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A B S T R A C T

By combining continuum elasticity theory and atomistic simu-
lations, we provide a picture of the elastic behavior of graphene,
which was addressed as a two-dimensional crystal membrane.
Thus, the constitutive nonlinear stress-strain relations for graphene,
as well as its hydrogenated conformers, have been derived in
the framework of the two-dimensional elastic theory, and all the
corresponding linear and nonlinear elastic moduli have been com-
puted by atomistic simulations. Moreover, we discuss the effects
of an applied stretching on graphene lattice to its electronic band
structure, in particular regards the concept of strain-induced
band gap engineering. Finally, we focus on the emergence of a
stretching field induced on a graphene nanoribbon by bending,
providing that such an in-plane strain field can be decomposed
in a first contribution due to the actual bending of the sheet and
a second one due to the edge effects induced by the finite size of
the nanoribbon.

S U M M A R I O

Combinando la teoria dell‘elasticità del continuo con calcoli
eseguiti attraverso simulazioni atomistiche, si è affrontato lo
studio del comportamento elastico del grafene, ovvero di una
struttura cristallina bidimensionale a base carbonio. In tal modo,
nell‘ambito della teoria elastica bidimensionale, sono state derivate
le equazioni costitutive non lineari per il grafene e per il suo com-
posto con l‘idrogeno, detto grafane; conseguentemente sono stati
determinati per mezzo di simulazioni atomistiche tutti i relativi
moduli elastici lineari e non lineari. Inoltre, abbiamo discusso gli
effetti dovuti a deformazioni omogenee applicate al reticolo di
grafene sulle sue bande elettroniche, con particolare attenzione
al concetto di ingegnerizzazione della gap elettronica indotta
da deformazione. Infine, discutiamo l‘insorgenza di un campo
di deformazione su un campione di grafene finito sottoposto a
piegamento, evidenziando come tale campo possa essere decom-
posto in un contributo causato della flessione reale subita e in un
secondo dovuto ai soli effetti di bordo.
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1
T H E G R A P H E N E : W E L C O M E I N F L AT L A N D .

”True” said the Sphere ”it appears to you a Plane because you are not
accustomed to light and shade and perspective just as in Flatland a

Hexagon would appear a Straight Line to one who has not the Art of
Sight Recognition But in reality it is a Solid as you shall learn by the

sense of Feeling”
Edwin A. Abbott ”Flatland” (1884).

Graphene is the name given to a two-dimensional flat sheet
of sp2−hybridized carbon atoms. Its extended honeycomb net- Graphene is the

name given to a
two-dimensional flat
sheet of
sp2−hybridized
carbon atoms.

work is the basic building block of other important allotropes.
It can be stacked to form three-dimensional graphite, rolled to
form one-dimensional nanotubes, and wrapped to form zero-
dimensional fullerenes. Long-range π-conjugation in graphene
yields extraordinary thermal, mechanical, and electrical proper-
ties, which have long been the interest of many theoretical studies
and more recently became an exciting area for experimentalists.

Indeed, some extraordinary properties of honeycomb carbon
atoms are not really new. Abundant and naturally occurring,
graphite has been known as a mineral for nearly 500 years. Even A brief history: from

graphite to graphenein the middle ages, the layered morphology and weak dispersion
forces between adjacent sheets were utilized to make marking
instruments, much in the same way that we use graphite in
pencils today. More recently, these same properties have made
graphite an ideal material for use as a dry lubricant, along with
the similarly structured but more expensive compounds hexago-
nal boron nitride and molybdenum disulfide. High in-plane elec-
trical (104 Ω−1 cm−1) and thermal conductivity (3000 W/mK)
enable graphite [1] to be used in electrodes and as heating el-
ements for industrial blast furnaces. High mechanical stiffness
of the hexagonal network (1060 GPa) is also utilized in carbon
fiber reinforced composites [2, 3, 4]. The anisotropy of graphite’s
material properties continues to fascinate both scientists and
technologists. The s, px, and py atomic orbitals on each carbon
atom hybridize to form strong covalent sp2 bonds, giving rise to
120o C-C-C bond angles and the familiar chicken-wire-like layers.
The remaining pz orbital on each carbon overlaps with its three
neighboring carbons to form a band of filled π orbitals, known
as the valence band, and a band of empty π∗ orbitals, called
the conduction band. While three of the four valence electrons
on each carbon form the σ (single) bonds, the fourth electron
forms one-third of a π bond with each of its neighbors producing

1



2 the graphene : welcome in flatland.

a carbon-carbon bond order in graphite of one and one-third.
With no chemical bonding in the normal direction, out-of-plane
interactions are extremely weak. This includes the propagation of
charge and thermal carriers, which leads to out-of-plane electrical
and thermal conductivities that are both more than ∼100 times
lower than those of their in-plane analogues. While studies of
graphite have included those utilizing fewer and fewer layers for
some time, the field was delivered a jolt in 2004 [5, 6], when A.
Geim, K. Novoselov, and co-workers at Manchester UniversityThe discover of

graphene first isolated single-layer samples from graphite. For this they are
awarded the Nobel Prize in Physics 2010. This led to their Nobel
Degree in Physics in 2010 and aroused interest in everybody else
since its discovery.

Initial studies included observations of graphene’s ambipolar
field effect, the quantum Hall effect at room temperature [7],
and even the first ever detection of single molecule adsorption
events. Furthermore, graphene is the thinnest known crystal in
the universe and the strongest ever measured. Its charge carri-
ers exhibit giant intrinsic mobility, have zero effective mass, and
can travel for micrometers without scattering at room tempera-
ture. Electron transport in graphene is described by a Dirac-likeMain graphene

properties equation, which allows the investigation of relativistic quantum
phenomena in a benchtop experiment. Graphene can sustain cur-
rent densities six orders of magnitude higher than that of copper,
shows record thermal conductivity and stiffness, is impermeable
to gases, and reconciles such conflicting qualities as brittleness
and ductility. These properties generated huge interest in the pos-
sible implementation of graphene in a myriad of devices. These
include future generations of high-speed and radio frequency
logic devices, thermally and electrically conductive reinforced
composites, sensors, and transparent electrodes for displays and
solar cells.

The experimental isolation of single-layer graphene yielded
access to a large amount of interesting physics, nevertheless
two-dimensional crystals were thought to be thermodynamically
unstable at finite temperatures. In fact, graphene is a material
that should not exist. More than 70 years ago, Landau and Peierls
[8, 9] shown that strictly two-dimensional crystals were thermo-
dynamically unstable. Their theory pointed out that a divergent
contribution of thermal fluctuations in low-dimensional crystal
lattices should lead to such displacements of atoms that they
become comparable to interatomic distances at any finite tem-
perature. The argument was later extended by Mermin- Wagner
[10] and it is strongly supported by experimental observations.The Mermin-Wagner

Theorem Indeed, the melting temperature of thin films rapidly decreases
with decreasing thickness, and the films become unstable (segre-
gate into islands or decompose) at a thickness of, typically, dozens
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of atomic layers. For this reason, atomic monolayers have so far
been known only as an integral part of larger three-dimensional
structures, usually grown epitaxially on top of monocrystals with
matching crystal lattices. Without such a three-dimensional envi-
ronment, two-dimensional materials were presumed not to exist,
until 2004, when the common wisdom was brought into ques-
tion by the experimental discovery of graphene and other free-
standing two-dimensional atomic crystals (for instance, single-
layer boron nitride). With the benefit of hindsight, the existence Thermodynamic

stability of grapheneof such one-atom-thick crystals can be reconciled with theory.
Indeed, it can be argued that the obtained two-dimensional crys-
tallites are quenched in a metastable state because they are ex-
tracted from three-dimensional materials, whereas their small
size («1 mm) and strong interatomic bonds ensure that thermal
fluctuations cannot lead to the generation of dislocations or other
crystal defects even at elevated temperature. A complementary
viewpoint is that the extracted two-dimensional crystals become
intrinsically stable by gentle crumpling in the third dimension.
Such ripples lead to a gain in elastic energy but suppresses ther-
mal vibrations, which above a certain temperature can minimize
the total free energy [11].

Moreover, it is probably more unexpected the news that every
time someone draws a line with a common pencil, the result-
ing mark includes bits of graphene. Indeed, graphene isolation
was a funny accident as told by its discoverers. A PhD student
was trying to make a large piece of graphite as thin as possi-
ble. The student sawed it till 50 µm, but all further attempts led
to graphite dust. Konstantin Novoselov once paid attention to
work of researcher from a neighboring lab, who used well-known
technique, called ”scotch tape method”, which is simply sticking
the tape to graphite and ripping it off, for getting thin graphite
layers. As told by Konstantin Novoselov at the International Fo-
rum RusNanoTech-2010, Moscow, it is possible to make graphene How win a Nobel

Prizesamples, having a piece of graphite, a scotch tape, and a mobile
phone’s screen as solid substrate. “Making good graphene needs two
rules to be fulfilled”, Novoselov said, “First is using quality graphite,
and second is preparing the substrate”. “Drinking vodka usually helps,
because alcohol vapors can perfectly degrease the surface”, the scien-
tist advised, “You won’t be able to see graphene you just made, but
believe that it is really there”.

This simple mechanical exfoliation technique has been used
by the Manchester group to isolate the two-dimensional crystals
from three-dimensional graphite. Resulting single- and few-layer Beyond the simple

mechanical
exfoliation technique

flakes were pinned to the substrate by only van der Waals forces
and could be made free-standing by etching away the substrate.
This minimized any induced effects and allowed scientists to
probe graphene’s intrinsic properties. Despite this intense interest
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and continuing experimental success by physicists, widespread
implementation of graphene has yet to occur. This is primarily
due to the difficulty of reliably producing high quality samples,
especially in any scalable fashion. The challenge is double be-
cause performance depends on both the number of layers present
and the overall quality of the crystal lattice. So far, the original
approach of mechanical exfoliation has produced the highest
quality samples, but the method is neither high throughput nor
high-yield. In order to exfoliate a single sheet, van der Waals
attraction between exactly the first and second layers must be
overcome without disturbing any subsequent sheets. Therefore, a
number of alternative approaches to obtaining single layers have
been explored, a few of which have led to promising proof-of-
concept devices. Alternatives to mechanical exfoliation include
primarily three general approaches: chemical efforts to exfoliate
and stabilize individual sheets in solution, bottom-up methods
to grow graphene directly from organic precursors, and attempts
to catalyze growth in situ on a substrate.Mechanical

properties of
graphene

Graphene have mainly attracted interest for its unusual elec-
tron transport properties, but recently some attention has been
paid also to mechanical properties of planar graphene sheets. In
particular, Lee et al. in 2008 [12] measured the mechanical prop-
erties of a single graphene layer, demonstrating that graphene is
the hardest material known, since the effective three-dimensional
elastic modulus reaches a huge value of 1.0 TPa.

Moreover, the ultimate use of graphene sheets in integrated
devices will likely require understanding of the mechanical prop-
erties that may affect the device performance and reliability as
well as the intriguing morphology [13].

One typically assumes that the in-plane elastic moduli of a
single-layer graphene are identical to those for the base plane of
hexagonal crystal graphite. However, significant discrepancies
have been reported between theoretical predictions for in-plane
Young’s modulus and Poisson’s ratio of graphene and those de-
rived from graphite [14]. It has also been noted that bending of aAims and scope of

this thesis graphene sheet of a single atomic layer cannot be simply mod-
eled using continuum plate or shell theories [15]. Further studies
are thus necessary in order to develop a theoretically consistent
understanding for the mechanical properties of graphene as well
as their relationships with corresponding properties of carbon
nanotubes and nanoribbons. A theoretical approach is developed
in the present Thesis in order to predict the in-plane elastic prop-
erties of single- layer graphene based on an interplay between
an atomistic Tight Binding simulations and a continuum elastic
theory approach, providing a link between atomistic interactions
and macroscopic elastic properties of crystals.
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While similar approaches have been developed previously [16],
we herein emphasize the nonlinear elastic behavior under homo-
geneous deformation. Third-order elastic constants are important
quantities characterizing nonlinear elastic properties of materials,
and the interest in them dates back to the beginning of mod-
ern solid state physics. Third- and higher-order elastic constants
are useful not only in describing mechanical phenomena when
large stresses and strains are involved e.g., in heterostructures of
optoelectronic devices, but they can also serve as a basis for dis-
cussion of other anharmonic properties. The applications include
phenomena such as thermal expansion, temperature dependence
of elastic properties, phonon-phonon interactions, etc.

Thus, by combining continuum elasticity theory and tight-
binding atomistic simulations, we work out the constitutive non- Non linear elastic

featureslinear stress-strain relation for graphene stretching elasticity and
we calculate all the corresponding nonlinear elastic moduli. We
show in Chapter 5 some results which represent a robust picture
on the elastic behavior and provide the proper interpretation of
recent experiments of Lee et al. [12]. In particular, we discuss
the physical meaning of the effective nonlinear elastic modulus
there introduced and we predict its value in good agreement
with available data. Moreover, a hyperelastic softening behavior
is observed and discussed, so determining the failure properties
of graphene.

The defect-free and highly ordered, crystals of graphene are the
thinnest objects possible and, simultaneously, 100 times stronger
than structural steel, making them the strongest material in na-
ture. Such an unusual combination of extreme properties makes
this two-dimensional crystal attractive for a wide variety of appli-
cations. However, in terms of electronic applications, sometimes Too conductive for

transistorsgraphene is a little too conductive. Graphene is so highly conduc-
tive that it is hard to create graphene-based transistors suitable for
applications in integrated circuits. In order to reduce its conduc-
tivity, many efforts have been dedicated to study the electronic
properties of graphene, for instance because creating a gap could
allow the use of graphene in field effect transistors. Many mecha-
nisms have been proposed with that purpose: e.g. by quantum
confinement of electrons and holes in graphene nanoribbons [17]
or quantum dots. [18] These patterning techniques are unfortu-
nately affected by the edge roughness problem, [19] namely: the
edges are extensively damaged and the resulting lattice disorder
can even suppress the efficient charge transport. The sensitivity
to the edge structure has been demonstrated through explicit
calculations of the electronic states in ribbons [20]. More recently,
it has been shown experimentally that a band gap as large as
0.45 eV can be opened if a graphene sheet is placed on an Ir(111)
substrate and exposed to patterned hydrogen adsorption [21]. The graphane is the

fully hydrogenated
graphene
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Therefore, graphene-like carbon compound that acts as an
insulator could be produce. The simplest and most straight-
forward candidate to do this is hydrogen. Exposing graphene
to an atomic hydrogen atmosphere produces a material called
graphane, which is described as a two-dimensional crystal mapped
onto the graphene scaffold, and covalently bonded hydrocarbon
with one to one C:H ratio. Graphane was theoretically predicted
by Sofo et al. [22], further investigated by Boukhvalov et al. [23]
and eventually was first synthesized by Elias et al. [24] in the
2009.

An additional attractive feature of graphane is that by variously
decorating the graphene atomic scaffold with hydrogen atoms
(still preserving periodicity) it is in fact possible to generate a
set of two dimensional materials with new physico-chemical
properties. These systems are all characterized by a sp3 orbital
hybridization instead the sp2 hybridization of graphene. Because
of in graphane the π−electrons are strongly bound to hydrogen
atoms, the π−bands are absent altogether. Thus, a band gap is
created, separating the highest occupied band from the lowest
unoccupied band as in insulators. For instance, it has been calcu-
lated [22, 23] that graphane has got an energy gap as large as ∼ 6

eV [25], while in case the hydrogenated sample is disordered, the
resulting electronic and phonon properties are yet again different
[24]. This simple change in hybridization may open up a whole
new world of graphene-based chemistry, leading to novel two-
dimensional crystals with predefined properties, and an ability to
tune the electronic, optical,and other properties. HydrogenationElastic properties of

graphane likely affects the elastic properties as well. Topsakal et al. [26]
indeed calculated that the in-plane stiffness and Poisson ratio of
graphane are smaller than those of graphene. In addition, the
value of the yield strain is predicted to vary upon temperature
and stoichiometry.

Among many possible conformers of hydrogenated graphene,
as discuss in detail in Chapter 6, we focus our study to three
structures referred to as chair-, boat-, or washboard- graphane.
By first principles calculations we determine their structural and
phonon properties, as well as we establish their relative stability.
Through continuum elasticity we measure by a computer exper-
iment their linear and nonlinear elastic moduli, so that we can
compare them with the elastic behavior of graphene. We argue
that all graphane conformers respond to any arbitrarily-oriented
extention with a much smaller lateral contraction than the one
calculated for graphene. Furthermore, we provide evidence that
boat-graphane has a small and negative Poisson ratio along the
armchair and zigzag principal directions of the carbon honey-
comb lattice (i.e. axially auxetic elastic behavior). Moreover, we
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show that chair-graphane admits both softening and hardening
hyperelasticity, depending on the direction of applied load.

Besides, an alternative technique to open a gap in the electronic
structure of graphene involves the application of mechanical
stress. For instance, an electronic band gap has been obtained by
growing graphene sheets on an appropriately chosen substrate,
inducing a reversible strain field controllable by temperature
[27, 28, 29], and it has been experimentally shown that by using
flexible substrates a reversible and controlled strain up to ∼ 18%
[29] can be generated with measurable variations in the optical,
phonon and electronic properties of graphene [30]. Strain affects the

band structureThis interesting result suggests that gap opening could be
engineered by strain, rather than by patterning. The idea has
been validated within linear elasticity theory and a tight-binding
approach by Pereira and Castro Neto [31] showing that strain
can generate a spectral gap. However this gap is critical, requir-
ing threshold deformations in excess of 23%, approaching the
graphene failure strain (εf = 25%) [12], and only along preferred
directions with respect to the underlying lattice. The same au-
thors propose an alternative origami technique [13] aimed at
generating local strain profiles by means of appropriate geomet-
rical patterns in the substrate, rather than by applying strain
directly to the graphene sheet. Shear deformation

could open a gapIn Chapter 7 we exploit this concept of strain-induced band
structure engineering in graphene through the calculation of its
electronic properties under several deformations, by using linear
elasticity theory and a semi-empirical tight-binding approach. We
show that by combining shear deformations to uniaxial strains it
is possible modulate the graphene energy gap value from zero
up to 0.9 eV. Interestingly enough, the use of a shear component
allows for a gap opening at moderate absolute deformation,
safely smaller than the graphene failure strain, i.e. in a range of
reversible and more easily accessible deformations, ranging in
between 12% and 17%.

Among the many studies of graphene, a substantial portion
have been devoted to the physics of graphene edges, whose struc-
ture in narrow graphene ribbons is predicted to have a major
impact on their electronic properties [32]. Recent theoretical stud-
ies show that transport effects such as Coulomb blockade [18] or
a mobility gap induced by edge disorder may affect the accuracy
of bandgaps measured under transport conditions [33]. On the
other hand, the free edges of graphene are amenable to edge Rippling, warping

and other bending
issues

instabilities, because of edges are under compressive stress ren-
dering a mechanical edge rippling and warping instability [34, 35].
Rippling of graphene has been also observed with mesoscopic
amplitude and wavelength, both for suspended monolayers [36]
and sheets deposited on substrates such as silicon dioxide [37].
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Besides, any bending phenomena, i.e. out-of-plane displacements,
are critical in attaining the structural stability and morphology
for both suspended and supported graphene sheets, and directly
affect their electronic properties [38]. Moreover, the bending prop-
erties play a central role in the design of graphene-based devices,
like e.g. mechanical resonators [39, 40]. The bending features of
functionalized graphene sheets have been probed by atomic force
microscopy, observing that the folding behavior is dominated by
defects and functional groups [41]. Finally, bending ultimately
governs the carbon nanotubes unzipping process, recently used to
produce narrow ribbons for nanoelectronics [42]. With the same
technique, a new class of carbon-based nanostructures, which
combine nanoribbons and nanotubes, has been introduced in
order to obtain magnetoresistive devices [43].

Within this scenario, in Chapter 8 we face the problem of the
fundamental understanding of the bending properties of a two-
dimensional carbon ribbon, and its interplay with the edge effects.
The main goal is twofold: to draw a thorough theoretical picture
on bending of two-dimensional structures, fully exploiting the
elasticity theory and providing an atomistic quantitative esti-
mation of the corresponding bending rigidity; to prove that the
bending process of a carbon nanoribbon is always associated with
the emergence of a (small) stretching, particularly close to the
edges. These results have been obtained by combining continuum
elasticity theory and tight-binding atomistic simulations too.
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outline

The Thesis is organized as follows

• Part I
A brief outline of the theoretical framework is shown as
follows

chapter 2 We report the main concepts and formalism
of the tight-binding theory, in particular addressed to
the semi-empirical approach

chapter 3 The density functional theory and its pertur-
bative version are briefly discussed

chapter 4 We show the continuum mechanics, in partic-
ular the main concepts of the two-dimensional non-
linear elasticity, and some reference to the atomistic
treatment of the elastic continuum theory

• Part II
We discuss in detail the some meaningful results regard the
elastic behavior of graphene

chapter 5 We deal with the constitutive nonlinear stress-
strain relation for graphene stretching elasticity, and
with all the corresponding nonlinear elastic moduli

chapter 6 We discuss about the linear and nonlinear
elastic behavior of the hydrogenated conformers of
graphene, namely graphane.

chapter 7 We exploit the concept of strain-induced band
gap engineering in graphene

chapter 8 Some fundamental concepts about the bend-
ing properties of a two-dimensional ribbons of graphene
have been discussed





Part I

T H E O R E T I C A L B A C K G R O U N D





2
T H E T I G H T- B I N D I N G S E M I - E M P I R I C A L
S C H E M E

“Everything should be made as simple as possible, but no simpler. ”
Albert Einstein, ’Einstein’s razor’ (1934).

Contents
2.1 The Tight-Binding method 13
2.2 The Tight-Binding representation of carbon-

base systems 21

In Chapter 3, we’ll briefly review the Density Functional Theory.
This ab-initio theory offers accuracy, transferability, and reliability.
These are undoubtedly three key features to achieve predictive
investigation of materials properties, but it is just as certain that
the corresponding computational workload can became quite
heavy and sometimes overwhelming.

The Tight Binding (TB) method is an intermediate solution
between a cheaper, from the computational point of view, totally
empirical potential model and a much more expensive ab-initio
calculation. Tight binding joins the advantage of the accuracy
needed to describe complex systems and of a reduced computa-
tional workload.

2.1 the tight-binding method

TB is based on the basic formalism of linear combination of
atomic orbitals (LCAO) and Bloch sums. The Hamiltonian for a
solid systam is given by

Ĥ = T̂n + T̂e + Ûen + Ûee + Ûnn. (2.1)

Here,

T̂n = −
∑
il

 h2

2Mi
∇2(Ril), kinetic energy operators for each ion

T̂e = −
∑
i

 h2

2me
∇2(ri), kinetic energy operators for each electron

Ûen = −
∑
i,l,j

Zie
2∣∣Ril − rj
∣∣ , electron-nucleus potential energy

13
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Ûee =
∑
i,j>i

e2∣∣ri − rj
∣∣ , electron-electron potential energy

Ûnn =
∑

l,l ′,j ′>j

ZjZj ′e
2∣∣Rjl − Rj ′l ′
∣∣ , nucleus-nucleus potential energy

(2.2)

where the i, j indices count the particles inside the unit cell, the l
index runs over the Bravais lattice sites, and the atomic positions
are Rjl = dj + Rl, with the generic traslational lattice vector Rl
and dj labels the basis vector for the nuclei in the unit cell. The
Coulomb potential, depending on difference vectors, is invariant
as well. Under the assumption of the frozen-core picture for
the electronic system and the Born-Oppenheimer or adiabatic
approximation, the corresponding single-electron Hamiltonian is

ĥel = T̂e + Ûen + Ûee + Ûnn. (2.3)

describing the energy of the valence electrons in the electrostatic
field of the ions, which are assumed as the nucleus and core-
electrons together, where the nuclei are assumed to be stationary
with respect to an inertial frame.The adiabatic

theorem: “A
physical system
remains in its
instantaneous
eigenstate if a given
perturbation is
acting on it slowly
enough and if there
is a gap between the
eigenvalue and the
rest of the
Hamiltonian’s
spectrum."

Assuming the approximation of non-interacting (Hartree-like)
electrons and the mean-field approximation, the ith-electron has
been described as particle moving in the ground-state of a effec-
tive periodic potential Uave due to the other valence electrons
and to the ions

ĥ(ri) = −
 h2

2me
∇2(ri) + Uave, (2.4)

invariant by lattice translation ĥ(ri) = ĥ(ri + Rl).
The wave functions ψnk(r), provided by the Schrödinger equa-

tion ĥ(r)ψnk(r) = εn(k)ψnk(r), must satisfy the Bloch condiction
as well; thus:

ψnk(r + Rl) = ψnk(r) exp(ik · Rl) (2.5)

where k is the electron Bloch wavevector, n is the band index,
εn(k) is the one-electron band energy and crystalline periodic
symmetry is assumed. By means of a linear combination of atomic
orbitals (LCAO), the electronic wave function ψnk(r) can be ex-
panded as Bloch sumBloch sum
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ψnk(r) =
∑
αj

B̃nαjφαjk(r)

=
∑
αjl

exp(ik · Rl)B̃nαjφα(r − Rl − dj)

=
∑
αjl

Bnα(jl)(k)φαjl(r)

(2.6)

Here, the label α indicates the full set of atomic quantum numbers
defining the orbital, and we assume that the wave function are
normalized in the volume of crystal. The Bloch sum is defined as

φαjk(r) =
∑
l

exp(ik · Rl)φα(r − Rl − dj) (2.7)

Despite the simplicity of this formalism, referred to as tight-
binding method, it is very hard to carry out, mainly due to the
difficulty in the computation of the overlap integrals between
atomic functions centred on different lattice points. In fact, be-
cause of the basis orbitals φαjl(r) located at different atoms are
generally not orthogonal, their calculation is numerically incon-
venient, and the computational workload increase as well. These Löwdin theorem:

”The problem of
solving the secular
equations including
the overlap integrals
S can be reduced to
the same form as it
has in simplified
theory, S neglected,
if the Hamiltonian h
is replaced by the
hL”

overlap integrals, defined by

Sα ′(j ′l ′),α(jl) =

∫
drφα ′j ′l ′(r)∗φαjl(r) − δαα ′δ(jl)(j ′l ′),

with Sα(jl),α(jl) = 0

(2.8)

are often small compared to unity, but, even if they have almost
been neglected, overlap effects are often of essential importance
for crystal properties. By joining the normalization condiction,
B†n(k)(1 + S)Bn(k) = 1, with the orthogonality theorem, conse-
quence of the hermitian character of h and S, the Schrödinger
equation can be written in the matrix formalism as

ĥBn(k) = εn(k)(1 + S)Bn(k) (2.9)

By introducing the substitution

Bn(k) = (1 + S)−1/2Cn(k) (2.10)

where, (1 + S)−1/2 = 1 − 1
2S + 3

8S2 − 5
16S3 + . . .

the Eq. (2.9) becomes ĥLCnk(r) = εn(k)Cnk(r). Here, the ĥL =

(1 + S)−1/2ĥ(1 + S)−1/2 is the Löwdin transformation [44] that
leads to a new orthogonal set of atomic orbitals {ψα ′j ′l ′(r)}

ψα ′j ′l ′(r) =
∑
αjl

(1 + S)
−1/2
α ′(j ′l ′),α(jl)φα(r − Rl − dj) (2.11)
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These Löwdin orbitals have the same symmetry properties as the
original non-orthogonal atomic wave functions [45].

The wave functions defined in Eq. (2.12) can be re-written as

ψnk(r) =
∑
αjl

Cnα(jl)(k)ψαjl(r) (2.12)

Therefore the one-electron energies can be obtained through theThe two center
approximation as
constants to fit

secular equation:∑
αjl

[
hα ′(j ′l ′),α(jl) − εn(k)δα ′αδ(j ′l ′)(jl)

]
Cnα(jl)(r) = 0 (2.13)

By using the the basis set of Löwdin orbitals, here the Hamilto-
nian matrix elements are given by

hα ′(j ′l ′),α(jl) = 〈ψα ′j ′l ′(r)|ĥ(r)|ψαjl, (r)〉 (2.14)

and the {Cnα(jl)} are the expansion coefficients in the Eq. (2.10).
The average potential Uave energy term in Eq. (2.4) can be

treated as being the sum of spherical potentials located at the
various atoms, then it can be written as follows

ĥ(r) =
p2

2me
+ Ujl(r) intra-atomic potential

+
∑

(j ′l ′) 6=(jl)

Uj ′l ′(r) two-body potential

+
∑

(j ′′l ′′) 6=(j ′l ′) 6=(jl)

Uj ′′l ′′(r) three-body potential,

(2.15)

where Ujl(r) is the spherical potential due to the ion located at
position Rl + dj. Accordingly, Eq.(2.14) can be separated into
three qualitatively different contributions

hα ′(j ′l ′),α(jl) = 〈ψα ′l ′j ′(r)|
(

p2

2me
+ Ujl(r)

)
|ψαjl(r)〉

+ 〈ψα ′l ′j ′(r)|
∑

(j ′l ′) 6=(jl)

Uj ′l ′(r)|ψαjl(r)〉

+ 〈ψα ′l ′j ′(r)|
∑

(j ′′l ′′) 6=(j ′l ′) 6=(jl)

Uj ′′l ′′(r)|ψαjl(r)〉

(2.16)

where the first intra-atomic term is easily computed thanks to
orthogonality. The remaining two contributions are called, respec-
tively, two-center and three-center energy integrals. Noting that
this problem is almost impossible to carry out with full rigor on
account of the computation of three-center integrals. A simplified
tight binding method has been introduced by Slater and Koster
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[46]. Basically, they suggest to cut the expansion of spherical po-
tential in Eq. (2.15) up to the second term, and instead the explicit
computation of the first and second integrals in Eq. (2.16), they
consider the two-center hopping integrals as disposable constants
fitted from available experimental measures or from results of
more accurate techniques, which are available only at a restricted
set of symmetric points of Brillouin zone.

The first approximation is the so-called two center approximation
for energy integrals.

These two-center hopping integrals can be expressed as prod-
ucts of a radial wave function and a spherical harmonic Ylm(θ, ϑ)
with the atom chosen as the origin. We will denote the vector
going from the first atom A, at Rjl, to the second atom B, at Rj ′l ′ ,
as t = (Rjl − Rj ′l ′). For both orbitals ψαjl and ψα ′j ′l ′ , we will
choose the coordinate axes such that the z−axes are parallel to
t and the azimuthal angles ϑ are the same. In these coordinate
systems the spherical harmonic wave functions of the two atoms
A and B are Ylm(θ, ϑ) and Yl ′m ′(θ ′, ϑ), respectively. The Hamilto-
nian ĥ has cylindrical symmetry with respect to t and therefore
cannot depend on ϑ. Thus the matrix element hα ′(j ′l ′),α(jl), is
proportional to the integral of the azimuthal wave functions
exp(i(m ′ −m)). This integral vanishes except when m = m ′.
symmetry. The concept of bonding and antibonding orbitals for
molecules can be easily extended to crystals if one assumes that
the orbitals of each atom in the crystal overlap with those of its
nearest neighbors only. This is a reasonable approximation for
most solids. The interaction between two atomic orbitals pro-
duces one symmetric orbital, with respect to the interchange of
the two atoms, which is known as the bonding orbital, and one
antisymmetric orbital, which is known as the antibonding orbital.
The results of orbital overlap in a solid is that the bonding and an-
tibonding orbitals are broadened into bands. Those occupied by
electrons form valence bands while the empty ones form conduc-
tion bands. The hopping integrals are usually labeled σ, π, and δ
for (l = 2 wave functions), depending on whether m =0, 1, or 2

(in analogy with the s, p, and d atomic wave functions). In the
case of p orbitals there are two ways for them to overlap. When
they overlap along the direction of the p orbitals, they are said to
form σ bonds. When they overlap in a direction perpendicular
to the p orbitals they are said to form π bonds. These hopping
integrals have a simple physical interpretation as representing
interactions between electrons on adjacent atoms. The fitting pro- Close neighbor

interaction
approximation

cedure is carried out on the basis of some approximations. First
of all, only interactions into close neighbor shell are taken into
account. Therefore only atoms within a certain cut-off distance
interact with each other. This approximation is validated by the
localized character of the atomic orbitals. Second approximation Minimal basis set
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Two-center Integrals

〈ψs,i|ĥ(t)|ψs,i〉 = Es
〈ψp,i|ĥ(t)|ψp,i〉 = Ep
〈ψs,i|ĥ(t)|ψs,j〉 = Vssσ
〈ψs,i|ĥ(t)|ψpx,j〉 = l̂(Vspσ)

〈ψpx,i|ĥ(t)|ψpx,j〉 = l̂2(Vppσ) + (1− l̂2)(Vppπ)

〈ψpx,i|ĥ(t)|ψpy,j〉 = l̂m̂(Vppσ) − l̂m̂(Vppπ)

〈ψpx,i|ĥ(t)|ψpz,j〉 = l̂n̂(Vppσ) − l̂n̂(Vppπ)

Table 2.1: Two-center hopping integrals up to the p-orbital [46]. Here
the vector t = (l̂, m̂, n̂)t is written through its director cosines.

is the choice of a minimal basis set for the LCAO expansion,
including only those Löwdin atomic orbitals whose energy is
close to the energy of the electronic states we are interested in.
This choice minimizes the size of the TB matrix to be diagonal-
ized and, therefore, affects directly the computational workload
associated to the TB method.

Rewriting the Löwdin wave functions ψαjl(r) of the Eq. (2.12)
in form of Bloch functions

ψαjk(r) =
∑
l

exp(ik · Rl)ψαjl(r), (2.17)

the matrix elements defined in the Eq. (2.14) is now in the form

hα ′j ′,αj(k) = 〈ψα ′j ′k(r)|ĥ(r)|ψαjk(r)〉
=
∑
ll ′

exp(ik · (Rl − Rl ′))〈ψα ′j ′l ′(r)|ĥ(r)|ψαjl(r)〉

(2.18)

where the matrix elements are basically the same hopping inte-
grals defined in Eq. (2.14), which can also be expressed in terms
of the overlap parameters shown in Table 2.1, and the phase
factors are the geometrical factors containing the k−dependence.
Instead of summing over all the unit cells in the crystal, we
sum over the nearest neighbors only. If needed, one can easily
include second neighbor or even further interactions, applying
symmetry arguments allows the number of nonzero and linearly
independent matrix elements to be greatly reduced.Tight Binding

Molecular dynamics
(TBMD)

Starting from the previously described TB semi-empirical, two-
center, short-ranged and orthogonal scheme, we now introduce
the tight-binding molecular dynamics, (TBMD), namely the ap-
plication of the above described tight binding TB model to the
calculation of the forces for a molecular dynamics MD scheme.
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The tight-binding molecular dynamics TBMD ionic trajectories
are generated by the TBMD Hamiltonian

H =
∑
j

P2j
2Mj

+ Ebs +Urep(R1, R2, · · · , RN), (2.19)

where Pj and Mj represent atomic momenta and masses and εn
is the one-electron energy and n the band index. The effective

repulsive potentialBecause of it is not possible to directly compute the Hartree
energy Uel−el, within the semi-empirical TB scheme, since the
electron density ρ(r) is unknown, the total energy Etot of the
(ions+electrons) system is re-written as

Etot = Uion−ion +Uel−ion +Uel−el = Ebs +Urep. (2.20)

Here, the Ebs = Uel−ion+ 2Uel−el is the so-called band-structure
energy, which is calculated by solving the Eq. (2.13)

Ebs = 2

occup∑
n

εn, (2.21)

and it can be written as the Fermi-Dirac function

Ebs = 2
∑
k,n

fFD[εn(k), T ]εn(k),

at the temperature T = 0 evaluated at a single k point in the
Brillouin zone, and the Urep = Uion−ion −Uel−el is an effective
repulsive potential assumed to be short-ranged. Because of the
hopping integrals have been fitted on the equilibrium properties
that is with the ions at the equilibrium lattice positions, the so-
called Harrison rule [47] is introduced . If h(0)

α ′j ′,αj is the matrix The universal Tight
Binding method:
Harrison ruleelements referred to the equilibrium interatomic distance R(0)

jj ′ ,
the variation of the matrix element hα ′j ′,αj(Rjj ′) upon the actual
distance Rjj ′ is given by

hα ′j ′,αj(Rjj ′) = h
(0)
α ′j ′,αj

R(0)
jj ′

Rjj ′

n (2.22)

Similarly, the repulsive energy Urep =
∑
j6=j ′ U(Rjj ′) obeys the

Harrison-like rule

U(Rjj ′) = U(0)

R(0)
jj ′

Rjj ′

m (2.23)

where the two-body potential U(0) regards a couple of ions at
their equilibrium distance. The parameters n and m have to be
determined by fitting. Calculation of the

forces
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These assumptions implie that the force Fk acting on the kth

ion is given by

Fk = −
∂H

∂Rk
= −

∂

∂Rk
[Ebs + Urep(R1, R2, · · · , RN)]

=
[

FAk + FRk
]

(2.24)

where the force Fk is separated in an attractive contribution FAk
and in a repulsive term FRk . The FAk depends only on the actual
tight binding model, while the FRk depends just on the empirical
repulsive potential and they require dissimilar numeric treat-
ment. The repulsive term FRk is straightforwardly calculated from
Urep(R1, R2, · · · , RN), which is known as an analytic function of
interatomic distances.

The attractive term FAk is given by

FAk = −2
∂

∂Rk

(occup)∑
n

εn

= −2
∂

∂Rk

(occup)∑
n

∑
α ′j ′

∑
αj

C∗nα ′j ′Cnαjhα ′j ′,αj (2.25)

The derivative with respect to the ionic position has been devel-
oped as follow

FAk = −2

(occup)∑
n

∑
α ′j ′

∑
αj

∂C∗nα ′j ′

∂Rk
Cnαjhα ′j ′,αj

+
∑
α ′j ′

∑
αj

C∗nα ′j ′
∂Cnαj

∂Rk
hα ′j ′,αj+

+
∑
α ′j ′

∑
αj

C∗nα ′j ′Cnαj
∂hα ′j ′,αj

∂Rk


= −2

(occup)∑
n

∑
α ′j ′

∂C∗nα ′l ′

∂Rk

∑
αj

Cnαjhα ′j ′,αj

+
∑
αj

∂Cnαj

∂Rk

∑
α ′j ′

C∗nα ′j ′hα ′j ′,αj+

+
∑
α ′j ′

∑
αj

C∗nα ′l ′Cnαj
∂hα ′j ′,αj

∂Rk

 (2.26)

and imposing the orthogonality condictions∑
αj

hα ′j ′,αjCnαj = εnCnα ′j ′ and
∑
α ′j ′

C∗nα ′j ′hα ′j ′,αj = εnC
∗
nαj,

(2.27)
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the Eq. (2.26) can be written into

FAk = −2

(occup)∑
n

εn ∂

∂Rk

∑
αj

C∗nαjCnαj


+
∑
α ′j ′

∑
αj

C∗nα ′l ′Cnαj
∂hα ′j ′,αj

∂Rk

 (2.28)

by assuming completeness of the basis set used for LCAO expan-
sion,

∑
αjC

∗
nαjCnαj = 1, again

FAk = −2

(occup)∑
n

∑
α ′j ′

∑
αj

C∗nα ′j ′Cnαj
∂hα ′j ′,αj

∂Rk
(2.29)

The Eq. (2.29) represents the final expression for the attractive
contribution to the net force on the kth atom and the simple
derivation presented above is a special implementation of the
Hellmann-Feynman theorem. Formally the derivative in Eq. (2.29)
can be re-write as follows

FAk = −2

(occup)∑
n

∑
α ′j ′

∑
αj

C∗nα ′l ′Cnαj〈ψα ′j ′ |
∂ĥ
∂Rk

|ψαj〉

+
∑
α ′j ′

∑
αj

C∗nα ′l ′Cnαj

(
〈∂ψα ′j ′
∂Rk

|ĥ|ψαj〉+ 〈ψα ′j ′ |ĥ|
∂ψαj

∂Rk
〉
)

(2.30)

This form shows that the attractive force FAk includes both the
Hellmann-Feynman [48] and Pulay [49] contributions, as the first
and second term of the right-hand side of Eq. (2.30). The Pulay
force term must be added to the standard Hellmann-Feynman
one, because of the basis set functions depends on the ionic coor-
dinates. Let’s come now to introduce the specific tight binding TB
Hamiltonian we use for the carbon and hydro-carbon systems.

2.2 the tight-binding representation of carbon-base

systems

In this section we refer to the work of Xu et al. [50], where an
interatomic potential for carbon is developed in the framework
of the empirical TB approach.

The TB interatomic potential is developed adopting the scaling
form given by Goodwin et al. [51] for the dependence of the
TB hopping parameters and of the pairwise potential on the
interatomic separation. In this model the total energy is written,
as previously discussed (see Eq. (2.20)) as

Etot = Ebs +Urep,
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where Ebs is twice the sum of electronic eigenvalues over all
occupied electronic states and Urep is a short-ranged repulsive
term. The electronic eigenvalues are obtained by diagonalizing
the TB Hamiltonian. Its off-diagonal elements are described by a
set of orthogonal sp3 two-center hopping parameters (Vssσ, Vspσ,
Vppσ and Vssπ) scaled with interatomic separation rij = |Ri − Rj|

by means of a function s(r); the onsite elements are the atomic
orbital energies of the corresponding atom. The repulsive term
Urep is modelled as

Urep =
∑
i

f
(∑
j

φ(rij)
)

, (2.31)

where φ(rij) is a pairwise model potential between atoms i and
j, and f is a functional expressed as a 4th-order polynomial with
argument

∑
jφ(rij). For the scaling function s(r) and pairwise

potential φ(rij) we adopt the following functional forms:

s(r) = (
r0

r
)nen[−( rrc )nc+(

r0
rc

)nc ] (2.32)

φ(r) = φ0(
d0

r
)mem[−( r

dc
)mc+(

d0
dc

)mc ] (2.33)

where r0 is the nearest neighbor atomic separation in diamond
and n, nc, rc, φ0, m, dc and mc are parameters to be determined.
It would be nice if the functions s(r) and φ(r) vanished smoothly
at some designed cut-off distances, rc and dc respectively. For
the used carbon TBMD parameterization, this cut-off value is
set to rc = dc = 2.6 Å, which is between the nearest-neighbor
and the next-nearest-neighbor distances of carbon atoms in the
equilibrium diamond structure. In fact the scaled TB matrix el-
ements are truncated discontinuously to 0 at rc, and the force
is made change from a finite value to 0 abruptly. These small
energy jumps creates no significant problem to the simulations.
It is important to observe this TBMD cut-off is smaller than the
interlayer distance in graphite, this choice strong affecting our
work, as explained in the following chapters. The value of this
model parameters are chosen by fitting first-principles LDA re-
sults of energy versus nearest-neighbor distance for different
carbon allotropies (diamond, graphite, linear chain, simple and
face-centered cubic). The resulting sp3 TB parameters expressed
in units of eV are shown in Table 5.1.

As shown by Xu et al. [50], these parameters reproduce excel-
lently the energy curves of the diamond and graphite structures
(see figure 1 and 2 in [50]). The parameters for s(r), φ(r) and
the coefficients for the polynomial function f(x) =

∑4
n=0 cnx

n

with x =
∑
jφ(rij) are listed in Table 2.3. The presented TB ap-

proach gives an accurate description of atomic interactions in
carbon system, it is able to reproduce the energy-volume curves
of accurate LDA calculations with excellent transferability among



2.2 the tight-binding representation of carbon-base systems 23

Two-center Integral Xu et al. [50]

Es −2.99

Ep +3.71

Vssσ −5.0

Vspσ +4.7

Vppσ +5.5

Vppπ −1.55

Table 2.2: The sp3 tight-binding parameters expressed in units of eV at
the reference interatomic separation r0 = 1.536 Å of diamond
nearest neighbors.

graphite and diamond structures, giving a good description of
the dynamical and elastic properties of such structures.
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Parameter

n 2.0

nc 6.5

rc 2.18 Å

r0 1.536329 Å

r1 2.45 Å

φ0 8.18555(eV)

m 3.30304

mc 8.6655

dc 2.1052 Å

d0 1.64 Å

d1 2.57 Å

c0 −2.5909765118191

c1 0.5721151498619

c2 −1.7896349903396 · 10−3

c3 2.3539221516757 · 10−5

c4 −1.24251169551587 · 10−7

Table 2.3: The parameters defining s(r), φ(r), and the coefficients for
the polynomial function f(x) =

∑4
n=0 cnx

n.
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D E N S I T Y F U N C T I O N A L T H E O RY

“ It doesn’t matter how beautiful your theory is, it doesn’t matter
how smart you are. If it doesn’t agree with experiment, it’s wrong.”

Richard P. Feynman (1918 - 1988)
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3.1 density functional theory

Density functional theory (DFT) [52, 53] solves the electronic
Schröedinger equation

Ĥψ = Eψ (3.1)

by reducing the quantum mechanical problem for a many-body
interacting system to an equivalent problem for non-interacting
particles. This is achieved by using as fundamental variable the
electronic density instead of the many-body electronic wavefunc-
tion. Hohenberg and Kohn

lemmaThe theoretical base of DFT is the Hohenberg and Kohn lemma
[54, 55] which considers an electronic system subject to an exter-
nal potential. This theorem states that any ground state density n(r)
of a many-electron system determines uniquely the external potential
Vext(r), modulo an uninteresting additive constant. This lemma is
mathematically rigorous. Since n(r) determines both the number
of electrons N and Vext(r) , it gives the full Hamiltonian for the
electronic system, and it determines implicitly all physical prop-
erties derivable from H through the solutions of the Schrödinger
equation (time-dependent or not).
Therefore according to this lemma, considering a set of Hamilto-
nians that have the same kinetic energy Te and electron-electron
operator Uee but different external potentials, their ground state
will have different densities, or rather two different potentials
acting on the same electronic system cannot give rise to the same
ground-state electronic charge density. The external potential is
thus a functional of the ground-state density. Therefore once the
external potential Vext is fixed, the total energy will also be a
functional EV [n(r)] of the electronic charge density n(r).

25
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Applying the standard Rayleigh-Ritz variational principle of
quantum mechanics, the electronic charge density of the ground
state, corresponding to the external potential Vext, minimizes the
functional EV [n(r)], under the constraint that the integral of n(r)
equals the total number of electrons N. The ground state energy
coincides with the minimum of the constrained energy minimum
EV [ñ(r)] = min

(
ψ̃, Ĥψ̃

)
, where the trial function ψ̃ corresponds

to a fixed trial density ñ

ñ(r) = N

∫
d3r2

∫
d3r3 · · ·

∫
d3rNψ̃∗(r, r2, . . . ,~rN)ψ̃(r, r2, . . . , rN)

(3.2)

The expression for the ground state energy of the electronic
system is then

EV = minñEV [ñ] = minñ

(
F[ñ] +

∫
dr ñ(r)Vext(r)

)
(3.3)

where F[n] is an universal functional of the density n(r) that does
not require explicit knowledge of Vext(r). It is defined by the
kinetic energy Te and by the electron-electron interaction Uee as

F[ñ(r)] = min
(
ψ̃∗, (Te +Uee)ψ̃

)
(3.4)

The functional F[n] is not easy to calculate and represents most
of the total energy EV . Moreover there is no analytic expression
for F[n]. Nevertheless, significant formal progress has been made,
the problem of ground-state densities and energies has been
well-formulated entirely in terms of the density ñ and of a well-
defined, but explicitly unknown, functional of the density F[ñ].
In the work of Kohn and Sham [55] an approximate expression
for F[n] was proposed by considering an equivalent problem
of non interacting electrons. The core of the Kohn and Sham
assumption was that, for every system of interacting electrons,
a corresponding system of non-interacting particles, described
by single particle orbitals , exists subject to an external potential
with the same ground state density as the interacting system.Kohn-Sham

equations The Kohn-Sham functional can be written as [55]

F[ñ] = Te[ñ] +
1

2

∫
drdr ′

ñ(r)ñ(r ′)
|r − r ′|

+ Exc[ñ] (3.5)

Here and in the follows, any physical constant are assumed
equal to the unit. Te[ñ] is the kinetic energy of the ground-state
of non-interacting electrons with density ñ(r), and Exc[ñ] is the
so-called exchange and correlation energy. The last two terms
of Eq. (3.5) derive from the decomposition of the Uee operator,
whose quantum mechanical effects are contained in Exc[n]. A
consequence of the Hohenberg and Kohn lemma is that the Eq.
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(3.3) is variational with respect to the charge density, under the
condition that the number of electrons is conserved. The solution
of the corresponding variational equation leads to the equation

δEV [ñ(r)] =

∫
δñ(r)

{
δTe[ñ]

δñ(r)

∣∣∣∣
ñ=n

+ VKS − λ

}
dr = 0 (3.6)

where

VKS = Vext +
1

2

∫
dr ′

ñ(r ′)
|r − r ′|

+ vxc(r). (3.7)

and λ is a Lagrange multiplier constraining the density to be
normalized to the total number of the electrons. In Eq. (3.6),
the local exchange-correlation potential vxc(r) is the functional
derivative of exchange and correlation energy

vxc(r) =
δExc[ñ]

δñ(r)

∣∣∣∣
ñ=n

(3.8)

depending functionally on the density ñ(r).
Now the Hohenberg-Kohn variational problem for interact-

ing systems becomes formally identically to a corresponding
equation for a system of non-interacting electrons subject to an
effective external potential Veff instead Vext, so the ground state
of this system is obtained by solving the single particle equations

(
−
1

2
∇2 + Veff − εj

)
ψj(r) = 0 (3.9)

where ψj(r) are orthonormalized single particle orbitals, and the
minimizing density n(r) is given by

n(r) =
∑
j

|ψj(r)|2 (3.10)

It is possible to demonstrate that the two Eqs. (3.6) and (3.9)
fulfill the same minimum conditions leading to the same density
if the Kohn-Sham potential VKS is equal to the Veff. Therefore, as-
suming that the exchange-correlation energy functional is known,
it is possible to treat the many-body problem as an independent
particle problem. The self-consistent Eqs. (3.9) are the so-called
the Kohn-Sham (KS) equations. The ground-state energy is now
given by

E =
∑
j

εj+Exc[n]−

∫
drn(r)vxc(r)−

1

2

∫
drdr ′

n(r)n(r ′)
|r − r ′|

(3.11)

reducible to the Hartree equations neglecting Exc and vxc. The
KS theory may be regarded as the formal improvement of the
Hartree theory, indeed with the exact Exc and vxc all many body
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effects are in principle included. Unfortunately, the practical
usefulness of the ground-state DFT depends entirely on whether
approximations for the functional Exc[ñ] could be found, that
at the same time has to be sufficiently simple and sufficiently
accurate. The next section regards briefly the development and
the current status of such approximations.

3.1.1 Exchange and correlation energy approximations

Dealing with the exchange and correlation energy Exc[n] is the
most difficult task in the solutions of the Kohn-Sham equations.
The exchange energy derives from Pauli exclusion principle,
which imposes the antisymmetry of the many-electron wavefunc-
tion. This antisymmetrization produces a spatial separation be-
tween electrons with the same spin and thus reduces the Coulomb
energy of the electronic system. This energy reduction is called
the exchange energy. The Hartree-Fock method exactly describes
exchange energy; the difference between the energy of an elec-
tronic system and the Hartree-Fock energy is called the correlation
energy. It is extremely difficult to calculate the correlation energy
of a complex system, although some attempts have been made
by using quantum Monte Carlo simulations.
The most important approximation for Exc[n] can be written in a
quasi-local form

Exc[n(r)] =

∫
drn(r)εxc(r; [n(r ′)]) (3.12)

where the exchange-correlation energy per particle εxc at the
point r which depending functionally on the density charge n(r ′)
at the point r ′ near r, where "near" means at a distance such
as the local Fermi wavelenght |r − r ′| ' λF(r) = (3π2n(r ′))−1/3.
The most popular implementations of this quasi-local approach
for the exchange and correlation energy are the Local Density
Approximation (LDA) and the Generalized Gradient Approximation
(GGA).Local Density

Approximation LDA was propoded in their original paper by Kohn and Sham
[55] as the simplest method to describe the exchange-correlation
energy Exc[n]. They assume that the non-local exchange-correlation
energy εxc(r; [n(r ′)]) in Eq. (3.16) can be equal to the local exchange-
correlation energy per particle εxc[n(r)] of a homogeneous elec-
tron gas, which has the same density as the electron gas at point
r ∈ (r, –F(r)), if this volume is little enough that the charge den-
sity could be assume constant therein. In this assumption, the Eq.
(3.16) becomes

ELDAxc [n] =

∫
drn(r)εhomoxc [n(r)] (3.13)
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and the potential in Eq. (3.8)

vLDAxc [n(r)] =

(
εhomoxc [n] +n

dεhomoxc [n]

dn

)
n=n(r)

(3.14)

The LDA assumes that the exchange correlation energy func-
tional is purely local, ignoring the corrections to the exchange
correlation energy at a point r due to the nearby inhomogeneities
in the electron density, but it is exact in the limit of high density
or of a slowly varying charge density. Moreover, the exchange-
correlation energy Exc[n] can be separeted in two terms

ELDAxc [n(r)] = ELDAx [n(r)] + ELDAc [n(r)] (3.15)

The exchange term Ex[n] is simply the Fermi-Thomas-Dirac ex-
change energy

ELDAx [n(r)] = −
3

4

(
3

π

)1/3 ∫
n(r)4/3dr (3.16)

that comparing ith Eq. (3.13) leads to an elementary form of the
exchange part, given by, in atomic units

εhomox [n(r)] ≈ −
0.4582

rs
(3.17)

where rs is the radius of a sphere containing an electron, namely
radius of Sietz, and given by (4π/3)rs

3 = n−1. The correlation
part was extimated by E.P. Wigner [56]

εhomoc [n(r)] ≈ −
0.44

rs + 7.8
(3.18)

and using Monte Carlo methods it was calculated with higher
precision for uniform electron gas by D.M. Ceperly and B.J. Alder
[57, 58]

εhomoc [n(r)] = λ (1+β
√

rs +βrs)
−1 , rs > 1

εhomoc [n(r)] = (A ln rs +B+Crs ln rs +Drs) , rs < 1

(3.19)

which has been parametrized by J.P. Perdew and A. Zunger [59]. Generalized
Gradient
Approximation

Another useful approximation is the so-called Generalized
Gradient Approximation GGA. The basic concept is the average
xc hole distribution around a given point r

nxc(r, r ′) = g(r, r ′) −n(r ′)∫
nxc(r, r ′)dr ′ = −1 (3.20)

with the conditional density g(r, r ′) at r ′ due to an electron at
r. It describes the hole dug into the average density n(r ′) by
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the electron at r, and it reflects the screening of the the electron
at r due to the Pauli effect and the electron-electron interation.
Introducing a parameter λ, (0 6 λ 6 1), the λ−average xc hole
density n̄xc(r, r ′) is then defined as

n̄xc(r, r ′) =

∫
nxc(r, r ′; λ)dλ (3.21)

the very physical formally exact espretion of the exchange-correlation
energy εxc(r; [n(r ′)]) in Eq. (3.16) is given by

εxc(r; [n(r ′)]) = −
1

2
R−1
xc (r; [n(r ′)]) (3.22)

where R−1
xc (r; [n(r ′)]) is

R−1
xc (r; [n(r ′)]) =

∫
−n̄xc(r, r ′)

|r − r ′|
dr ′ (3.23)

Since R−1
xc is a functional of n(r ′), we can formally use the expan-

sion of the electron density n(r ′) around the point r

n(r ′) = n(r)+ (r − r ′)[∇n(r ′)]r ′=r +
1

2
(r − r ′)2[∇2n(r ′)]r ′=r + . . .

(3.24)

and we obtain

R−1
xc (r) = F0(n(r)) + F21(n(r))∇2n(r) + . . . (3.25)

This leads to the gradient expression for Exc

Exc = ELDAxc +

∫
G2(n(r))(∇n(r))2dr + . . .

=

∫
n(r)εLDAxc [n(r)]dr +

∫
n(r)εGGAxc [n(r), |∇n(r)|]dr + . . .

(3.26)

where G2 is an universal functional of n(r). Generally the GGA
method stops the expansion at the first derivative, and the exchange-
correlation function is expressed as function of the two variables
n(r) e |∇n(r)|

EGGAxc [n] =

∫
n(r)εGGAxc (n(r), ∇n(r))dr (3.27)

An important point regard the parametrization of the εGGAxc .
Analytical form was proposed by Perdew-Wang [60, 61, 62], and
Becke [63], namely (PW91), using the local spin density (LSD)
approximation for the exchange-corelation energy, Eq. (3.27),
which it can be separated in two terms

EPW91xc [n] = EPW91x [n] + EPW91c [n] (3.28)
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The exchange term is given by, using atomic units

EPW91x [n] =

∫
n(r)εPW91x (rs,σ)σ=0F

PW91
X (s)dr

εGGAx (rs, 0) = −
3kF

4π
(3.29)

(3.30)

Here, εPW91x (rs,σ) is the exchange-correlation energy per particle
for a uniform electron gas, with rs is the local Seitz radius and
σ = (nup −ndown)/n is the local spin polarization,

kF = (3π2n(r))1/3 (3.31)

is the local Fermi wave vector, and

s(r) =
|∇n(r)|
2kFn(r)

, (3.32)

is a scaled density gradient. The function FPW91X (s) is written as
[60]

FPW91X (s(r)) =
1+ s(r)A sinh−1(s(r)B) + (C−De−100s2(r))s2(r)

1+ s(r)A sinh−1(s(r)B) + s4(r)E
,

(3.33)

The correlation part of Eq. (3.28) is

EPW91c [n] =

∫
n(r)[εc(rs, ζ) +H(t, rs, ζ)]dr , (3.34)

where εc(rs, ζ) is the correlation energy per particle of an uniform
electron gas [60], and t is another scaled density gradient

t =
|∇n(r)|
2gksn(r)

, (3.35)

here, ks = (4kF/π)1/2 is the local screening wave vector, and
g = [(1+ ζ)2/3 + (1− ζ)2/3]/2. Analytic representations both for
εc(rs, ζ) and for the function H(t, rs, ζ) are available in Ref. [62].
Popular GGA implementations include Perdew-Burke-Ernzerhof
(PBE) [64], and Becke-Lee-Yang-Parr (BLYP) [63, 65].

3.1.2 Plane waves and Pseudopotentials

As shown previously, DFT reduces a many-body interacting
particle problem to an independent particle problem. However
solving single particle equations also presents technical difficul-
ties. In particular, if a plane-waves basis set is chosen to expand
the wavefunctions, an extremely large number of plane waves is
needed for expanding the core electron wavefunctions (strongly
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localized in the region near the nucleus) and for reproducing the
rapid oscillations of the valence electron wavefunctions in the
core region. For this reason a calculation including all the elec-
trons using a plane wave basis set requires a huge computational
cost.
The pseudopotential approximation is an effective method to
eliminate the core electrons in the calculations of the electronic
structure. It is known that the core electrons are chemical in-
ert and that most molecular properties can be calculated with
acceptable precision assuming that the core electrons do not mod-
ify their state in different chemical configurations (free atom,
molecule, solid): this is known as the frozen core approximation.
Therefore in the solution of the Schröedinger equation it is pos-
sible to distinguish: i) The core region mainly constituted of
electrons deeply bonded and almost non interacting with those
of other atoms; ii) the remaining volume, where there are valence
electrons that are involved in bonds with the neighbor atoms.
Although the potential in the core region is strongly attractive,
the orthogonality condition between the valence and core elec-
tron wavefunctions results in oscillations of the valence electron
wavefunctions, which correspond to a kinetic energy that almost
balances the attractive potential. In the pseudopotential method
this kinetic effect is simulated by a repulsive potential that bal-
ances the strong attractive potential in the core region. This results
in the separation of the electron-electron interaction term Uee
into a term corresponding to the valence electrons and a term
corresponding to the core electrons that screen the attraction of
the nuclear potential onto the valence electrons. Therefore the
pseudopotential (PP) is

UPP = UeN +Usc +Uval (3.36)

where UeN represents the electron-nuclei interaction, Usc repre-
sents the screening due to the core electrons and Uval represent
the interaction between valence electrons. The pseudopotential is
identical to the real potential at distance greater than the core ra-
dius rc, while for r 6 rc, it is built so as to simulate the combined
action of the ionic and screening terms on the valence electrons.
The eigenfunctions of the corresponding Schroedinger equation
are therefore pseudo-eigenfunctions, which coincide with the real
eigenfunctions only in the region for r > rc . In the core region,
the pseudo-eigenfunctions are continuous and node less. They
allow a rapid convergence in the plane wave expansion.
The main advantages achieved by using the pseudopotential
method are: the number of the electrons to deal with is reduced
for a given system; the computational cost is lower due to the
smaller number of plane waves necessary for the calculations.
Technical aspects of the implementation of the KS equations in
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plane wave pseudopotential (PW-PP) framework have been found
in Ref. [66].

3.2 density functional pertubation theory : from elec-
tronic structure to lattice dynamics

Lattice dynamical properties of a system are determined by the
solution of the Schródinger equation for the ionic part, by using
the adiabatic approximation of Born-Oppenheimer(

−
∑  h2

2Mi

∂2

∂R2i
+ E(R)

)
φ(R) = Eφ(R) (3.37)

where Ri and Mi are the coordinate of the ith−ion, and its mass,
respectively, and E(R) is the ground-staet energy of the elec-
tronic system moving in the field of fixed ions. The equilibrium
condiction is achieved when the forces acting in the electronic
ground-state on each ion vanish

Fi = −
∂E(R)

∂Ri
=

〈
ψ(R)

∣∣∣∣∂Ĥel∂Ri

∣∣∣∣ψ(R)

〉
= 0 (3.38)

Here, the Hellmann-Feynman theorem has been appliyed in the
framework of the Born-Oppenheimer approximation, the ψ(R) is
the electronic ground-state wave function, and the ion coordinates
act as parameters in the electronic Hamiltonian Ĥel.

The vibrational frequenciesω are determinated by the eigenval-
ues of the Hessian of E(R), namely the matrix of the interatomic
force constants interatomic force

constants

det

∣∣∣∣ (MiMj

)−1/2 ∂2E(R)

∂Ri∂Rj
−ω2

∣∣∣∣ = 0 (3.39)

The calculation of the equilibrium configuration and of the
vibrational properties of the system need to compute the first and
the second derivative [67], respectively, of the Born-Oppenheimer
energy surface E(R). linear response

∂nR(r)
∂Rj∂E(R)

∂Ri
=

∫
∂VR(r)
∂Ri

nR(r)dr , (3.40)

∂2E(R)

∂Ri∂Rj
=

∫
∂2VR(r)
∂Ri∂Rj

nR(r)dr +

∫
∂VR(r)
∂Ri

∂nR(r)
∂Rj

dr (3.41)

where the derivative of the ion-ion electrostatic interation is as-
sumed constant. The calculation of the matrix interatomic force
constants, Eq. (3.39), the calculation of the ground-state elec-
tronic charge density nR(r) and its linear response to a distortion
of the ion configuration, ∂nR(r)

∂Rj
. The linear response can be com-

puted within the perturbative version of the density funtional
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theory (DFT), usually referred as density funtional perturbation the-
ory (DFPT) [68, 69]. Through the liniarization of the Kohn-ShamDensity Funtional

Perturbation Theory
(DFPT)

Eqs. (3.9), (3.10), and (3.7) with respect to wave function, density,
and potential variations. Linearization of the charge density n(r)
leads to

∇Rn(r) = 2Re
∑
n

ψ∗n(r)∇Rψn(r) (3.42)

By using the standard first-order perturbation theory, the vari-
ation of the Kohn-Sham unperturbed orbitals ψn(r) is given by

(
−
1

2
∇2 + VKS − εn

)
∇Rψn(r) = − (∇RVKS −∇Rεn)ψn(r)

(3.43)

Here,

∇RVKS(r) = ∇RV
ext(r)+

1

2

∫
dr ′
∇Rn(r ′)
|r − r ′|

+
d vxc(n)

dn

∣∣∣∣
n=n(r)

∇Rn(r)

(3.44)

is the first-order correction to the Kohn-Sham potential, and

∇Rεn = 〈ψn|∇RVKS(r)|ψn〉 (3.45)

is the first-order variation of the Kohn-Sham eigenvalues. TheThe (2n+ 1)

theorem knowledge of the first-order derivative of the wave functions is,
hence, enough to compute the second-order derivative of the
energy. This is a special case of the (2n+ 1) theorem [70], which
states that the knowledge of the nth-order derivative of the wave
functions allows the calculation of derivative of the energy up
to the (2n + 1)th-order. The set of self-consinstent Eqs. (3.42),
(3.44), and (3.45) for the perturbated system are analogous to the
Kohn-Sham equation for the unperturbed case, Eqs. (3.9), (3.10),
and (3.7).



4
C O N T I N U U M M E C H A N I C S A N D N O N L I N E A R
E L A S T I C I T Y

“ I try not to break the rules but merely to test their elasticity.”
Bill Veeck (American Baseball Player, 1914-1986)
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In this Chapter we introduce the basic formalism of the con-
tinuum theory of elasticity, summarizing its foundation and key
concepts. We also discuss same general features regarding the
elastic theory in two dimensional systems.

4.1 lagrangian versus eulerian formalism

The motion of a body is typically referred to a reference configu-
ration Ω0 ⊂ R3, which is often chosen to be the undeformed con-
figuration. After the deformation the body occupies the current
configuration Ωt ⊂ R3. Thus, the current coordinates (x ∈ Ωt)
are expressed in terms of the reference coordinates (X ∈ Ω0):

X 7→ x = Ft (X) (4.1)

where Ft is the transformation function at any time t (see Fig.
4.1). More explicitly, it means that

x1 = x1 (X1,X2,X3, t)

x2 = x2 (X1,X2,X3, t) (4.2)

x3 = x3 (X1,X2,X3, t)

35
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P

x1
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x = Ft(X)

Deformation, Ft

reference configuration current configuration

Figure 4.1: Reference configuration and current configuration after a
deformation.

We call the set (X and t) Lagrangian coordinates, named after
Joseph Louis Lagrange [1736-1813], or material coordinates, or
reference coordinates. The application of these coordinates is
called Lagrangian description or reference description. We can
obtain also the inverse function of Eq. (4.1) in the formLagrangian reference

coordinates
x 7→ X = F−1

t (x) (4.3)

or, in components

X1 = X1 (x1, x2, x3, t)

X2 = X2 (x1, x2, x3, t) (4.4)

X3 = X3 (x1, x2, x3, t)

The set {x, t} is called Eulerian coordinates, named after Leon-Eulerian space
coordinate hard Euler [1707-1783], or space coordinates, and their application

is said Eulerian description or spatial description. The Lagrangian
coordinates were introduced by Euler in 1762, while Jean le Rond
D’Alembert [1717-1783] was the first to use the Eulerian coor-
dinates in 1752. In general Continuum Mechanics Lagrangian
coordinates and the reference description are the most common.
The same holds true in solid Mechanics. However, in Fluid Me-
chanics, due to large displacements and complex deformations,
it is usually necessary and most practical to use Eulerian coor-
dinates and spatial description. One of the key quantities inDeformation

gradient deformation analysis is the deformation gradient of Ωt relative
to the reference configuration Ω0, denoted F̂, which gives the
relationship of a material line dX before deformation to the line
dx (consisting of the same material as dX) after deformation. It is
defined as

x = Ft (X) : F̂ (X, t) = ∇XFt (X)⇒ dx = F̂ (X, t)dX

(4.5)
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Its components are given by

FiK =
∂xi

∂XK
, ∀(i,K) ∈ {1, 2, 3}2 (4.6)

As before, we can define a deformation gradient Ĝ of the inverse
function relating Ω0 to the current configuration Ωt

X = F−1
t (x) : Ĝ (x, t) = ∇xF

−1
t (x)⇒ dX = Ĝ (x, t)dx

(4.7)

In components, it assumes the form

GKi =
∂XK

∂xi
, ∀(i,K) ∈ {1, 2, 3}2 (4.8)

The tensors F̂ and Ĝ are related by the relationships

Ĝ (Ft (X) , t) = F̂−1 (X, t) (4.9)

F̂
(
F−1
t (x) , t

)
= Ĝ−1 (x, t) (4.10)

Here, F̂ is a Lagrangian tensor while Ĝ is an Eulerian tensor. The
velocity and acceleration fields, related to the trajectory of the Velocity and

acceleration fieldsparticle starting at X (Lagrangian description) are given by

v (X, t) =
∂x
∂t

(X, t) (4.11)

a (X, t) =
∂2x
∂t2

(X, t) (4.12)

On the other hand, the velocity and acceleration fields in the
Euler description are given by

v (x, t) =
∂x
∂t

(
F−1
t (x) , t

)
(4.13)

a (x, t) =
∂2x
∂t2

(
F−1
t (x) , t

)
(4.14)

Any time-dependent scalar, vector, or tensor field can be regarded
as a function of (X, t) (Lagrangian or material variables) or (x, t)
(Eulerian or spatial variables) whenever the motion x = Ft (X)

is given. For example, for a scalar field we can write φ (x, t) =

Φ (X, t) where

Φ (X, t) = φ (Ft (X) , t) (4.15)

The time derivative of the field Φ (X, t) can be calculated as

∂Φ

∂t
=
∂φ

∂t
+
∂φ

∂x
·
∂x
∂t

=
∂φ

∂t
+
∂φ

∂x
· v (4.16)

Instead of using different symbols for the quantities (i.e. φ and
Φ) in the Lagrangian and Eulerian descriptions, we can use the
dot for the Lagrangian or material derivative (φ̇) and the partial
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differentiation symbol (∂φ∂t ) for the Eulerian or spatial derivative.
Therefore, Eq. (4.16) assumes the simpler form

φ̇ =
∂φ

∂t
+
∂φ

∂x
· v (4.17)

The Eulerian tensor

L̂ =
∂v
∂x

(4.18)

with components

Lij =
∂vi

∂xj
(4.19)

satisfies the important relation

˙̂F = L̂F̂ (4.20)

It can be proved as follows

˙̂F =
∂

∂t

∂

∂X
Ft (X) =

∂

∂X
∂

∂t
Ft (X) =

∂v
∂X

=
∂v
∂x
∂x
∂X

= L̂F̂

(4.21)

It is also important an inverse relation given by

˙̂F−1 = −ĜL̂ (4.22)

Since d
dt

(
F̂−1F̂

)
= 0 we have ˙̂F−1 = −F̂−1 ˙̂FF̂−1 (where ˙̂F−1 rep-

resents the Lagrangian time derivative of the inverse of F̂) and,
therefore, we obtain the proof of Eq. (4.22)

˙̂F−1 = −F̂−1 ˙̂FF̂−1 = −F̂−1L̂F̂F̂−1 = −F̂−1L̂ = −ĜL̂ (4.23)

4.2 finite strain theory

The measure of the deformation between the reference and the
current configuration is an important topic in continuum mechan-
ics and it can be performed in several ways. The starting quantity
is the deformation gradient F̂(X) (in the Lagrangian formalism) or
its inverse Ĝ(x) (in the Eulerian formalism). We consider two in-
finitesimal vectors dX and dY in Ω0 and their deformed versions
dx and dy in Ωt (see Fig. 4.2 for the deformation of dX). The
changes of lengths and angles are controlled by the scalar prod-
uct of the vectors and, therefore, we define the right and the left
Cauchy tensors Ĉ and B̂ in order to obtain dx ·dy = dX · ĈdY or
dX ·dY = dx · B̂−1dy (see Table 4.1). The variations of the scalar
product (moving from the reference to the current configuration)
are described by the Green-Lagrange strain tensor η̂ and by the
Almansi-Eulero strain tensor ê as summarized in Table 4.1.

Moreover, the gradients of the displacements field u(X) and
u(x) are defined by ĴL = ∂u

∂X and ĴE = ∂u
∂x in the Lagrangian
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x = x(X, t)

reference configuration current configuration

Figure 4.2: Infinitesimal vector dX in Ω0 and its deformed version dx
in Ωt.

and Eulerian vision, respectively. In Table 4.2 we can find: i) the
effective variation of length for the vector dX = N‖dX‖ deformed
into dx = n‖dx‖; ii) the variation of the right angle between the
unit vectors N and T (N · T = 0 in Ω0) deformed into n and t (in
Ωt): θnt is the angle in Ωt and, therefore, γNT = π

2 − θnt is the
angle variation (with opposite sign); iii) the variation of the right
angle between the unit vectors n and t (n · t = 0 in Ωt) originally
placed at N and T (in Ω0): θNT is the angle in Ω0 and, therefore,
γnt = θNT − π

2 is the angle variation (with opposite sign); iv) the
variations of volume and surface measures.

Any non singular tensor (describing a deformation) can be
decomposed in two different ways

F̂ = R̂ Û = V̂R̂ (4.24)

where R̂ is a rotation matrix (R̂R̂T = R̂T R̂ = Î) while Û and V̂ are Polar decomposition
Cauchy theoremsymmetric and positive definite tensors. In order to prove this

polar decomposition theorem due to Cauchy, we use the right
Cauchy tensor Ĉ = F̂T F̂: it is symmetric since

(
F̂T F̂

)T
= F̂T F̂TT =

F̂T F̂ and it is positive definite as proved by the following relation

wT F̂T F̂w =
(
F̂w
)T (

F̂w
)

= ‖F̂w‖ > 0 ∀ w (4.25)

If F̂T F̂ is symmetric and positive definite then it can be diago-
nalized in the field of real numbers. Therefore, we can write
F̂T F̂ = Q̂−14̂Q̂ where Q̂ is non singular and 4̂ is diagonal. We
define

Û =
√
F̂T F̂ =

√
Ĉ (4.26)
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Table 4.1: Strains definitions and properties in Lagrangian and Eulerian
formalisms.

Lagrangian vision Eulerian vision

Right Cauchy tensor Left Cauchy tensor

Ĉ = F̂T F̂ B̂ = F̂F̂T

Ĉ−1 = ĜĜT B̂−1 = ĜT Ĝ

dx ·dy = dX · ĈdY dX ·dY = dx · B̂−1dy

Green-Lagrange tensor Almansi-Eulero tensor

η̂ = 1
2

(
Ĉ− Î

)
ê = 1

2

(
Î− B̂−1

)
dx ·dy − dX ·dY = 2dX · η̂dY dx ·dy − dX ·dY = 2dx · êdy

Lagrange displacement gradient Eulero displacement gradient

ĴL = ∂u
∂X ĴE = ∂u

∂x

F̂ = Î+ ĴL F̂−1 = Î− ĴE

Ĉ = Î+ ĴL + ĴTL + ĴTL ĴL B̂−1 = Î− ĴE − ĴTE + ĴTEĴE

η̂ = 1
2

(
ĴL + ĴTL + ĴTL ĴL

)
ê = 1

2

(
ĴE + ĴTE − ĴTEĴE

)

The square root of the tensor can be defined (and calculated) as
follows

Û =
√
F̂T F̂ =

√
Q̂−14̂Q̂ = Q̂−1

√
4̂Q̂ (4.27)

in fact(
Q̂−1

√
4̂Q̂

)2
= Q̂−1

√
4̂Q̂Q̂−1

√
4̂Q̂

= Q̂−1
√
4̂
√
4̂Q̂ = Q̂−14̂Q̂ (4.28)

where
√
4̂ = diag(

√
λi) if 4̂ = diag(λi) (the symbol diag explic-

itly indicates the entries of a diagonal matrix). Finally, we define
R̂ = F̂Û−1 and we verify its orthogonality

R̂T R̂ =
(
Û−1

)T
F̂T F̂Û−1 =

(
Û−1

)T
Û2Û−1 = Û−1ÛÛÛ−1 = Î

(4.29)

This concludes the proof of the first polar decomposition. We
have to prove the unicity of the right decomposition F̂ = R̂ Û. We
can suppose the two different decompositions F̂ = R̂ Û = R̂∗Û∗

exist. It follows that F̂T F̂ = Û2 = Û∗2 from which Û = Û∗ and,
therefore, R̂ = R̂∗. It proves the unicity of the right decomposition.
Similarly we can obtain the left decomposition by defining V̂ =
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Table 4.2: Variations measure in Lagrangian and Eulerian formalisms.

Lagrangian vision Eulerian vision

Lagrangian length variation Eulerian length variation

N = dX
‖dX‖ n = dx

‖dx‖

εNN =
‖dx‖−‖dX‖
‖dX‖ =

√
N · ĈN − 1εnn =

‖dx‖−‖dX‖
‖dx‖ = 1−

√
n · B̂−1n

εNN + 1
2ε
2
NN = N · η̂N εnn − 1

2ε
2
nn = n · ên

Lagrangian angle variation Eulerian angle variation

N · T = 0 n · t = 0

γNT = π
2 − θnt γnt = θNT − π

2

sin(γNT ) = 2N · η̂T√
N · ĈN

√
T · ĈT

sin(γnt) = 2n · êt√
n · B̂−1n

√
t · B̂−1t

Lagrangian volume variation Eulerian volume variation

J = det(F̂) J−1 = det(Ĝ)

ΘV = dv−dV
dV = J− 1 Θv = dv−dV

dv = 1− 1
J

Lagrangian surface variation Eulerian surface variation

NdS = J−1F̂Tnds nds = JF̂−TNdS

ΘN =
‖nds‖−‖NdS‖
‖NdS‖ Θn =

‖nds‖−‖NdS‖
‖nds‖

ΘN = J
√

N · Ĉ−1N − 1 Θn = 1− J−1
√

n · B̂n

√
F̂F̂T =

√
B̂: it is possible to prove that it is symmetric and

positive definite and we define R̂ ′ = V̂−1F̂, which is orthogonal.
To conclude we must verify that R̂ ′ = R̂. Since R̂ ′

(
R̂ ′
)T

=

Î we have F̂ = V̂R̂ ′ = R̂ ′
(
R̂ ′
)T
V̂R̂ ′. The unicity of the right

decomposition (F̂ = R̂ Û) allows us to affirm that R̂ ′ = R̂ and that
Û = R̂T V̂R̂. This completes the proof of the polar decomposition
Cauchy theorem.

This decomposition implies that the deformation of a line
element dX in the undeformed configuration onto dx in the
deformed configuration, i.e. dx = F̂dX may be obtained either
by first stretching the element by Û i.e. dx ′ = ÛdX, followed by
a rotation R̂, i.e. dx = R̂dx ′ or, equivalently, by applying a rigid
rotation R̂ first, i.e. dx ′′ = R̂dX followed later by a stretching V̂ ,
i.e. dx = V̂dx ′′ (see Fig. 4.3).

4.3 stress theory

In continuum mechanics we must consider two systems of
forces acting on a given region of a material body. They are The body forces

dependent on the external fields acting on the elastic body and
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x1, X1

x2, X2

x3, X3

R̂ V̂

R̂

F̂ = R̂V̂ = ÛR̂

Û

Figure 4.3: Polar decomposition applied to a given deformation.

they are described by the vector field b(x) representing their
density on the volume in the current configuration. The physical
meaning of such a density of forces can be summed up stating
that the total force dFv applied to a small volume dx centered
on the point x is given by dFv = b(x)dx. A typical example is
given by the gravitational forces proportional to the mass of the
region under consideration. In this case we can write dFv = gdm
where g is the gravitational acceleration and dm is the mass of
the volume dx. If we define ρ = dm

dx as the density of the body,
we simply obtain b(x) = ρg. In continuum mechanics we areThe surface forces

additionally concerned with the interaction between neighboring
portions of the interiors of deformable bodies. In reality such
an interaction consists of complex interatomic forces, but we
make the simplifying assumption that the effect of all such forces
across any given surface may be adequately represented by a
single vector field defined over the surface. It is important to
observe that the nature of the forces exerted between two bodies
in contact is identical to the nature of the actions applied between
two portions of the same body, separated by an ideal surface.

In order to begin the mathematical descriptions of the forces, it
is useful to introduce the following notation for the surface force
dFs applied to the area element ds (with unit normal vector n)
of the deformed configuration

dFs = f (x, n, t)ds (4.30)
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Figure 4.4: Cauchy tetrahedron on a generic point P.

where f assumes the meaning of a density of forces distributed
over the surface. By definition, the force dFs is applied by the
region where the unit vector n is directed to the other region
beyond the ideal surface (or interface). We can now recall the
Cauchy theorem on the existence of the stress tensor describing
the distribution of the surface forces in a given elastic body. More The Cauchy theorem

precisely, we can say that a tensor T̂ exists such that

f (x, n, t) = T̂(x, t)n (4.31)

where n is the external normal unit vector to the surface de-
limiting the portion of body subjected to the force field f. The
quantity T̂ has been called Cauchy stress tensor or simply stress
tensor. This very important result has been firstly published by Cauchy stress tensor

Cauchy in 1827 in the text “Exercices de mathématique”. The
forces applied to the area element can be therefore written in the
following form

dFs = T̂(x)nds (4.32)

or, considering the different components, dFs,i
ds = Tijnj. The proof

of the Cauchy theorem can be performed as follows.
We consider a generic point P in the deformed configuration

and a small tetrahedron as described in Fig. 4.4. The oblique
plane is defined by a unit vector n and by the distance dh from P.
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The faces of the tetrahedron have areas dA1, dA2, dA3 and dAn
and the outgoing normal unit vectors are −E1, −E2, −E3 and n
(where the vectors Ei belong to the reference base). We define f1,
f2, f3 and fn as the surface forces acting on each face and b as
the body force distributed over the volume. The motion equation
is

fndAn + f1dA1 + f2dA2 + f3dA3 + b dv = ρadv (4.33)

where a is the acceleration of the tetrahedron with mass ρdv.
From Eq. (4.30) we can identify fn = f (n, x, t) and fk = f (−Ek, x, t),
∀ k = 1, 2, 3. Moreover, dAi = nidAn ,∀ i = 1, 2, 3 and dv =
1
3dAndh, so we can write Eq. (4.33) as follows (sum over j)

f (n, x, t) + f
(
−Ej, x, t

)
nj +

1

3
b dh =

1

3
ρ a dh (4.34)

In the limit of dh→ 0 we obtain (sum over j)

f (n, x, t) = −f
(
−Ej, x, t

)
nj (4.35)

We can now use the previous result with n = Ei (for any i =

1, 2, 3), by obtaining

f (Ei, x, t) = −f (−Ei, x, t) (4.36)

This is a sort of third law of the dynamics written in term of
surface forces. Now, Eq. (4.35) can be simply rewritten as (sum
over j)

f (n, x, t) = f
(
Ej, x, t

)
nj (4.37)

This result shows that the surface force f on a given plane is
determined by the three surface forces on the three coordinate
planes; in components

fi (n, x, t) = f (n, x, t) · Ei = f
(
Ej, x, t

)
· Einj = Tijnj (4.38)

where the Cauchy stress T̂ is represented by Tij = f
(
Ej, x, t

)
· Ei.

To better understand the physical meaning of the stress tensor
we consider the cubic element of volume shown in Fig. 4.5, cor-
responding to an infinitesimal portion dV = (dl)3 taken in an
arbitrary solid body. The six faces of the cube have been num-
bered as shown in Fig. 4.5. We suppose that a stress T̂ is applied
to that region: the Tij component represents the pressure applied
on the jth face along the ith direction.

The Cauchy stress tensor is the most natural and physical mea-
sure of the state of stress at a point in the deformed configuration
and measured per unit area of the deformed configuration. It
is the quantity most commonly used in spatial or Eulerian de-
scription of problems in continuum mechanics. Some other stress
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Figure 4.5: Geometrical representation of the stress tensor T̂ : the Tij
component represents the pressure applied on the jth face
of the cubic volume along the ith direction.

measures must be introduced in order to describe continuum
mechanics in the Lagrangian formalism. From Cauchy formula,
we have dFs = T̂nds, where T̂ is the Cauchy stress tensor. In
a similar fashion, we introduce a stress tensor T̂1PK, called the
first Piola-Kirchhoff stress tensor, such that dFs = T̂1PKNdS. By 1st Piola-Kirchhoff

stress tensorusing the Nanson formula nds = JF̂−TNdS we obtain

dFs = T̂ JF̂−TNdS = T̂1PKNdS (4.39)

and therefore

T̂1PK = JT̂ F̂−T (4.40)

Sometimes it is useful to introduce another state of stress T̂2PK,
called the second Piola-Kirchhoff stress tensor, defined as F̂−1dFs =

T̂2PKNdS. We simply obtain 2nd Piola-Kirchhoff
stress tensor

F̂−1dFs = F̂−1T̂ JF̂−TNdS = T̂2PKNdS (4.41)

and therefore

T̂2PK = JF̂−1T̂ F̂−T = F̂−1T̂1PK (4.42)

The stress tensors T̂1PK and T̂2PK will be very useful for the finite
elasticity theory described within the Lagrangian formalism.
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4.4 the continuity equation

The first balance equation of the continuum mechanics con-
cerns the mass distribution. We define the mass density: we willBalance equation of

the mass distribution use ρ0(X) in the Lagrangian formalism and ρ (x, t) in the Eulerian
description. The total mass of the region Pt is given by

m (Pt) =

∫
Pt

ρ(x, t)dx (4.43)

The conservation of the mass gives∫
Pt

ρ(x, t)dx =

∫
P0

ρ0(X)dX, or
d

dt

∫
Pt

ρ(x, t)dx = 0 (4.44)

The first equality in Eq. (4.44) can be also written∫
P0

ρJdX =

∫
P0

ρ0dX, (4.45)

and we simply obtain

ρJ = ρ0 (4.46)

On the other hand, from the second equality in Eq. (4.44) we have∫
Pt

(ρ̇+ ρ∇x · v)dx =

∫
Pt

[
∂ρ

∂t
+∇x · (ρv)

]
dx = 0 (4.47)

and therefore we obtain two forms of the continuity equation

ρ̇+ ρ∇x · v = 0 (4.48)
∂ρ

∂t
+∇x · (ρv) = 0 (4.49)

It is important for the following applications to evaluate expres-
sions of this kind: ddt

∫
Pt
ρ(x, t)Ψ(x, t)dx; to this aim we use the

Reynolds theorem with φ = ρΨ

d

dt

∫
Pt

ρΨdx =

∫
Pt

(
ρ̇Ψ+ ρΨ̇+ ρΨ∇x · v

)
dx =

∫
Pt

ρΨ̇dx

(4.50)

It means that, when there is the density in the integrand, the time
derivative must be applied directly to the function Ψ.

4.5 balance equations

4.5.1 The Euler description

The other two important balance equations can be derived by
the principles of linear and angular momentum. When dealing
with a system of particles, we can deduce from Newton’s laws of
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motion that the resultant of the external forces is equal to the rate
of change of the total linear momentum of the system. By taking
moments about a fixed point, we can also show that the resultant
moment of the external forces is equal to the rate of change of
the total moment of momentum. Here we define the linear and
angular momentum density for a continuum and we introduce
balance laws for these quantities. We consider a portion Pt in a
material body and we define P as its linear momentum, F as the
resultant of the applied forces, L as the total angular momentum
and, finally, M as the resultant moment of the applied forces. The
standard principles for a system of particles can be written as
follows

dP
dt

= F,
dL
dt

= M (4.51)

We start with the first principle, applied to the portion of body
contained to the region Pt, limited by the closed surface ∂Pt

d

dt

∫
Pt

ρvdx =

∫
∂Pt

T̂nds+

∫
Pt

bdx (4.52)

where we have utilized the decomposition of the forces (body
forces and surface forces) as described in the previous section.
The previous equation can be simplified by means of Eq. (4.50)
and the divergence theorem, by obtaining∫

Pt

ρv̇dx =

∫
Pt

∇x · T̂dx +

∫
Pt

bdx (4.53)

Since the volume Pt is arbitrary, we easily obtain the first balance
equation for the elasticity theory (Eulerian description) 1st Eulerian balance

equation for the
elasticity theory∇x · T̂ + b = ρv̇ (4.54)

This is the basic linear momentum equation of continuum me-
chanics. We remark that the divergence of a tensor is applied on
the second index; in fact, in components, we simply obtain

∂Tji

∂xi
+ bj = ρv̇j (4.55)

Further, we observe that

v̇ =
∂v
∂t

+
∂v
∂x

· v =
∂v
∂t

+
1

2
∇x (v · v) + (∇x ∧ v) ∧ v (4.56)

and, therefore Eq. (4.54) is equivalent to

∇x · T̂ + b = ρ

[
∂v
∂t

+
∂v
∂x

· v
]

(4.57)

or

∇x · T̂ + b = ρ

[
∂v
∂t

+
1

2
∇x (v · v) + (∇x ∧ v) ∧ v

]
(4.58)
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Now, we consider the principle of the angular momentum.
For the region Pt such a balance equation can be written in the
following form

d

dt

∫
Pt

x ∧ ρvdx =

∫
∂Pt

x ∧
(
T̂n
)
ds+

∫
Pt

x ∧ b dx (4.59)

As before, the surface integral can be simplified with the ap-
plication of the divergence theorem, by obtaining, after some
straightforward calculations∫

∂Pt

x× (T̂n
)
ds =

∫
Pt

[
Tkh + xh

∂Tkp

∂xp

]
ηhkjejdx (4.60)

So, the second balance equation assumes the form2nd Eulerian
balance equation ∫

Pt

{
xh

[
ρv̇k −

∂Tkp

∂xp
− bk

]
− Tkh

}
ηhkjejdx = 0 (4.61)

The term in bracket is zero because of the first balance equa-
tion. Therefore, we obtain

∫
Pt
Tkhηhkjejdx = 0 or, equivalently,

Tkhηhkj = 0. Finally, the second principle leads to

Tij = Tji (4.62)

In other words, we may state that the principle of the angular
momentum assures the symmetry of the Cauchy stress tensor.

4.5.2 The Lagrange description

In finite elasticity theory the Lagrangian description is the
most important point of view since it allows to determine the
exact transformation x = Ft (X) between the reference and the
actual configurations. In the case of finite deformations (arbitrar-
ily large), the Piola-Kirchhoff stress tensors above defined are
used to express the stress relative to the reference configuration.
This is in contrast to the Cauchy stress tensor which expresses
the stress relative to the current configuration. In order to obtain
the Lagrangian equations of motion it is useful to introduce the
so-called Piola transformation W(X, t) (which is a LagrangianPiola transformation

vector field) of a given Eulerian vector field w(x, t)

w(x, t) ⇒ W(X, t) = JF̂−1w(Ft (X) , t) (4.63)

An important relation gives the relationship between the diver-
gence of the two fields: of course, the divergence of W(X, t) is
calculated with respect to the Lagrangian variables X while that
of w(x, t) is calculated with respect to the Eulerian variables x

∇X · W(X, t) =
∂Wi

∂Xi
=

∂

∂Xi

(
J
∂Xi

∂xs
ws

)
=

∂

∂Xi

(
J
∂Xi

∂xs

)
ws + J

∂Xi

∂xs

∂ws

∂Xi
(4.64)
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The first term is zero for the Piola identity given in Eq. (A.21),
and therefore

∇X · W(X, t) = J
∂Xi

∂xs

∂ws

∂Xi
= J

∂ws

∂xs
(4.65)

It means that we have obtained the important relation

∇X · W(X, t) = J∇x · w(x, t) (4.66)

We can also make a Piola transformation on a given index of
a tensor. For example, if Tji the Cauchy stress tensor, we may
use the above transformation on the last index. We apply this
procedure to transform the motion equation from the Eulerian to
the Lagrangian coordinates

∂Tji

∂xi
+ bj = ρv̇j ⇒ 1

J

∂

∂Xi

(
J
∂Xi

∂xs
Tjs

)
+ bj = ρv̇j (4.67)

or, identifying the deformation gradient

∂

∂Xi

[
J(F̂−1)isTjs

]
+ Jbj = ρJv̇j (4.68)

By using the relation ρ0 = Jρ we obtain

∂

∂Xi

[
JTjs(F̂

−T )si
]
+
ρ0

ρ
bj = ρ0v̇j (4.69)

Since we have defined the first Piola-Kirchhoff stress tensor as
T̂1PK = JT̂ F̂−T we obtain

∇X · T̂1PK +
ρ0

ρ
b = ρ0v̇ (4.70)

Now, we consider the principle of the angular momentum: since
T̂ = 1

J T̂
1PKF̂T and T̂ = T̂T we obtain

T̂1PKF̂T = F̂)T̂1PK)T (4.71)

These two important results can be also expressed in terms of
the second Piola-Kirchhoff stress tensor T̂2PK = F̂−1T̂1PK. We
simply obtain the linear momentum balance

∇X ·
(
F̂T̂2PK

)
+
ρ0

ρ
b = ρ0v̇ (4.72)

and the angular momentum balance

T̂2PK = (T̂2PK)T (4.73)

Of course, Eqs. (4.72) and (4.73) must be completed by the consti-
tutive equations and by the boundary conditions.
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4.6 nonlinear constitutive equations

The constitutive equations represent the relation between the
stress and the strain and, therefore, they depend on the material
under consideration. Here we prove that there is a strong con-
ceptual connection between the constitutive equations and the
energy balance for a continuum body. We start from the motion
equation in the Eulerian formalism and we multiply both sides
to the velocity component vj

vj
∂Tji

∂xi
+ vjbj = ρvjv̇j (4.74)

This expression can also be written as

∂
(
vjTji

)
∂xi

− Tji
∂vj

∂xi
+ vjbj = ρvjv̇j (4.75)

The Eulerian velocity gradient Lji =
∂vj
∂xi

can be decomposed in
the symmetric and skew-symmetric parts

Lji =
∂vj

∂xi
=
1

2

(
∂vj

∂xi
+
∂vi

∂xj

)
︸ ︷︷ ︸
symmetric

+
1

2

(
∂vj

∂xi
−
∂vi

∂xj

)
︸ ︷︷ ︸
skew−symmetric

= Dji +Wji

(4.76)

where D̂ is the rate of deformation tensor and Ŵ is the spin
tensor. Therefore, the energy balance equation assumes the local
formThe local form of the

Energy Balance
Equation ∂

(
vjTji

)
∂xi

− TjiDji + vjbj = ρvjv̇j (4.77)

By using the property in Eq. (4.50) we also obtain the global
version on the region Pt

d

dt

∫
Pt

1

2
ρvjvjdx +

∫
Pt

TjiDjidx =

∫
∂Pt

Tjinivjdx +

∫
Pt

vjbjdx

(4.78)

The second side of this balance represents the power input (prod-
uct between force and velocity) consisting of the rate of work
done by external surface tractions Tjini per unit area and body
forces bj per unit volume of the region Pt bounded by ∂Pt. Since
the time-rate of change of the total energy is equal to the the rate
of work done by the external forces (first principle of thermo-
dynamics without thermal effects), we identify the first side as
dE/dt, where E is the total energy contained in Pt. Moreover, the
total energy can be written as E = K + U where K is the kinetic
energy and U is the potential energy. Since K =

∫
Pt
1
2ρvjvjdx is

the standard kinetic energy, we identify

dU

dt
=

∫
Pt

TjiDjidx (4.79)
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We define the energy density U per unit volume in the reference The strain energy
density function Uconfiguration and therefore ρ

ρ0
U is the energy density per unit

volume in the current configuration. We obtain

U =

∫
Pt

ρ

ρ0
Udx (4.80)

By drawing a comparison between Eqs. (4.79) and (4.80) we obtain∫
Pt

TjiDjidx =
d

dt

∫
Pt

ρ

ρ0
Udx (4.81)

By using the property in Eq. (4.50) we obtain

ρ

ρ0
U̇ = TjiDji (4.82)

We introduce now a general statement affirming that the strain
energy function U depends upon the deformation gradient F̂:
therefore, we have U = U(F̂). This relation can be simplified by
means of the principle of material objectivity (or material frame
indifference), which says that the energy (and the stress) in the
body should be the same regardless of the reference frame from
which it is measured. If we consider a motion x = Ft(X) we obtain
a corresponding deformation gradient F̂; on the other hand, if we
consider a roto-translated motion x = Q̂(t)Ft(X) + c(t) (where
Q̂(t) is an orthogonal matrix and c(t) is an arbitrary vector), then
the deformation gradient is Q̂F̂. In both cases we must have the
same energy and therefore

U(F̂) = U(Q̂F̂), ∀Q̂ : Q̂Q̂T = Î (4.83)

Now, the deformation gradient F̂ can be decomposed through
F̂ = R̂Û by obtaining

U(F̂) = U(Q̂R̂Û), ∀Q̂ : Q̂Q̂T = Î (4.84)

By imposing Q̂ = R̂T we have U(F̂) = U(Û) and, since Û2 = Ĉ,
we finally obtain the dependence

U(F̂) = U(Ĉ) (4.85)

where Ĉ is the right Cauchy tensor. The choice of Ĉ as an in-
dependent variable is convenient because, from its definition,
Ĉ = F̂T F̂ is a rational function of the deformation gradient F̂. Now
we can calculate U̇ as follows

U̇ =
∂U

∂Cij
Ċij =

∂U

∂Cij

(
FkiḞkj + ḞkiFkj

)
(4.86)

We remember that Ḟkj = LksFsj (see Eq. (4.20)) and we obtain

U̇ =
∂U

∂Cij

(
FkiLksFsj + LksFsiFkj

)
= tr

[
∂U

∂Ĉ
F̂T L̂F̂+

∂U

∂Ĉ
F̂T L̂T F̂

]
= tr

[
2
∂U

∂Ĉ
F̂T D̂F̂

]
(4.87)
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where D̂ is the rate of deformation tensor defined as the symmet-
ric part of the velocity gradient L̂. Through the comparison of
Eqs. (4.82) and (4.87) we obtain

tr
[
ρ0

ρ
T̂D̂

]
= tr

[
2
∂U

∂Ĉ
F̂T D̂F̂

]
(4.88)

Further, from the commutation rule tr(ÂB̂) = tr(B̂Â) of the trace
operation we arrive at the following relationships, which must
be satisfied for any possible D̂

tr
[
ρ0

ρ
T̂D̂

]
= tr

[
2F̂
∂U

∂Ĉ
F̂T D̂

]
(4.89)

Therefore, we obtain the formal connection between the consti-
tutive equation (giving the Cauchy stress tensor) and the strain
energy function in the form

T̂ = 2
ρ

ρ0
F̂
∂U

∂Ĉ
F̂T (4.90)

Similarly for the first Piola-Kirchhoff stress tensor we obtain

T̂1PK = JT̂ F̂−T = 2F̂
∂U

∂Ĉ
(4.91)

and finally for the second Piola-Kirchhoff stress tensor

T̂2PK = F̂−1T̂1PK = 2
∂U

∂Ĉ
(4.92)

We have proved that an arbitrarily nonlinear constitutive equation
can be always written by means of derivations of the strain energy
function: it means that the strain energy function contains the
complete information about the nonlinear elastic response of
a given material. For the particular case of nonlinear isotropic
material the strain energy function U must depend only uponNonlinear isotropic

material: the Cauchy
invariants

the invariants of the right Cauchy tensor Ĉ. We observe that they
are defined as

IC = tr
[
Ĉ
]

(4.93)

IIC =
1

2

[(
trĈ
)2

− tr
(
Ĉ2
)]

(4.94)

IIIC = det Ĉ (4.95)

and therefore we have U = U(IC, IIC, IIIC). We remember that
the three invariants define the characteristic polynomial of the
tensor Ĉ

det
(
Ĉ− λÎ

)
= −λ3 + λ2IC − λIIC + IIIC (4.96)

and satisfy the so-called Cayley-Hamilton theoremCayley-Hamilton
theorem

0̂ = −Ĉ3 + ICĈ
2 − IICĈ+ IIICÎ (4.97)
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It is possible to prove that

∂IC

∂Ĉ
= Î;

∂IIC

∂Ĉ
= ICÎ− Ĉ;

∂IIIC

∂Ĉ
= IIICĈ

−1; (4.98)

and therefore we obtain

∂U(IC, IIC, IIIC)

∂Ĉ
=

∂U

∂IC

∂IC

∂Ĉ
+
∂U

∂IIC

∂IIC

∂Ĉ
+

∂U

∂IIIC

∂IIIC

∂Ĉ

=
∂U

∂IC
Î+

∂U

∂IIC

(
ICÎ− Ĉ

)
+

∂U

∂IIIC
IIICĈ

−1

(4.99)

This expression can be used in the Cauchy and Piola-Kirchhoff
tensors given in Eqs. (4.90), (4.91) and (4.92) in order to obtain
their final form in terms of the invariants of the right Cauchy
tensor Ĉ. Sometime the stress tensors can also be expressed in
term of the Green-Lagrange strain tensor η̂ = 1

2

(
Ĉ− Î

)
; since

2dη̂ = dĈ, we have

T̂ =
ρ

ρ0
F̂
∂U

∂η̂
F̂T ; T̂1PK = F̂

∂U

∂η̂
; T̂2PK =

∂U

∂η̂
(4.100)

In this case the strain energy function U (for unit volume of the
reference configuration) may be developed in power series with
respect to the components of η̂. This leads to the expression

U(η̂) =
1

2
CL
ijkhηijηkh +

1

6
CL
ijkhnmηijηkhηnm + ... (4.101)

Here the CL
ijkh and the CL

ijkhnm denote the second order elastic
constants (SEOC) and the third order elastic constants (TOEC),
respectively (within the Lagrangian formalism).

4.7 the small-strain approximation

In the infinitesimal elasticity theory the extent of the deforma-
tions is assumed small. While this notion is rather intuitive, it
can be formalized by imposing that for small deformations F̂ is
very similar to Î or, equivalently, that Ĝ is similar to Î as well. It
means that both ĴL and ĴE are very small. Therefore, we adopt as
an operative definition of small deformation the relations Small deformation: a

deformation will be
hereafter regarded to
as small provided
that the trace of the
product ĴLĴTL or
ĴEĴ

T
E is negligible.

Tr(ĴLĴTL)� 1 and Tr(ĴEĴTE)� 1 (4.102)

i.e., a deformation will be hereafter regarded to as small provided
that the trace of the product ĴLĴTL or ĴEĴTE is negligible. It means
that we can assume ĴL = ĴE = Ĵ and that we can interchange
the Eulerian and the Lagrangian variables without problems.
Here, we write all the equations with the Eulerian variables x.
We observe that the displacement gradient Ĵ can be written as the
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sum of a symmetric and a skew-symmetric (antisymmetric) part
as follows

Jij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
︸ ︷︷ ︸
symmetric

+
1

2

(
∂ui

∂xj
−
∂uj

∂xi

)
︸ ︷︷ ︸
skew−symmetric

= εij +Ωij

(4.103)

The meaning of the displacement gradient can be found in Fig.
4.6 for a two-dimensional configuration. Accordingly, we define
the (symmetric) infinitesimal strain tensor (or small strain tensor) asThe small strain

tensor

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(4.104)

and the (antisymmetric) local rotation tensor as

Ωij =
1

2

(
∂ui

∂xj
−
∂uj

∂xi

)
(4.105)

Such a decomposition is useful to obtain three very important
properties of the small strain tensor, which is the key quantity to
determine the state of deformation of an elastic body.Small strain tensor

must not affect by
pure local rotations,
but only by the
changes of shape and
size of the given
element of volume.

First, for a pure local rotation (a volume element is rotated,
but not changed in shape and size) we have Ĵ = Ω̂ and therefore
ε̂ = 0. This means that the small strain tensor does not take into
account any local rotation, but only the changes of shape and
size (dilatation or compression) of that element of volume.

Let us clarify this fundamental result. We consider a point
x inside a volume element which is transformed to x + u(x)

in the current configuration. Under a pure local rotation we
have: x + u(x) = R̂x, where R̂ is a given orthogonal rotation
matrix (satisfying R̂R̂T = Î). We simply obtain u(x) = (R̂− Î)x
or, equivalently, Ĵ = R̂− Î. Since the applied deformation (i.e.,
the local rotation) is small by hypothesis, we observe that the
difference R̂− Î is very small too. The product ĴĴT will be therefore
negligible, leading to the following expression

0 ∼= ĴĴT =
(
R̂− Î

) (
R̂T − Î

)
= R̂R̂T − R̂− R̂T + Î

= Î− R̂− R̂T + Î = −Ĵ− ĴT (4.106)

Therefore Ĵ = −ĴT or, equivalently, Ĵ is a skew-symmetric tensor.
It follows that Ĵ = Ω̂ and ε̂ = 0. We have verified that a pure
rotation corresponds to zero strain. In addition, we remark that
the local rotation of a volume element within a body cannot be
correlated with any arbitrary force exerted in that region (the
forces are correlated with ε̂ and not with Ω̂): for this reason
the infinitesimal strain tensor is the only relevant object for the
analysis of the deformation due to applied loads in elasticity
theory.Small strain tensor

determines the
length variation of
any vector from the
reference to the
current
configuration.
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Figure 4.6: Two-dimensional geometric deformation of an infinitesimal
material element.

Second, the infinitesimal strain tensor allows for the determi-
nation of the length variation of any vector from the reference to
the current configuration. By defining εnn as the relative length
variation in direction n, we have from Table 4.2

εnn = n · ε̂n (4.107)

If n is actually any unit vector of the reference frame, it is straight-
forward to attribute a geometrical meaning to the components
ε11, ε22, ε33 of the strain tensor. Since εnn = ei · (ε̂ ei) = εii,
they describe the relative length variations along the three axes
of the reference frame. Third, the infinitesimal strain tensor al- Small strain tensor

determines the angle
variation between
any pair of vectors
from the reference to
the current
configuration.

lows for the determination of the angle variation between any
two vectors from the reference to the current configuration. The
variation of the angle defined by the two orthogonal directions n
and t can be obtained from Table 4.2

γnt = 2n · ε̂t (4.108)

The present result is also useful for giving a direct geometrical
interpretation of the components ε12, ε23 and ε13 of the infinites-
imal strain tensor. As an example, we take into consideration
the component ε12 and we assume that n = e1 and t = e2. The
quantity γnt represents the variation of a right angle lying on
the plane (x1, x2). Since ε12 = e1 · (ε̂ e2), we easily obtain the
relationship γnt = 2ε12 = ∂u1

∂x2
+ ∂u2
∂x1

. In other words, ε12 is half
the variation of the right angle formed by the axis x1 and x2. Of
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Table 4.3: The small strain approximation.

Lagrangian vision Eulerian vision

ĴL = Ĵ ĴE = Ĵ

F̂ = Ĝ−1 = Î+ Ĵ F̂−1 = Ĝ = Î− Ĵ

η̂ = ε̂ ê = ε̂

Ĉ = B̂ = Î+ 2ε̂ Ĉ−1 = B̂−1 = Î− 2ε̂

Û = V̂ = Î+ ε̂ Û−1 = V̂−1 = Î− ε̂

R̂ = Î+ Ω̂ R̂−1 = Î− Ω̂

T̂1PK = T̂2PK = ∂U
∂ε̂ T̂ = ∂U

∂ε̂

course, the same interpretation is valid for the other components
ε23 and ε13.

The result of the application of the small strain approximation
on the main quantities of the continuum mechanics is summa-
rized in Table 4.3.

Knowing the ε̂ tensor field within a strained (i.e., deformed)
elastic body allows us to calculate the volume change ∆V of a
given region. Reminding that the Lagrangian volume variation
(∆V) during a finite deformation is given by ∆V =

∫
V(J − 1)dx,

where in the case of infinitesimal deformations, the displacement
gradient can be written as

det F = det(1+∇u) = 1+ Tr∇u + O(ε2) = 1+∇ · u + O(ε2)

(4.109)

Here, the quantity ∇ · u = Tr(ε̂) is the dilatation. We get ∆V =∫
V Tr(ε̂)dx, where V is the reference volume of the unstrained

region.
The above discussion states that, given a displacement field

u(x), the components of the infinitesimal strain tensor are easily
calculated by direct differentiation. The inverse problem is much
more complicated. Given an arbitrary infinitesimal strain tensor
ε̂(x) we could search for that displacement field u(x) generating
the imposed deformation. In general, such a displacement field
may not exist. There are, however, suitable conditions under
which the solution of this inverse problem is actually found.
These conditions are written in the very compact formThe Beltrami

Saint-Venant
equations.

ηqkiηphj
∂2εij

∂xk∂xh
= 0 (4.110)

where η’s are the Levi-Civita permutation symbols. Eqs. (4.110)
are known as infinitesimal strain compatibility equations or Bel-
trami Saint-Venant equations.
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The balance equations assume the standard form

∂Tji

∂xi
+ bj = ρ

∂2uj

∂t2
(4.111)

Tij = Tji (4.112)

The principles of linear and angular momentum, the definition of Constitutive
equationsstrain and its compatibility conditions need to be supplemented

by a further set of equations, known as constitutive equations,
which characterize the constitution of the elastic solid body. In
the case of small deformation we can write

T̂ = T̂1PK = T̂2PK =
∂U

∂ε̂
(4.113)

where the strain energy function is expressed as U = U(ε̂). Such
a strain energy function U may be developed in power series
with respect to the components of ε̂. This leads to the expression

U(ε̂) =
1

2
Cijkhεijεkh +

1

6
Cijkhnmεijεkhεnm + ... (4.114)

Here the Cijkh and the Cijkhnm denote the second order elastic
constant (SEOC) and the third order elastic constant (TOEC),
respectively, with reference to the small strain tensor. We can
determine the relations with the elastic constants defined in Eq.
(4.101): to this aim, we consider an homogeneous deformation
with F̂ = Î+ ε̂ (i.e. with Ω = 0 or Ĵ = ε̂) and we obtain η̂ =

ε̂+ 1
2 ε̂
2; so, by imposing U(ε̂) = U(η̂) we eventually obtain

Cijkh = CL
ijkh

Cijkhnm = CL
ijkhnm +

3

2
CL
imkhδjn +

3

2
CL
ijkmδhn (4.115)

The linear law for the relation between stress and strain is called The generalized
Hooke’s lawthe generalized Hooke’s law. The general form of writing Hooke’s

law is as follows

Tij = Cijkhεkh (4.116)

where Cijkh are constants (for homogeneous materials). Equation
(4.116) is of general validity, including all the possible crystalline
symmetry or, in other words, any kind of anisotropy.

The tensor of the elastic constants,which is called also stiffness
tensor, must satisfy the following symmetry rules. Since Tij = Tji The stiffness tensor

symmetrieswe have symmetry in the first pair of indices Cijkh = Cjikh, this
reduces the number independent components of Cijkh from 81

(think of a 9× 9 matrix because the stresses and strains have
nine components each) to 54 (6 components for the ij term and
3 each for the k, l terms. Similarly, using the symmetry of the
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strain tensor εkh = εhk, we obtain a symmetry in the last pair of
indices Cijkh = Cijhk. These are called the minor symmetries of
the elasticity tensor and we are then left with only 36 independent
components. Since the strain energy function should not change
when we interchange ij and kl in the quadratic form, it leads to
a symmetry between the first pair and the last pair of indices
Cijkh = Ckhij. These are known as the major symmetries of
the stiffness tensor. At the end Cijkh has at most 21 (think of a
symmetric 6× 6 matrix) independent components rather than
the 34 = 81 which, as a general fourth-rank tensor, it might have
had. The inverse relation between the strain and the stress can be
determined by taking the inverse of stress-strain relation to get

εij = Sijkh Tkh (4.117)

where Ŝ is defined as the compliance tensor. The complianceThe compliance
tensor tensor has 21 components and the same symmetries as well as

the stiffness tensor.
In the case of a linear and isotropic material we have

T̂ =
E

1+ ν
ε̂+

νE

(1+ ν)(1− 2ν)
Î Tr (ε̂) (4.118)

where E and ν are the Young modulus and the Poisson ratio,
respectively. We can also introduce the Lamé coefficients µ and λ
as follows

µ =
E

2(1+ ν)
λ =

νE

(1+ ν)(1− 2ν)
(4.119)

Therefore, Eq. (4.118) assumes the standard form

T̂ = 2µε̂+ λÎTr(ε̂) (4.120)

or, in index notation,

Tij = 2 µ εij + λ εkk δij (4.121)

The number of indipendent elastic moduli can be also derived
from the Eq. (4.116) and the algebric properties of the forth-rank
stiffness tensor, Cijkh. Since the general form of an isotropic
forth-rank tensor is

Cijkh = λδijδkh + ζδikδjh + ξδihδjk (4.122)

where λ, ζ, and ξ are constants which do not depend on the
choosing coordinate system. Given the symmetry of the strain
tensor, the Eq. (4.116) can be rewritten as

Tij = (λδijδkh + ζδikδjh + ξδihδjk)εkh

= λ δij εkk + ζεij + ξεji

= λ δij εkk + (ζ+ ξ)εij

= λ δij εkk + 2µεij
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here we have set 2µ = (ζ+ ξ), hence there are only two indepen-
dent constants in the constitutive equation for isotropic systems.

The inverse relationship can be derived from Eq. (4.120) by
calculating its trace Tr(T̂) = 2µTr(ε̂) + 3λTr(ε̂), so that

ε̂ =
1

2µ
T̂ −

λ

2µ(2µ+ 3λ)
Î Tr(T̂) (4.123)

or, in index notation,

εij =
1

2µ
Tij −

λ

2µ(2µ+ 3λ)
Tkk δij (4.124)

When we are dealing with a linear, isotropic and homogeneous
material the governing equations of the elasticity theory can be
summed up as follows The Navier equation

(λ+ µ)∇ (∇ · u) + µ∇2u + b = ρ
∂2u
∂t2

(4.125)

This is an equation of motion where the displacement field is
the single unknown, which have been called Lamé or Navier
equation. Such a motion equation for a isotropic elastic body
can be also written in a different form by utilizing the general
property ∇× (∇× u) = ∇ (∇ · u) −∇2u, which holds for the
differential operators. The result is

(λ+ µ)∇× (∇× u) + (λ+ 2µ)∇2u + b = ρ
∂2u
∂t2

(4.126)

Both Eq. (4.125) and Eq. (4.126) are linear partial differential
equations of the second order with a vector field u (r) as unknown.
In order to find a solution of Eq. (4.125) or Eq. (4.126) we must
impose some boundary conditions depending on the physical
problem under consideration. If we consider a body with an
external surface S, a first type of boundary condition fixes the
values of the displacement field on this surface at any time. It The first kind

(Dirichlet) elastic
problem

means that u = u(x, t) for any x ∈ S and for any t in a given
interval. When the entire external surface is described by these
conditions we say that we are solving an elastic problem of the
first kind (Dirichlet). A second kind of boundary conditions The second kind

(Neumann) elastic
problem

fixes the stress applied on the external surface. It means that
Tijnj = fi(x, t) for any x ∈ S and for any t in a given interval.
When the entire external surface is described by these conditions
we say that we are solving an elastic problem of the second kind
(Neumann). Finally, a third case can be defined by dividing the The third kind elastic

problemsurface S in two parts and by applying the Dirichlet conditions
to the first part and the Neumann conditions to the second part.
In this case we say that we are solving an elastic problem of the
third kind, subjected to mixed boundary conditions.
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4.8 the stiffness tensor and the elastic moduli in two-
dimensional systems.

Voigt notation
To express the general stress-strain relation for a linear elastic

material in terms of matrix elements, we can use the Voigt no-
tation. We have seen that both stress and strain tensors involve
six components identifiable by a double subscript notation. Both
the second-rank tensors are symmetric with respect to an inter-
change of the subscripts, Tij = Tij, or with the Janh symbols [V2].
So it is convenient to abbreviate the notation by using single
subscript, running from 1 to 6, 11→ 1, 22→ 2, 33→ 3, 23→ 4,
13 → 5, and 12 → 6. In this notation, the stress and strain are
expressed as 6× 1 column vectors. The Voigt notation can be
adopted also for higher-rank tensor with different internal sym-
metries, as in the case of the fourth-rank stiffness and compliance
tensors, which are symmetric with respect to the first and second
pair of indices and also with respect to their permutation, or
differently with respect the [[V2]2] internal symmetry, and for the
sixth-rank tensor build with the third-order derivate of energy
strain Cijklmn = ∂3U

∂εij ∂εkl ∂εmn
in Eq. (4.114) with respect the

[[[V2]]3] internal symmetry.
The elasticity tensor can be expressed as a symmetric 6× 6

matrix, and the Eq. 4.116 can be written as

Tλ = Cλµεµ, with (ij)↔ λ, (kh)↔ µ, (4.127)

or equivalently in term of matrix as

T11

T22

T33

T23

T31

T12


=



C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212





ε11

ε22

ε33

ε23

ε31

ε12



⇒



T1

T2

T3

T4

T5

T6


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





ε1

ε2

ε3

ε4

ε5

ε6


(4.128)
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The inverse relation, defined in Eq. (4.117), is more complicated.
Again from the Eq. (4.104) the indices of the compliance tensor
can be written according to the following rules

Sλµ =


Sijkl, if ∀λ, µ = 1, 2, 3,

2Sijkl, if λ = 1, 2, 3, µ = 4, 5, 6,

4Sijkl, if λ = 4, 5, 6, µ = 4, 5, 6,

(4.129)

where each indices λ, or µ greater than 3 leads to doubling the
corresponding matrix element, in order to take in account of the
permutations.

The number of independent stiffness coefficients in Eq. (4.128)
can be further reduced by imposing the symmetry operators of
the respective crystal classes. In all of them, but the triclinic one,
the effects of crystal symmetries are reveled by the presence of
null and repeated elements among the matrix components. For
more detail see the Appendix A.4.

As an example of these effects, we show the stiffness tensor
of an isotropic material. In this case only two components are
independent, because of its symmetry group contains all orthog-
onal transformations. In Voigt notation the stiffness tensor of an
isotropic materials can be written as Isotropic materials

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 (C11 − C12) 0 0

0 0 0 0 (C11 − C12) 0

0 0 0 0 0 (C11 − C12)


(4.130)

Combining the Eq. (4.116) with the Eq. (4.121)

Cijklεkl = 2µεij + λδijεkk (4.131)

and because of εkk = δklεkl, and εij = δikδjlεkl

Cijklεkl = 2µδikδjlεkl + λδijδklεkl (4.132)

So the stiffness coefficients for an isotropic crystal can be ex-
pressed in term of elastic moduli as

Cijkl = 2 µδik δjl + λ δij δkl (4.133)
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Table 4.4: Relations between different couples of elastic moduli. Here
(λ,µ) are the Lamè coefficients, E, µ, and K are the Young
modulus, the Poisson ratio, and the Bulk modulus, respec-
tively.

(λ,µ) (K,µ) (µ,ν) (E,ν) (E,µ)

λ K − 2
3µ

2µν
1−2ν

νE
(1+ν)(1−2ν)

µ(E−2µ)
3µ−E

µ E
2(1+ν)

K 3λ+2µ
3

2µ(1+ν)
3(1−2ν)

E
3(1−2ν)

Eµ
3(3µ−E)

E
µ(3λ+2µ)
λ+µ

9Kµ
3K+µ 2(1+ ν)µ

ν λ
2(λ+µ)

3K−µ
2(3K+µ)

E−2µ
2µ

or, in more explicit way

2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ


(4.134)

which gives us the direct connection between stiffness coefficients
and elastic moduli.

Another peculiar example regards the transversely isotropic
materials. A transversely isotropic material is symmetric about
an axis that is normal to a plane of isotropy. This transverse plane
has infinite planes of symmetry and thus, within this plane, the
material properties are same in all directions. With this type of
material symmetry, the number of independent constants in the
elasticity tensor are reduced to 5 from a total of 21 independent
constants in case of fully anisotropic solid. The stiffness tensorTransversely

isotropic materials has the following form

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 (C11 − C12)


(4.135)

Starting from the constitutive equation (4.116)

T̂ = 2µε̂ + λTr(ε̂)I (4.136)
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where all the matrices are in rank 3, we can obtain the physical The physical
meaning of the Lamè
moduli

meaning of the Lamè moduli, λ and µ. By setting λ = 0 and
considering the out-of-diagonal strain elements εij with i 6= j, we
can rewrite the constitutive equation as

Tij = 2µεij =, with i 6= j, (4.137)

= µ

(
∂ui

∂xj
+
∂uj

∂xi

)
(4.138)

where µ is the coefficient that relates stress to a change in shape,
as discuss in Eq. (4.108), therefore it is a measure of the rigidity.
If µ vanishes and we consider only i = j, the Eq. (4.116) becomes

lim
µ→0+

Tij = λεkkδij =, with i = j, (4.139)

= λTr(ε̂) = λ
∆V

V
(4.140)

where ∆V/V is the dilatation as defined in Eq. (4.109), so the
Lamè modulus λ is related to the compressibility κ. Since we
have considered an hydrostatic deformation, namely ε11 = ε22 =

ε33,and since in the hydrostatic case the trace of stress is related
to the negative hydrostatic pressure, namely Tr(T̂) = −3P, the
trace of the Eq. (4.116) may be written as

Tr(T̂) = 2µTr(ε̂) + 3λTr(ε̂) (4.141)

−P =

(
2

3
µ+ λ

)
∆V

V
with i = j, (4.142)

Because of the compressibility κ is defined as

κ = −
1

P

∆V

V
(4.143)

Solving for λ, we obtain

λ =
1

κ
−
2

3
µ (4.144)

Hence, the Lamè modulus λ combines the compressibility and
the rigidity. The reciprocal of the compressibility is defined as
the Bulk modulus of a material K (see also Table 4.4)

K = λ+
2

3
µ (4.145)

We focus now our attention in the case of in plane strain condition,
where the infinitesimal displacement u = (u1,u2, 0) has only two-
dimensional components, namely u1,u2 = f(x1, x2). So, the
strain tensor ε̂ = 1

2(∇u +∇uT ) takes the form

ε̂ =

ε11 ε12 0

ε12 ε22 0

0 0 0

 (4.146)
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It is easy now to introduce a two dimensional notation, wherePlane strain
condition: 3D Vs 2D
notation

the Eq. (4.116) is rewritten with only matrix in rank 2(
T11 T12

T12 T22

)
= 2µ

(
ε11 ε12

ε12 ε22

)
+ λ(ε11 + ε22)I (4.147)

Now, we have obtained the constitutive relation for two-dimensional
(2D) systems

T̂ = 2µ2Dε̂ + λ2DTr(ε̂)I (4.148)

With the same arguments discussed before for the three-dimensional
case, instead the Eq. (4.145), the two-dimensional Bulk modulus
is

K2D = λ2D + µ2D (4.149)

Note that this is a very important issue to study the two-dimensional
elastic properties of a given two-dimensional system. The rela-
tions between different two-dimensional elastic moduli is shown
in Table 4.5.

Using the two-dimensional version of the Eq. (4.116), we can
define the relations between elastic moduli and the stiffness
coefficients (see also Table 4.5)T11T22

T12

 =

C11 C12 0

C12 C11 0

0 0 (C11 − C12)


ε11ε22
ε12

 =

=

2µ2D + λ2D λ2D 0

λ2D 2µ2D + λ2D 0

0 0 2µ2D


ε11ε22
ε12


(4.150)

Plane stress
condition: 3D Vs 2D
notation

Imposing the plane stress boundary condition instead the plane
strain one, the out-of-plane components of the stress tensor have
to null, namely T̂nnn = 0, where n is the normal versor parallell to
the x3−axis. Hence the stress tensor is in the following form

T̂ =

T11 T12 0

T12 T22 0

0 0 0

 (4.151)

Therefore, instead the Eq. (4.123) which is reported below

ε̂ =
1

2µ
T̂ −

λ

2µ(2µ + 3λ)
Î̂ÎI3Tr(σ̂), (4.152)

we derive the two-dimensional inverse constitutive equation from
the Eq. (4.148)

ε̂ =
1

2µ2D
T̂ −

λ2D

4µ2D(µ2D + λ2D)
Î̂ÎI2Tr(T̂) (4.153)

where all the matrices are in rank 2.
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4.9 the virial stress tensor

The continuum stress interpretation of atomic force fields is
important because it allows the intensity and nature of internal
interactions in materials to be measured. In order to obtain the
atomic-molecular counterpart of the Cauchy stress tensor defined
in Eq. (4.31), we consider a small volume V , with surface S, of a
given elastic body . We suppose that in this region there are N
atoms, described by positions xi for i = 1...N. The number of theThe continuum

stress interpretation
of atomic force fields

atoms is large enough to allow the definition of the macroscopic
elastic fields (stress and strain) in that region, but it is also small
enough to identify the effective stress with its average on the
volume. The components of the position vector xi will be denoted
with (xi,1, xi,2, xi,3). In order to obtain the continuum-molecular
equivalence it is useful to introduce the so-called virial form∑N
i=1 xi ⊗ Fi where the symbol ⊗ represents the tensor product

of vectors. The quantity Fi is the total force acting on the ith

atom and, therefore, the equation of motion Fi = miai leads to
the balance

N∑
i=1

xi ⊗ Fi =

N∑
i=1

mixi ⊗ ai (4.154)

where mi is the mass of the ith atom. The total force Fi can be
written as the sum of two contributes: the internal force Finti ,
which is defined as the force on the ith atom exerted by the
other atoms contained in the volume V , and the external force
Festi , i.e. the force on the ith atom exerted by the atoms outside
the volume V and by any external action. Therefore the balance
equation (4.154) becomes

N∑
i=1

xi ⊗ Finti +

N∑
i=1

xi ⊗ Festi =

N∑
i=1

mixi ⊗ ai (4.155)

Moreover, because of the external force Festi is made by the
surface force Festi (S), that is the force on the ith atom exerted by
the atoms outside the volume V , and by the body force Festi (V),
i.e. the force on the ith atom exerted by any external action (e.g.
gravity), again we rite the Eq. (4.154) as follows

N∑
i=1

xi ⊗ Finti +

N∑
i=1

xi ⊗ Festi (V) +

N∑
i=1

xi ⊗ Festi (S)

=

N∑
i=1

mixi ⊗ dvi
dt

(4.156)

where vi is the velocity of the ith atom, and the contribute
Festi (S) can be different from zero only for atoms very close to
the surface S, i.e. interacting with the atoms outside the volume
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V . We observe that the velocity vi of each atom is composed by
a term corresponding to an effective macroscopic drift v(0)

i and
a statistical (thermal) fluctuation δvi. Therefore, we substitute
vi = (v(0)

i + δvi) into Eq. (4.156)

N∑
i=1

xi ⊗ Finti +

N∑
i=1

xi ⊗ Festi (V) +

N∑
i=1

xi ⊗ Festi (S)

=

N∑
i=1

mixi ⊗
dv(0)
i

dt
+

N∑
i=1

mixi ⊗ dδvi
dt

(4.157)

If we introduce the time average 〈 · 〉τ = limτ→∞ 1
τ

∫τ
0 ( · ) dt

and we can develop the average value of the last term of the right
hand side of Eq. (4.157) as follows〈
N∑
i=1

mixi ⊗ dδvi
dt

〉
τ

=

〈
N∑
i=1

mi

[
d
dt

(xi ⊗ δvi) − vi ⊗ δvi
]〉
τ

= lim
τ→∞ 1τ

∫τ
0

N∑
i=1

mi
d
dt

(xi ⊗ δvi) dt−

〈
N∑
i=1

mivi ⊗ δvi
〉
τ

= lim
τ→∞ 1τ

N∑
i=1

mixi ⊗ δvi
∣∣∣∣∣
t=τ

t=0

−

〈
N∑
i=1

mivi ⊗ δvi
〉
τ

(4.158)
The virial theorem

We are dealing with an elastic solid body which is a stable
bound system, i.e. a system that hold together. In other words,
coordinates and velocities for all particles remain finite. In this
case, the quantity G(t) =

∑N
i=1mixi ⊗ δvi is a limited function

with extremes, Gmin and Gmax, and its average goes to zero in
the limit of very long times τ

lim
τ→∞ 1τ

N∑
i=1

mixi ⊗ δvi
∣∣∣∣∣
t=τ

t=0

= lim
τ→∞ G(τ) −G(0)

τ
0 lim
τ→∞ Gmax −Gmin

τ
= 0

(4.159)

Moreover, the last term in Eq. (4.158) can be developed by recall-
ing the decomposition of the velocity vi = (v(0)

i + δvi), and by
using the statistical independence of v(0)

i and δvi as follows〈
N∑
i=1

mivi ⊗ δvi
〉
τ

=

〈
N∑
i=1

miv
(0)
i ⊗ δvi

〉
τ

+

〈
N∑
i=1

miδvi ⊗ δvi
〉
τ

(4.160)

The first average value in the right hand side is zero, because the
average value of the velocity fluctuation δvi is null. Conversely,
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the second average value is a quadratic term in the fluctuation δvi
and therefore it is not negligible. Hence, this important equality
has been obtained from Eq. (4.158)〈

N∑
i=1

mixi ⊗ dδvi
dt

〉
τ

= −

〈
N∑
i=1

miδvi ⊗ δvi
〉
τ

(4.161)

Summing up, the virial balance in Eq. (4.157) can be written as〈
N∑
i=1

xi ⊗ Finti

〉
τ

+

〈
N∑
i=1

xi ⊗ Festi (V)

〉
τ

+

〈
N∑
i=1

xi ⊗ Festi (S)

〉
τ

=

〈
N∑
i=1

mixi ⊗
dv(0)
i

dt

〉
τ

−

〈
N∑
i=1

miδvi ⊗ δvi
〉
τ

(4.162)

Here, the term with the body force Festi (V) corresponds to a vol-
ume integral, the term with the surface force Festi (S) corresponds
to a surface integral and the first sum in the right hand side can
be converted to a volume integral by observing that dv(0)

i /dt is
the macroscopic acceleration field a. By identifying these atomic
terms with their continuum counterparts, we can rewritten〈
N∑
i=1

xi ⊗ Finti

〉
τ

+

〈∫
V

x⊗ Fest(V)dx
〉
τ

+

〈∫
S

x⊗ Fest(S)dS
〉
τ

=

〈∫
V
ρx⊗ adx

〉
τ

−

〈
N∑
i=1

miδvi ⊗ δvi
〉
τ

(4.163)

As described in Section 4.3, the body and the surface forces can
be identified as Fest(V) = b, and Fest(S) = T̂n, where T̂ is the
stress tensor and n is the unit vector normal to S. Therefore, the
balance equation assumes the form〈

N∑
i=1

xi ⊗ Finti

〉
τ

+

〈∫
V

x⊗ bdx
〉
τ

+

〈∫
S

x⊗ (T̂n
)

dS
〉
τ

=

〈∫
V
ρx⊗ adx

〉
τ

−

〈
N∑
i=1

miδvi ⊗ δvi
〉
τ

,

(4.164)

or equivalently through its components〈
N∑
i=1

xi,kF
int
i,h

〉
τ

+

〈∫
V
xkbhdx

〉
τ

+

〈∫
S
xkThpnpdS

〉
τ

=

〈∫
V
ρxkahdx

〉
τ

−

〈
N∑
i=1

miδvi,kδvi,h

〉
τ

(4.165)
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Applying the divergence theorem (see Appendix A.2) the surface
integral can be converted into a volume integral as follows〈
N∑
i=1

xi,kF
int
i,h

〉
τ

+

〈∫
V
xkbhdx

〉
τ

+

〈∫
V

∂

∂xp

(
xkThp

)
dx
〉
τ

=

〈∫
V
ρxkahdx

〉
τ

−

〈
N∑
i=1

miδvi,kδvi,h

〉
τ

(4.166)

The derivative can be developed by obtaining〈
N∑
i=1

xi,kF
int
i,h

〉
τ

+

〈∫
V
xkbhdx

〉
τ

+

〈∫
V

(
δkpThp + xk

∂Thp

∂xp

)
dx
〉
τ

=

〈∫
V
ρxkahdx

〉
τ

−

〈
N∑
i=1

miδvi,kδvi,h

〉
τ

(4.167)

Therefore, we can collect the terms as shown in the following
relation〈

N∑
i=1

xi,kF
int
i,h

〉
τ

+

〈∫
V
Thkdx

〉
τ

+

〈
N∑
i=1

miδvi,kδvi,h

〉
τ

+

〈∫
V
xk

(
∂Thp

∂xp
+ bh − ρah

)
dx
〉
τ

= 0

(4.168)

The quantity in brackets is zero because of the Equation (4.54),
∂Tji
∂xi

+ bj − ρaj = 0, which describes the motion of any elastic
body. Moreover, we can define the average value of the stress
tensor over the volume V , namely T̄hk = 1

V

∫
V Thkdx. It follows

that the balance equation for the virial sum leads to the following
definition of stress, based on atomic quantities The virial stress

tensor〈
T̄hk

〉
τ

= −
1

V

〈
N∑
i=1

miδvi,kδvi,h

〉
τ

−
1

V

〈
N∑
i=1

xi,kF
int
i,h

〉
τ

(4.169)

This very important relation, called virial stress tensor, links
among microscopic atomic quantities and macroscopic observ-
ables and it can be written in tensor form, as follows

〈
¯̂T
〉
τ

= −
1

V

〈
N∑
i=1

miδvi ⊗ δvi
〉
τ

−
1

V

〈
N∑
i=1

xi ⊗ Finti

〉
τ

(4.170)

This result has innumerable applications in the field of the molec-
ular dynamic simulations of mechanical structures. In fact, it
enables us to evaluate the macroscopic Cauchy stress in an elas-
tic solid system defined at the atomic or molecular level. It is
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important to observe that the first kinetic term considers the
fluctuations of the velocities and not the absolute velocities: it
is very important for analyzing thermoelasticity with molecular
dynamic simulations [71]. To conclude, we have obtained the
atomic-molecular counterpart of the Cauchy stress tensor, as
given in Eq. (4.170): we point out that this result is exactly correct
(at any time) for systems undergoing arbitrary time-dependent
deformations.

4.9.1 Physical meaning of the virial stress

We add some comments on other quantities defined for a sys-
tem of particles similar to that above derived. This discussion is
useful to avoid some errors and misunderstandings often encoun-
tered in the development of these concepts. The pressure stress〈
Π̂
〉
τ

is the most commonly used definition of stress-like quantity
in discrete particle systemsThe pressure tensor

〈
Π̂
〉
τ

= −
1

V

〈
N∑
i=1

mi
dxi
dt
⊗ dxi

dt

〉
τ

−
1

V

〈
N∑
i=1

xi ⊗ Finti

〉
τ

(4.171)

This quantity includes two terms [72, 73]. The first part depends
on the mass and on the absolute velocity of atomic particles,
reflecting the assertion that mass transfer causes pressure to
be applied on stationary spatial surfaces external to an atomic-
particle system. The second part depends on interatomic forces
and atomic positions, providing a continuum measure for the in-
ternal mechanical interactions between particles. Historic deriva-
tions of the pressure stress include generalization from the virial
theorem of Clausius or Maxwell for gas pressure and solution of
the spatial equation of balance of momentum [74, 75]. However,
the pressure stress is not a measure for the Cauchy mechanical
stress in an elastic body [76]. We have proved, in the previous
Section 4.9, that the absolute velocities vi = dxi/dt in Eq. (4.171)
must be substituted with their fluctuations δvi for obtaining the
Cauchy stress, as shown in Eq. (4.170).

We also remark that the virial approach or virial theorem (Clau-
sius 1870), as applied to gas systems for the evaluation of external
pressure strictly in the statistical average sense, correctly captures
this effect. The key is that the pressure represents external forces
between an atomic system and a container, where the pressure
is generated by the collisions of the atoms on the container. In
contrast, stress represents internal forces between particles inside
a body, and it is not generated by collisions against a wall. Indeed,
Eq. (4.171) correctly describes the macroscopic pressure of a gas
system under the three following conditions: i) the system is in
statistical equilibrium, ii) the pressure must be interpreted in a
time and volume averaged sense, i.e. fluctuations at the molecular
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level are assumed to average out over time and space, and iii)
the pressure must be recognized as the average force per unit
area on the wall of a physical container holding the gas system.
The pressure stress given in Eq. (4.171) can be correctly applied in
molecular dynamic simulations when one is analyzing the pres-
sure (or pressure tensor) of a gas or a fluid at thermodynamic
equilibrium.

Furthermore, we remark that Eq. (4.170) represents the atomic
counterpart of the Cauchy stress when it is considered in an
Eulerian (spatial) reference frame. Andia et al. (see Refs.[77, 78]),
have taken a Lagrangian (material) frame of reference to show
that the stress in the atomic system does not contain velocity
term at all, by obtaining the further relation

〈
T̂L

〉
τ

= −
1

V

〈
N∑
i=1

xi ⊗ Finti

〉
τ

(4.172)

For example, Gao and Weiner (see Ref.[79]) clearly show that the
dynamic term is included only in an Eulerian (spatial) reference
frame and not in a Lagrangian frame of reference. They also
show the equivalence between the Eulerian (spatial) and the
Lagrangian (material) definitions of virial stress [79]. Anyway, in
molecular dynamic simulations the Eulerian point of view must
be always considered in order to draw coherent comparisons
among numerical and continuum results [71].

4.9.2 The atomistic nonlinear Cauchy stress

The viral stress defined as in Eq. (4.170) corresponds to the
Cauchy stress only in the framework of the linear approximation.
To achieve also the nonlinear elastic behavior of the system, we
need to derive a different form of the atomistic stress. A relation
between the atomic stress and the Cauchy stress tensor can be
straightforwardly derived by the strain energy function, as in Eq.
(4.113).

In a given system, the strain energy function U(ε̂) can be iden-
tified with the thermodynamic potential of the corresponding Thermodynamical

identification of the
strain energy

statistical ensemble (i.e. the internal energy for an isolated system,
the Helmholtz free energy for a system in equilibrium with a
thermal bath, etc...). By considering the basic case of an isolated
system at T = 0 K, the internal energy corresponds to the in-
teratomic potential energy U which is a function of the atomic
positions xi i = 1, ...,N, namely: U = U({xi}). In absence of any
external load, the system lies in the minimum energy configura-
tion

{
x0i
}

. If a uniform strain field ε̂ is applied, the new atomic
positions can be expressed as xi = (Î+ ε̂)x0i and the correspond-
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ing internal energy is given by U
({

(Î+ ε̂)x0i
})

. Thus, the strain
energy density can be written as

U(ε̂) =
1

V
U
({

(Î+ ε̂)x0i
})

(4.173)

where V is the volume of the system. According to Eq. (4.113),
the stress tensor is given byThe nonlinear form

of the Cauchy stress

T̂ =
∂U(ε̂)

∂ε̂
=

1

V

N∑
i

∂U

∂xi
∂xi
∂ε̂

(4.174)

=
1

V

N∑
i

∂U

∂xi
∂

∂ε̂
(Î+ ε̂)x0i

=
1

V

N∑
i

∂U

∂xi
⊗ x0i

= −
1

V

N∑
i

x0i ⊗ Fint
i

This expression corresponds to that in Eq. (4.170) but the positions
xi in the deformed configuration are replaced by the positions x0i
of the system in the minimum energy state. Note that Eq. (4.170)
is coincident with the first-order expansion in ε̂ of Eq. (4.174)
Therefore we can obtain that to take in account nonlinear effect
of stress up to the second order in the strain, we need to evaluate
the following version of the virial stress tensor instead the Eq.
(4.170)

1

V

N∑
i

∂U

∂xi
⊗ x0i =

1

V

N∑
i

∂U

∂xi
⊗ xi + o(ε2) (4.175)

x0i = xi + o(ε), and
∂V

∂xi
= o(ε) (4.176)

4.9.3 Atomic stress for two-body interactions

In this Section we specialize the general result given in Eq.
(4.170) to the case of two-body interactions among the atoms of
the solid elastic body. We remember that the internal force Finti
on the ith atom is given by all the forces exerted by other atoms
contained into the volume V . Therefore, the quantity Finti can
be written as the sum

∑N
j6=i fij where fij is the force applied on

the ith atom by the jth atom. It follows that Eq. (4.170) can be
converted to

〈
¯̂T
〉
τ

= −
1

V

〈
N∑
i=1

miδvi ⊗ δvi
〉
τ

−
1

V

〈
N∑
i=1

xi ⊗
N∑
j6=i

fij

〉
τ

(4.177)
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The last term can be split in two identical terms as follows

〈
¯̂T
〉
τ

= −
1

V

〈
N∑
i=1

miδvi ⊗ δvi
〉
τ

−
1

2V

〈
N∑
i=1

xi ⊗
N∑
j6=i

fij

〉
τ

+
1

2V

〈
N∑
i=1

xi ⊗
N∑
j6=i

fji

〉
τ

(4.178)

where we have utilized the Newton’s third law fji = −fij. In
the last double sum we can exchange the names of the summed
indices, by obtaining

〈
¯̂T
〉
τ

= −
1

V

〈
N∑
i=1

miδvi ⊗ δvi
〉
τ

+
1

2V

〈
N∑
i=1

(
xj − xi

)⊗ N∑
j6=i

fij

〉
τ

(4.179)

Moreover, we define the vector from the ith atom to the jth atom
with xij = (xj − xi). It follows that

〈
¯̂T
〉
τ

= −
1

V

〈
N∑
i=1

miδvi ⊗ δvi
〉
τ

+
1

2V

〈
N∑
i=1

N∑
j6=i

xij ⊗ fij

〉
τ

(4.180)

This form is particularly useful for the applications to the molecu-
lar dynamic simulations since the force term fij is directly linked
with the interaction potential energy U2B (r) between two atoms

fij =
dU2B (r)

dr

∣∣∣∣
r=|xij|

xij
|xij|

(4.181)

By substituting Eq. (4.181) into Eq. (4.180) we obtain the final
relation〈

¯̂T
〉
τ

= −
1

V

〈
N∑
i=1

miδvi ⊗ δvi
〉
τ

+
1

2V

〈
N∑
i=1

N∑
j6=i

xij ⊗ xij

(
1

r

dU2B (r)

dr

)∣∣∣∣
r=|xij|

〉
τ

(4.182)

This form is useful since it considers only quantities available in
standard molecular dynamic procedures and it is perfectly suited
for being used under the typical assumption of periodic boundary
conditions. In fact, when the periodic boundary conditions are
applied, the system interacts with the copies of the unit cell
which are called images. When a molecule passes through one
face of the unit cell, it reappears on the opposite face with the
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same velocity and, therefore, the definition of internal forces and
external ones is not applicable. Nevertheless, the stress expression
given in Eq. (4.182) solves the problem, being written in terms of
U2B. However, it is important to consider the correct periodicity
in the definition of the vectors xij = (xj − xi) by applying the
standard minimum-image convention [80].
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T H E G R A P H E N E I S S T R E T C H E D

“The most exciting phrase to hear in science, the one that heralds new
discoveries, is not ’Eureka!’ but ’That’s funny...”’

Isaac Asimov (1920-1992)
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The elastic properties of graphene have been recently deter-
mined by atomic force microscope nanoindentation [12, 81], mea-
suring the deformation of a free-standing monolayer. In particu-
lar, in Ref. [12] the experimental force-deformation relation has
been expressed as a phenomenological nonlinear scalar relation
between the applied stress (σ) and the observed strain (ε)

σ = Eε+Dε2 (5.1)

where E and D are, respectively, the Young modulus and an
effective nonlinear (third-order) elastic modulus of the two di-
mensional carbon sheet. The reported experimental values are:
E = 340± 40 Nm−1 and D = −690± 120Nm−1. While the first
result is consistent with previous existing data [82, 14, 83, 15], the
above value for D represents so far the only available information
about the nonlinear elasticity of a one-atom thick carbon sheet.
Although nonlinear features are summarized in Eq. (5.1) by one

suspended graphene

substrate

indenter

Scheme of the
indentation of a

suspended
monolayer graphene.

effective parameter D, continuum elasticity theory predicts the
existence of three independent third-order parameters Cijk for
graphene, as reported below. In other words, while Eq. (5.1) rep-
resents a valuable effective relation for the interpretation of a
complex experiment [12], it must be worked out a more rigorous
theoretical picture in order to properly define all the nonlinear
elastic constants of graphene and to understand the physical
meaning of D.

This corresponds to the content of the present Chapter where
we investigate the constitutive nonlinear stress-strain relation of
graphene for graphene stretching elasticity and we calculate all
the corresponding nonlinear elastic moduli, by combining con-
tinuum elasticity and tight-binding atomistic simulation (TB-AS)
[84]. Present results represent a robust picture on elastic behavior
and provide the proper interpretation of recent experiments. In

77
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zz

ac

θ
~ey sin θ

~ex cos θ

~n = ~e
x
cos

θ + ~ey
sin
θ

Figure 5.1: By applying an axial tension σ along the arbitrary direc-
tion ~n (θ = ~zz ∠ ~n), the Cauchy stress tensor T̂ = ∂U/∂ε̂

is T̂ = σ~n⊗ ~n, where the in-plane stress components are
defined, respectively, as Txx = σ cos2 θ, Txy = σ cos θ sin θ,
and Tyy = σ sin2 θ.

particular, we discuss the physical meaning of the effective non-
linear elastic modulus there introduced and we predict its value
in good agreement with available data. Finally, a hyperelastic
softening behavior is observed and discussed, so determining the
failure properties of graphene.

5.1 elastic properties of graphene

To obtain the nonlinear stress-strain relation of an elastic mem-
brane, we need at first to elaborate an expression for the corre-
sponding strain energy function U (per unit area), which was
defined in Eq. (4.114) as follows

U(ε̂) =
1

2
Cijkhεijεkh +

1

6
Cijkhnmεijεkhεnm (5.2)

Riminding that the Cijkh and the Cijkhnm denote the second
order elastic constant (SEOC) and the third order elastic constant
(TOEC), respectively

Cijkh =
∂2U

∂εij ∂εkh
; Cijkhnm =

∂3U

∂εij ∂εkh ∂εnm
(5.3)



5.1 elastic properties of graphene 79

The complex
variables methodSince, as illustrated in Figure 5.1, the graphene lattice is hexag-

onal, it is useful to consider the coordinate set α = (x+ iy) and
β = (x− iy) [85], where the x and y directions are respectively
identified with the zig-zag (zz) and the armchair (ac) directions.
We introduce the corresponding form for the strain energy func-
tion U as follows

2U = λijkhεijεkh +Λijkhnmεijεkhεnm (5.4)

where λijkh and Λijkhnm are parameters analogous to the Cijkh
and the Cijkhnm in the Eq. (5.2). Because of the six-fold symmetry
of hexagonal lattices, the strain energy function U have to be
invariant under a rotation of π/3 about the z-axis (normal to the
graphene plane).

α = (x+ iy) −→ α e
2πi
6

β = (x− iy) −→ β e− 2πi
6

(5.5)

Since (e±
2πi
6 )6 = 1 and e

2πi
6 e− 2πi

6 = 1, the parameters λijkh A complete set of
elastic moduliand Λijkhnm must have among their indices 6-times α or β,

or an equal number of them to be invariant under these trans-
formations. We get the follows complete set of elastic moduli
for an hexagonal symmetry which is composed by a couple of
linear moduli λ1 and λ2 and by three nonlinear independent
elastic coefficients, namely Λi, i = 1, 2, 3, all expressed in units of
force/length as follows

λ1 = λααββ; λ2 = λαβαβ;

Λ1 = Λαααααα ≡ Λββββββ;

Λ2 = Λααββαβ; Λ3 = Λαβαβαβ

(5.6)

Hence the strain energy function U can be written considering
separately the quadratic terms and the cubic terms, U = U(2) +

U(3), the Eq. (5.4) is given by

2U(2) = +λ1εααεββ + λ2ε
2
αβ

6U(3) = +Λ1(ε
3
αα + ε3ββ) +Λ2εααεββεαβ +Λ3ε

3
αβ,

(5.7)

In order to further proceed we must better focus the strain defini-
tion which in elasticity theory is twofold: we can introduce the so-
called small strain tensor ε̂ = 1

2(
~∇~u+ ~∇~uT), being ~u the displace-

ment field, or the Lagrangian strain η̂ = 1
2(

~∇~u+ ~∇~uT + ~∇~uT ~∇~u).
While ε̂ takes into account only the physical nonlinearity features
(i.e. a nonlinear stress-strain dependence observed in regime of
small deformation), η̂ describes any possible source of nonlinear-
ity, including both physical and geometrical (large deformation)
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ones. To turn back in Cartesian coordinates, x, y, we can derive
the strain elements from their definition

εαβ =
1

2

(
∂uα

∂β
+
∂uβ

∂α

)
= εxx + εyy

εαα =
1

2

(
∂uα

∂α
+
∂uα

∂α

)
= εxx − εyy + 2iεxy

εββ =
1

2

(
∂uβ

∂β
+
∂uβ

∂β

)
= εxx − εyy − 2iεxy

(5.8)

Combining the Eq. (5.7) with the Eq. (5.8) we have a complete
relationship for density of energy in a non linear form

2U(2) = + ε2xx(λ1 + λ2) + ε2yy(λ1 + λ2)

+2εxxεyy(−λ1 + λ2) + 4ε2xyλ1

6U(3) = + ε3xx(2Λ1 +Λ2 +Λ3)

+ ε3yy(−2Λ1 +Λ2 +Λ3)

+ ε2xxεyy(−6Λ1 −Λ2 + 3Λ3)

+ εxxε
2
yy(6Λ1 −Λ2 + 3Λ3)

+ ε2xyεxx(−24Λ1 + 4Λ2)

+ε2xyεyy(24Λ1 + 4Λ2)

(5.9)

Otherwise we can write it also in terms of stiffness tensor coeffi-
cients by the complite expantion of the Eq. (5.2)

2U(2) = C11ε
2
xx + C22ε

2
yy + 2C12εxxεyy + 4C66ε

2
xy

+ 2C16εxxεxy + 2C26εyyεxy (5.10)

6U(3) = +C111ε
3
xx + C222 ε

3
yy

+ 3C112 ε
2
xxεyy + 3C122 εxxε

2
yy

+ 12C166 εxxε
2
xy + 12C266 εyyε

2
xy

+ 6C116 ε
2
xxεxy + 6C226 ε

2
yyεxy

+ 12C126 εxxεyyεxy + 8C666 ε
3
xy

(5.11)

By comparing term by term the Eq. (5.9) and the Eq. (5.10), we
get the relationships between the linear elastic coefficients λ1,
λ2 and the nonlinear elastic coefficients Λ1, Λ2 and Λ3 with
the second order elastic constants and the third order elastic
constants, respectively Thus we obtain that

λ1 =
1

2
(C11 − C12), λ2 =

1

2
(C11 + C12) (5.12)

Λ1 =
1

12
(C111 − C222), Λ2 =

1

4
(C222 − C112),

Λ3 =
1

12
(2C111 − C222 + 3C112). (5.13)

Furthermore, we obtain that the hexagonal symmetry dictates 2-
independent Cijkl (C11, C12) as well as we aspect for an isotropic



5.1 elastic properties of graphene 81

material, and 3-independent Cijklmn (C111, C222, C112). There
are some linear terms null, C16 = C26 = 0, and some non-
linear terms, C116 = C226 = C126 = C666 = 0 as well. For the
same symmetry reasons the follows relations between stiffness
coefficients have been derived: C11 = C22, 2C66 = C11 − C12,
C122 = C111 − C222 + C112, C166 = −2C111 + 3C222 − C112, and
C222 = 2C111 − C222 − C112.

The quadratic terms of the density energy U(2) in Eq. (5.9) have
been derived also as follows

2U(2) = λ1εααεββ + λ2ε
2
αβ

= λ1(2Tr(ε̂2) − (Tr(ε̂))2) + λ2(Tr(ε̂))2

= 2λ1Tr(ε̂2) + (λ2 − λ1)(Tr(ε̂))2
(5.14)

where we have used the follows relations, which have been de-
rived from the Eq. (5.8)

εααεββ = (εxx − εyy)
2 + 4ε2xy

ε2αβ = (εxx + εyy)
2

(Tr(ε̂))2 = (εxx + εyy)
2

Tr(ε̂2) = ε2xx + ε2yy + 2ε2xy

(5.15)

Hence, starting from the Eq. (5.2) and using the tensor stress
formulations, Tij = Cijkh εkh and T̂ = 2µε̂ + (K − µ)Tr(ε̂)I2
(see Eq. (4.116) and Eq. (4.148) respectively), the density energy
U(2) can be written as

U(2) =
1

2
Cijkl εij εkl

=
1

2
Tij εij =

1

2
Tr(T̂ ε̂)

=
1

2

[
2µTr(ε̂2) + (K − µ)Tr(ε̂)2

] (5.16)

Finally, comparing the Eq. (5.16) with the Eq. (5.14), we have
obtained that the two elastic constant λ1, λ2 are directly related
to the Lamè modulus µ and the Bulk modulus K (see also Table
4.5), respectively

λ1 ≡ µ =
C11 − C12

2

λ2 ≡ K = µ+ λ =
C11 + C12

2

(5.17)

The strain energy function is finally obtained as

2U = 2µTr
(
ε̂2
)
+ λ (Trε̂)2

+
1

3
C111ε

3
xx +

1

3
C222ε

3
yy + C112ε

2
xxεyy

+(C111 − C222 + C112)εxxε
2
yy

+(3C222 − 2C111 − C112)εxxε
2
xy

+(2C111 − C222 − C112)εyyε
2
xy (5.18)



82 the graphene is stretched

where we set εααεββ = Tr
(
ε̂2
)

and ε2αβ = (Trε̂)2.Uniform uniaxial
stress in plane stress
boundary condition:
the stress-strain
nonlinear
constitutive equation

The analysis of the experimental data provided in Ref. [12]
through Eq. (5.1) is assuming an applied uniaxial stress in plane
stress boundary condition. Since the stress-strain nonlinear con-
stitutive equation for in-plane stretching is straightforwardly
obtained by T̂ = ∂U/∂ε̂, where T̂ is the Cauchy stress tensor
defined in Section 4.3, we can write its components as function
of the strain tensor elements

Txx =
∂U

∂εxx
= f1(εxx, εyy, εxy) = f1(εxx, εyy, 0)

Tyy =
∂U

∂εyy
= f2(εxx, εyy, εxy) = f2(εxx, εyy, 0)

Txy =
∂U

∂εxy
= f3(εxx, εyy, εxy) = 0

(5.19)

Here to achieve the uniaxial stress condition we have to impose
that Txy = 0 and conseguently εxy = 0. We now suppose to
apply a uniaxial tension σ~n along the arbitrary direction ~n =

cos θ~ex + sin θ~ey, where ~ex and ~ey are the unit vectors along the
zig-zag and the armchair directions, respectively (see Figure 5.1).
Under this assumption we get: T̂ = σ~n~n⊗ ~n, with in-plane com-
ponents defined as Txx = σ~n cos2 θ, Txy = σ~n cos θ sin θ, and
Tyy = σ~n sin2 θ. Similarly, by inverting the nonlinear constitu-
tive equation we find the corresponding strain tensor and the
relative variation of length ε~n = ~n · ε̂~n along the direction ~n.
By combining these results, we obtain the stress-strain relation
σ~n = Eε~n +D~nε

2
~n along the arbitrary direction ~n (see Figure 1,

bottom), where D~n is given byThe nonlinear
effective elastic
modulus D~n =

3

2
(1− ν)3Λ3 +

3

2
(1− ν) (1+ ν)2Λ2 (5.20)

+3
(
2 cos2 θ− 1

) (
16 cos4 θ− 16 cos2 θ+ 1

)
(1+ ν)3Λ1

If we set ~n = ~ex (i.e. θ = 0), we get the nonlinear modulus D(zz)

for stretching along the zig-zag direction

D(zz) = D~ex = 3 (1+ ν)3Λ1 +
3

2
(1− ν) (1+ ν)2Λ2

+
3

2
(1− ν)3Λ3 (5.21)

Similarly, by setting ~n = ~ey (i.e. θ = π/2), we obtain the nonlinear
modulus D(ac) for stretching along the armchair direction

D(ac) = D~ey = −3 (1+ ν)3Λ1 +
3

2
(1− ν) (1+ ν)2Λ2

+
3

2
(1− ν)3Λ3 (5.22)

We observe that the above expression for D(zz) apply for all
stretching directions defined by the angles θ = kπ/3 (k ∈ Z),
while D(ac) holds for the angles θ = π/6 + kπ/3. Since the
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Table 5.1: Relationship among the energy expansion coefficients U(2)

and U(3) of Eq. (5.24) and the elastic moduli of graphene for
four in-plane deformations (see text).

deformation U(2) U(3)

ε
(zz)
ij

E
1−ν2

C111

ε
(ac)
ij

E
1−ν2

C222

ε
(p)
ij

2E
1−ν 4C111 − 2C222 + 6C112

ε
(s)
ij

2E
1+ν 0

nanoindentation experiments generate a strain field with radial
symmetry [12], as sketched in Figure 5.1, in order to get the
unique scalar nonlinear elastic modulus appearing in Eq.(1) we
need to average the expression of D~n over θ. This procedure
leads to

〈D~n〉 =
1

2π

∫2π
0
D~ndθ =

D(zz) +D(ac)

2

=
3

2
(1− ν)

[
(1+ ν)2Λ2 + (1− ν)2Λ3

]
(5.23)

proving that the experimentally determined nonlinear modulus
actually corresponds to the average value of the moduli for the
zig-zag and armchair directions. The nonlinear

Lagrangian
constitutive equation

We now repeat the above procedure by using the Lagrangian
strain η̂: even in this case we demonstrated that the strain energy
function is given by the very same Eq. (5.18), where ε̂ is replaced
by η̂ and the Cijk by the Lagrangian third-order moduli CL

ijk.
By imposing the identity U(ε̂) = U(η̂) (where the Lagrangian
strain can be written in term of the small strain by η̂ = ε̂+ 1

2 ε̂
2

[86, 87]) we obtain the conversion rules: CL
111 = C111 − 3E

1−ν2
,

CL
222 = C222 − 3E

1−ν2
, CL

112 = C112 − Eν
1−ν2

, DL
~n = D~n − 3

2E (for
any ~n) and 〈DL

~n〉 = 〈D~n〉− 3
2E. The constitutive equation can

be finally derived in the form T̂PK = ∂U/∂η̂, where T̂PK is the
second Piola-Kirchhoff stress tensor. Hereafter we will refer to
the small strain and Lagrangian scalar nonlinear modulus by
〈D~n〉 and 〈DL

~n〉, respectively. They both will be compared with
the experimental parameter D of Eq. (5.1). The analysis below
will identify the actual theoretical counterpart of D.

5.2 the computational approach

The important result summarized in Eq. (5.23) (as well as in its
Lagrangian version) implies that the scalar nonlinear modulus
can be obtained by the third-order elastic constants (as well
as the linear ones). They can be computed through energy-vs-
strain curves corresponding to suitable homogeneous in-plane
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Figure 5.2: Strain energy density U, obtained by TB-AS, as function of
the strain parameter ζ corresponding to the four homoge-
neous deformations summarized in Table 5.1.

deformations, thus avoiding a technically complicated simulation
of the nanoindentation experiment. Therefore, the following in-
plane deformation have been applied: (i) an uniaxial deformationThe uniform

deformation method ζ along the zig-zag direction, corresponding to a strain tensor
ε

(zz)
ij = ζδixδjx; (ii) an uniaxial deformation ζ along the armchair

direction, corresponding to a strain tensor ε(ac)
ij = ζδiyδjy; (iii)

an hydrostatic planar deformation ζ, corresponding to the strain
tensor ε(p)

ij = ζδij; (iv) a shear deformation ζ, corresponding to

an in-plain strain tensor ε(s)
ij = ζ

(
δixδjy + δiyδjx

)
.

All the needed energy-vs-strain curves have been determined
by TB-AS, making use of the tight-binding representation by Xu et
al. [50]. A periodically repeated square cell containing 400 carbon
atoms was deformed as above. For any given applied deforma-
tion, full relaxation of the internal degrees of freedom of the simu-
lation cell was performed by zero temperature damped dynamics
until interatomic forces resulted not larger than 0.5 · 10−11eV/Å.

For the deformations ε(zz)
ij , ε(ac)

ij , ε(p)
ij and ε

(s)
ij the elastic

energy of strained graphene can be written in terms of just the
single deformation parameter ζPolynomial fitting

method

U(ζ) = U0 +
1

2
U(2)ζ2 +

1

6
U(3)ζ3 +O(ζ4) (5.24)

where U0 is the energy of the unstrained configuration. Since the
expansion coefficients U(2) and U(3) are related to elastic moduli
as summarized in Table 5.1, a straightforward fit of Eq. (5.24)
has provided the full set of linear moduli and third order elastic
constants, while the shear deformation was used to confirm the
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isotropy of the lattice in the linear approximation. Each energy-vs-
strain curve, shown in Figure 5.2, has been computed by TB-AS
as above described, by increasing the magnitude of ζ in steps
of 0.005 up to a maximum strain |ζmax| = 0.055. Arrows in
Figure 5.16 indicate the different nonlinear behavior along the zz
and ac directions. Nonlinear

anisotripicity of
graphene

The outputs of the fitting procedure are reported in Table 5.2
where the full set of third order elastic constants of monolayer
graphene is shown. We remark that C111 is different than C222, i.e
a monolayer graphene is isotropic in the linear elasticity approxi-
mation, while it is anisotropic when nonlinear features are taken
into account. By inserting the elastic constants Cijk of Table 5.2
into Eqs. (5.12), (5.21) and (5.22), we also obtained the nonlinear
moduli for both the zz and ac directions.

In Table 5.3 we report the values of the calculated elastic mod-
uli, together with the available experimental and theoretical data.
The present TB-AS value for E is in reasonable agreement with
literature [12, 88, 83, 89], while the value of ν is larger than most
of the ab-initio results [83, 89, 90, 91] (but for the result in Ref.
[76]). While this disagreement is clearly due to the empirical
character of the adopted TB model (where, however, no elastic
data were inserted in the fitting data base), we remark that the
values of 〈D~n〉 and 〈DL

~n〉 predicted by means of Eq. (5.23) are
affected by only 10% if we vary ν in the range of values shown
in Table 5.3.

Table 5.3 shows that the predicted 〈D~n〉 is much closer to
the experimental value D than its Lagrangian counterpart 〈DL

~n〉.
This seems to suggest that measurements in Ref. [12] were per-
formed in the physical nonlinearity regime (small strain formal-
ism), rather than in the geometrical nonlinearity one (Lagrangian
formalism), as also confirmed by the excellent agreement shown
in Figure 5.3 commented below. Since Cijk < 0 (and D < 0),
graphene is an hyperelastic softening system. Therefore, the
present model plays a crucial role in determining the failure
behavior of the graphene membrane [92, 93]. Hyperelastic

softening behavior of
graphene

Table 5.2: Small strain and Lagrangian nonlinear elastic moduli of
graphene in units of Nm−1.

Small strain Lagrangian

C111 -1689.2 CL
111 -2724.7

C222 -1487.7 CL
222 -2523.2

C112 -484.1 CL
112 -591.1

D(zz) -696.2 DL(zz) -1163.7

D(ac) -469.6 DL(ac) -937.9
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Table 5.3: Linear and nonlinear elastic moduli of graphene in units of
Nm−1 (ν is dimensionless).

E ν D 〈D~n〉 〈DL
~n〉

Present 312 0.31 - -582.9 -1050.9

Ref. [12]a 340±40 - -690±120 - -

Ref. [82, 14]b 235 0.413 - - -

Ref. [88]c 384 0.227 - - -

Ref. [83]d 345 0.149 - - -

Ref. [90]d - 0.173 - - -

Ref. [89]d 350 0.186 - - -

Ref. [76]d - 0.32 - - -

Ref. [91]d - 0.12-0.19 - - -
a Experimental, b Tersoff-Brenner, c Empirical force-constant

calculations, d Ab-initio

In order to substantiate the above statement, we show in Fig-
ure 5.3 the graphene stress-strain curve, as defined in Eq. (5.1).
Both the theoretical and experimental curves have been obtained
by using the Young modulus and the scalar nonlinear coefficient
as reported in Table 5.3. We remark that in Figure 5.3 the small
strain 〈D~n〉 value was used. The agreement between the experi-
mental curve and the theoretical (small strain) one is remarkable.
In addition, by means of Figure 5.3 we can determine the failure
stress (maximum of the stress-strain curve) σf = −E2/4〈D~n〉,
corresponding to a predicted failure stress as high as 42.4 Nm−1.
This result is in excellent agreement with the experimental value
42± 4 Nm−1, reported in Ref. [12]. These values correspond toFailure stress

the failure strength of a two-dimensional system. In order to draw
a comparison with bulk materials, we define an effective three-
dimensional failure stress σ3Df = σf/d, where d is taken as the
interlayer spacing in graphite. By considering d = 0.335 nm [94],
we obtain σ3Df ∼= 130 GPa. This very high value, exceeding that
of most materials (even including multi-walled nanotubes [95]),
motivates the use of one-atom thick carbon layers as possible
reinforcement in advanced composites.

5.3 the stress-strain approach

The same quantities derived and discussed previously have
been computed by using the fitting method applied to a set
of stress-strin curves instead the energy-strain approach. TheThe stress-strain

approach previous results are confirmed and in Fig. 5.4 we show the stress-
strain curves calculated by TB-AS through the implementation of
the atomic stress tensor version defined in Eq. (4.180). Using the
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Figure 5.3: Experimental (see Ref. [12]) and present theoretical stress-
strain curves, as defined in Eq. (5.1). Shaded area represents
the experimental error.

Cauchy stress tensor definition (see Eq. (4.113) and the Eq. (4.114),
we can derive an expression for the stress tnsor in terms of the
stiffness coefficients. Thus we can solve the follows derivative

Tij =
∂U

∂εij
=

∂

∂εij

(
1

2
Cijkl εij εkl +

1

6
Cijklmn εij εkl εmn

)
+
1

2
Cijkl

(
∂εij

∂εij
εkl +

∂εkl

∂εij
εij

)

+
1

6
Cijklmn

(
∂εij

∂εij
εkl εmn + εij

∂εkl

∂εij
εmn + εij εkl

∂εmn

∂εij

)

=
1

2
Cijkl

(
εkl +

1

2

(
δkiδlj + δkjδli

)
εij

)
+
1

6
Cijklmn

(
εkl εmn + εij

1

2

(
δkiδlj + δkjδli

)
εmn

+ εij εkl
1

2

(
δmiδnj + δmjδni

) )

=
1

2
Cijkl

(
εkl +

1

2
( εkl + εlk)

)
+
1

6
Cijklmn

(
εkl εmn +

1

2
(εkl εmn + εlk εmn + εnm εkl )

)
= Cijkl εkl +

1

2
Cijklmn εkl εmn

(5.25)
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tion of the strain parameter ζ corresponding to the four
homogeneous deformations summarized in Table 5.1. Note
that couples of curves overlap perfectly as imposed by sym-
metry.

or, in more explicit way, we can write

T11 = C11ε11 +C12ε22 + 1
2(+C111ε

2
11 + 4C166ε

2
12

+2C112ε11ε22 +C122ε
2
22)

T22 = C11ε22 +C12ε11 + 1
2(+C222ε

2
22 + 4C266ε

2
12

+2C122ε11ε22 +C112ε
2
11)

T12 = +2C66ε12 + 1
2( +8C166ε11ε12 + 8C266ε12ε22)

Note that form the computational point of view, the stress-strain
approach is more advantageous than the energy-strain method,
because of the number of experiments needed to achieve the
same imformations is smaller. In fact, each deformation leads to
a set of three equations, i.e. three curves to fit.
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There exist three conformers of hydrogenated graphene, re-
ferred to as chair-, boat-, or washboard-graphane. These systems
have a perfect two-dimensional periodicity mapped onto the
graphene scaffold, but they are characterized by a sp3 orbital
hybridization, have different crystal symmetry, and otherwise be-
have upon loading. By first principles calculations we determine The graphane is the

fully hydrogenated
graphene

their structural and phonon properties, as well as we establish
their relative stability. Through continuum elasticity we define a
simulation protocol addressed to measure by a computer experi-
ment their linear and nonlinear elastic moduli and we actually
compute them by first principles. We argue that all graphane
conformers respond to any arbitrarily-oriented extention with
a much smaller lateral contraction than the one calculated for
graphene. Furthermore, we provide evidence that boat-graphane
has a small and negative Poisson ratio along the armchair and
zigzag principal directions of the carbon honeycomb lattice (ax-
ially auxetic elastic behavior). Moreover, we show that chair-
graphane admits both softening and hardening hyperelasticity,
depending on the direction of applied load.

6.1 graphane

The hydrogenated form of graphene is referred to as graphane.
It is described as a two-dimensional, periodic, and covalently
bonded hydrocarbon with a C:H ratio of 1. Hydrogen atoms
decorate the carbon honeycomb lattice on both the top and bot-
tom side (see Fig. 6.1). Graphane was theoretically predicted
by Sofo et al., [22] further investigated by Boukhvalov et al. [23]

89
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Figure 6.1: Pictorial representations of the graphane conformers, ob-
tained by different hydrogen decorations (the actual atomic
positions are reported in Fig. 6.2). Top hydrogen atoms are
indicated by red (dark) circles, while bottom ones by gray
(light) circles. Shaded areas represent the unit cell and the
corresponding lattice vectors are indicated by ~a and ~b. Panel
a: graphene scaffold (full lines) with zigzag (zz) and arm-
chair (ac) directions. Panel b, c, and d: chair-, boat-, and
washboard-graphane, respectively.

and eventually grown by Elias et al. [24] The investigation of
graphane properties was originally motivated by the search for
novel materials with possibly large impact in nanotechnology.

The attractive feature of graphane is that by variously deco-
rating the graphene atomic scaffold with hydrogen atoms (still
preserving periodicity) it is in fact possible to generate a set of
two dimensional materials with new physico-chemical proper-
ties. This is obviously due to change in the orbital hybridization
which, because of hydrogenation, is now sp3-like. For instance, it
has been calculated [22, 23] that graphane is an insulator, with
an energy gap as large as ∼ 6 eV [96], while graphene is a highly
conductive semi-metal. In case the hydrogenated sample is dis-
ordered, the resulting electronic and phonon properties are yet
again different [24]. Hydrogenation likely affects the elastic prop-
erties as well. Topsakal et al. [26] indeed calculated that the in-
plane stiffness and Poisson ratio of graphane are smaller than
those of graphene. In addition, the value of the yield strain is
predicted to vary upon temperature and stoichiometry.

As far as the mechanical properties of graphane are concerned,
the sp2-to-sp3 change in orbital hybridization causes a major
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Figure 6.2: Perspective representations of fully relaxed graphane con-
formers. Gray (light gray) and red (dark gray) spheres rep-
resent carbon and hydrogen atoms, respectively. Labels Cn
and Hn (with n = 1, 2, 3 and 4) provide the atom identifica-
tions used in Table 6.1. Right panels show the orientation
with respect to the armchair (ac) and zigzag (zz) direction,
as well as the structural parameters h and ϕ reported in
Table 6.1.
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difference with respect to graphene. There in fact exist graphane
conformers which are not isotropic, at variance with graphene
which is so (in linear approximation as shown in Chapter 5). ThisThere exist

anisotropic graphane
conformers

feature stimulates an intriguing change of perspective, namely:
hydrogenation could not only affect the actual value of some
linear elastic moduli [26]; it could even dramatically change the
overall mechanical behavior of the system by introducing an
anisotropic dependence of its respose to an external load. This
is in fact what we predict in this work by first principles total
energy calculations, combined to continuum elasticity: we show
that there is a graphane conformer (i.e., boat graphane as detailed
below) showing a vanishingly small (possibly negative) Poisson
ratio upon loading along given directions. In other words, we
provide evidence that upon suitable hydrogenation a graphene
sheet behaves as an axially auxetic material [97], namely: it does
not shrink, but actually slightly elongates perpendicularly to
an applied traction force. Nonlinear elastic features show an
interesting anisotropic behavior as well.

This Chapter is organized as follows. In Sec. 6.2, the methods
and the general computational setup adopted in our calculations
are outlined. In Sec. 6.3 we provide a full structural characteriza-
tion of three graphane conformers and we discuss their stability.
In Sec. 6.4 and Sec. 6.5 we describe their linear and nonlinear
elastic properties, respectively, and we compute all the relevant
elastic moduli.

6.2 methods and computational setup

All calculations have been performed by Density Functional
Theory (DFT) (Chapter 3) as implemented in the Quantum

ESPRESSO package [98]. The exchange correlation potential
was evaluated through the generalized gradient approximation
(GGA), using the Vanderbilt ultrasoft pseudopotential PW91 [99].
A plane wave basis set with kinetic energy cutoff as high as 50

Ry was used and in most calculations the Brillouin zone (BZ) has
been sampled by means of a (18x18x3) Monkhorst-Pack grid. The
atomic positions of the investigated samples have been optimized
by using the quasi-Newton algorithm and periodically-repeated
simulation cells. Accordingly, the interactions between adjacent
atomic sheets in the supercell geometry was hindered by a large
spacing greater than 10 Å.

The elastic moduli of the structures under consideration have
been obtained from the energy-vs-strain curves, corresponding
to suitable sets of deformations applied to a single unit cell
sample. As discussed in more detail in Sec. 6.4 and Sec. 6.5, for
any deformation the magnitude of the strain is represented by a
single parameter ζ. The curves have been carefully generated by
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Table 6.1: Space groups and structural parameters for each graphane
conformers. The cell parameters a and b are defined in
Fig. 6.1 while the other quantities are reported in Fig. 6.2.
Note that the B-graphane shows two types of C-C bonds
while W-graphane exhibits a large buckling parameter, h.

C-graphane B-graphane W-graphane

Space Group P-3m1 (164) Pmmn (59) Pmna (53)

a 2.54 Å 2.53 Å 2.55 Å

b - 4.31 Å 3.82 Å

C1 −C2 1.54 Å 1.54 Å 1.54 Å

C3 −C4 1.54 Å 1.57 Å 1.54 Å

C−H 1.11 Å 1.11 Å 1.11 Å

h 0.46 Å 0.65 Å 1.14 Å

ϕ 0.0◦ 16.7◦ 30.1◦

̂C1C2C3 111.5◦ 110.7◦ 111.2◦

̂C2C3C4 111.5◦ 112.3◦ 112.3◦

̂H1C2C3 107.4◦ 107.2◦ 106.5◦

̂H1C2C3H2 180.0◦ 180.0◦ 51.2◦

̂H2C3C4H3 180.0◦ 0.0◦ 0.0◦

increasing the magnitude of ζ in steps of 0.001 up to a maximum
strain |ζmax| = 0.05. All results have been confirmed by checking
the stability of the estimated elastic moduli over several fitting
ranges. The reliability of the above computational set up is proved
by the estimated values for the Young modulus and the Poisson
ratio of graphene, respectively 344 Nm−1 and 0.169, which are in
excellent agreement with recent literature [83, 90, 89]. Similarly,
our results for the same moduli in C-graphane (respectively, 246

Nm−1 and 0.08) agree very well with data reported in Ref. [26].
The stability of the three graphane conformers has been es-

tablished by calculating the corresponding phonon dispersions.
Phonon dispersions, have been obtained by means of Density-
Functional Perturbation Theory (DFPT) [69], based on the (2n+

1) theorem (Sec. 3.2). In this case, during the self-consistent field
calculation, the BZ has been sampled by a (16x16x3) Monkhorst-
Pack grid. The accuracy of the phonon dispersion evaluations
has been tested on a graphene sample.
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6.3 structure and stability of graphane conformers

By hydrogenating a honeycomb graphene lattice, three or-
dered graphane structures can be generated, namely: the chair
(C-graphane), boat (B-graphane) and washboard (W-graphane)
conformers [22, 100] shown in Fig. 6.2.structure of trigonal

and orthorhombic
graphane

Each conformer is characterized by a specific hydrogen sub-
lattice and by a different buckling of the carbon sublattice. In
particular: in C-graphane the hydrogen atoms alternate on both
sides of the carbon sheet; in B-graphane pairs of H-atoms alter-
nate along the armchair direction of the carbon sheet; finally,
in W-graphane double rows of hydrogen atoms, aligned along
the zigzag direction of the carbon sublattice, alternate on both
sides of the carbon sheet. A perspective view of the conformers
is shown in Fig. 6.2 and the corresponding structural data are
given in Table 6.1. In C-graphane and W-graphane the calculated
C-C bond length of 1.54 Å is similar to the sp3 bond length in
diamond and much larger than in graphene. Moreover, we note
that the B-graphane shows two types of C-C bonds, namely: those
connecting two carbon atoms bonded to hydrogen atoms either
lying on opposite sides (bond length 1.57 Å) or lying on the same
side of honeycomb scaffold (bond length 1.54 Å). Finally, the C-H
bond length of 1.1 Å is similar in all conformers and it is typical
of any hydrocarbon.

The stability of the three graphane conformers has been estab-
lished by calculating the phonon dispersion curves reported in
Fig. 6.3. Graphene phonon spectrum is reported as well for com-
parison. No soft modes (with negative frequency) correspondingAb-initio phonon

dispersion
calculations

to possible instabilities were found along any high-symmetry
direction of the Brillouin zone. Furthermore, as expected [101],
the zone-center longitudinal (LA) and transverse (TA) acoustic
branches show a linear dependence upon the wavevector, while
the acoustic mode ZA (with displacement patterns along the
z-direction shown in Fig. 6.2) shows a quadratic dependence. We
observe that in C-graphane, as well as in graphene, the speed of
sound (i.e. the slope of the acoustic branches at Γ -point) is the
same along the Γ −M and Γ −K directions. On the other hand,
the B- and W-graphane conformers are characterized by different
sound velocities along the Γ −X and Γ − Y directions. This is the
fingerprint of an unlike elastic behavior: as extensively discussed
in Sec. 6.4, C-graphane is elastically isotropic while neither B- nor
W-graphane are so.

Finally, according to the present first principles total energy
calculations we identified C-graphane as the most energetically
favorable conformer. W- and B-graphane have higher ground-
state energy of 0.05 and 0.10 eV (per C-H unit), respectively. These
small differences in energy demonstrate that all three conform-
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ers are thermodynamically accessible, as indeed experimentally
guessed [100].

6.4 linear elasticity

While C-graphane has trigonal symmetry (and, therefore, is
elastically isotropic as hexagonal graphene), the remaining B- and
W-conformers show an orthorhombic symmetry, which causes
an anisotropic linear elastic behavior. Accordingly, the elastic
energy density (per unit of area) accumulated upon strain can be
expressed as [102]Elastic energy

density for trigonal
and orthorhombic
symmetries

Utrigo =
1

2
C11

(
ε2xx + ε2yy + 2ε2xy

)
+ C12

(
εxxεyy − ε2xy

)
(6.1)

for the isotropic structures and as

Uortho =
1

2
C11ε

2
xx +

1

2
C22ε

2
yy + C12εxxεyy + 2C44ε

2
xy(6.2)

for the anisotropic ones. In Eqs.(6.1) and (6.2) we have explicitly
made use of the elastic linear constants C11, C22, C12 and C44.
Furthermore, the infinitesimal strain tensor ε̂ = 1

2(
~∇~u+ ~∇~uT) is

represented by a symmetric matrix with elements εxx = ∂ux
∂x ,

εyy =
∂uy
∂y and εxy = 1

2

(
∂ux
∂y +

∂uy
∂x

)
, where the functions

ux(x,y) and uy(x,y) correspond to the planar displacement
~u = (ux,uy). It is important to remark that Utrigo can be ob-
tained from the Uortho by simply imposing the isotropy con-
dition C11 = C22 and the Cauchy relation 2C44 = C11 − C12,
holding for both the hexagonal and trigonal symmetry. We will
take profit of this by focussing just on the elastic behavior of
a system described by Eq.(6.2); when needed, the general re-
sults so obtained will be applied to the isotropic structures by
fully exploiting the above conditions. The constitutive in-plane
stress-strain equations are straightforwardly derived from Eq.(6.2)
through T̂ = ∂U/∂ε̂, where T̂ is the Cauchy stress tensor [85].
They are: Txx = C11εxx + C12εyy, Tyy = C22εyy + C12εxx and
Txy = 2C44εxy. We now suppose to apply an axial tension σ toThe anisotropic

elastic moduli any two dimensional hydrocarbon shown in Fig. 6.2 along the
arbitrary direction ~n = cos θ~ex + sin θ~ey, where ~ex and ~ey are,
respectively, the unit vectors along the zigzag and the armchair
directions of the underlying honeycomb lattice. In this notation,
therefore, θ is the angle between ~n and the zigzag direction.
Under this assumption we get T̂ = σ~n⊗ ~n, where the in-plane
stress components are defined, respectively, as Txx = σ cos2 θ,
Txy = σ cos θ sin θ, and Tyy = σ sin2 θ. By inverting the consti-
tutive equation we find the corresponding strain tensor ε̂. In
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zz

ac

θ
~ey sin θ

~ex cos θ

~n = ~e
x
cos

θ + ~ey
sin
θ

~t =
−
~e

x sin
θ
+
~e

x cos θ

Figure 6.4: By applying an axial tension σ along the arbitrary direction
~n (θ = ~zz ∠ ~n), the Cauchy stress tensor T̂ = ∂U/∂ε̂ is
T̂ = σ~n ⊗ ~n By inverting the constitutive equation T̂ =

Ĉ : ε̂ =⇒ ε̂ = Ŝ : T̂ we find the corresponding strain tensor ε̂.
εl = ~n · ε̂ ~n longitudinal component; εt = ~t · ε̂ ~t transverse
component (with ~t · ~n = 0). In particular, we easily get its
longitudinal component εl = ~n · ε̂ ~n along the direction ~n

as well as its transverse component εt = ~t · ε̂ ~t along the
direction ~t = − sin θ~ex + cos θ~ey
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particular, we easily get its longitudinal component εl = ~n · ε̂ ~n

along the direction ~n

εl = σ

[
C11

∆
s4 +

C22

∆
c4 +

(
1

C44
− 2

C12

∆

)
c2s2

]
(6.3)

as well as its transverse component εt = ~t · ε̂~t along the direction
~t = − sin θ~ex + cos θ~ey (with ~t · ~n = 0)

εt = σ

[(
C11 + C22

∆
−

1

C44

)
c2s2 −

C12

∆

(
c4 + s4

)]
(6.4)

where ∆ = C11C22 − C212, c = cos θ, and s = sin θ. By means
of Eqs.(6.3) and (6.4) we obtain, respectively, the ~n-dependent
Young modulus E~n = σ/εl (i.e. the ratio between the appliedThe ~n-dependent

Young modulus traction and the longitudinal extension) as

E~n =
∆

C11s4 + C22c4 +
(
∆

C44
− 2C12

)
c2s2

(6.5)

and the ~n-dependent Poisson ratio ν~n = −εt/εl (i.e. the ratio
between the lateral contraction and the longitudinal extension)
asThe ~n-dependent

Poisson ratio

ν~n = −

(
C11 + C22 − ∆

C44

)
c2s2 − C12

(
c4 + s4

)
C11s4 + C22c4 +

(
∆

C44
− 2C12

)
c2s2

(6.6)

Eqs.(6.5) and (6.6) are central to our investigation. More detail
regard these derivations can be found in the Appendix A.6

First of all, we remark that they allow for the full linear elas-
tic characterization of both the anisotropic graphane conform-
ers and the trigonal one (as well as graphene), provided that
in the latter case the isotropy and Cauchy conditions are duly
exploited. In this case we in fact obtain the Young modulus
E = (C211 − C212)/C11 and the Poisson ratio ν = C12/C11, which
are independent of the angle θ, confirming the planar isotropy.

More importantly, however, Eqs.(6.5) and (6.6) imply that E~n

and ν~n can be directly obtained by the linear elastic constants Cij,
in turn computed through energy-vs-strain curves corresponding
to suitable homogeneous in-plane deformations. This impliesHomogeneous

in-plane deformation
method

that there is no actual need to mimic by a computer simulation
a traction experiment along the arbitrary direction identified by
~n or θ, indeed a technically complicated issue to accomplish.
Rather, for the isotropic case (graphene and C-graphane) only
two in-plane deformations should be applied in order to obtain
all the relevant elastic constants, namely: (i) an axial deformation
along the zigzag direction; and (ii) an hydrostatic planar defor-
mation. For the anisotropic case (B- and W-graphane) two more
in-plane deformations must be applied: (iii) an axial deformation
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along the armchair direction; and (iv) a shear deformation. The
strain tensors corresponding to deformations (i)-(iv) depend by
a unique scalar strain parameter ζ as shown in Table 6.2. For all
imposed deformations the elastic energy of strained structures
can be written in terms of ζ as

U(ζ) = U0 +
1

2
U(2)ζ2 +O(ζ3) (6.7)

where U0 is the energy of the unstrained configuration. Since
the expansion coefficient U(2) is related to the elastic moduli as
summarized in Table 6.2, a straightforward fit of Eq.(6.7) has
provided the full set of linear moduli for all structures.

The synopsis of the calculated elastic constants for all graphane
conformers, as well as graphene, is reported in Table 6.3, from
which three qualitative information can be extracted. First, we ob-
serve that the difference between C11 and C22 is much smaller for
the B-conformer than for W-graphane; therefore, this latter is by
far the most elastically anisotropic conformer. Then, the value of
C44, measuring the resistance to a shear deformation, decreases
monotonically from graphene to W-graphane. Finally, we remark
that the value of C12 (or, similarly, of the Poisson ratio) is much
smaller in any graphane structure than in pristine graphene. The
change in hybridization has therefore largely reduced the prop-
erty of lateral contraction upon extension. Interestingly enough,
the B-conformer is characterized by a negative C12 value, some-
thing unexpected and worthy of further investigation, as reported
below.

Through Eqs.(6.5) and (6.6) and by using the elastic constants
reported in Table 6.3, we can quantify the ~n-dependence of E
and ν for the anisotropic structures by using polar coordinates,
as illustrated in Fig. 6.5 and Fig. 6.6, respectively. In such a
representation, a fully isotropic elastic behavior is represented
by a perfectly circular shape of the E~n and ν~n plots. This is
indeed the case, as expected, of graphene and C-graphane. On
the other hand, Fig. 6.5 confirms that W-graphane is much more
anisotropic than the B-conformer. Furthermore, as anticipated,

Table 6.3: Graphene and graphane independent elastic constants (units
of Nm−1). For graphene and C-graphane C11 = C22 and
2C44 = C11 − C12.

graphene C-graphane B-graphane W-graphane

C11 354 248 258 280

C22 225 121

C12 60 20 -1.7 14

C44 93 81
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Figure 6.5: Polar diagram for the Young modulus E of graphene and
graphane conformers. The angle θ identifies the extension di-
rection with respect to the zigzag one. Isotropic (anisotropic)
behavior is associated to a circular (non circular) shape of
the E~n plot.

Fig. 6.6 provides evidence that the Poisson ratio in any graphane
conformer is much smaller than in pristine graphene, since the
corresponding ν~n polar plots are contained within the graphene
circle.

An intriguing unconventional behavior is observed in Fig. 6.6
for B-graphane, namely: for extensions along to the zigzag and
armchair directions, the corresponding Poisson value is vanish-
ingly small. This feature appears as a flower petal structure of the
ν~n plot for such a system. By considering Fig. 6.7, where a zoom
of the previous plot nearby the origin has been reported, we
can actually learn more information. It is evident that four small
lobes appear along the zigzag and armchair directions (i.e. along
the principal axis of the orthorhombic symmetry), corresponding
to a Poisson ratio varying in the range −0.0075 < ν < −0.0065.
The limiting values are computed for extensions along the zigzag
and armchair directions, respectively. It is truly remarkable that ν
could be negative in B-graphane. While a negative Poisson ratio
value is allowed by thermo-elasticity, this peculiar situation is Negative Poisson

ratioonly observed in special systems (i.e. foams, molecular networks
or tailored engineering structures) or just rarely in ordinary bulk
materials (i.e. SiO2, cubic metals, or polymer networks) [103].
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Figure 6.6: Polar diagram for the Poisson ratio ν of graphene and
graphane conformers. The angle θ identifies the extension di-
rection with respect to the zigzag one. Isotropic (anisotropic)
behavior is associated to a circular (non circular) shape of
the ν~n plot. The special case of B-graphane is enlighten by
shading (see text).
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Figure 6.7: The same as Fig. 6.6 zoomed in the region nearby the origin.
Positive and negative Poisson ratio values are differently
shaded as indicated.
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Table 6.4: Strain fields applied to compute the linear (Cij) and nonlin-
ear (Cijk) elastic constants of the C-graphane. The relation
between such constants and the fitting terms U(2) and U(3)

of Eq.(6.11) is reported as well.

Strain U(2) U(3)

tensor(
ζ 0
0 0

)
C11 C111(

ζ 0
0 ζ

)
2 (C11 + C12) 2C111 + 6C112(

0 ζ
ζ 0

)
2 (C11 − C12) 8C444(

ζ ζ
ζ 0

)
3C11 − 2C12 C111 + 12C144 + 6C114 + 8C444(

0 ζ
ζ −ζ

)
3C11 − 2C12 −C111 − 12C144 + 6C114 + 8C444(

ζ ζ
ζ −ζ

)
4 (C11 − C12) 12C114 − 12C124 + 8C444

6.5 nonlinear elasticity

In this Section we generalize the previous analysis in order
to draw a comparison between the nonlinear elastic behavior of
graphene, see Chapter 5, and the three conformers of graphane.
The nonlinear strain energy function Uhex for an hexagonal two
dimensional lattice is (see Chapter 5 ) Nonlinear strain

energy function

Uhex =
1

2
C11

(
ε2xx + ε2yy + 2ε2xy

)
+ C12

(
εxxεyy − ε2xy

)
+

1

6
C111ε

3
xx +

1

6
C222ε

3
yy +

1

2
C112ε

2
xxεyy

+
1

2
(C111 − C222 + C112)εxxε

2
yy

+
1

2
(3C222 − 2C111 − C112)εxxε

2
xy

+
1

2
(2C111 − C222 − C112)εyyε

2
xy (6.8)

where all the nonlinear features are described by the three inde-
pendent moduli C111, C222 and C112. Similarly, the strain energy
function Utrigo for C-graphane depending on the linear (C11 and
C12) and nonlinear (C111, C112, C144, C114, C124 and C444) elastic
constants is found to be

Utrigo =
1

2
C11

(
ε2xx + ε2yy + 2ε2xy

)
+ C12

(
εxxεyy − ε2xy

)
+

1

6
C111

(
ε3xx + ε3yy

)
+
1

2
C112

(
ε2xxεyy + εxxε

2
yy

)
+ 2C144

(
εxxε

2
xy + εyyε

2
xy

)
+ C114

(
ε2xxεxy + ε2yyεxy

)
+ 2C124εxxεxyεyy +

4

3
C444ε

3
xy (6.9)
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Table 6.5: Strain fields applied to compute the linear (Cij) and nonlin-
ear (Cijk) elastic constants of the B- and W-graphane. The
relation between such constants and the fitting terms U(2)

and U(3) of Eq.(6.11) is reported as well.

Strain U(2) U(3)

tensor(
ζ 0
0 0

)
C11 C111(

0 0
0 ζ

)
C22 C222(

ζ 0
0 ζ

)
C11 + C22 + 2C12 C111 + C222 + 3C112 + 3C122(

0 ζ
ζ 0

)
4C44 0(

ζ ζ
ζ 0

)
C11 + 4C44 C111 + 12C144(

0 ζ
ζ ζ

)
C22 + 4C44 C222 + 12C244(

ζ 0
0 −ζ

)
C11 + C22 − 2C12 C111 − C222 − 3C112 + 3C122

For such a trigonal symmetry we have C111 = C222, C112 = C122
and C144 = C244. Nevertheless, it is important to underline that
the overall nonlinear elastic response is truly anisotropic since
not all the relevant isotropic conditions are fulfilled.

Finally, the strain energy function Uortho for the B- and W-
graphane, expressed through the linear (C11, C22, C12 and C44)
and nonlinear (C111, C222, C112, C122, C144 and C244) elastic con-
stants, is given by

Uortho =
1

2
C11ε

2
xx +

1

2
C22ε

2
yy + 2C44ε

2
xy + C12εxxεyy

+
1

6
C111ε

3
xx +

1

6
C222ε

3
yy +

1

2
C112ε

2
xxεyy

+
1

2
C122εxxε

2
yy + 2C144εxxε

2
xy + 2C244εyyε

2
xy(6.10)

Eqs.(6.8), (6.9) and (6.10) can be obtained by using the standard
tables of the tensor symmetries, found in many crystallography
textbooks (see for instance Ref. [102]).

As above described, in any symmetry the strain energy function
depends on the third-order elastic constants (as well as the linear
ones). Once again, they can be computed through energy-vs-
strain curves corresponding to suitable homogeneous in-plane
deformations. For each deformation the elastic energy of strained
graphene or graphane can be written in terms of just the single
deformation parameter ζ

U(ζ) = U0 +
1

2
U(2)ζ2 +

1

6
U(3)ζ3 +O(ζ4) (6.11)
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Table 6.6: Graphene and graphane independent nonlinear elastic con-
stants (units of Nm−1).

graphene C-graphane B-graphane W-graphane

C111 -1910 ± 11 -1385±18 -1609±31 -1756±33

C222 -1764 ± 3 -1827±7 -487±85

C112 -341 ± 35 -195±41 -20±14 -75±54

C122 -55±22 -296±36

C124 -411±17

C114 530±12

C144 568±7 -161±4 -143±17

C244 -159±3 -287±10

C444 0.0±10−5

Since the expansion coefficients U(2) and U(3) are related to
elastic constants, as summarized in Table 6.4 for the C-graphane
and in Table 6.5 for the B- and W-graphane, a straightforward
fit of Eq.(6.11) has provided the full set of third-order elastic
constants.

The results have been reported in Table 6.6 where only the
values of the independent elastic constants appearing in Eqs.
(6.8), (6.9) and (6.10) are reported. We note that graphene and
B-graphane are characterized by an inverted anisotropy: while
C111 < C222 for graphene, we found C222 > C111 for B-graphane.
On the contrary, W-graphane has the same anisotropy of graphene
(C111 < C222), but a larger |C111 − C222| difference. So, it is in-
teresting to observe that the different distribution of hydrogen
atoms can induce strong qualitative variations for the nonlinear
elastic behavior of these structures.

We finally observe that necessarily C444 = 0 for B- and W-
graphane because of the orthorhombic symmetry. On the other
hand, this nonlinear shear modulus could assume any value
for the trigonal lattice. Interesting enough, we have verified that
C444 = 0 also for C-graphane. This is due to the additional
(with respect to the trigonal symmetry) mirror symmetry of C-
graphane.

As shown in Chapter 5, similarly to the case of graphene [12],
a nonlinear stress-strain relation can be derived for the three
graphane conformers:

σ~n = E~nε~n +D~nε
2
~n (6.12)

where E~n and D~n are, respectively, the Young modulus and
an effective nonlinear (third-order) elastic modulus, along the
arbitrary direction ~n, as defined in Sec. 6.4. The nonlinear elastic
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Figure 6.8: Polar representation of the nonlinear elastic moduli D~n of
the three graphane conformers. In the B- and W-graphane
cases, D~n ≡ D are everywhere negative (softening hyper-
elesticity), while in the C-graphene one the D~n alternates
negative and positive values (hardening hyperelesticity).
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modulus D(trigo)
~n for the C-graphane (as well as for any trigonal

2D lattice) is given by

D
(trigo)
~n = 1

2

[
ν (1− ν) (C111 − 3C112)

+ (1− ν)
(
1+ ν2

)
C111

+6cs (1+ ν)
(
1+ ν2

)
C114 − 12cs (1+ ν)νC124

+3c2s2 (1− ν)
(
1+ ν2

)
(−C111 + 4C144 + C112)

+4c3s3 (1+ ν)
(
1+ ν2

)
(−3C114 + 2C444 + 3C124)

+8c3s3 (1+ ν)ν (−6C114 + 5C444 + 6C124)
]

(6.13)

while the corresponding modulus D(ortho)
~n B- and W-graphene

is

D
(ortho)
~n =

1

2∆3E3~n

[
C111

(
C22c

2 − C12s
2
)3

+C222
(
C11s

2 − C12c
2
)3

+3C112
(
C11s

2 − C12c
2
) (

C22c
2 − C12s

2
)2

+3C122
(
C22c

2 − C12c
2
) (

C11s
2 − C12c

2
)2

−3C166c
2s2

(
C22c

2 − C12s
2
)
(∆/C44)

2

−3C266c
2s2

(
C11s

2 − C12c
2
)
(∆/C44)

2
]
(6.14)

where ∆ = C11C22 − C212, c = cos θ, and s = sin θ. Since Cijk < 0,
as shown in Tab.6.6, D(ortho)

~n are negative for any direction (
see Fig. 6.8), so both B- and W-graphane show an hyperelastic
softening behavior. The trigonal C-graphane behaves in a very
different way instead. Since the C114 and C144 are positive, the
C-graphane can show an hyperelastic hardening behavior in the
angular sectors 5/12π+ kπ < θ < 1/12+ kπ and 8/12π+ kπ <

θ < 10/12+ kπ (kεZ).
In conclusion, present first principles calculations predict that

the class of auxetic materials is larger than reported so far, includ-
ing as well two dimensional hydrocarbons like B-graphane. More
precisely, since a negative Poisson ratio is observed for extensions
along the zigzag and armchair principal directions, B-graphane
is better referred to as an axially auxetic atomic sheet. Moreover,
we calculated that the other two conformers, namely the C- and
W-graphane, exhibit a vanishingly small value of the Poisson
ratio. The linear moduli values are in agreements with those re-
cently reported in literature [25]. The nonlinear elastic behavior of
graphane shows peculiar features as well. In particular, we have
found that the C-graphane admits both softening and hardening
hyperelasticity, depending on the direction of the applied strain.
These features makes graphane a very intriguing material with
potentially large technological impact in nanomechanics.
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G A P O P E N I N G I N G R A P H E N E B Y S H E A R
S T R A I N

“The Indians are finding the gaps like a pin in a haystack.”
Navjot Singh Sidhu
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7.3 Some detail about the out-of-plane relaxation 117

In this Chapter we exploit the concept of strain-induced band
structure engineering in graphene through the calculation of
its electronic properties under uniaxial, shear, and combined
uniaxial-shear deformations. We show that by combining shear
deformations to uniaxial strains it is possible modulate the graphene
energy gap value from zero up to 0.9 eV. Interestingly enough, the
use of a shear component allows for a gap opening at moderate
absolute deformation, safely smaller than the graphene failure
strain, i.e. in a range of reversible and more easily accessible
deformations, ranging in between 12% and 17%. We also discuss
the merging of Dirac points [104], which is involved into the gap
opening process.

7.1 introduction and motivation

As report in Chapter 1, graphene exhibits a number of exotic
electronic properties, such as unconventional integer quantum
Hall effect, ultrahigh electron mobility, electron-hole symmetry
and ballistic transport even at room temperature [5, 38, 105]. Full
account of these features is provided by the relativistic Dirac
theory [7] suitably developed within the standard condensed
matter formalism. A key feature of graphene is that its elec-
tronic density of states vanishes at the so-called Dirac points,
where the valence and the conduction bands cross with a linear
energy-momentum dispersion. Due to the hexagonal symmetry
of graphene, the Dirac points are located at two high-symmetry
points of its Brillouin zone. Dirac points due to

the hexagonal
symmetry

While many other properties of graphene are very promis-
ing for nanoelectronics, its zero-gap semiconductor nature is
detrimental, since it prevents the pinch off of charge current as
requested in conventional electronic devices. Different attempts
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have been therefore tried in order to induce a gap, for instance by
quantum confinement of electrons and holes in graphene nanorib-
bons [17] or quantum dots [18]. These patterning techniques
are unfortunately affected by the edge roughness problem [19],
namely: the edges are extensively damaged and the resulting lat-
tice disorder can even suppress the efficient charge transport. The
sensitivity to the edge structure has been demonstrated through
explicit calculations of the electronic states in ribbons [20]. More
recently, it has been shown experimentally that a band gap as
large as 0.45 eV can be opened if a graphene sheet is placed on an
Ir(111) substrate and exposed to patterned hydrogen adsorption
[21].

Alternatively, an electronic band gap can be obtained by grow-
ing graphene sheets on an appropriately chosen substrate, in-
ducing a strain field controllable by temperature [27, 28, 29, 30].
Recently, it has been experimentally shown that by using flexible
substrates a reversible and controlled strain up to ∼ 18% [29] can
be generated with measurable variations in the optical, phonon
and electronic properties of graphene [30]. This interesting result
suggests that gap opening could be engineered by strain, rather
than by patterning. The idea has been theoretically validated
by Pereira and Castro Neto [31] showing that a gap is indeed
generated by applying an uniaxial strain as large as ∼ 23%, ap-
proaching the graphene failure strain εf = 25% [12] (see Chapter
5). This large value stands for the high robustness of the gapless
feature of graphene under deformation. The same authors pro-
pose an alternative origami technique [13] aimed at generating
local strain profiles by means of appropriate geometrical patterns
in the substrate, rather than by applying strain directly to the
graphene sheet.

7.2 the electronic structure of graphene

The electronic
structure of
graphene by means
of a semi-empirical
sp3 tight-binding
(TB) model

The electronic structure of graphene has been computed for
each deformed configuration by means of a semi-empirical sp3

tight-binding (TB) model, making use of the two-center param-
eterization by Xu et al. [50]. as discussed in Sec. 2.1. Despite its
semi-empirical character, the present TB model correctly pro-
vides the occurrence of Dirac points in the band structure of
graphene in its equilibrium geometry. Furthermore, the Xu et al.
parametrization provides accurate scaling functions for the vari-
ation of the TB hopping integrals upon lattice distortions. This
feature is instrumental for investigating gap opening in graphene
by strain.

As discuss in Chapter 1, graphene is an hexagonal lattice with
two carbon atoms per unit cell and a lattice basis defined by
the vectors (a1, a2), as shown in Fig. 7.1, with a nearest-neighbor
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Figure 7.3: Top of the valence band (red, marked as VB) and bottom
of the conduction band (green, marked as CB) of graphene
under uniaxial strain. Panel (a): band structure of the un-
deformed lattice. Panel (b) and (c): band structure under
uniaxial strain along the armchair and the zig-zag direction,
respectively. Symbols connect the high-symmetry points
of the BZ (bottom shaded area) to the energy of the corre-
sponding electronic states.
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carbon-carbon distance as small as a0 = 1.42 Å. The in-plane
elastic behavior of the honeycomb lattice is isotropic in the linear
regime, but two inequivalent crystallographic directions can be
nevertheless defined: the so-called armchair and zig-zag direc-
tions, shown in Fig. 7.1 as x and y axis, respectively. According
to the Cauchy-Born rule, when straining a graphene sample its
lattice vectors are affected accordingly, as well as the associated
reciprocal vectors (b1, b2). The deformed metric tensor are given The deformed

reciprocal lattice
vectors

(
b ′1, b ′2

)by a ′iα = (εik + δik)akα, here the vector indices i = 1, 2 and
the Cartesian indices α = x,y, and ε̂ =

{
εij
}

is the strain ten-
sor describing the deformation and i, j = x,y. The condition(
b ′1, b ′2

)T
= 2π

(
a ′1, a ′2

)−1 allows us to obtain the deformed recip-
rocal lattice vectors. The applied in-plane

deformations to
honeycomb lattice
under plane-strain
border conditions

The following in-plane deformations have been applied to the
equilibrium honeycomb lattice under plane-strain border condi-
tions: i) an uniaxial deformation ζ along the armchair direction,
corresponding to a strain tensor ε(ac)

ij = ζδixδjx; ii) an uniaxial
deformation ζ along the zig-zag direction, corresponding to a
strain tensor ε(zz)

ij = ζδiyδjy; iii) an hydrostatic planar defor-

mation ζ, corresponding to the strain tensor ε(p)
ij = ζδij; iv) a

shear deformation ζ, corresponding to an in-plain strain tensor
ε

(s)
ij = ζ

(
δixδjy + δiyδjx

)
. For any deformend configuration, we

have computed the corresponding electronic band structure and
density of states. The carbon atoms in graphene shown the sp2

hybridization. Among the four valence orbitals, three (2s, 2px,
2py) are combined to form the in-plane σ (bonding or occupated)
and σ∗ (anti-bonding or unoccupated) orbitals, while the delocal-
ized π (bonding) and π∗ (anti-bonding) are due to the interaction
with neighboring 2pz (where ~z are orthogonal to the graphene
sheet). Because of the σ and σ∗ bands are well separeted in energy
( 10 eV at Γ ), the π and π∗ bands coincide with the valence and
the conduction bands, respectively. Such that they are enough to
describe the electronic properties of graphene in its equilibrium
status and also up to an applied strain of 10%, when the σ, σ∗
and π, π∗ bands overlap at Γ . In the following we discuss the
results simply in terms of valence and conduction bands.

In order to extend the reliability of the present model to elec-
tronic features under strain, our results about the effects of hy-
drostatic and uniaxial deformations on the band structure are
at first compared with previous data available in literature. For
graphene under in-plane hydrostatic deformation with ζ 6 15%, In-plane hydrostatic

deformationboth in compression and in traction, we have calculated the band
electronic structure and the density of states. Since the hydro-
static strain does not change the D6h(6/mmm) symmetry of the
hexagonal lattice (Fig. 7.2a), we only observe the variation of the
pseudogaps at Γ and M points, while the location of the Dirac
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Figure 7.4: Top of the valence band (red, marked as VB) and bottom
of the conduction band (green, marked as CB) of graphene
under pure shear strain with ζ = 20%. Symbols connect the
high-symmetry points of the BZ (bottom shaded area) to
the energy of the corresponding electronic states.

points is clamped at the K point. In particular, the pseudogap
at M decreases almost linearly from 6 eV (for ζ = −15%) to 1.8
eV (for ζ = +15%). We remind that its value for the unstrained
configuration is 2.2 eV. These results are in quantitative good
agreement with Ref. [90]. Any other non-hydrostatic deformation
lowers the symmetry of the graphene lattice. When an uniaxial
strain is applied, all the 6- and 3-fold rotational symmetries areUniaxial strain

lost: a transition from the hexagonal D6h(6/mmm) to the rhom-
bic D2h(mmm) symmetry is observed (Fig. 7.2b). The irreducible
part of the first Brillouin zone (BZ) is also affected by such defor-
mations, since its original triangular shape (Fig. 7.2a) is varied
to the polygonal form represented in Fig. 7.2b. The top of the
valence band and the bottom of the conduction band are shown
in Fig. 7.3 for the undeformed configuration (panel a), as well as
under uniaxial deformation (panels b and c, corresponding to a
strain ζ = 15% along the armchair direction and in the zig-zag
direction respectively). The main effect of strain is the opening
of a pseudo-gap at K and K’. Accordingly, the Dirac points are
no more located at such high-symmetry points; rather, they drift
away within the BZ, either for deformations along armchair direc-
tion or along zig-zag one. Once again this important qualitative
feature is in good agreement with Ref. [31].

Let us now consider the case of an in-plane shear deformation,In-plane shear
deformation described by the following shear strain

ε̂ =

(
0 ζ

ζ 0

)
(7.1)



7.2 the electronic structure of graphene 115

where ζ is the strain parameter. Such a deformation modifies the
original reciprocal lattice vectors b1 and b2 into

b ′1 =
2π

a◦

(
1− ζ2

)−1(1
3

−

√
3

3
ζ,
√
3

3
−
1

3
ζ

)

b ′2 =
2π

a◦

(
1− ζ2

)−1(
+
1

3
+

√
3

3
ζ, −

√
3

3
−
1

3
ζ

)
(7.2)

By applying the shear strain given in Eq. (7.1) to the graphene
lattice, its symmetry class is further lowered to monoclinic. The
corresponding symmetry group is 2/m. Because of this change in
symmetry, the irreducible part of the BZ is affected accordingly
as shown in Fig. 7.2c, which has K’, K, K", K’ as corners. In
the undeformed lattice, a Dirac point is located at each of these
corners. The scenario under shear strain is quite different from
the case of uniaxial deformations: at the comparatively small
strain ζ ' 16%, a gap is indeed opened. The rise of a gap in the
electronic band structure under shear is due to a peculiar process
that involves the merging of two Dirac points, namely D’ and
D", which move away from the corners K’ and K" and approach
each other inside the BZ. By “merging“ we mean the following:
as shown in Fig. 7.5, at a critical strain ζ ' 15.95% the Dirac
points are so close that they annihilate in a single hybrid Dirac
cone, which shows a peculiar energy-momentum dispersion: it is
linear (quadratic) along (perpendicular) to the direction joining
the two Dirac points. At ζ = 16.0%, a gap as small as 0.05 eV is
eventually opened. More details about the motion of Dirac points
in two-dimensional crystals under uniaxial stress are reported in
Ref. [104, 106, 107]. Merging of Dirac

conesIs important to remark that the merging of the two inequivalent
Dirac points and the opening of a gap, appear for a shear strain
value ζ ' 16% which is lower than in the case of zig-zag uniaxial
deformation [31]. The gap increases up to a maximum value of
0.72 eV for shear strain parameter of ζ ' 20%, as shown in Fig.
7.4. Moreover, the same detail is shown in Fig. 7.5b-c: in panel b,
at a strain ζ ' 15.9% the couple of Dirac points are very close, but
not yet annihilated and at their middle point D◦ a pseudo-gap ∆
can be observed; in panel c, the band structure shows a small gap
already at ζ ' 16%. We conclude that shear strain seems a likely
candidate to achieve gap opening in graphene for a deformation
far enough from failure strain and, therefore, achievable with no
danger for the overall mechanical stability of the two-dimensional
sheet.

Gap opening is predicted by the present TB calculation to
occur at an even smaller strain parameter ζ, provided that a
combination of shear and uniaxial strain is considered. By adding
an uniaxial component to shear we generate a strain tensor of the
form Combining uniaxial

and shear
deformations
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Figure 7.5: (a) Electronic band structure of purely sheared graphene
(with the same value of strain parameter ζ = 15%) are
shown in the corresponding irreducible zone. The Dirac
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(b) with ζ = 15.9% the couple of Dirac cones D’ and D" are
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the gap is equal to 0.05 eV.
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ε̂ =

(
ζ ζ

ζ 0

)
or ε̂ =

(
0 ζ

ζ ζ

)
(7.3)

for which the symmetry class of the lattice is not changed with
respect to the pure shear case.

Nevertheless, uniaxial deformations along the armchair or zig-
zag direction are found to dissimilarly affect the band structure
of graphene. Only in the last case we have observed the merging
of the Dirac points already at ζ ' 12%. The main features of the
transition is the same as described before. The energy gap grows
up to a maximum value of 0.95 eV (when the strain parameter
achieves a value of ζ ' 17%), reducing again to zero at ζ ' 20%
due to the steady decrease of the direct gap at Γ .

In order to quantitatively describe the evolution of the gap
opening as function of the applied strain, the density of states
(DOS) has been calculated by a two-dimentional 75× 150× 1
regular k-point mesh of the (deformed) BZ. As shown in Fig.
7.6, for a strain value less then 15% (panel a) or 11% (panel b),
the DOS depends linearly on energy close to the Fermi level,
showing a slope increasing with the strain. The two characteristic
Van Hove singularities into the DOS move closer the Fermi energy
and disappear into abrupt gap-edges as soon as the gap is open.
After the annihilation of the Dirac points, the DOS shows a ∼

√
E

behavior.
We conclude by remarking that the two strain contributions (i.e.

uniaxial and shear) could be combined in different ways so as to
modulate the energy gap value. In Fig. 7.7, the electronic band
structures of graphene under different combinations of shear
and uniaxial strain are compared, keeping the same value of the
strain parameter ζ = 15%. While the combination of shear with
uniaxial armchair shows a sizable energy gap of about 0.6 eV,
the combination of shear with uniaxial zig-zag is associated to a
gapless band structure.

7.3 some detail about the out-of-plane relaxation

We showed that by combining shear deformations to uniaxial
strains it is possible to affect the gapless electronic structure of
graphene by opening a gap as large as 0.9 eV. The use of a shear
component allows for gap opening at a moderate absolute defor-
mation, safely smaller than the graphene failure strain. This result
was obtained in absence of out-of-plane deformations (as due,
e.g., to bending or rippling), a situation corresponding to config-
urations where the graphene sheet is supported, i.e. deposited on
a suitable substrate [27, 30, 29]. On the other hand out-of-plane
atomic relaxations on a free standing graphene monolayer under
shear strain can induced ripples. This is consistent with a well



118 gap opening in graphene by shear strain

−0.6 −0.4 −0.2  0  0.2  0.4  0.6

D
en

si
ty

 o
f S

ta
te

s 
(a

.u
.)

Energy (eV)

ζ=0.00

ζ=0.16

ζ=0.18

ζ=0.20

(a) pure shear deformation

−0.6 −0.4 −0.2  0  0.2  0.4  0.6

D
en

si
ty

 o
f S

ta
te

s 
(a

.u
.)

Energy (eV)

ζ=0.00

ζ=0.12

ζ=0.14

ζ=0.17

(b) (shear + armchair uniaxial) deformation

Figure 7.6: Density of states around the Fermi level (set convention-
ally at 0 eV) as function of the strain parameter ζ . Panel
(a): graphene under pure shear deformation. Panel (b):
graphene under combined shear and uniaxial deformation
(along the armchair direction). The maximum value of the
energy gap is observed for a strain parameter as large as
ζ ' 20% and ζ ' 17% respectively.
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Figure 7.7: Top of the valence band (red, marked as VB) and bottom
of the conduction band (green, marked as CB) of graphene
under combined shear and uniaxial strain with ζ = 15%. The
uniaxial component of the strain is applied along the zig-
zag [panel (a)] and armchair [panel (b)] directions. Symbols
connect the high-symmetry points of the BZ (bottom shaded
area) to the energy of the corresponding electronic states.
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known result of continuum mechanics: shear, as well as uniax-
ial, deformations come with reversible corrugations, whether
applied to a free standing elastic membrane [108, 109]. There-
fore the gap opening in graphene under shear deformation (or
combined uniaxial and shear deformations) could be unlikely
inhibited, since ripples should cancel the strain effects we found
for a flat graphene sheet. While overall interesting, our results
are addressed to a graphene sheet where out-of-plane relaxations
are inhibited. The first and second configurations correspond,
respectively, to a suspended and to a supported sample. In addi-
tion, we observe that the ripple geometry of a suspended sheet
can be effectively altered via thermal manipulation, up to a com-
plete suppression when temperature is raised to 450-600K, as
experimentally found by Bao al. [110]. We believe that this result
provides another example of ripple-free, but strained graphene
membrane, making our investigation relevant and physically
sound even for some suspended samples.

Interesting enough, in Ref. [110] it has been also reported that
the measured wavelength of the ripples ranges from 370 to 5000

nm. Under this respect, once again we believe that our calcula-
tions are meaningful: the larger is the wavelength of the ripples,
the better is the approximation of a ripple-free graphene sheet
(which locally is basically flat). Moreover, Pereira et al. [13] ex-
plore the influence of local strain on the electronic structure of
graphene. They suggest that the graphene electronics can be
controlled by suitable engineering of local strain profiles, a per-
spective which is indeed in nice agreement with our conclusions.
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“Notice that the stiffest tree is most easily cracked, while the bamboo
or willow survives by bending with the wind.”

Bruce Lee (1940- 1973)
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In present Chapter we discuss the bending properties of car-
bon nanoribbons by combining continuum elasticity theory and
tight-binding atomistic simulations. First, we develop a complete
analysis of a given bended configuration through continuum me-
chanics. Then, we provide by tight-binding calculations the value
of the bending rigidity in good agreement with recent literature.
We discuss the emergence of a stretching field induced by the full
atomic-scale relaxation of the nanoribbon architecture. We further
prove that such an in-plane strain field can be decomposed in a
first contribution due to the actual bending of the sheet and a
second one due to the edges effects induced by the finite size of
the nanoribbon.

8.1 bending in carbon nanoribbons

Graphene [111] plays a unique role in materials science since
it is the mother structure of most carbon sp2 nanosystems of
current interest. By stacking, folding or bending a graphene sheet
it is indeed possible to generate, respectively, graphite-like sys-
tems, fullerene cages (pentagonal rings are here needed as well)
or nanotubes. In particular, the bending properties are critical
in attaining the structural stability and morphology for both
suspended and supported graphene sheets, and directly affect
their electronic properties [38]. Rippling of pure graphene has
been also observed with mesoscopic amplitude and wavelength,
both for suspended monolayers [36] and sheets deposited on
substrates such as silicon dioxide [37]. Moreover, the bending
properties play a central role in the design of graphene- or carbon

121
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nanotube-based devices, like e.g. mechanical resonators [39, 40].
The bending features of functionalized graphene sheets have been
probed by atomic force microscopy, observing that the folding be-
havior is dominated by defects and functional groups [41]. Finally,
bending ultimately governs the carbon nanotubes unzipping pro-
cess, recently used to produce narrow ribbons for nanoelectronics
[42]. With the same technique, a new class of carbon-based nanos-
tructures, which combine nanoribbons and nanotubes, has been
introduced in order to obtain magnetoresistive devices [43].

Within this scenario we frame the present investigation, ad-
dressed to improve our fundamental understanding of the bend-
ing properties of a one-atom thick carbon sheet. The main goal
is twofold: i) to draw a thorough theoretical picture on bending,
fully exploiting the elasticity theory and providing an atomistic
quantitative estimation of the corresponding bending rigidity;
ii) to prove that the bending process of a carbon nanoribbon is
always associated with the emergence of a (small) stretching, par-
ticularly close to the edges. These results have been obtained by
combining continuum elasticity theory and tight-binding atom-
istic simulations (TB-AS).

The conceptual development and actual exploitation of our
theoretical model proceeds through the following steps. At first,
by means of continuum mechanics we have obtained the exact
shape for a purely bended nanoribbon, by imposing suitable
boundary conditions. The bending rigidity is then evaluated by
TB-AS for several nanoribbons differing by length and width. As
a second step, we observed that, under the above assumption
of pure bending, the corresponding rigidity must be a constant
independent of the actual shape of the sheet. Nevertheless by
allowing full atomic-scale relaxation during bending, we rather
found a geometry-dependent rigidity, a feature that we have at-
tributed to the onset of stretching phenomena. Therefore, as final
step, we have developed a procedure to discriminate between
stretching and bending energy, so providing a complete picture
about the mechanical behavior of graphene and also reconciling
the atomistic data with the continuum theory results.

8.2 the bending rigidity theory

8.2.1 Continuum picture

The graphene strain energy density U [eVÅ−2] is defined as
[112, 85]

U =
1

2

E

1+ ν
Tr
(
ε̂2
)
+
1

2

Eν

1− ν2
[Tr (ε̂)]2

+
1

2
κ (2H)2 − κ̄K (8.1)



8.2 the bending rigidity theory 123

where E [Nm−1] and ν are the two dimensional Young modulus
and the Poisson ratio, while κ [eV] and κ̄ [eV] are the bend-
ing rigidity and the Gaussian rigidity, respectively. The in-plane Bending rigidity and

the Gaussian rigiditydeformation (stretching) energy [given by the first two terms
in Eq. (8.1)] is described by the standard small strain tensor
ε̂ = 1

2(
~∇~u+ ~∇~uT ), being ~u the displacement field. On the other

hand, the out of plane deformation (bending) energy [given by
the last two terms in Eq. (8.1)] is described by the mean curvature Geometric feature of

a surfaceH = k1+k2
2 [m−1] and by the Gaussian curvature K = k1k2

[m−2], where k1 and k2 are the principal curvatures at a given
point on the surface [113], as shown in Fig. 8.1a. They are straight-
forwardly given by k1 = 1/R1 and k2 = 1/R2 where R1 and R2
are the principal radii of curvature at that point. In the case
of a continuum plate of thickness h made of an isotropic and
homogeneous material, the classical Kirchhoff theory provides The classical

Kirchhoff theoryκ = 1
12

Eh2

1−ν2
and κ̄ = 1

12
Eh2

1+ν (note that E = Yh where Y is the
three-dimensional Young modulus) [85]. For an infinitesimally
thin graphene monolayer such a theory does not apply, since the
thickness h cannot be unambiguously defined and the bending
moment has simply a different physical origin. While the bending
moment for the Kirchhoff plate derives from a compression/ex-
tension of the different material layers forming the thickness h,
in graphene it is due to the interactions among orbitals pz which
are affected by the bending process. Therefore, the determination
of κ and κ̄ for graphene is a well-posed (and, to a large extent,
still open) problem, which is independent of the evaluation of E
and ν [114].

To evaluate only the bending energy term, the ribbon has been
bended without stretching (i.e. strain ε̂ = 0) Thus the Eq. (8.1) is The bending energy

of a bended ribbon
without stretching

reduced to the only bending energy contribution Ub [eVÅ−2] of
a given cylindric surface

Us =
1

2

E

1+ ν
Tr
(
ε̂2
)
+
1

2

Eν

1− ν2
[Tr (ε̂)]2 = 0

Ub =
1

2
κ k21 (8.2)

As sketched in Fig. 8.1b, our model system is a rectangular ribbon
with length l and width L. The boundary conditions consist in
fixing the positions of the two parallel edges (with length l) at a
given distance a, while the attack angles θ is free to relax. This
configuration involves only one curvature k1, leading to H = k1

2

and K = 0, as shown in Fig. 8.1b. By considering different values
of a in the range (0,L), we obtained a set of differently bended
configurations. The elastic problem consists in finding the sheet
shape by minimizing the bending energy

Ub =

∫ ∫
A

UdA =
1

2
κl

∫L
0
k21ds (8.3)
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Figure 8.1: Panel (a) A sketch of the main geometrical features of a
generic surface. At a given point on the surface the princi-
pal curvature planes and the corresponding principal radii
R1,R2 are shown. The red lines on the surface represent the
geodesics at the given point, i.e. the intersections between
the surface and the principal planes. Panel (b) In cylindric
surfaces one geodesic has to be a straight, here R2 → inf, so
that the Gaussian curvature goes to zero.
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Figure 8.2: Bended ribbon with length l and width L (red dashed line).
The parallel edges with length l are fixed at distance a,
while the attack angles θ is free to relax.

where A = Ll is the total area of the system, and s is the arc
length (0 < s < L) A variational

approach to find the
minimum surface
shape

We have to minimize the surface integral I =
∫L
0 k
2
1ds by the

calculus of the variations. A more detailed discussion can be
found in Appendix A.8. Let’s to consider the Eq. (8.3) as follows

I =

∫L
0
ds
√
g(2H(P))2 =

∫L
0
ds
√
g(tr(WP))2 (8.4)

where we got the metric, g, the Weingarten operator, WP(u) =

−∂n̂∂u , and the mean curvature at a given point on the surface,
H(P) = 1

2tr(WP). If the configuration is described by the function

z = z(x), then we get k1 = z̈/
(
1+ ż2

)3/2, where ż = dz/dx

and z̈ = d2z/dx2. On the other hand, ds =
√
gdx where

√
g =√

1+ ż2. Therefore, Eq. (8.3) assumes the explicit form

Ub =
1

2
κl

∫a
0

z̈2

(1+ ż2)
5/2

dx (8.5)

The problem consists in finding the curve z = z(x) minimizing
the energy functional in Eq. (8.5) by the method of Lagrange
multipliers λ The method of

Lagrange multipliers
λ

∫a
0
dx

[
z̈2

(1+ ż2)
5
2

+ λ
√
1+ ż2

]
, (8.6)

under the follows boundary conditions

a constrained width, L =
∫a
0 dx
√
1+ ż2,

a fixed parallel edges, z(0) = z(a) = 0,

a free attack angle, θ = arctg(dzdx), z̈(0) = z̈(a) = 0.

(8.7)
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enforcing the absence of any in-plane stretching. The above inte-
gral can be written in the general form G(z) =

∫a
0 dxF(z, ż, z̈, x),

which is the solution of the Euler-Poisson differential equationEulero-Poisson
equation

∂F

∂z
−
d

dx

∂F

∂ż
+
d2

dx2
∂F

∂z̈
= 0 (8.8)

By the application of the constrained variational calculus we
eventually obtain the final geometry in parametric representation
[x(s), z(s)]The minimum

surface in parametric
representation
[x(s), z(s)]

x

L
=

E(q) − E
(
am
{
K(q)

(
1− 2 sL

)}
,q
)

K(q)
−
s

L
(8.9)

z

L
=

q

K(q)
cn
{

K(q)
(
1− 2

s

L

)}
(8.10)

where s is the arc length (0 < s < L), q = sin θ2 is the elliptic
modulus and θ is the attack angle given by

a

L
= 2

E(q)

K(q)
− 1. (8.11)

The quantities E(q) and K(q) are the complete elliptic integrals,
defined as [115, 116]The complete elliptic

integrals
E(q) = F

(π
2

,q
)

, K(q) = E
(π
2

,q
)

(8.12)

where the functions F(v,q) and E(v,q) are incomplete elliptic
integrals of the first and second kind, respectively [115, 116]

F(v,q) =

v∫
0

dα√
1− q2 sin2 α

E(v,q) =

v∫
0

√
1− q2 sin2 αdα. (8.13)

Moreover, by considering u = F(v,q) we define the inverse re-
lation (with fixed modulus q) v = am {u}, which is called Jacobi
amplitude function. Further, cn {u} = cos v = cos (am {u}) and
sn {u} = sin v = sin (am {u}) are the Jacobi elliptic functions [116].Universal value of

the attack angle Interesting enough, one can prove that lima/L→0 θ = 130.709o,
an universal value of the attack angle found whenever a = 0 or L
is very large.

8.2.2 Atomistic simulations

The present TB-AS [84] have been performed making use of the
sp3, orthogonal, and next-neighbors tight-binding representation
by Xu et al. [50]. The present TB total energy model has been
implemented within the scheme given by Goodwin et al. [117]
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Figure 8.3: Bending rigidity κ obtained for purely ribbons with several
widths L. The average value is given by κave = 1.4025±
0.0025 eV (yellow area shows the error bar)

for the dependence of the TB hopping integrals and the pairwise
potential on the interatomic separation.

Applications to molecular-dynamics studies of liquid carbon
and small carbon clusters indicate that this model correctly de-
scribes carbon systems over a wide range of environments [50].
This approach has been successfully used to show that the surface
of nanodiamond particles reconstructs in a fullerenelike manner,
generating carbon clusters called bucky diamonds [118]. More-
over, the growth of nanostructures (linear, ring, and fullerenelike
objects) in a carbon plasma [119] and the formation of carbon
clusters (onion-like and endohedral structures) from the conden-
sation of liquid droplets [120] have been simulated by the present
tight-binding model. Simulative protocoll:

Step 1.The previous continuum analysis is useful both to create the in-
put configurations for atomistic calculations and to define the sim-
ulation protocol. The investigated system consists in a nanoribbon
formed by a perfect hexagonal carbon lattice, having width L in
the range 4-12 nm and length l imposed to obtain a simulation
box containing a constant number of ∼ 600 carbon atoms. In Figs.
8.2.2, 8.2.2 there are shown some examples of the atomistic sam-
ples under bending. Morever, periodic boundary conditions are
assumed along the direction of the length l. The length (width)
is developed along the armchair (zig-zag) direction of the honey-
comb lattice. Each nanoribbon is deformed as defined in Eqs. (8.9)
and (8.10) in ten configurations corresponding to different values
of a. In any bended configuration, all the interatomic distances
are fixed at the equilibrium value for flat graphene (so that no
bond stretching is for the moment allowed). The bending rigidity
has been straightforwardly obtained as κ = 2

lIUb with Ub given
by Eq. (8.3), where the integral I =

∫L
0 k
2
1ds is computed for the

given configuration. It is important to remark that the obtained



128 the bending of graphene .

Figure 8.4: For instance we show a relaxed atomic configuration for a
nanoribbon of graphene bended with parallell fixed edges
and attach angles free. The edges AA‘ and BB‘ are kept
parallel and at fixed distance a, while the attach angle θ are
free.

Figure 8.5: Several nanoribbons of graphene with different distances
between edges are shown, which are build The reference
configuration starting from the same flat reference configu-
ration ( the red lower one).
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Figure 8.6: Panel(a) In the continuum picture the (pure) bending energy
is Ub = Ebendedo − Eflato , here Eflato is the total energy of
the equilibrium (flat) configuration, and Ebendedo is the total
energy of the bended unrelaxed configuration. Panel (b)
Taking into account full relaxation of the internal degrees
of freedom of the bended systems, we evaluate the new
bending rigidity κ by means of the energy Ub = Ebendedrelaxed−

Eflatrelaxed,where Eflatrelaxed is the energy of a flat ribbon after
a full relaxation, and Ebendedrelaxed is the energy of a full relaxed
bended ribbon. Panel (c) we have defined a virtual process
of straightening of a given relaxed and bended ribbon, thus
the bending rigidity κ can be consequently determined by
using Ub = Ebendedrelaxed − Eflatstraightened.
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Figure 8.7: The theoretical results for the values of the attack angles θ
(circles), predicted from Eq. (8.11) for several ribbon with
different width L, each at different edge-distances a, are
compared with the corresponding data from atomistic sim-
ulations (crosses).

value for κ must be independent of the actual configuration since
the deformation is a pure bending one.

8.3 simulation protocol and the calculated bending

features

Accordingly to the scheme outlined in the previous Section,
we have firstly evaluated the (pure) bending energy as Ub =

Ebendedo − Eflato , where Ebendedo and Eflato represent the TB-AS
total energy of the bended (but not relaxed) and equilibrium
(flat) configurations, respectively. The atomistic results for κ areSimulation protocol:

Step 1 reported in Fig. 8.3 (symbols) as function of the a/L ratio and for
different width L. We estimate an average value κave = 1.40 eV.
While the reported values of κ (for nanotubes) vary in the range
1 eV. κ .2 eV, [15], we remark the most reliable ab-initio data
κ = 1.40 eV [114], and κ = 1.46 eV [83], are in excellent agreement
with our prediction, a feature standing for the reliability of the
present computational procedure.

Although reassuring, the above picture must be refined in order
to properly take into account atomic-scale features. Therefore,
full relaxation of the internal degrees of freedom of the bended
systems is performed by zero temperature damped dynamics
until interatomic forces resulted not larger than ∼ 10−5eV/Å. We
have so generated a new set of configurations where bending
and stretching features are entangled. During the relaxation, the
positions of the atoms belonging to the edges (i.e. atoms with
x = 0 or x = a, see Fig. 8.2) are fixed and, therefore, the distance
a between the edges remained constant. Overall we observed that
the geometry is only marginally affected by relaxation as shown
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Figure 8.8: Bending rigidity κ computed by means of Ub = Ebendedrelaxed−

Eflatrelaxed (full circles). Straight lines correspond to the aver-
age value κave = 1.40 eV as deduced from Fig.1.

in Fig. 8.7. Here we compare the attack angle θ predicted from Eq.
(8.11) versus the ratio a/Lwith the corresponding values obtained
from the relaxed configurations. We note that, for a/L→ 0, we
obtain the universal value 130.709o as previously discussed. As
a matter of fact, after the relaxation, the attack angle θ do not
change and the maximum variation of L was as little as 0.005 nm,
corresponding to a variation of the integral I smaller than 0.01%.
Nevertheless, even for such minor relaxations the energetics of
the fully relaxed systems is expected to sizeably differ from the
purely bended case, because of the extraordinary large value
of the graphene Young modulus (Chapter 5) . It is therefore
important to provide a new estimation of the bending energy for
the fully relaxed configurations.

Following the above argument, we evaluated the new bending
rigidity κ by means of the energy Ub = Ebendedrelaxed − Eflatrelaxed

and Eq. (8.3), where Ebendedrelaxed is the energy of a relaxed bended Simulation protocol:
Step 2ribbon and Eflatrelaxed is the energy of a flat ribbon after a full

relaxation (different from the energy of the infinite graphene
sheet because of the edge effects). In this case, we have found a
variation of κ upon a/L as shown in Fig. 8.8 (full circles). This
result suggests that atomic-scale relaxations upon bending have
induced as expected an additional field of in-plane stretching,
which provides new energy contributions as reported in Eq. (8.1).
It is interesting to observe that the largest differences between the
unrelaxed and relaxed configurations are found for a/L ' 1. In
fact, in this case the forces exerted by the constraints (maintaining
the distance a between the edges) are almost parallel to the
graphene sheet, favoring the stretching emergence.

This intriguing result opens the problem of how to disentangle
bending and stretching features. As shown in Fig. 8.8, this is es-
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Figure 8.9: Comparison between the bending rigidity κ computed
through Ub = Ebendedo − Eflato (open circles) and Ub =

Ebendedrelaxed − Eflatstraightened (crosses). The maximum devia-
tion is less than the 1.5%.

pecially important in the limit of small deformations, a situation
of considerable practical interest. To this aim we have defined a
proof-of-concept computational procedure based on the virtual
process of straightening (or unbending) of a given relaxed and
bended ribbon: atoms are projected from such a configuration
onto a plane by conserving all the first next neighbor bond lengths
and all the second next neighbor planar angles. The process re-
covers a planar configuration, still maintaining all the details
about any possible stretching (in-plane strain field); the corre-
sponding energy Eflatstraightened is straightforwardly evaluated
by means of TB-AS. The bending rigidity κ can be consequentlySimulation protocol:

Step 3 determined by using Ub = Ebendedrelaxed − Eflatstraightened: the results
are shown in Fig. 8.9 (crosses) where we also report κ as obtained
by Ub = Ebendedo − Eflato (open circles). The comparison points
out a good agreement between the two different approaches since
stretching features are either at all non considered (open circles)
or included in both the bended and flat configurations (crosses)
so as to compensate. It is interesting to note that the constant
trend of κ versus a and L has been found similar to Fig. 8.3. In
other words, we have proved that the evaluation of κ through the
energy term Ub = Ebendedrelaxed − Eflatrelaxed is not correct since it is
corrupted by a strain energy amount which is not directly related
to the bending process. The energy due to the sole stretching
field (induced by the bending process) can be accordingly de-
fined as Eflatstraightened − Eflatrelaxed. The demonstration that such
an energetic contribution corresponds only to stretching relies
on the fact that both the terms Eflatstraightened and Eflatrelaxed have
been evaluated on flat ribbons through TB atomistic simulations.
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Figure 8.10: ε(b)
ss (strain induced by the bending), ε(e)ss (strain induced

by the edges) and ε(t)ss (total strain) versus s (red curves).
The gray scale map in background represents the same
quantities in the sy-space for L = 12 nm and a/L = 0.95

A further evidence of the stretching emergence can be derived
from Fig. 8.10 where the strain is calculated along the arc of
length L (corresponding to the dashed line in Fig. 8.2), labeled Strain field along the

arc of lenghtby the coordinate s. We can calculate three strain fields ε(b)
ss ,

ε
(e)
ss and ε(t)ss which are respectively defined as the relative dif-

ference between: (i) the relaxed and straightened configuration
(energy Eflatstraightened) and the flat relaxed configuration (energy
Eflatrelaxed); (ii) the flat relaxed configuration (energy Eflatrelaxed)
and the flat unrelaxed configuration (energy Eflato ); (iii) the re-
laxed and straightened configuration (energy Eflatstraightened) and
the flat unrelaxed configuration (energy Eflato ). While the strain
ε
(b)
ss is only due to bending, the term ε

(e)
ss is induced by the

presence of the edges (finite nanoribbon) in a flat configuration.
The quantity ε(t)ss represents the total strain induced by the relax-
ation of the bended ribbon with reference to the ideal graphene
sheet. We observed with good accuracy the validity of the re-
lation ε(t)ss = ε

(b)
ss + ε

(e)
ss , further proving that the total strain in

a bended ribbon is the sum of two different contributions: the
first one (ε(b)

ss ) is directly related to the bending process and the
second one (ε(e)ss ) is originated by edges effects, i.e. by the finite
size of the nanoribbon. Although the first term seems to be quite
negligible with respect to the second one, the previous energetic
analysis reveals that both contributions are essential in order
to explain the discrepancies between continuum and atomistic
results.
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In conclusion, we offered robust arguments suggesting that
the correct value for the bending rigidity of a carbon nanoribbon
corresponds to κ = 1.40 eV, as calculated either through Ub =

Ebendedo − Eflato or through Ub = Ebendedrelaxed − Eflatstraightened. On
the other hand, the relation Ub = Ebendedrelaxed − Eflatrelaxed leads to
incorrect results because of the emergence of a stretching field
ε
(t)
ss . We have further proved that such an in-plane strain field

can be decomposed in a first contribution ε(b)
ss due to the actual

bending and a second one ε(e)ss due to the edges effects.
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a.1 derivative of a volume integral

We consider a subset Pt ⊂ Ωt which is the time deformed ver-
sion of P0 ⊂ Ω0. We search a property giving the time derivative
of an arbitrary volume integral. In this context, the symbol d/dt
can be used when it is applied to a quantity depending only on
the time t. In fact, in this case, there is no ambiguity. As before
we consider a scalar field φ and, through a change of variables
between Eulerian and Lagrangian coordinates, we obtain

d

dt

∫
Pt

φdx =
d

dt

∫
P0

φJdX (A.1)

where J is the determinant of the deformation gradient

J = det
∂x
∂X

= det F̂ (A.2)

Then, the time derivation can enter the integral written in the
reference configuration

d

dt

∫
Pt

φdx =

∫
P0

d

dt
(φJ)dX =

∫
P0

(
φ̇J+φJ̇

)
dX (A.3)

The derivative of a determinant follows the rule
d

dt
det F̂ =

(
det F̂

)
tr
(

˙̂FF̂−1
)

(A.4)

From Eq.(4.20) we obtain ˙̂FF̂−1 = L̂ and, therefore,we have

J̇ = Jtr
(
L̂
)

= J∇x · v (A.5)

137
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So

d

dt

∫
Pt

φdx =

∫
P0

(
φ̇+φ∇x · v

)
JdX =

∫
Pt

(
φ̇+φ∇x · v

)
dx (A.6)

Since φ̇ = ∂φ
∂t + ∂φ

∂x · v we obtain

d

dt

∫
Pt

φdx =

∫
Pt

(
∂φ

∂t
+∇xφ · v +φ∇x · v

)
dx (A.7)

or, finally

d

dt

∫
Pt

φdx =

∫
Pt

[
∂φ

∂t
+∇x · (φv)

]
dx (A.8)

This property has been called Reynolds theorem or transport
theorem. It is the most important result used to obtain the balance
equations for continuum materials. If φ = 1 we obtain

d

dt

∫
Pt

dx =

∫
Pt

∇x · vdx (A.9)

which represent the rate of variation of the volume of the region
Pt.
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a.2 derivative of a surface integral

We begin by describing the deformation of a given surface
moving from the reference to the current configuration. We there-
fore consider a surface X = X (α,β) in the reference configura-
tion described in parametric form by two parameters α and β.
The deformed surface in the current configuration is given by
x = Ft (X (α,β)). We define NdS and nds as the unit normal
vector multiplied by the area element in the reference and in the
current configuration, respectively. From standard differential
geometry we have

NdS =
∂X
∂α

∧
∂X
∂β
dαdβ (A.10)

The deformed version can be straightforwardly obtained as

nds =
∂x
∂α

∧
∂x
∂β
dαdβ =

(
∂x
∂X
∂X
∂α

)
∧

(
∂x
∂X
∂X
∂β

)
dαdβ

=

(
F̂
∂X
∂α

)
∧

(
F̂
∂X
∂β

)
dαdβ (A.11)

The last expression can be written component by component

nids = εijkFjs
∂Xs

∂α
Fkt

∂Xt

∂β
dαdβ

and it can be multiplied by Fir on both sides

Firnids = εijkFirFjsFkt
∂Xs

∂α

∂Xt

∂β
dαdβ

Since εijkFirFjsFkt = det F̂εrst we obtain

Firnids = Jεrst
∂Xs

∂α

∂Xt

∂β
dαdβ

or

F̂Tnds = J
∂X
∂α

∧
∂X
∂β
dαdβ = JNdS (A.12)

and finally we have obtained the relationship between NdS and
nds

nds = JF̂−TNdS (A.13)

This property has been called Nanson theorem. Now, it is inter-
esting to evaluate the time derivative of the surface integral of a
vector field a. It can be brought back to the reference configura-
tion as

d

dt

∫
St

a · nds =
d

dt

∫
S0

a · JF̂−TNdS

=

∫
S0

[
ȧ · JF̂−T + a · J̇F̂−T + a · J ˙̂F−T

]
NdS

(A.14)
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Now J̇ = Jtr
(
L̂
)

= J∇x · v and ˙̂F−T = −F̂−T ˙̂FT F̂−T and therefore

d

dt

∫
St

a · nds =

∫
S0

[
ȧ · JF̂−T + a · J∇x · vF̂−T − a · JF̂−T ˙̂FT F̂−T

]
NdS

=

∫
S0

[
ȧ + a∇x · v − L̂a

]
· JF̂−TNdS (A.15)

where the relation ˙̂F = L̂F̂ has been used. Finally, coming back to
the current configuration we obtain

d

dt

∫
St

a · nds =

∫
St

[
ȧ + a∇x · v − L̂a

]
· nds (A.16)

Since the material derivative is given by ȧ = ∂a
∂t + ∂a

∂x · v, we obtain

d

dt

∫
St

a · nds =

∫
St

[
∂a
∂t

+
∂a
∂x

· v + a∇x · v − L̂a
]

· nds (A.17)

It is simple to verify that∇x ∧ (a ∧ v)+ v∇x · a = ∂a
∂x · v + a∇x · v −

L̂a and therefore we can write

d

dt

∫
St

a · nds =

∫
St

[
∂a
∂t

+∇x ∧ (a ∧ v) + v∇x · a
]

· nds (A.18)

The Nanson relation nds = JF̂−TNdS can be also applied in order
to obtain the so-called Piola identity. To this aim we use the
standard divergence theorem∫

∂Pt

Ψnids =

∫
Pt

∂Ψ

∂xi
dx (A.19)

if Ψ = 1 identically, we obtain
∫
∂Pt

nids = 0 and, therefore∫
∂Pt

nds =

∫
∂P0

JF̂−TNdS =

∫
P0

∇X ·
(
JF̂−1

)
dX = 0 (A.20)

which means

∇X ·
(
JF̂−1

)
= 0 ⇒ ∂

∂Xj

(
J
∂Xj

∂xi

)
= 0 (A.21)

This relation will be useful to obtain the balance equations of the
continuum mechanics in the Lagrangian description.
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a.3 novozhilov formulation of lagrangian equations

of motion.

We consider the standard base of unit vectors E1, E2 and E3
in the point X of the reference configuration. Since the motion is
controlled by the transformation x = Ft (X), the unit vectors ei
in the deformed configuration are given by the direction of the
deformed coordinate lines

ei =

∂Ft(X)
∂Xi

‖∂Ft(X)
∂Xi

‖
=

F̂Ei
‖F̂Ei‖

(A.22)

We remark that they do not form an orthogonal base. First of all,
we simply obtain the norm of F̂Ei

‖F̂Ei‖ =

√(
F̂Ei
)

·
(
F̂Ei
)

=
√
FkiFki =

√(
F̂T F̂

)
ii

=
√
Cii (A.23)

where Ĉ is the right Cauchy tensor. We define the unit vectors
n1, n2 and n3 perpendicular to the planes (e2, e3), (e1, e3) and
(e1, e2). It means that we can write

nk =
1

2
ηkij

ei ∧ ej
‖ei ∧ ej‖ =

1

2
ηkij

(
F̂Ei
)
∧
(
F̂Ej
)

‖ (F̂Ei)∧
(
F̂Ej
) ‖ (A.24)

Now, we start with the calculation of ‖ (F̂Ei)∧
(
F̂Ej
) ‖

‖ (F̂Ei)∧
(
F̂Ej
) ‖ =

√
ηkstFsiFtjηkabFaiFbj

=
√

(δsaδtb − δsbδta) FsiFtjFaiFbj

=
√
CiiCjj −C

2
ij (A.25)

We can also write

dsk

dSk
=
√
CiiCjj −C

2
ij (A.26)

where the indices i and j are complementary to k and dSk and
dsk are the surface elements in the reference and current con-
figuration having unit normal vector nk. Since

(
F̂Ei
)
∧
(
F̂Ej
)

=

ηqstFsiFtjEq, we therefore obtain

nk =
1

2
ηkij

ηqstFsiFtjEq√
CiiCjj −C

2
ij

(A.27)

Since ηqstFsiFtjFqa = Jηaij we can simply write ηqstFsiFtj =

Jηaij(F̂
−1)aq; this result can be used in Eq.(A.27) to yield

nk =
1

2
ηkij

Jηaij(F̂
−1)aqEq√

CiiCjj −C
2
ij

(A.28)

When k is fixed the indices i and j can assume two couples
of values [if k =1 we have (i, j)=(2,3) or (3,2), if k =2 we have



142 appendix

(i, j)=(1,3) or (3,2) and if k =3 we have (i, j)=(2,1) or (1,2)] and
the index a must assume the value k. At the end we eventually
obtain

nk =
J(F̂−1)kqEq√
CiiCjj −C

2
ij

=
dSk

dsk
J(F̂−1)kqEq (A.29)

where the indices i and j are complementary to k (there is not
the sum on k). We may consider the forces acting on the three
deformed coordinate planes (e2, e3), (e1, e3) and (e1, e2) (having
normal unit vectors n1, n2 and n3, respectively) through the
expressions

Tnk =
J(F̂−1)kqTEq√
CiiCjj −C

2
ij

=
dSk

dsk
J(F̂−1)kqTEq (A.30)

These vectors can be represented on both the base Ei and ei as
follows

Tnk = σEskEs (A.31)

Tnk = σeskes (A.32)

where, since E1, E2 and E3 is an orthonormal base, we have

σEsk = Tnk · Es =
dSk

dsk
J(F̂−1)kqTEq · Es =

dSk

dsk
J(F̂−1)kqTsq

(A.33)

Moreover, we have the following relation between σEsk and σesk

σEsk = Tnk · Es = σejkej · Es = σejk
F̂Ej · Es√
Cjj

=
1√
Cjj
Fsjσ

e
jk (A.34)

The representations σEsk and σesk have been introduced by Novozhilov
in his pioneering book on nonlinear elasticity. The Lagrangian
equation of motion can be written as (see Eq.(4.68))

∂

∂Xk

[
J(F̂−1)kqTsq

]
+ Jbs = ρJv̇s (A.35)

and then it can be expressed in terms of σEsk
∂

∂Xk

[
dsk

dSk
σEsk

]
+ Jbs = ρJv̇s (A.36)

or in terms of σesk

∂

∂Xk

[
dsk

dSk

1√
Cjj
Fsjσ

e
jk

]
+ Jbs = ρJv̇s (A.37)

Finally, since it is evident that
√
Cjj = dlj/dLj, we can state the

Lagrangian equations of motion in the Novozhilov form

∂

∂Xk

 dskdSk
dlj
dLj

Fsjσ
e
jk

+ Jbs = ρJv̇s (A.38)
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a.4 crystal symmetry condition

The stiffness tensor Ĉ has a symmetry with respect to a given
orthonormal transformation A if it does not change when sub-
jected to that transformation. The matrices A are so defined as the
set of orthonormal transformations to which the elastic properties
are invariant. In Cartesian coordinates the matrix A is given by

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (A.39)

that satisfy the orthogonality condition ATA = I, equivalent to
AT = A−1.

Therefore the symmetry condition applied to the stress tensor
can be written as

T̂ ′ = A T̂ AT (A.40)

The stress tensor T̂ can be written in Voigt notation as T =

(T11 T22T33 T23 T13 T12)
T so that the Eq. (A.40) becomes

T̂ ′ = A T̂ (A.41)

For conciseness, we fix the stress tensor elements as unity. We
begin by writting the diagonal elements, namely Tij = δiqδqj,
with i, j,q ∈ {1, 2, 3}, and. hence, we write the Eq. (A.40) as

T ′kl = Aki Tij A
T
jl = Aki δiqδqj Alj = Akq Alq (A.42)

The out-of-diagonal elements are Tij = δinδmj + δimδnj, so that

T ′kl = Aki Tij A
T
jl = Aki δinδmj Alj +Aki δimδnj Alj

= Akn Alm +Akm Aln (A.43)

Therefore we have obtained that A in the Eq. (A.41) is

A211 A212 A213 2A12A13 2A11A13 2A11A12

A221 A222 A223 2A22A23 2A21A23 2A21A22

A231 A232 A233 2A32A33 2A31A33 2A31A32

A21A31 A22A32 A23A33 A22A33 +A23A32 A21A33 +A23A31 A21A32 +A22A31

A11A31 A12A32 A13A33 A12A33 +A13A32 A11A33 +A13A31 A11A32 +A12A31

A11A21 A12A22 A13A23 A12A23 +A13A22 A11A23 +A13A21 A11A22 +A12A21


(A.44)

which is the disired transformation matrix given in the Eq. (A.41).
Thus, given a transformation matrix A as in Eq. (A.39), whose
entries are Aij, the corresponding A can be written using the Eq.
(A.44).
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Similarly we can derive the transformation matrix for the strain
tensor. The invariance of the constitutive equation T̂ = Ĉε̂ under
such a transformation requires that

A T̂ = Ĉ (A ε̂) =⇒ T̂ = (A−1 ĈA) ε̂ (A.45)

Hence, using the definition of an orthonormal transformation

Ĉ = A−1 ĈA = AT ĈA (A.46)

For a transversely isotropic material, the matrix A has the
simple form

A =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . (A.47)

where the x3-axis is the axis of symmetry. The stiffness tensor
remains invariant under rotation by any angle θ about the x3-axis.
Using the specific values of θ in matrix A, the stiffness tensor for
transversely isotropic materials can be written as

Ĉ =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 (C11 −C12)/2


(A.48)
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f
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image of atom (N)

image of atom (1)

L= Na

x=ax=0 x=Na

Figure A.1: One-dimensional chain of atoms subjected to nearest
neighbors internal interaction, fint, and to external forces
fext.The Periodic Boundary Conditions are assumed.

a.5 virial stress and periodic boundary conditions

We present a brief discussion on the calculation of the atomic
virial stress in a system under Periodic Boundary Conditions. The
atomic virial stress is discussed in Section 4.9, where the virial
is expressed in terms of the interatomic distances, Eq.(4.180),
instead of the atomic positions as in Eq.(4.170). For simplicity,
We consider the case of a one-dimensional chain of atoms at
zero temperature. We assume that the system is subjected to
nearest neighbors interactions of magnitude fint. In Fig.A.1 the
simulation cell of the one-dimensional system is shown. Each cell
contains N particles with constant reciprocal distance, namely a,
so that the period of the cell is L = Na, which is kept fixed by the The volume is fixed

by external forcesexternal forces fext due to the interaction with the repeated cells
along the chain. In such a case, the virial stress can be obtained
by means of the Eq.(4.170) in terms of the atomic positions xi:

T =
1

L

N∑
i

xif
int
i = fext (A.49)

Note that, at the equilibrium, the total force on each atoms must
be zero. Therefore, the internal force acting on the atom in xN,
i.e. −fint, is equal in absolute value to the external one fext. As a
consequence, the virial stress is null, as expected, only in absence
of external forces.

On the other hand, in Molecular Dynamics simulations (typi- The volume is fixed
by the P.B.C.cally) the system is not subjected to surface forces but the volume

is fixed by means of the Periodic Boundary Conditions, i.e. by the
interactions with the periodic images of the atoms (see Fig.A.1).
In order to apply such conditions the interatomic distance xij
have to be calculated by

Interatomic distances
under Periodic
Boundary
Conditions

xij

∣∣∣
PBC

= xi − xj − L int
[
(xi − xj)

L
−
1

2

]
(A.50)

In particular, this means that x1N
∣∣∣
PBC

= a, being a the lattice
parameter. In order to get the correct result obtained in Eq. (A.49)
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by means of the Eqs.(4.180), the boundary conditions must be
properly consided. This can be done by calculating the virial
stress in terms of the interatomic distances xij

∣∣∣
PBC

T =
1

L

∑
ij

xij

∣∣∣
PBC

fij = fext (A.51)

which was to be demonstrated.
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a.6 symmetry of the elastic moduli of graphane con-
formers

In accordance with the Hermann’s theorem, the hexagonal crys-
tals are transversally isotropic in their elastic properties. All the
directions which make up one and the same angle with the prin-
cipal symmetry axis are equal in their elastic properties, although
for the hexagonal crystals these directions certainly crystallo-
graphically different. This is an example when the symmetry of
a crystal properties is higher than the crystal itself. Hermann’s theorem.

If an r-rank tensor
has an N-fold
symmetry axis and
r<N, then this tensor
also has a symmetry
axis of infinite order

Applying an axial tension σ along the arbitrary direction n =

cos θex + sin θey. Under this assumption we get T̂ = σn⊗ n in
terms of components as

Tij = σninj (A.52)

By inverting the constitutive equation, T̂ = Ĉ : ε̂ =⇒ ε̂ = Ŝ : T̂ , we
find the corresponding strain tensor ε̂ as follows

εij = sijklTkl = σsijklnknl (A.53)

where sijkl is the compliance tensor. In particular, we easily get
its longitudinal component εl = n · ε̂ n along the direction n

εl = εijninj = σsijklnknlninj (A.54)

as well as its transverse component εt = t · ε̂ t along the direction
t = − sin θex + cos θey (with t · n = 0).

εt = εijtitj = σsijklnknltitj (A.55)

a.6.1 Young Modulus

The n-dependent Young modulus is defined as the ratio be-
tween the applied traction and the longitudinal extension En =

σ/εl. Thus, the reciprocal Young modulus E−1 for the direction
n is given by

E−1(n) = sijklnknlninj (A.56)

This formula can be simplified by introducing the notation ninj =

(nn)λ, where ij↔ λ = 1, ..., 6. Finally the Eq. (A.56) becomes

E−1(n) = sλµ(nn)λ(nn)µ (A.57)

The general formula for the reciprocal Young modulus E−1(n)

can be written in terms of the Miller indices hi = h,k, l of the
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zz

ac

θ
~ey sin θ

~ex cos θ

~n = ~e
x
cos

θ + ~ey
sin
θ

~t =
−
~e

x sin
θ
+
~e

x cos θ

Figure A.2: By applying an axial tension σ along the arbitrary direction
~n (θ = ~zz ∠ ~n), the Cauchy stress tensor T̂ = ∂U/∂ε̂ is
T̂ = σ~n ⊗ ~n By inverting the constitutive equation T̂ =

Ĉ : ε̂ =⇒ ε̂ = Ŝ : T̂ we find the corresponding strain tensor ε̂.
εl = ~n · ε̂ ~n longitudinal component; εt = ~t · ε̂ ~t transverse
component (with ~t · ~n = 0). In particular, we easily get its
longitudinal component εl = ~n · ε̂ ~n along the direction ~n

as well as its transverse component εt = ~t · ε̂ ~t along the
direction ~t = − sin θ~ex + cos θ~ey
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crystallographic direction [hkl] parallel to direction n as the fol-
lows

E−1 = sλµQλQµ (A.58)

Qλ = ninj =
AαiAβjhαhβ

gγηhγhη
(A.59)

where Aβj are the components of the the matrix of the expansion
of vectorial basis aα of the crystal lattice with respect to mutually
orthogonal unit vectors ei of the system of coordinates; the gγη
are the components of the metric tensor G (here Greek and Latin
indices enumerate columns and rows, respectively). In the general
case of the triclinic symmetry, we get

Q1 = q21 = g−1(ha sinβ− kb sinα cosγ†)2

Q2 = q22 = g−1

(
k

b†

)2
Q3 = q23 = g−1(ha cosβ+ kb cosα+ lc)2

Q4 = q2q3 = g−1

(
k

b†

)
(ha cosβ+ kb cosα+ lc)

Q5 = q3q1 = g−1(ha cosβ+ kb cosα+ lc)(ha sinβ− kb sinα cosγ†)

Q6 = q1q2 = g−1

(
k

b†

)
(ha sinβ− kb sinα cosγ†)

g = h2a2 + k2b2 + l2c2 +

+2klbc cosα+ 2lhca cosβ+ 2hkab cosγ (A.60)

where a,b, c are the lengths of the base vectors of the lattice and
α,β,γ are the angles between them; a†,b†, c† are the lengths of
the reciprocal vectors and α†,β†,γ† are the angles between them,
which are related as

a† =
sinα
aω

b† =
sinβ
bω

c† =
sinγ
cω

(A.61)

cosα† =
cosβ cosγ− cosα

sinβ sinγ

cosβ† =
cosγ cosα− cosβ

sinγ sinα

cosγ† =
cosα cosβ− cosγ

sinα sinβ
(A.62)

where ω =
√
1− cosα2 − cosβ2 − cosγ2 + 2 cosα cosβ cosγ 2-dimensional

systemsIn the case of 2-dimensional systems as graphene and graphane,
many terms of the Eqs.(A.60) becomes zero and we can neglect
all the indices 3, 4, 5. Therefore the expansion of the Eq.(A.58) is
reduced to Young modulus in

2-dimensional
systems
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E−1 = s11Q
2
1 + s22Q

2
2 + (s66 + 2s12)Q1Q2 (A.63)

The stiffness tensor C for the hexagonal graphene (6/mmm) andHexagonal and
Trigonal lattices. trigonal chair graphane (3̄m) 2D-lattice is the same

C =

C11 C12 0

C12 C11 0

0 0 C66

 (A.64)

as well as the compliance tensor S

s =

s11 s12 0

s12 s11 0

0 0 s66

 =


C11

C211−C212
− C12

C211−C212
0

− C12
C212−C212

C11
C211−C212

0

0 0 1
C66

 (A.65)

where in accord to the Cauchy relation we have that s66 = 2(s11−

s12) or C66 = 1
2(C11 − C12). Reminding that in this case we have

a = b, α = β = π
2 , γ = 2π

3 , the reciprocal Young modulus is
simply given by

E−1 = s11 =
C11

C211 − C212
(A.66)

as we expect from an isotropic system.Orthorhombic
lattices. The orthorhombic 2D-crystal symmetry (mmm) is no more

isotropic. Its stiffness tensor C is

C =

C11 C12 0

C12 C22 0

0 0 C66

 (A.67)

and the compliance tensor S is given by

s =

s11 s12 0

s12 s22 0

0 0 s66

 =


C22

C11C22−C212
− C12

C11C22−C212
0

− C12
C11C22−C212

C11
C11C22−C212

0

0 0 1
C66


(A.68)

So the reciprocal Young modulus in the Eq.A.63 becomes

E−1 =
(ha)4s11 + (kb)4s22 + (hkab)2(s66 + 2s12)

((ha)2 + (kb)2)
2

(A.69)

where the basis vectors are all reciprocally orthogonal and a 6= b.
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a.6.2 Poisson Ratio

In order to generalize the Poisson ratio ν formula for an
anisotropic 2D-lattice, we can define it as a function of the defor-
mation in two mutually orthogonal directions n and m.

ν(n, m) = −εt/εl =

= −
sλµ(mm)λ(nn)µ

sρσ(nn)ρ(nn)σ
(A.70)

Poisson ratio can also be define using only one direction, because
the perpendicularity condiction impose that mimj = (δij−ninj)

ν(q) = −
sijklninj (δkl −nknl)

snprtnnnpnrnt
(A.71)

that from the Eq.(A.56)

ν(n) =
sijklninjnknl

snprtnnnpnrnt
−

sijklninjδkl

snprtnnnpnrnt
=

= 1− sijkkninjE(n) = (A.72)

= 1− SijninjE(n) (A.73)

where Sij are the components of the compressibility tensor de-
fined by the strain under hydrostatic pressure p

εij = −Sijp = −sijkkp (A.74)
Poisson Ratio for
Hexagonal and
Trigonal lattices

Both for graphene and chair-graphane, the Poisson ratio is
independent from the direction

ν = −
s12

s11
=

C12

C11
(A.75)

While for the board-graphane with orthorhombic symmetry is
quite different due to its anisotropicity. From Eqs.(A.72), (A.60),
and (A.69) Poisson Ratio for

boat-graphane
ν(n) = 1−

(
(s11 + s12)q

2
1 + (s22 + s12)q

2
2

)
ninjE(n)

= 1−

(
(ha)2s11 + (kb)2s22 + ((ha)2 + (kb)2)s12

((ha)2 + (kb)2)

)
·

( (
(ha)2 + (kb)2

)2
(ha)4s11 + (kb)4s22 + (hkab)2(s66 + 2s12)

)

=
(hkab)2(s66 − s11 − s22) − ((ha)4 + (kb)4)s12

(ha)4s11 + (kb)4s22 + (hkab)2(s66 + 2s12)

(A.76)

Both the Young modulus and the Poisson ratio can be written
in function of the angle θ between the direction n and the basis
vector a (see Fig. A.2 ) carry on the Miller indices in terms of the
cosine directors of n

E−1(θ) = cos(θ)4s11+ sin(θ)4s22+ cos(θ)2 sin(θ)2(s66+ 2s12)
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(A.77)

ν(θ) =
tan(θ)2(s66 − s11 − s22) − (1+ tan(θ)4)s12
s11 + tan(θ)4s22 + tan(θ)2(s66 + 2s12)

(A.78)
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Ro

l

γo

Figure A.3: A nanotube can be sketched as a simple cylinder. Here the
radius Ro and circumference γo are referred to the refer-
ence configuration, while the length l is fixed by imposing
the periodic boundary condiction along the cylinder axis
(dashed line).

a.7 bending rigidity in nanotubes

We have evaluate the bending rigidity κ of graphene, including
relaxation effects, in Chapter 8. The same value κ = 1.40 eV
has been obtained using carbon nanotubes instead nanoribbons.
The nanotube, of course, do not show any edge effects, but the
bending rigidity depends from the curvature, which in nanotubes
is a geometric constant. In fact bond stretching is observed down
to (15,0) nanotubes [101, 121, 122]. Including relaxation effects in
function of the nanotube radius R it possible to extract the pure
bending energy term by comparing the ray variation between the
reference starting tube, which has all bonds equal to the perfect
graphene, namely 1.41 Å , and the full relaxed one.

In fact the cylindric geometry of a nanotube impose the Gaus-
sian curvature null, K = 0. Thus, the elastic energy density U

[eVÅ −2] of a monoatomic layered membrane is defined as

U =
1

2

E

1+ ν
Tr
(
ε̂2
)
+
1

2

Eν

1− ν2
[Tr (ε̂)]2 +

1

2
κ (2H)2 (A.79)

depending on the mean curvature H, and on the strain tensor ε̂.
To evaluate the only bending energy term Ub, we impose

strain ε̂ = 0, so that the strain energy term go to zero, Us =
1
2
E
1+νTr

(
ε̂2
)
+ 1
2
Eν
1−ν2

[Tr (ε̂)]2 = 0. The only bending energy den-
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sity Ub [eVÅ −2] of a general given surface can be written as

U =
1

2
κ (2H)2 − κ̄K (A.80)

where the mean curvature is H = k1+k2
2 [m−1] and the Gaussian

curvature is defined as K = k1k2 [m−2], here k1 = 1
R1

and
k2 = 1

R2
are the principal curvatures, while R1 and R2 are the

local principal radii of curvature. We have chosen a cylindric
configuration that involving only one curvature k1 = 1

R1
(i.e.

k2 = 0), therefore the mean curvature is H = k1
2 , while the

Gaussian curvature is null, K = 0. Thus in the case of cylindric
geometry, the bending energy density Ub is given by

U =
1

2
κ k21 (A.81)

To obtain the total bending energy , we have to integrate
the bending energy density on the reference surface Σo Ub =∫ ∫
Σo

Udσ = 1
2κl
∫
γo
k21dswhere Σ = Lol being the total area

of the reference system, γo = 2πRo is the circumference of the
cylinder with radius Ro, and s is the arc length (0 < s < Lo).
Note that the reference surface Σo is defined as the surface of
the corresponding rectangular flat slice which we have rolled to
build the nanotubes, i.e. the unstrained graphene nanoribbon
wherein all the bond length are equal to the equilibrium dinstance
dC−C = 1.41Å between a pair of carbon atoms. The solution of
the integral is as follows

Ub =

∫ ∫
Σo

Ubdσ =
1

2
κl

∫
γo

k21ds (A.82)

=
1

2
κl

∫
γo

(R)−2ds (A.83)

=
1

2
κl
2πRo

R2
(A.84)

Here the nanotube length l is constant due to the periodic bound-
ary condiction imposed along the axis of the cylinder. If the
bending does not involve stretching, the radius R after the re-
laxation of the nanotube have to be equal the reference cylinder
radius Ro. Therefore the bending energy can be simplified as

Ub = lim
R→Ro

1

2
κl
2πRo

R2
=
πκl

Ro
(A.85)

Because of the bending energy can be computed by atomistic
simulation as difference between the total energy of the nanotube
Etubeo and the corresponding reference flat system Eflato , namely
Ub = Etubeo − Eflato , the bending rigidity κ of a nanotube with
radius Ro is given by

κ =
Ro

πlUb
(A.86)
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in absence of stretching on the surface.
Moreover, when a relaxation of the structure is allowed a vari-

ation of radius R is observed down to a certain dimension of
the nanotube. In these cases besides the bending energy is given
by the solution in Eq. (A.82) with R 6= Ro, it needs to take in
account the no longer negligible stretching term in the Eq. (A.79).
Thus we have to integrate also the stretching energy density Us
as follows

Us =

∫ ∫
Σo

Usdσ =

∫ ∫
Σo

(
1

2

E

1+ ν
Tr
(
ε̂2
)
+
1

2

Eν

1− ν2
[Tr (ε̂)]2

)
dσ

=
1

2

E

1+ ν

∫ ∫
Σo

(
Tr
(
ε̂2
)
+

ν

1− ν
[Tr (ε̂)]2

)
dσ

We can considerer only strain ε̂ =
(
ζ 0
0 0

)
along the circumference,

because the length l is fixed by the periodic boundary conditions.
So that

Us =
1

2

E

1+ ν

∫ ∫
Σo

(
ζ2 +

ν

1− ν
ζ2
)
dσ

=
1

2

E

1+ ν

∫ ∫
Σo

(
ζ2

1− ν

)
dσ

but ζ =
γ− γo

γo
=
R− Ro

Ro
,

so that

Us =
1

2

El

1− ν2

(
R− Ro

Ro

)2 ∫
γo

ds

=
1

2

El

1− ν2

(
R− Ro

Ro

)2
(2πRo)

(A.87)

Obviously when R → Ro, the stretching energy goes to zero,
Us = 0.
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Figure A.4: Bending rigidity κ in function of the radius of a set of
zig-zag nanotubes in the range of (3,0)-(30,0). The symbols
show the value of the bending rigidity, as defined in the
Eq. (A.85), obtained by tight-binding simulations. Note that
down to the (15,0) a deviation from the constant value
is observed. This fact is due to the rising of stretching
bond effects due to the curvature. The asymptotic value
is κ = 1.40 eV, exactly as obtained from the nanoribbons
experiments discussed in the Chapter 8
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φo
θo

x = 0

θ ′o φ ′o
x = a

θ
ds

x

z bended ribbon

Figure A.5: A cross-section of a bended ribbon ( blue curve ) with
parallel edges at fixed distance a. The ribbon width L and
the edges distance a are taken constant, while the attack
angles θo and θ ′o = −θo ( or φ and φ ′) are free up.

a.8 minimal surface of a bended membrane

In the Sec. 8.2 we have discussed the problem of a bended
nanoribbon. We show in this Appendix a more detailed discus-
sion about the minimization the energy functional in Eq.(8.5) by
the method of Lagrange multipliers λ, i.e. the solution of the Eq. A variational

approach(8.6) ∫a
0
dx

[
z̈2

(1+ ż2)
5
2

+ λ
√
1+ ż2

]
, (A.88)

enforcing the absence of any in-plane stretching under the follows
boundary conditions:

a constrained width, L =
∫a
0 dx
√
1+ ż2,

a fixed parallel edges, z(0) = z(a) = 0,

a free attack angle, θ = arctg(dzdx), z̈(0) = z̈(a) = 0

(A.89)
Eulero-Poisson
equationThe above integral can be written in the general form

G(z) =

∫a
0
dxF(z, ż, z̈, x)

which is the solution of the Euler-Poisson differential equation

∂F

∂z
−
d

dx

∂F

∂ż
+
d2

dx2
∂F

∂z̈
= 0 (A.90)
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PROOF: We can define the function G(z,h)

G(z,h) = lim
α→0

G(z+αh) −G(z)

α
=
d

dα
G(z+αh)

∣∣∣
α→0

(A.91)

The derivative of the function G(z+ αh) =
∫a
0 dxF(z+ αh, ż+

αḣ, z̈+αḧ, x) is given by

d

dα
G(z+αh)

∣∣∣
α→0

=

∫a
0
dx

d

dα
F(z+αh, ż+αḣ, z̈+αḧ, x)

=

∫a
0
dx

(
∂F

∂z
h+

∂F

∂ż
ḣ+

∂F

∂z̈
ḧ

)
= |[by parts]| =

∫a
0
dx

(
∂F

∂z
−
d

dx

∂F

∂ż
+
d2

dx2
∂F

∂z̈

)
h

+

(
∂F

∂ż
−
d

dx

∂F

∂z̈

)
h
∣∣∣a
0

+ ḣ
∂F

∂z̈

∣∣∣a
0

= 0

(A.92)

Thus, imposing the follows constrains

a fixed parallel edges, z(0) = z(a) = 0⇒ h(0) = h(a) = 0

a free attack angle, ż(0) = ż(a) = 0⇒ ∂F(0)
∂z̈ =

∂F(a)
∂z̈ = 0

or a fixed attack angle, ż(0) = ż(a) = 0⇒ ḣ(0) = ḣ(a) = 0

(A.93)

we get the Euler-Poisson Eq. (A.90), q.e.d.
The corresponding Hamiltonian can be written as follows

H = F − ż

(
∂F

∂ż
−
d

dx

∂F

∂z̈

)
− z̈

∂F

∂z̈
(A.94)

Moreover we can proof that dH
dx = dF

dx . By deriving the Eq. (A.94)
and by using the Eq. (A.90)

dH

dx
=

dF

dx
− z̈

(
∂F

∂ż
−
d

dx

∂F

∂z̈

)
− ż

(
d

dx

∂F

∂ż
−
d2

dx

2
∂F

∂z̈

)
−

...
z
∂F

∂z̈
− z̈

d

dx

∂F

∂z̈

=
dF

dx
, q.e.d.

In our case the function F(z, ż, z̈, x) is given by

F =
z̈2

(1+ ż2)
5
2

+ λ
√
1+ ż2 (A.95)

Thus the partial derivatives ∂F
∂x = ∂F

∂z = have to be null. We
introduce two parameters, C1, C2 to solve the Hamiltonian, Eq.
(A.94), and the Euler-Poisson equation, Eq. (A.90), as follows

F − ż
(
∂F
∂ż − d

dx
∂F
∂z̈

)
− z̈∂F

∂z̈ = −C2

− d
dx
∂F
∂ż + d2

dx2
∂F
∂z̈ = C1

∴ F + żC1 − z̈∂F
∂z̈ = −C2 (A.96)
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Replacing in the Eq. (A.96) the Eq. (A.95) and its derivative ∂F
∂z̈

we obtain

−
z̈2

(1+ ż2)
5
2

+ λ
√
1+ ż2 + żC1 = −C2 (A.97)

We have to impose the boundary condiction as in Eqs. (8.7). First
of all, by the attack angle definition we get

ż = tan θ

z̈ = 1
cos2 θ

∂θ
∂x (A.98)

Introducing the arc length s =
∫x
0 dx
√
1+ ż2 we get

∂s

∂x
=
√
1+ tan2 θ =

1

cos θ
∂θ

∂x
=
∂θ

∂s

∂s

∂x
=

1

cos θ
dθ

ds
(A.99)

Thus, the Eq. (A.97) can be written as

−
1

cos θ

(
dθ

ds

)2
+

1

cos θ
λ+

sin θ
cos θ

C1 = −C2 (A.100)

Second, by the conditions for the fixed edges and the free attack
angles, we get that dθds = 0 at s = 0 and s = L. Furthermore,
the symmetry of the cylinder surface leads to θ(0) = θo and
θ(L) = −θo. So that deriving the Eq. (A.100)

dθ

ds

∣∣∣
θo

= −
√
λ+ C1 sin θo + C2 cos θo = 0

∴ λ = −C1 sin θo − C2 cos θo (A.101)
dθ

ds

∣∣∣
−θo

= −
√

−2C1 sin θo = 0

∴ C1 = 0

Therefore the Eq. (A.100) has been simplified as follows

dθ

ds
= −

√
C(cos θ− cos θo)

S =

∫s
0
ds =

∫θ(s)

θo

dθ

−
√

C(cos θ− cos θo)
(A.102)

where C ≡ C2 as well as in the following. Finally, we use the
fixed length L =

∫a
0 dx
√
1+ ż2 to obtain the parameter C as

follows

L =

∫θo
−θo

dθ√
C(cos θ− cos θo)

(A.103)

∴ S = L

∫θo
θ(s)

dθ√
(cosθ−cosθo)∫θo

−θo
dθ√

(cosθ−cosθo)

(A.104)
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In order to turn back in Cartesian coordinates, we observe that
dx
ds = cos θ, and dz

ds = dz
dx
dx
ds = sin θ,

x =

∫θo
θ(s)

cos θdθ√
C(cos θ− cos θo)

z =

∫θo
θ(s)

sin θdθ√
C(cos θ− cos θo)

(A.105)

and reminding that the edges of the nanoribbon is at fixed dis-
tance, i.e. x(L) = a, we can write

a =

∫θo
−θo

cos θdθ√
C(cos θ− cos θo)

= L

∫θo
θ(s)

cosθdθ√
(cosθ−cosθo)∫θo

−θo
dθ√

(cosθ−cosθo)

(A.106)

which give us θo for any given edges distance a and nanoribbon
length L. Therefore we have obtained the parametric form of the
minimized surface

x = L

∫θo
θ(s)

cosθdθ√
(cosθ−cosθo)∫θo

−θo
dθ√

(cosθ−cosθo)

z = L

∫θo
θ(s)

sinθdθ√
(cosθ−cosθo)∫θo

−θo
dθ√

(cosθ−cosθo)

(A.107)

As shown in Sec. 8.2, we eventually obtain the final geometry
in parametric representation [x(s), z(s)]

x

L
=

E(q) − E
(
am
{
K(q)

(
1− 2 sL

)}
,q
)

K(q)
−
s

L
(A.108)

z

L
=

q

K(q)
cn
{

K(q)
(
1− 2

s

L

)}
(A.109)

where s is the arc length (0 < s < L), q = sin θ2 is the elliptic
modulus and θ is the attack angle given by

a

L
= 2

E(q)

K(q)
− 1. (A.110)

The quantities E(q) and K(q) are the complete elliptic integrals,
defined as[115, 116]

E(q) = F
(π
2

,q
)

, K(q) = E
(π
2

,q
)

(A.111)

where the functions F(v,q) and E(v,q) are incomplete elliptic
integrals of the first and second kind, respectively [115, 116]

F(v,q) =

v∫
0

dα√
1− q2 sin2 α

E(v,q) =

v∫
0

√
1− q2 sin2 αdα. (A.112)
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Moreover, by considering u = F(v,q) we define the inverse re-
lation (with fixed modulus q) v = am {u}, which is called Jacobi
amplitude function. Further, cn {u} = cos v = cos (am {u}) and
sn {u} = sin v = sin (am {u}) are the Jacobi elliptic functions.[116] An universal attach

angle.Interesting enough, one can prove for a given (L,a) that lima/L→0 θ
= 2.2813rad = 130.709o, an universal value of the attack angle
found whenever a = 0 or L is very large.
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