically different media: an isotropic linear material for the matrix
and an isotropic nonlinear one for the inclusions. In particular, two
paradigmatic cases are considered: (i) the inclusion is twice stiffer than
the matrix (negative elastic contrast) and (ii) the inclusion is twice
softer than the matrix (positive elastic contrast). In fact, as observed
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in the previous Sections, the onset of the size-effects for the single
inhomogeneity depends on the sign of the elastic contrast.

Figure 55: Atomistic configuration of a dispersion of circular inclusions (red
atoms) arranged on a triangular lattice. In this sample, the volume
fraction is equal to v = 0.3.

7.2.1 Atomistic model of a dispersion of inclusions

We have arranged several samples of random dispersions of circular
inclusions with constant radius R ' 10 Å and 20 Å (see Figs. 55 and
56) by applying the following algorithm. We note that any possible
interface effects, similar to those observed in Section 5.2, are avoided
by choosing the same equilibrium distance (potential parameter r0) in
both media. The center of the inclusions are generated by means ofGeneration algorithm

for the dispersion
atomistic model

a uniform distribution. Each extraction is accepted only if it does not
induce overlapping of the new inclusion with the previously defined
ones. The procedure is stopped when the required volume fraction is
obtained. We have verified that such a technique, allow us to generate
samples with at most v ' 0.5 while the maximum value of the volume
fraction in the two-dimensional random dispersion (random close-
packing fraction) is v = 0.82 [202]. In order to approach this threshold
a different algorithm should be adopted. Nevertheless, the continuum
theory solutions are obtained in the limit of dilute dispersions and,
therefore, we have considered the range 0 < v < 0.5 appropriate for our
purposes.

By means of a set of suitable deformations we have computed theElastic behavior of the
dispersion model effective elastic moduli Ceff

11 , Ceff
22 , Ceff

12 , Ceff
44 , Ceff

111, Ceff
222, and Ceff

112
of the atomistic systems through interpolations of the corresponding
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Figure 56: Configuration of the circular inclusions (red atoms) in the random
dispersion arranged on a triangular lattice structure. In this sample,
we fix the radius R of each inclusion as large as 10 Å corresponding
to about 30 atoms.

stress/strain curves. In particular, we have applied (being (x,y) the
reference frame of the two-dimensional lattice):

• Uniaxial elongations in the x direction:

ε̂ =

(
εxx 0

0 0

)
(7.25)

The corresponding stress/strain curves have been fitted through

Txx = Ceff
11 εxx + Ceff

111ε
2
xx (7.26)

Tyy = Ceff
12 εxx + Ceff

112ε
2
xx

(7.27)

• Uniaxial elongations in the y direction:

ε̂ =

(
0 0

0 εyy

)
(7.28)

The corresponding stress/strain curves have been fitted through

Txx = Ceff
12 εyy + Ceff

112ε
2
yy (7.29)

Tyy = Ceff
22 εyy + Ceff

222ε
2
yy
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Table 6: Linear and nonlinear stiffness tensor components describing the effec-
tive elastic behavior of an atom-resolved dispersion of inclusions. The
data are obtained by fitting the stress/strain curves in Eqs.(7.26), (7.29)
and (7.31) for a sample composed by 100 inclusions corresponding to a
volume fraction v = 0.05

Ceff
11 Ceff

22 Ceff
12 Ceff

44 Ceff
111 Ceff

222 Ceff
112

0.2147 0.2148 0.07162 0.07156 0.0118 0.0123 0.00128

• Shear deformations:

ε̂ =

(
0 εxy

εxy 0

)
(7.30)

The corresponding stress/strain curve has been fitted through

Txy = Ceff
44 εxy (7.31)

We note that we have considered a possible linear anisotropy by intro-
ducing the components Ceff

22 6= Ceff
11 in Eq.(7.29). In fact, by means of theTesting of the

isotropy of the
dispersion model

set of deformations in Eqs.(7.26), (7.29) and (7.31), we have also verified
if the size of the sample is statistically meaningful. This correspond
to check if the population of inclusions is large enough to consider
the overall system as a random structure. In such a case, the effective
elastic response must exhibit an isotropy behavior and, therefore, the
conditions

Ceff
11 = Ceff

22 (7.32)

2Ceff
44 = Ceff

11 − Ceff
12 (7.33)

Ceff
111 = Ceff

222 (7.34)

must hold. In Table 6, we report the results of the above fitting proce-
dure for a sample with 100 inclusion of radius R = 10Å corresponding
to a volume fraction v = 0.05. We can verify that this number of inclu-
sions is large enough to obtain the isotropy with an error within 1%. In
fact, we obtain(

Ceff
22 − Ceff

11

)
/
Ceff

22 + Ceff
11

2
= 0.0004

Moreover, we get from the shear deformation 2Ceff
44 = 0.14313 while the

Cauchy relation in Eq.(7.33) supplies us 2Ceff
44 = Ceff

11 − Ceff
12 = 0.14314.

As for the nonlinear isotropy we find(
Ceff

222 − Ceff
111

)
/
Ceff

222 + Ceff
111

2
= 0.01

In Fig.57 we report the stress/strain curves corresponding to the uni-
axial elongations along the x and y directions. We easily verify the
isotropic behavior by observing that the differences between the longi-
tudinal responses Txx(εxx) and Tyy(εyy) and between the transversal
responses Txx(εyy) and Tyy(εxx) are not detectable. The obtained
isotropic behavior of the samples allows us to describe their effective
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Figure 57: Stress/strain curves for a disperison containing 100 inclusions of
radius R = 10 Å with a volume fraction v = 0.05. The empty symbols
correspond to a uniaxial elongation in the x direction (Txx(εxx) and
Tyy(εxx)) while the full symbols correspond to a uniaxial elongation
in the y direction (Txx(εyy) and Tyy(εyy)). The system exhibits an
isotropic behavior: both longitudinal (square symbols) and transver-
sal (triangular symbols) responses in the two directions are not
distinguishable.

elasticity by means of a strain energy relation similar to that in Eq.(7.2),
namely

U(ε̂) =
Keff − µeff

2
Tr(ε̂)2 + µ Tr(ε̂2) (7.35)

+beff Tr(ε̂)Tr(ε̂2) +
ceff

3
Tr(ε̂)3

where only two linear (Keff and µeff) and two nonlinear (beff and ceff) Effective elastic
moduliindependent elastic moduli are involved. These can be obtained from

the stiffness components Ceff
11 , Ceff

12 , Ceff
111, and Ceff

112 by means of Eqs.
(7.3), (7.4) and (7.5) (considering also that λeff = Keff − µeff).

7.2.2 Atomistic versus continuum results

In Section 3.3 we have derived the continuum theory prediction for
the elastic behavior of a dispersion of parallel cylinders under plane
strain conditions (Eqs. (3.68)-(3.73)). In particular, we have reported
the effective nonlinear Landau moduli Aeff, Beff, Ceff, and Deff

describing the Cauchy elasticity (see Section 2.3.1) in three-dimensions.
From such a solution we can easily obtain the predictions for the present
situation, where the nonlinear behavior is represented by beff and ceff.
In fact, we can consider that if a strain energy function is present
(Green elasticity developed in Section 2.3.1) the relation Deff = 2Beff
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is satisfied. Moreover, the definitions of the two-dimensional coefficients
beff and ceff imply the following relations

beff = Beff +
Aeff

2
ceff = Ceff −

Aeff

2
(7.36)

which furthermore reduce the number of the independent moduli. In
this Section we compare the continuum predictions with the corre-
sponding data obtained by means of the above discussed atomistic
model. As for the linear moduli Keff and µeff we also report the
Hashin-Shtrikman variational bounds [99, 100]The

Hashin-Shtrikman
variational bounds F(K1,K2, 1− v, v,µmin) < Keff < F(K1,K2, 1− v, v,µmax) (7.37)

F(µ1,µ2, 1− v, v,µmin) < µeff < F(µ1,µ2, 1− v, v,µmax) (7.38)

where (K1, µ1) and (K2, µ2) are the elastic moduli of the matrix and of
the inclusions, respectively, and µmax (µmin) is the largest (smallest)
shear modulus between µ1 and µ2. Moreover

F(a1,a2, v1, v2,a) = v1a1 + v2a2 −
v1 v2(a1 − a2)2

v2a1 + v1a2 + a

We also note that if v is the volume fraction of the inclusions then 1− v
is the volume fraction of the matrix.

Case 1: The inclusions are stiffer than the matrix (negative contrast)

The first considered case deals with a dispersion of circular inclusions
twice stiffer than the surrounding matrix. In Fig. 58, we report the
atomistic data and the continuum predictions for the effective shear
and bulk moduli. We also plot the Hashin-Shtrikman bounds computed
by means of Eqs. (7.37) and (7.38). The atomistic data are obtained from
a sample where the radius of the inclusions is R = 10 Å. By comparing
the results in Fig. 48, we can note that such a value is in a range where
possible scale-effects are pronounced. In any case, we can observe that
both the effective elastic properties (bulk and shear moduli) of the
atomistic model are in good agreement with the continuum predictions.
If a vary small discrepancy is present, it does not induce any violation
of the Hashin-Shtrikman bounds. This is consistent with the conclusions
obtained in Section 7.1: we didn’t found any scale-effect if the inclusions
are stiffer than the matrix. The same considerations hold for the effective
nonlinear elastic properties reported in Fig. 59.

On the other hand, by comparing the reported data, we note anotherThe continuum
predictions are well
verified also for large
values of the volume
fraction

(unexpected) result. As discussed in Chapter 3, the homogenization
method supplies us the solution under the hypothesis of dilute disper-
sion. Therefore, we expect to see a validity breakdown of the continuum
formulas for large values of the volume fraction, i.e. out of the range
of their derivation. Interesting enough, the atomistic data prove that
also for the very high value v = 0.5 the continuum predictions are well
verified.
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Figure 58: Effective shear (top) and bulk (bottom) moduli of a dispersion of
circular inclusions of radius R = 10Å. The results correspond to
the case of negative elastic contrast, i.e. the inclusions are stiffer
than the matrix (Case 1). We report the atomistic data (pluses) and
the corresponding continuum results (crosses) as functions of the
volume fraction. The dashed lines represent the Hashin-Shtrikman
bounds.
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Figure 59: Effective nonlinear elastic properties (beff in the top panel and
ceff in the bottom panel) of a dispersion of circular inclusions of
radius R = 10Å. The results correspond to the case of negative elastic
contrast, i.e. the inclusions are stiffer than the matrix (Case 1). We
report the atomistic data (pluses) and the corresponding continuum
results (crosses) as functions of the volume fraction v. The dashed
lines represent the elastic moduli of the medium in the inclusions.
In the limit v → 1 the effective moduli of the dispersion approach
those of the inclusions.
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Case 2: The inclusions are softer than the matrix (positive contrast)

In this second case, we consider a dispersion of inclusions twice softer
than the surrounding matrix. In Fig. 60, the effective linear elastic prop-
erties are reported for R = 20 Å. In this case, we have verified that
the samples with R = 10 Å exhibit an effective elastic behavior out of
the range predicted by the Hashin-Shtrikman bounds. In order to find
atomistic data consistent with such limitations we have to consider a
larger radius of the inclusions. A similar effect is evident in the data
reported in Fig.61 as well. The discrepancy between atomistic data and
the corresponding continuum prediction is remarkable and decreases
when R increases. Again, this is consistent with the conclusions of Sec- Scale-effects in the

dispersion elasticity if
the inclusions are
softer than the matrix

tion 7.1: positive values of the elastic contrast induce a size-dependence
of the elastic behavior.

In conclusion, we have proved that the size-effect observed in the
atomistic simulation of a single inhomogeneity embedded in a stiffer
matrix (Section 7.1) induce the onset of similar effects also in the elastic
behavior of the dispersion. This result represents an meaningful exam-
ple of a nano-scale phenomenon that carries out a macroscopic behavior
unpredictable through the continuum theory approach. These effects
turn out to be rather sizable and, as a consequence, their evaluation
could play a crucial role in engineering and properly characterizing the
elastic behavior of nanocomposite meterials.
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Figure 60: Effective shear (top) and bulk (bottom) moduli of a dispersion of
circular inclusions of radius R = 10Å. The results correspond to
the case of positive elastic contrast, i.e. the inclusions are softer
than the matrix (Case 2). We report the atomistic data (pluses) and
the corresponding continuum results (crosses) as functions of the
volume fraction. The dashed lines represent the Hashin-Shtrikman
bounds.
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Figure 61: Effective nonlinear elastic properties of a dispersion of circular
inclusions of radius R = 10Å: parameter beff in the top panel and
paramter ceff in the bottom panel . The results correspond to the
case of positive elastic contrast, i.e. the inclusions are softer than
the matrix (Case 2). We report the atomistic data (pluses) and the
corresponding continuum results (crosses) as functions of the volume
fraction v. The dashed lines represent the elastic moduli of the
medium in the inclusions. In the limit v → 1 the effective moduli of
the dispersion approach those of the inclusions.





C O N C L U S I O N S

In this PhD thesis we have investigated the linear and nonlinear elastic
behavior of nanocomposite materials both from the continuum and
the atomistic point of view. As for the main advances on the elasticity
theory, we have solved (Section 2.2) the problem of the elastic behavior
of a prestressed single inclusion. This solution has been obtained as
a meaningful generalization of the elegant Eshelby theory. A further
generalization of such a theory has taken into account the elastic be-
havior of a nonlinear inclusion (Section 2.3). In particular, we have The elastic fields into

a single nonlinear
inclusion are uniform

proved that the elastic fields inside the inclusion are uniform also if a
non Hookean constitutive equation (i.e. nonlinear) is considered [87]
(the standard Eshelby theory provides this result only under the linear
hypothesis). Successively, we have considered a typical nanocomposite
structure, i.e. a dispersion of nonlinear inhomogeneities (spheres or
parallel cylinders) embedded into a host matrix with different elastic
properties (Chapter 3). The previous result for a single nonlinear inclu-
sion has been analytically applied to perform a linear and nonlinear
micromechanical averaging of the elastic fields into the composite struc-
ture. Thus, a complete homogenizing procedure is provide, yielding
the mechanical behavior of the solid body at the macro-scale in terms
of the properties of its constituents [125]. In such a way, we have proved
that the nonlinear effective elastic moduli, contrarily to the linear ones,
are not subjected to specific bounds which limit their values when the
behaviors of the constituents are chosen. We have indeed found some Amplifications of the

nonlinear behavior in
composite materials

strong amplifications of the nonlinear behavior in certain given condi-
tions. More specifically, we have observed that the nonlinear effective
moduli of the heterogeneous structure can assume values much greater
than those of the constituents if the matrix is much more incompressible
than the inhomogeneities. This is a crucial point that can be applied in
analyzing and designing composite materials with a given microstruc-
ture. Finally, some special values of the Poisson ratio of the materials
have been found in order to obtain a direct correspondence among the
nonlinear moduli of the inhomogeneities and the effective moduli of
the composite structure. It means that, under the above conditions, we
can realize a perfect scaling of the nonlinear properties (see Eq.(3.43) or
(3.75)) modulated by the ratio E1/E2 between the Young moduli of the
constituents.

We have also considered a series of atomistic investigations on Si-
based nanostructures devoted to the analysis of the interface elasticity
at the nanoscale (Chapter 5). We provided a full picture regarding the
elastic fields across a planar interface. These results have been applied Elasticity of a planar

a-Si/c-Si interfaceto a qualitative, as much as quantitative, description of the elastic behav-
ior of the atomistic model of a flat interface between c-Si and a-Si [174].
Moreover, we have described several atomistic simulations performed
to investigate the elastic behavior of a c-Si inclusion embedded in a
differently oriented c-Si matrix [86]. In particular, we have described the
effects of the presence of a prestrain, which is experimentally observed
in many real cases [180]. In addition, we have analyzed the elastic
strain field in the system both with and without a remotely applied
external loading. We have proved that the above generalization of the

163
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standard Eshelby theory (with a simple hydrostatic prestrain inside the
inclusion) is sufficient to correctly describe the overall elastic behavior
of the embedded structure. In this work we have focused on a circular
shape of the inclusion: of course, both the analytical model and the com-
putational procedure can be generalized in order to take into account
an elliptic shape with arbitrary aspect ratio. Moreover, it is important
to remark that our results have been obtained for the crystalline silicon,
but they can be transferred to other covalently bonded materials as
well and, more generally, to brittle and ceramic systems. As for the
applications, we underline that this investigation can be directly used
to analyze the generation of prestrain during the embedding or the
self-assembling of nanoparticles, such as quantum dots and quantum
wires, in a matrix with different structure and physical properties. In
particular, we have introduced and discussed the phenomenon of thePrestress-induced

localization of the
effect of
inhomogeneities on
the elastic fields

localization of the elastic fields in the neighborhood of the inclusion,
modulated by the actual prestrain.

In the third Part of the thesis, we have developed a procedure for the
analysis and the synthesis of an atomistic model of materials with a
given linear and nonlinear macroscopic elastic properties (Chapter 6).
The procedure is based on a constitutive force field with a given set ofA novel constitutive

force field for
nonlinear elasticity of
complex materials

parameters directly related (linearly) to the second order and the third
order elastic constants of the overall structure. The synthesis of a model
with a desired linear and nonlinear elastic response is very simple and
it allows to create both softening and stiffening behaviors, very useful
for many practical applications. In particular, we have described the
implementation of the force field on a two-dimensional lattice: the gen-
eralization to some three-dimensional ones (e.g. cubic or thetraedral)
can be made straightforwardly. The development of the force field has
been based on the understanding of the role of the atomistic interaction
model in predicting the macroscopic elastic features [132]. From the lin-
ear point of view we have verified that two-body force fields provide an
elastic picture that is not consistent with continuum mechanics, because
they describe the linear elastic behavior of the material with only one
elastic modulus (i.e. fixed Poisson ratio). On the contrary, force fields
including both two-body and three-body interactions provide results in
formal agreement with continuum elasticity theory, i.e., they predict
the existence of two independent linear elastic constants. Moreover,
from the nonlinear point of view, we proved that an ad hoc combination
of anharmonic terms and angular springs allows the setting of all the
third order elastic constants.

We have utilized the constitutive force field to investigate the elastic
behavior of the Eshelby configuration with different properties of the
matrix and the inclusion (Section 7.1). The case of a fully linear matrix
with a nonlinear inclusion can be handled through continuum mechan-
ics, with a specific mathematical procedure discussed in the text. In fact,
we have utilized this first case to check the validity of our atomistic
model and to analyze the scale effects induced by the discretization of
the matter (i.e. by the actual disposition of the atoms within the bodies).
In particular, we have found a deviation from the continuum theoryCharacterization of

atomistic size-effects
in the elastic behavior
of nano-inclusions:
power laws and
scaling exponents

results for inclusions with radius smaller than about 10 nm; we have
also verified the emergence of some power laws and their universality
(with a scaling exponent equal to about 1.1), driving the scale effects in
the range from 5 Å to 60 Å. The more complex case deals with a nonlin-
ear matrix: it is now very difficult to find exact results by means of the
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elasticity theory and, therefore, the atomistic simulations becomes the The constitutive force
field beyond the
Eshelby theory results

most important tool to analyze the elastic behavior of the system. We
have therefore investigated the elastic response of the inclusion (both
elastically linear and nonlinear) for different kinds of nonlinearities
describing the elasticity of the matrix.

Finally, the constitutive force field approach has been applied to the
effective elastic behavior of a dispersion of nonlinear inhomogeneities
(Section 7.2). We have verified the onset of the same size-effects induced Size-effects in

nanocomposites
elasticity

by the atomic structure in a single nano-inclusion. Consistently with
such results, the size-dependence is present, at the nanoscale, when the
inclusions are softer than the hosting matrix. On the other hand, when
the inclusion is stiffer than the matrix, the continuum-based results
on the composite nonlinear elasticity exhibit a surprising capability The homogeneization

procedure provides
meaningful results
also for the elasticity
of a non dilute
dispersion

in predicting the effective properties of the complex medium also for
high concentration of the inclusions, i.e. also far from the hypothesis of
dilute dispersion involved in the theory.





Part IV

A P P E N D I X





AA N A LY T I C A L D E V E L O P M E N T S

a.1 analytical expressions of the eshelby tensor

We report, for the sake of completeness, the analytical expressions of
the Eshelby tensor for different geometries of the inclusion.

Ellipsoid

Let start with an ellipsoidal shape with the three principal axes of
lengths a1 > a2 > a3 > 0. The reference frame is fixed do that the
axes x1 = x, x2 = y, x3 = z are aligned with the ellipsoidal axes. We
introduce also the so-called aspect ratios e and g, defining the shape of
the ellipsoid, so that 0 < e = a3/a2 < 1 e 0 < g = a2/a1 < 1. We firstly
report the depolarization factors [70]

I3 =
4π

1− e2
−

4πe(
1− e2

)√
1− e2g2

E (v,q) (A.1)

I2 =
4πe

(
1− e2g2

)(
1− e2

) (
1− g2

)√
1− e2g2

E (v,q)

−
4πeg2(

1− g2
)√

1− e2g2
F (v,q) −

4πe2

1− e2
(A.2)

I1 =
4πeg2(

1− g2
)√

1− e2g2
[F (v,q) − E (v,q)] (A.3)

where

v = arcsin
√
1− e2g2 (A.4)

q =

√
1− g2

1− e2g2
(A.5)

while, the incomplete elliptical integrals of first and second kind are
defined as [203, 204]

F(v,q) =

v∫
0

dα√
1− q2 sin2 α

=

sin v∫
0

dx√(
1− x2

) (
1− q2x2

) (A.6)

E(v,q) =

v∫
0

√
1− q2 sin2 αdα =

sin v∫
0

√
1− q2x2
√
1− x2

dx (A.7)
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Moreover, we introduce the following parameters

I12 =
I2 − I1
1− g2

I13 =
I3 − I1
1− e2g2

I23 =
I3 − I2

g2
(
1− e2

) (A.8)

I11 =
1

3

I1
(
e2g4 − 2e2g2 − 2g2 + 3

)
+ I2g

2
(
e2g2 − 1

)
+ I3e

2g2
(
g2 − 1

)(
1− g2

) (
1− e2g2

)
I22 =

1

3

I1
(
1− e2

)
+ I2

(
2e2g2 − 3g2 + 2− e2

)
+ I3e

2
(
g2 − 1

)
g2
(
1− e2

) (
1− g2

)
I33 =

1

3

I1
(
1− e2

)
+ I2

(
1− e2g2

)
+ I3

(
1− 2e2g2 + 3e4g2 − 2e2

)
e2g2

(
1− e2

) (
1− e2g2

)
The Eshelby tensor, within the Voigt notation, can be expressed in the
form

S̃ =

[
M 0

0 N

]
(A.9)

The matrix M and O can be obtained by means of

M =


3I11+(1−2ν)I1

8π(1−ν)
g2I12−(1−2ν)I1

8π(1−ν)
e2g2I13−(1−2ν)I1

8π(1−ν)
I12−(1−2ν)I2

8π(1−ν)
3g2I22+(1−2ν)I2

8π(1−ν)
e2g2I23−(1−2ν)I2

8π(1−ν)
I13−(1−2ν)I3

8π(1−ν)
g2I23−(1−2ν)I3

8π(1−ν)
3e2g2I33+(1−2ν)I3

8π(1−ν)


(A.10)

N =

 N11 0 0

0 N22 0

0 0 N33

 (A.11)

where

N11 =

(
1+ g2

)
I12 + (1− 2ν) (I1 + I2)

8π (1− ν)

N22 =
g2
(
1+ e2

)
I23 + (1− 2ν) (I2 + I3)

8π (1− ν)
(A.12)

N33 =

(
1+ e2g2

)
I13 + (1− 2ν) (I1 + I3)

8π (1− ν)

In the following, the expressions of the Eshelby tensors for the limit-
ing cases of sphere, cylinders, flat elliptic inclusion, and for oblate and
prolate spheroids are reported.
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Sphere

S̃ =



1
15

7−5ν
1−ν

1
15

5ν−1
1−ν

1
15

5ν−1
1−ν 0 0 0

1
15

5ν−1
1−ν

1
15

7−5ν
1−ν

1
15

5ν−1
1−ν 0 0 0

1
15

5ν−1
1−ν

1
15

5ν−1
1−ν

1
15

7−5ν
1−ν 0 0 0

0 0 0 2
15

4−5ν
1−ν 0 0

0 0 0 0 2
15

4−5ν
1−ν 0

0 0 0 0 0 2
15

4−5ν
1−ν


(A.13)

Cylinder

If the axis of the cylinder is aligned with x1 = x, we find

S̃ =



0 0 0 0 0 0

1
2

ν
1−ν

1
8

5−4ν
1−ν

1
8

4ν−1
1−ν 0 0 0

1
2

ν
1−ν

1
8

4ν−1
1−ν

1
8

5−4ν
1−ν 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
4

3−4ν
1−ν 0

0 0 0 0 0 1
2


(A.14)

Elliptical cylinder

If the cylinder is aligned along the x1 = x axis and being e the aspect ra-
tio of the base ellipse, we find, in the notation of Eq. (A.9) the following
expressions for M ed N

M =


0 0 0

eν
(1+e)(1−ν)

1
2(1−ν)

[
e2+2e

(1+e)2 +
e(1−2ν)

(1+e)

]
1

2(1−ν)

[
e2

(1+e)2 −
e(1−2ν)

(1+e)

]
ν

(1+e)(1−ν)
1

2(1−ν)

[
1

(1+e)2 −
(1−2ν)
(1+e)

]
1

2(1−ν)

[
1+2e

(1+e)2 +
(1−2ν)
(1+e)

]


(A.15)

N =


e

1+e 0 0

0 1
2(1−ν)

[
1+e2

(1+e)2 + 1− 2ν

]
0

0 0 1
1+e

 (A.16)

Elliptical flat (or penny-shaped) inclusion

If the ellipse is arranged on the (x1, x2) , we get

S̃ =



0 0 0 0 0 0

0 0 0 0 0 0

ν
1−ν

ν
1−ν 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(A.17)
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Rotational ellipsoids

Assuming x3 = z as the rotation axis, we can express the Eshelby tensor
in the following simplified form

S̃ =



S1111 S1122 S1133 0 0 0

S1122 S1111 S1133 0 0 0

S3311 S3311 S3333 0 0 0

0 0 0 S1111 − S1122 0 0

0 0 0 0 2S1313 0

0 0 0 0 0 2S1313


(A.18)

The elements of this a tensor can be calculated by means of the depo-
larization factor

L =
e

2

+∞∫
0

dξ

(ξ+ 1)2
(
ξ+ e2

)1/2
(A.19)

=


e

4
(√

e2−1
)3

[
2e
√
e2 − 1+ ln e−

√
e2−1

e+
√

e2−1

]
if e > 1

e

4
(√

1−e2
)3

[
π− 2e

√
1− e2 − 2 arctan e√

1−e2

]
if e < 1

The cases e < 1 and e > 1 correspond to the oblate ellipsoids (minor
axis aligned along the rotation direction) and to the prolate ellipsoids
(major axis aligned along the rotation direction), respectively. Finally,
the components of Ŝ are

S1111 =
1

8

13L − 3e2 − 4e2L + 8Lνe2 − 8Lν(
1− e2

)
(1− ν)

(A.20)

S1122 = −
1

8

e2 + L − 4e2L + 8Lνe2 − 8Lν(
1− e2

)
(1− ν)

(A.21)

S1133 = −
1

2

2e2L − e2 + L + 2Lνe2 − 2Lν(
1− e2

)
(1− ν)

(A.22)

S3311 =
1

2

e2 − L − 2e2L − 2νe2 + 2ν+ 4Lνe2 − 4Lν(
1− e2

)
(1− ν)

(A.23)

S3333 =
1− 2e2 + 4e2L − L + νe2 − ν− 2Lνe2 + 2Lν(

1− e2
)
(1− ν)

(A.24)

S1313 = −
1

4

e2L + 2L − 1+ Lνe2 − Lν− νe2 + ν(
1− e2

)
(1− ν)

(A.25)

a.2 symmetry and positive definiteness of q̂

Here we derive the symmetry and positive definiteness of the tensor

q̂ = Ĉ(1)
[
Ŝ−1 − Î

]
involved in Eq.2.91 concluding the proof of the

existence and uniqueness of the nonlinear Eshelby solution in Eq.(2.89)
(see Section 2.3.2). We briefly outline the concepts of inclusion and
linear inhomogeneity in order to present the adopted notation and to
recall the most important equations of the Eshelby theory [45, 8, 49].

Concept of inclusion. We suppose to consider an infinite medium
with stiffness tensor Ĉ(1); moreover, we consider an embedded ellip-
soidal inclusion V described by the constitutive equation T̂ = Ĉ(1) (ε̂− ε̂∗).
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The strain ε̂∗ is called eigenstrain (or stress-free strain). In these condi-
tions the following relations describe the strain inside and outside the
inclusion [45]

ε̂ (~x) =

{
Ŝε̂∗ if ~x ∈ V

Ŝ∞ (~x) ε̂∗ if ~x /∈ V
(A.26)

where Ŝ is the internal Eshelby tensor and Ŝ∞ is the external Eshelby
tensor.

Concept of inhomogeneity. We suppose now to consider an infinite
medium with stiffness tensor Ĉ(1) in <3 V (matrix) and Ĉ(2) in the
ellipsoidal region V (inhomogeneity). We remotely load the system
with a uniform strain ε̂∞ or, equivalently, with the uniform stress T̂∞.
Of course we have T̂∞ = Ĉ(1)ε̂∞. This configuration can be analyzed
by means of the Eshelby equivalence principle [8]. The system can be
described by the superimposition of two simpler cases (see Fig.5) [45].
The first situation A concerns a medium with stiffness Ĉ(1) (without
inclusions or inhomogeneities) uniformly deformed by means of the
remote loads ε̂∞ or T∞. The second situation B is represented by an
inclusion embedded in a medium, characterized everywhere by Ĉ(1)

and having an eigenstrain ε̂∗ in V. The situation B is without remote
loads. The eigenstrain must be imposed searching for the equivalence
between the original inhomogeneity problem and the superimposition
A+ B. The following relation hold on inside the region V (s means
inside V)

ε̂s = ε̂A,s + ε̂B,s = ε̂∞ + Ŝε̂∗

T̂s = T̂A,s + T̂B,s = Ĉ(1)ε̂∞ + Ĉ(1)
(
ε̂B,s − ε̂∗

)
= Ĉ(1)ε̂∞ + Ĉ(1)

(
Ŝε̂∗ − ε̂∗

)
(A.27)

In the inhomogeneity we have T̂s = Ĉ(2)ε̂s and therefore

Ĉ(1)ε̂∞ + Ĉ(1)
(
Ŝε̂∗ − ε̂∗

)
︸ ︷︷ ︸

Ts

= Ĉ(2)
(
ε̂∞ + Ŝε̂∗

)
︸ ︷︷ ︸

ε̂s

(A.28)

The following relations can be finally obtained for the eigenstrain and
for the actual strain in V

ε̂∗ =

[(
Î−
(
Ĉ(1)

)−1
Ĉ(2)

)−1

− Ŝ

]−1

ε̂∞ (A.29)

ε̂s =

(
Î−
(
Ĉ(1)

)−1
Ĉ(2)

)−1

ε̂∗ (A.30)

ε̂s =

[
Î− Ŝ

(
Î−
(
Ĉ(1)

)−1
Ĉ(2)

)]−1

ε̂∞ (A.31)

If Ĉ(2) = 0 (void) we obtain

ε̂∗ = ε̂s =
[
Î− Ŝ

]−1
ε̂∞ (A.32)

Lemma: the tensor Ĉ(1)
[
Ŝ−1 − Î

]
is symmetric. We consider the

same inclusion V with two different values for the eigenstrain ε̂∗ and
ε̂∗∗ embedded in the material defined by Ĉ(1). The symmetry of the
tensor can be established by means of a revised version of the Betti’s
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reciprocal theorem [36]. We define T̂∗ = Ĉ(1)ε̂∗ and T̂∗∗ = Ĉ(1)ε̂∗∗. The
first situation is described by the fields T̂ ′, ε̂ ′, ~u ′ and the second one
by T̂ ′′, ε̂ ′′, ~u ′′ everywhere in the space. The preliminary symmetry of

the tensor Ŝ
[
Ĉ(1)

]−1
is proved. We begin by considering the following

relation (V is the inclusion volume , Σ its boundary and ~n its external
normal unit vector)

VT̂∗Ŝ
[
Ĉ(1)

]−1
T̂∗∗ = VT̂∗Ŝε̂∗∗ = VT̂∗ε̂ ′′ (A.33)

= T̂∗
∫

V
ε̂ ′′dv = T̂∗

∫
V

∂~u ′′

∂~x
dv

= T̂∗
∫
Σ

~u ′′~ndS = Ĉ(1)ε̂∗
∫
Σ

~u ′′~ndS

At the interface Σ we have T̂ ′~n|Σ− = T̂ ′~n|Σ+ (sign + indicates the exter-
nal side of Σ and sign − indicates its internal side). Recalling the defi-
nition of inclusion we simply obtain Ĉ(1) (ε̂ ′ − ε̂∗) ~n|Σ− = Ĉ(1)ε̂ ′~n|Σ+

and finally we get Ĉ(1)ε̂ ′~n|Σ− − Ĉ(1)ε̂ ′~n|Σ+ = Ĉ(1)ε̂∗~n. We use it in
Eq.(A.33), obtaining

VT̂∗Ŝ
[
Ĉ(1)

]−1
T̂∗∗ =

∫
Σ

[
Ĉ(1)ε̂ ′~n|Σ− − Ĉ(1)ε̂ ′~n|Σ+

]
~u ′′dS

(A.34)

On Σ− we have T̂ ′ = Ĉ(1) (ε̂ ′ − ε̂∗) and on Σ+ we have T̂ ′ = Ĉ(1)ε̂ ′,
therefore

VT̂∗Ŝ
[
Ĉ(1)

]−1
T̂∗∗ (A.35)

=

∫
Σ−

(
T̂ ′ + T̂∗

)
~n~u ′′dS−

∫
Σ+
T̂ ′~n~u ′′dS

=

∫
V

∂

∂~x

[(
T̂ ′ + T̂∗

)
~u ′′
]

dv+

∫
<3\V

∂

∂~x

[
T̂ ′~u ′′

]
dv

=

∫
V

(
T̂ ′ + T̂∗

)
ε̂ ′′dv+

∫
<3\V

T̂ ′ε̂ ′′dv

=

∫
V

[
Ĉ(1)

(
ε̂ ′ − ε̂∗

)
+ T̂∗

]
ε̂ ′′dv+

∫
<3\V

T̂ ′ε̂ ′′dv

=

∫
V
ε̂ ′Ĉ(1)ε̂ ′′dv+

∫
<3\V

ε̂ ′Ĉ(1)ε̂ ′′dv

=

∫
<3
ε̂ ′Ĉ(1)ε̂ ′′dv

We have now obtained a symmetric form (since Ĉ(1) is symmetric).
Therefore, the following dual relation is valid and it can be verified as
above

VT̂∗∗Ŝ
[
Ĉ(1)

]−1
T̂∗ =

∫
<3
ε̂ ′Ĉ(1)ε̂ ′′dv (A.36)

By comparison of Eqs.(A.35) and (A.36) we obtain

VT̂∗Ŝ
[
Ĉ(1)

]−1
T̂∗∗ = VT̂∗∗Ŝ

[
Ĉ(1)

]−1
T̂∗ (A.37)

which establishes the symmetry of Ŝ
[
Ĉ(1)

]−1
. The inverse tensor{

Ŝ
[
Ĉ(1)

]−1
}−1

= Ĉ(1)Ŝ−1 is again symmetric and, finally, the quan-

tity Ĉ(1)
[
Ŝ−1 − Î

]
is symmetric since it is a sum of symmetric tensors.
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Lemma: the tensor Ĉ(1)
[
Ŝ−1 − Î

]
is positive definite. We consider

two similar situations as described in Fig.62. The first deals with an
homogeneous medium with displacement prescribed on the boundary,
while the second case considers the addition of an inhomogeneity
without changing the fixed displacements on the external surface. No
body forces are present in both schemes. We begin searching for the

Σ Σ

Ω Ω

Ĉ(1)Ĉ(1)

Ĉ(2)

n nua = ub = u fixed on Σ

ua, T̂a, ε̂a
ub, T̂b, ε̂b

V

Figure 62: Schemes of an homogeneous region and an heterogeneous one with
an inhomogeneity V. The boundary conditions prescribe the same
displacement on the external surface.

difference between the elastic energy stored in the two cases

∆E =
1

2

∫
Ω

(
ε̂bT̂b − ε̂aT̂a

)
dv (A.38)

We simply verify that∫
Ω
ε̂aT̂adv =

∫
Ω
ε̂bT̂adv (A.39)∫

Ω
ε̂aT̂bdv =

∫
Ω
ε̂bT̂bdv (A.40)

In order to verify Eq.(A.39) we write the relation∫
Ω

(ε̂a − ε̂b) T̂adv =

∫
Ω

(
∂~ua

∂~x
T̂a −

∂~ub

∂~x
T̂a

)
dv (A.41)

where ∂~ua
∂~x T̂a = ∂~uaT̂a

∂~x since ∂T̂a
∂~x = 0 at equilibrium and similarly

∂~ub
∂~x T̂a = ∂~ubT̂a

∂~x . Therefore, we obtain∫
Ω

(ε̂a − ε̂b) T̂adv =

∫
Ω

(
∂~uaT̂a

∂~x
−
∂~ubT̂a

∂~x

)
dv (A.42)

=

∫
Σ

(
~uaT̂a − ~ubT̂a

)
~ndS = 0

since ~ua = ~ub on Σ. The dual relation given in Eq.(A.40) can be verified
with the same method.
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By inserting Eqs.(A.39) and (A.40) into Eq.(A.38) we obtain

∆E =
1

2

∫
Ω

(
ε̂bT̂b − ε̂aT̂a

)
dv

=
1

2

∫
Ω

(
ε̂aT̂b − ε̂bT̂a

)
dv

=
1

2

∫
Ω V

(
ε̂aT̂b − ε̂bT̂a

)
dv

+
1

2

∫
V

(
ε̂aT̂b − ε̂bT̂a

)
dv

=
1

2

∫
Ω V

(
ε̂aĈ(1)ε̂b − ε̂bĈ(1)ε̂a

)
dv

+
1

2

∫
V

(
ε̂aT̂b − ε̂bT̂a

)
dv (A.43)

Since the stiffness tensor Ĉ(1) is symmetric, we obtain the following
general expression for the energy difference

∆E =
1

2

∫
V

(
ε̂aT̂b − ε̂bT̂a

)
dv (A.44)

We suppose now that the prescribed displacement on Σ imposes a uni-
form strain in the first case of Fig.62; therefore, the second situation can
be described by the Eshelby solution. With this additional hypothesis
the energy difference can be rearranged as follows

∆E = −
1

2

∫
V

(
T̂aε̂b − ε̂aT̂b

)
dv

= −
1

2

∫
V

(
T̂aε̂b − T̂a

(
Ĉ(1)

)−1
Ĉ(2)ε̂b

)
dv

= −
1

2

∫
V
T̂a

(
Î−
(
Ĉ(1)

)−1
Ĉ(2)

)
ε̂bdv

= −
1

2

∫
V
T̂aε̂

∗dv (A.45)

having used Eq.(A.30). Utilizing Eq.(A.29) we obtain

∆E = −
1

2

∫
V
ε̂aĈ(1)

[(
Î−
(
Ĉ(1)

)−1
Ĉ(2)

)−1

− Ŝ

]−1

ε̂adv

(A.46)

From now on we suppose that the embedded inhomogeneity is a void
(Ĉ(2) = 0) and, therefore, we obtain

∆E = Eb (ε̂b) − Ea (ε̂a) = −
1

2

∫
V
ε̂aĈ(1)

[
Î− Ŝ

]−1
ε̂adv

(A.47)

We may now consider the variational formulation of the elasticity
theory [36, 39]. If we take into account a body without body forces
and with prescribed displacements on the whole external surface, then
the variational formulation leads to the minimum potential energy
principle. We may apply this principle to the second case of Fig.62

(with a void). If the fields ~ub, ε̂b, T̂b correspond of the actual elastic
fields in such a case, we have Eb

(
~ub, ε̂b, T̂b

)
6 Eb

(
~u, ε̂, T̂

)
where the

fields ~u, ε̂, T̂ correspond to any displacement ~u matching the prescribed
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boundary. In particular we have Eb (ε̂b) 6 Eb (ε̂a), where ε̂a is the
strain in the first case of Fig.62. Moreover, we may write

Eb (ε̂a) =
1

2

∫
Ω V

ε̂aĈ(1)ε̂adv+
1

2

∫
V
ε̂aĈ(2)ε̂adv

=
1

2

∫
Ω V

ε̂aĈ(1)ε̂adv

= Ea (ε̂a) −
1

2

∫
V
ε̂aĈ(1)ε̂adv (A.48)

Summing up

Eb (ε̂b) 6 Eb (ε̂a)

Eb (ε̂b) 6 Ea (ε̂a) −
1

2

∫
V
ε̂aĈ(1)ε̂adv

Eb (ε̂b) − Ea (ε̂a) 6 −
1

2

∫
V
ε̂aĈ(1)ε̂adv (A.49)

Since ε̂a is uniform, combining Eqs.(A.47) and (A.49), we obtain

ε̂aĈ(1)
[
Î− Ŝ

]−1
ε̂a − ε̂aĈ(1)ε̂a > 0 (A.50)

or

T̂a

[
Î− Ŝ

]−1 [
Ĉ(1)

]−1
T̂a − T̂a

[
Ĉ(1)

]−1
T̂a > 0 (A.51)

So, the tensor
[
Î− Ŝ

]−1 [
Ĉ(1)

]−1
−
[
Ĉ(1)

]−1
is positive definite.

For any tensor it is true that [I−A]−1 = I+
[
A−1 − I

]−1 and therefore
we obtain[

Î− Ŝ
]−1 [

Ĉ(1)
]−1

−
[
Ĉ(1)

]−1

=
[
Ŝ−1 − Î

]−1 [
Ĉ(1)

]−1
(A.52)

Finally, the tensor
[
Ŝ−1 − Î

]−1 [
Ĉ(1)

]−1
and its inverse Ĉ(1)

[
Ŝ−1 − Î

]
are symmetric and positive definite.

It is interesting to observe that all the results given in Appendix A.2
and in Sections 2.3.2 and 2.3.2 exactly apply also for an anisotropic and
homogeneous ellipsoidal inhomogeneity embedded in an anisotropic
and homogeneous matrix. In this case, the Eshelby tensor Ŝ depends
on the geometry and on Ĉ(1) [45].

a.3 first order expansions for a dispersion of spheres

In this Appendix we present the first order expansions in the volume
fraction of the effective nonlinear moduli Aeff, Beff, Ceff, and Deff

for a dispersion of spheres. In particular we consider four different
cases where only one nonlinear modulus of the spheres (A, B, C or D)
is different from zero. These solutions are coherent with the scheme
represented in Fig. 15. If C 6= 0 we obtain

CC
eff =

(3K1+4µ1)3

(4µ1+3K2)3Cc+O
(
c2
)

AC
eff = BC

eff = DC
eff = 0

(A.53)
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If B 6= 0 we have

BB
eff = 25

µ1
2

(6µ2K1+12µ2µ1+9µ1K1+8µ1
2)

2

× (3K1+4µ1)3

4µ1+3K2
Bc+O

(
c2
)

CB
eff = 6µ2K1+12µ2µ1+9µ1K1+28µ1

2+15K2µ1

(6µ2K1+12µ2µ1+9µ1K1+8µ1
2)

2

× 3µ1K1−5K2µ1+2µ2K1+4µ2µ1−4µ1
2

(4µ1+3K2)3

× (3K1 + 4µ1)3 Bc+O
(
c2
)

AB
eff = DB

eff = 0

(A.54)

If D 6= 0 we obtain

CD
eff = 3µ1K1−5K2µ1+2µ2K1+4µ2µ1−4µ1

2

(9µ1K1+8µ1
2+6µ2K1+12µ2µ1)

2

× 6µ2K1+12µ2µ1+28µ1
2+9µ1K1+15K2µ1

(4µ1+3K2)3

× (3K1 + 4µ1)3Dc+O
(
c2
)

DD
eff = 25

µ1
2

(9µ1K1+8µ1
2+6µ2K1+12µ2µ1)

2

× (3K1+4µ1)3

4µ1+3K2
Dc+O

(
c2
)

AD
eff = BD

eff = 0

(A.55)

Finally, if A 6= 0 all the effective nonlinear moduli are different from
zero and they can be eventually written as

AA
eff =

125(3K1+4µ1)3µ1
3Ac

(9K1µ1+8µ1
2+6K1µ2+12µ2µ1)

3 +O
(
c2
)

BA
eff = 25

3K1µ1−5K2µ1+2K1µ2+4µ2µ1−4µ1
2

(9K1µ1+8µ1
2+6K1µ2+12µ2µ1)

3

× (3K1+4µ1)3µ1
2Ac

4µ1+3K2
+O

(
c2
)

CA
eff = 3

(3K1µ1−5K2µ1+2K1µ2+4µ2µ1−4µ1
2)

2

(9K1µ1+8µ1
2+6K1µ2+12µ2µ1)

3

× 10K2µ1+2K1µ2+3K1µ1+4µ2µ1+16µ1
2

(4µ1+3K2)3

× (3K1 + 4µ1)3Ac+O
(
c2
)

DA
eff = 50

µ1
2

(9K1µ1+8µ1
2+6K1µ2+12µ2µ1)

3

× 3K1µ1−5K2µ1+2K1µ2+4µ2µ1−4µ1
2

4µ1+3K2

× (3K1 + 4µ1)3Ac+O
(
c2
)

(A.56)

It is interesting to remark that the more complicated cases, with all
the nonlinear moduli of the spheres different form zero, can be simply
handled by means of the superimposition of the four cases above
considered.
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a.4 first order expansions for a dispersion of cylinders

Here we present the first order expansions in the volume fraction of the
effective nonlinear moduli Aeff, Beff, Ceff, and Deff for a dispersion
of cylinders. In particular we consider four different cases where only
one nonlinear modulus of the cylinders (A, B, C or D) is different from
zero. If C 6= 0 we have

CC
eff =

(K1+µ1)3

(K2+µ1)3Cc+O
(
c2
)

AC
eff = BC

eff = DC
eff = 0

(A.57)

If B 6= 0 we obtain

BB
eff =

4(K1+µ1)3µ1
2B

(K2+µ1)(µ1K1+µ2K1+2µ2µ1)2 c+O
(
c2
)

CB
eff = 1

2
2K2µ1+µ1K1+µ2K1+2µ2µ1+2µ2

1

(µ1K1+µ2K1+2µ2µ1)2

× µ1K1−2K2µ1+µ2K1+2µ2µ1−2µ2
1

(K2+µ1)3

× (K1 + µ1)3 Bc+O
(
c2
)

AB
eff = DB

eff = 0

(A.58)

If D 6= 0 we have

CD
eff = 1

2
K1µ1−2K2µ1+K1µ2+2µ2µ1−2µ2

1

(K1µ1+K1µ2+2µ2µ1)2

× K1µ2+K1µ1+2µ2µ1+2K2µ1+2µ2
1

(K2+µ1)3

× (K1 + µ1)3Dc+O
(
c2
)

DD
eff =

4(K1+µ1)3µ1
2Dc

(K2+µ1)(K1µ1+K1µ2+2µ2µ1)2 +O
(
c2
)

AD
eff = BD

eff = 0

(A.59)
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Finally, if A 6= 0, as predicted by the scheme represented in Fig. 15,
all the effective nonlinear moduli are different from zero and the final
expressions are given below

AA
eff = 8

(K1+µ1)3µ1
3

(K1µ1+K1µ2+2µ2µ1)3Ac+O
(
c2
)

BA
eff = 2

µ1
2

(K1µ1+K1µ2+2µ2µ1)3

× K1µ1−2K2µ1+K1µ2+2µ2µ1−2µ2
1

K2+µ1

× (K1 + µ1)3Ac+O
(
c2
)

CA
eff = 1

4
(K1µ1−2K2µ1+K1µ2+2µ2µ1−2µ2

1)
2

(K1µ1+K1µ2+2µ2µ1)3

× K1µ2+2µ2µ1+K1µ1+4K2µ1+4µ2
1

(K2+µ1)3

× (K1 + µ1)3Ac+O
(
c2
)

DA
eff = 4

µ1
2

(K1µ1+K1µ2+2µ2µ1)3

× K1µ1−2K2µ1+K1µ2+2µ2µ1−2µ2
1

(K2+µ1)

× (K1 + µ1)3Ac+O
(
c2
)

(A.60)
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