Stefano Giordano

Current research interests

The main focus My activity deals with three complementary and concurrent lines of research summed up as follows: 1) classical micromechanics: generalizations and applications of the Eshelby theory, homogenization techniques, 2) multiphysics micromechanics: magnetoelectric multiferroic devices (combination of magnetoelastic and piezoelectric materials), 3) statistical mechanics of heterogeneous systems: theoretical and numerical study of thermo-elastic behavior of polymer chains and fiber bundles of biological interest.

The first line of research concerns the classical micromechanics, that is the analysis of the effective properties of heterogeneous materials (linear or non-linear, isotropic or anisotropic). Manufactured materials used both in industry and in our daily lives are very seldom homogeneous, and have complicated internal structures. The combination of two or more constituents to produce materials with desired properties has been exploited since ancient civilization and composite materials have found intensive application in contemporary technology. A way to obtain macroscopically desired responses is to enhance a material property by the addition of microscopic matter, i.e. to manipulate the microstructure. The link between the structures and the properties, therefore, plays a central role in the development of new materials and devices. This is the objective of micromechanics, which studies the interplay between micromorphology and properties of constituents for the development of mathematical models predicting the macro-properties. The classical Eshelby theory allows to calculate the elastic fields inside and outside an elastic inhomogeneity inserted into a homogeneous matrix. Indeed, when the inclusion and the matrix have a linear elastic behavior, and the medium is subjected to a uniform mechanical load, the stress and strain fields inside the inclusion are uniform. This result is the basis of most effective medium approximations that determine the behavior of a heterogeneous environment in terms of the nature of the heterogeneities and their interactions.

The second line deals with the multiphysics micromechanics, i.e. the analysis of heterogeneous systems which exhibit the coupling among different physical properties (thermo-magneto-electro-elastic coupling). In this context, I am not only interested in the determination of the effective properties but also in studying the dynamic and thermal behavior. In fact, there is an increasing need for a multidisciplinary, system-oriented approach to manufacturing nano-devices that exhibit specific functions and physical responses. Indeed, devices are rarely constructed of a single material, but rather a collection of materials, each providing a critical function and often working in conjunction with each other. To approach the problem, I introduced the combination of the Eshelby theory with the Landau-Lifchitz-Gilbert formalism and the Langevin/Fokker-Planck methodology. Only the combination of these methods allows the analysis of the behaviour of magnetoelastic (ferromagnetic) particles embedded in different matrices (e.g. piezoelectric). The Eshelby theory allows for the determination of all coupled fields within the particle, the Landau-Lifchitz-Gilbert equation describes the dynamics of the magnetization in single-domain ferromagnetic particles and, finally, the Langevin/Fokker-Planck methodology is able to take into account the thermal bath where the system is embedded and, therefore, to introduce the temperature in these systems. This research finds direct applications to the analysis of the stress-mediated magnetization switching in particles and the design of magnetoelectric memories. Moreover, the introduction of the statistical mechanics in these systems permits to analyze the thermal effects on the stress-mediated switching and on the memory stability (i.e. the determination of the probability error). Another application concerns the motion of domain wall in magnetoelastic materials driven by elastic fields.

The third line of research is devoted to the statistical mechanics of heterogeneous molecular systems. When the structure of the heterogeneous systems is displayed at the nanoscopic scale, the homogenization schemes used in the previous two activities cannot be applied directly and we are forced to use the statistical mechanics to describe the underlying physics. As an example of this approach, I performed the theoretical and numerical study of the thermo-elastic behavior of polymers of biological interest. The thermoelasticity of a polymeric chain is studied with a uniform tension (generated by an applied force) or a non-uniform tension (generated by an external field). Analytical solutions, as well as molecular dynamics Monte Carlo simulations, are developed starting from two different classical models: the freely-jointed chain (FJC), and the worm-like chain (WLC). It is found that when the thermodynamic limit is not satisfied (limited number of monomers), different elastic behaviors can be observed by changing the boundary conditions (Helmholtz isometric ensemble or Gibbs isotensional one), showing the fascinating complexity of the small systems thermodynamics. I also studied the equivalence of the two ensembles when the number of monomers approaches infinity. The observed complexity is even more suggestive when we look at the behavior of bistable molecules whose domains have transitions between two stable states. This system can show cooperative or non-cooperative responses, according to the statistical ensemble considered. These theories have been generalized to study the response of bundles of fibers and applied for studying the degradation of fiber bundles subjected to the action of external fields (for example the degradation of DNA bundles is useful to better understand the effect of ionizing radiations used for cancer therapy).















Publications on journals
  1. img Google Scholar: Stefano Giordano
  2. img RESEARCHER ID: N-5312-2016

  3. img109) Stefano Giordano, "Statistical mechanics of rate-independent stick-slip on a corrugated surface composed of parabolic wells", Continuum Mechanics and Thermodynamics 34, 1343–1372 (2022), (full-text view-only access: https://rdcu.be/cSL7F.), DOI: 10.1007/s00161-022-01129-0. DOI: 10.1007/s00161-022-01129-0.Statistical mechanics of rate-independent stick-slip on a corrugated surface composed of parabolic wells (PDF)
  4. img108) Claudio Melis, Giorgio Pia, Elisa Sogne, Andrea Falqui, Stefano Giordano, Francesco Delogu and Luciano Colombo, "Stiffening of nanoporous gold: experiment, simulation and theory", The European Physical Journal Plus, volume 137, Article number 858 (2022), DOI: 10.1140/epjp/s13360-022-03041-7. DOI: 10.1140/epjp/s13360-022-03041-7.Stiffening of nanoporous gold: experiment, simulation and theory (PDF)
  5. img107) Romain Jorge Do Marco and Stefano Giordano, "Thermodynamics of Extra-Toughness and Hidden-Length in Polymeric Materials with Sacrificial Bonds", Appl. Mech. 2022, 3, 935–955, DOI: 10.3390/applmech3030053. DOI: 10.3390/applmech3030053.Thermodynamics of Extra-Toughness and Hidden-Length in Polymeric Materials with Sacrificial Bonds (PDF)
  6. img106) A. Cannizzo, L. Bellino, G. Florio, G. Puglisi, and S. Giordano, "Thermal control of nucleation and propagation transition stresses in discrete lattices with non-local interactions and non-convex energy", Eur. Phys. J. Plus (2022) 137:569 (full-text view-only access: https://rdcu.be/cNip1.), DOI: 10.1140/epjp/s13360-022-02790-9. DOI: 10.1140/epjp/s13360-022-02790-9.Thermal control of nucleation and propagation transition stresses in discrete lattices with non-local interactions and non-convex energy (PDF)
  7. img105) A. Cannizzo, G. Florio, G. Puglisi, and S. Giordano, "Temperature controlled decohesion regimes of an elastic chain adhering to a fixed substrate by softening and breakable bonds", Journal of Physics A: Mathematical and Theoretical, Vol. 54, 445001 (2021), DOI: 10.1088/1751-8121/ac2a07. DOI: 10.1088/1751-8121/ac2a07.Temperature controlled decohesion regimes of an elastic chain adhering to a fixed substrate by softening and breakable bonds (PDF)
  8. img104) Stefano Giordano, "Entropy production and Onsager reciprocal relations describing the relaxation to equilibrium in stochastic thermodynamics", Phys. Rev. E, Vol. 103, 052116 (2021), DOI: 10.1103/PhysRevE.103.052116. DOI: 10.1103/PhysRevE.103.052116.Entropy production and Onsager reciprocal relations describing the relaxation to equilibrium in stochastic thermodynamics (PDF)
  9. img103) Pierre Guiraud, Stefano Giordano, Olivier Bou-Matar, Philippe Pernod, Raphael Lardat, "Thermoacoustic wave generation in multilayered thermophones with cylindrical and spherical geometries", Journal of Applied Physics, Vol. 129, 115103 (2021), DOI: 10.1063/5.0039458. DOI: 10.1063/5.0039458.Thermoacoustic wave generation in multilayered thermophones with cylindrical and spherical geometries (PDF)
  10. img102) Stefano Giordano and Pierre-Michel Déjardin, "Derivation of magnetic inertial effects from the classical mechanics of a circular current loop", Physical Review B, 2020, Vol. 102, 214406, DOI: 10.1103/PhysRevB.102.214406. DOI: 10.1103/PhysRevB.102.214406.Derivation of magnetic inertial effects from the classical mechanics of a circular current loop (PDF)
  11. img101) G. Florio, G. Puglisi, and S. Giordano, "Role of temperature in the decohesion of an elastic chain tethered to a substrate by onsite breakable links", Physical Review Research, 2020, Vol. 2, 033227, DOI: 10.1103/PhysRevResearch.2.033227. DOI: 10.1103/PhysRevResearch.2.033227.Role of temperature in the decohesion of an elastic chain tethered to a substrate by onsite breakable links (PDF)
  12. img100) L. Bellino, G. Florio, S. Giordano, and G. Puglisi, "On the competition between interface energy and temperature in phase transition phenomena", Applications in Engineering Science, 2020, Vol. 2, 100009, DOI: 10.1016/j.apples.2020.100009. DOI: 10.1016/j.apples.2020.100009.On the competition between interface energy and temperature in phase transition phenomena (PDF)
  13. img99) Zhi Lin Ngoh, Pierre Guiraud, Dunlin Tan, Stefano Giordano, Olivier Bou-Matar, Edwin Hang Tong Teo, Philippe Pernod, Philippe Coquet, and Raphael Lardat, "Experimental characterization of three-dimensional Graphene's thermoacoustic response and its theoretical modelling", Carbon, 2020, Vol.169, pp.382-394, DOI: 10.1016/j.carbon.2020.06.045. DOI: 10.1016/j.carbon.2020.06.045.Experimental characterization of three-dimensional Graphene's thermoacoustic response and its theoretical modelling: supplementary materials (ZIP)Experimental characterization of three-dimensional Graphene's thermoacoustic response and its theoretical modelling (PDF)
  14. img98) Stefano Giordano, Manon Benedito "L’infini au cours des siècles", K. Revue trans-européenne de philosophie et arts 4 - 1/ 2020, pp.109-128, https://revue-k.univ-lille.fr/numero-4.html. Numero complet (PDF)L’infini au cours des siecles (PDF)
  15. img97) M. Benedito, F. Manca, P.L. Palla, and S. Giordano, "Rate-dependent force-extension models for single-molecule force spectroscopy experiments", Physical Biology, 2020, Vol.17, 056002, DOI: 10.1088/1478-3975/ab97a8. DOI: 10.1088/1478-3975/ab97a8.Rate-dependent force-extension models for single-molecule force spectroscopy experiments (PDF)
  16. img96) P. L. Palla, G. Patera, F. Cleri, and S. Giordano, "A stochastic force model for the ballistic-diffusive transition of heat conduction", Physica Scripta, 2020, Vol.95, 075703, DOI: 10.1088/1402-4896/ab8d56. DOI: 10.1088/1402-4896/ab8d56.A stochastic force model for the ballistic-diffusive transition of heat conduction (PDF)
  17. img95) M. V. Logunov, S. A. Nikitov, A. G. Temiryazev, M. P. Temiryazeva, S. Giordano, T. Mathurin, Y. Dusch, N. Tiercelin, and P. Pernod, "Equilibrium Distribution of Magnetization and Processes of Magnetization Reversal in Magnetoelastic Nanostructures", Bulletin of the Russian Academy of Sciences: Physics, 2020, Vol. 84, No. 2, pp. 196–198, DOI: 10.3103/S1062873820020185. DOI: 10.3103/S1062873820020185.Equilibrium Distribution of Magnetization and Processes of Magnetization Reversal in Magnetoelastic Nanostructures (PDF)
  18. img94) Manon Benedito and Stefano Giordano, "Unfolding pathway and its identifiability in heterogeneous chains of bistable units", Physics Letters A 384, 126124 (2020), DOI: 10.1016/j.physleta.2019.126124. DOI: 10.1016/j.physleta.2019.126124.Unfolding pathway and its identifiability in heterogeneous chains of bistable units (PDF)
  19. img93) Pierre Guiraud, Stefano Giordano, Olivier Bou-Matar, Philippe Pernod, Raphael Lardat, "Two temperature model for thermoacoustic sound generation in thick porous thermophones", Journal of Applied Physics 126, 165111 (2019), DOI: 10.1063/1.5121395. DOI: 10.1063/1.5121395.Two temperature model for thermoacoustic sound generation in thick porous thermophones (PDF)
  20. img92) Stefano Giordano, "Stochastic thermodynamics of holonomic systems", Eur. Phys. J. B 92, 174 (2019), DOI: 10.1140/epjb/e2019-100162-6. DOI: 10.1140/epjb/e2019-100162-6.Stochastic thermodynamics of holonomic systems (PDF)
  21. img91) Pierre Guiraud, Stefano Giordano, Olivier Bou-Matar, Philippe Pernod, Raphael Lardat, "Multilayer modeling of thermoacoustic sound generation for thermophone analysis and design", Journal of Sound and Vibration 455, 275-298 (2019), DOI: 10.1016/j.jsv.2019.05.001. DOI: 10.1016/j.jsv.2019.05.001.Multilayer modeling of thermoacoustic sound generation for thermophone analysis and design (PDF)
  22. img90) Manon Benedito, Fabio Manca and Stefano Giordano, "Full Statistics of Conjugated Thermodynamic Ensembles in Chains of Bistable Units", Inventions 4, 19 (2019), DOI: 10.3390/inventions4010019. DOI: 10.3390/inventions4010019.Full Statistics of Conjugated Thermodynamic Ensembles in Chains of Bistable Units (PDF)
  23. img89) Manon Benedito and Stefano Giordano, "Isotensional and isometric force-extension response of chains with bistable units and Ising interactions", Physical Review E (Editors' Suggestion) 98, 052146 (2018), DOI: 10.1103/PhysRevE.98.052146. DOI: 10.1103/PhysRevE.98.052146.Isotensional and isometric force-extension response of chains with bistable units and Ising interactions (PDF)
  24. img88) V. Preobrazhensky, L. Krutyansky, N. Tiercelin, Y. Dusch, A. Sigov, P. Pernod, and S. Giordano, "Strain-mediated all-magnetoelectric memory cell", Ferroelectrics 532, 160-167 (2018), DOI: 10.1080/00150193.2018.1499403. DOI: 10.1080/00150193.2018.1499403.Strain-mediated all-magnetoelectric memory cell (PDF)
  25. img87) Manon Benedito and Stefano Giordano, "Thermodynamics of small systems with conformational transitions: the case of two-state freely jointed chains with extensible units", Journal of Chemical Physics 149, 054901 (2018), DOI: 10.1063/1.5026386. DOI: 10.1063/1.5026386.Thermodynamics of small systems with conformational transitions: the case of two-state freely jointed chains with extensible units (PDF)
  26. img86) Hayat Zaoui, Pier Luca Palla, Stefano Giordano, Fabrizio Cleri, Maxime Verdier, David Lacroix, Jean-François Robillard, Konstantinos Termentzidis, Evelyne Martin, "Thermal conductivity of deca-nanometric patterned Si membranes by multiscale simulations", International Journal of Heat and Mass Transfer 126, 830–835 (2018), DOI: 10.1016/j.ijheatmasstransfer.2018.06.004. DOI: 10.1016/j.ijheatmasstransfer.2018.06.004.Thermal conductivity of deca-nanometric patterned Si membranes by multiscale simulations (PDF)
  27. img85) Stefano Giordano, "Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models", Continuum Mechanics and Thermodynamics 30, 459-483 (2018), DOI: 10.1007/s00161-017-0615-5. DOI: 10.1007/s00161-017-0615-5.Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models (PDF)
  28. img84) Vladimir Preobrazhensky, Alexey Klimov, Nicolas Tiercelin, Yannick Dusch, Stefano Giordano, Anton Churbanov, Theo Mathurin, Philippe Pernod and Alexander Sigov, "Dynamics of the stress-mediated magnetoelectric memory cell NX(TbCo2/FeCo)/PMN-PT", Journal of Magnetism and Magnetic Materials 459, 66-70 (2018), DOI: 10.1016/j.jmmm.2017.12.028. DOI: 10.1016/j.jmmm.2017.12.028.Dynamics of the stress-mediated magnetoelectric memory cell NX(TbCo2/FeCo)/PMN-PT (PDF)
  29. img83) Grégoire Perret, Thomas Lacornerie, Fabio Manca, Stefano Giordano, Momoko Kumemura, Nicolas Lafitte, Laurent Jalabert, Mehmet C. Tarhan, Eric F. Lartigau, Fabrizio Cleri, Hiroyuki Fujita, Dominique Collard "Mesure de la dégradation bio-mécanique d’une fibre d’ADN sous l’effet des rayons X thérapeutiques", Médicine/Science n° 12, vol. 33, décembre 2017, DOI: 10.1051/medsci/20173312003. DOI: 10.1051/medsci/20173312003.Mesure de la dégradation bio-mécanique d’une fibre d’ADN sous l’effet des rayons X thérapeutiques (PDF)
  30. img82) Claudio Melis, Stefano Giordano and Luciano Colombo "Surface elastic properties in silicon nanoparticles", European Physics Letters 119, 66005 (2017), DOI: 10.1209/0295-5075/119/66005. DOI: 10.1209/0295-5075/119/66005.Surface elastic properties in silicon nanoparticles (PDF)
  31. img81) Stefano Giordano, "Spin variable approach for the statistical mechanics of folding and unfolding chains", Soft Matter 13, 6877-6893 (2017), DOI: 10.1039/c7sm00882a. DOI: 10.1039/c7sm00882a (see also Plateau-like versus sawtooth-like force-extension response of macromolecules). Spin variable approach for the statistical mechanics of folding and unfolding chains (PDF)
  32. img80) Nicolas Tiercelin, Vladimir Preobrazhensky, Olivier Bou Matar, Abdelkrim Talbi, Stefano Giordano, Yannick Dusch, Alexey Klimov, Théo Mathurin, Omar Elmazria, Michel Hehn, and Philippe Pernod, "From non-linear magnetoacoustics & spin reorientation transition to magnetoelectric micro/nano-systems", Spintronics X, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, Manijeh Razeghi, Henri Jaffr ès, Proc. of SPIE Vol. 10357, 103571T-1/9 (2017), DOI: 10.1117/12.2277187. DOI: 10.1117/12.2277187.From non-linear magnetoacoustics & spin reorientation transition to magnetoelectric micro/nano-systems (PDF)
  33. img79) Alexey Klimov, Nicolas Tiercelin, Yannick Dusch, Stefano Giordano, Théo Mathurin, Philippe Pernod, Vladimir Preobrazhensky, Anton Churbanov, and Sergei Nikitov, "Magnetoelectric write and read operations in a stress-mediated multiferroic memory cell", Applied Physics Letter 110, 222401 (2017). DOI: 10.1063/1.4983717 (see also Magnetoelectric Memory Cell Increases Energy Efficiency for Data Storage).Magnetoelectric write and read operations in a stress-mediated multiferroic memory cell (PDF)
  34. img78) Théo Mathurin, Stefano Giordano, Yannick Dusch, Nicolas Tiercelin, Philippe Pernod, and Vladimir Preobrazhensky, "Domain-wall dynamics in magnetoelastic nanostripes", PHYSICAL REVIEW B 95, 140405(R) (2017). DOI: 10.1103/PhysRevB.95.140405. Supplemental Material (PDF)Domain-wall dynamics in magnetoelastic nanostripes (PDF)
  35. img77) Stefano Giordano, "Nonlinear effective properties of heterogeneous materials with ellipsoidal microstructure", Mechanics of Materials 105, 16-28 (2017). DOI: 10.1016/j.mechmat.2016.11.003. Nonlinear effective properties of heterogeneous materials with ellipsoidal microstructure (PDF)
  36. img76) Grégoire Perret, Thomas Lacornerie, Fabio Manca, Stefano Giordano, Momoko Kumemura, Nicolas Lafitte, Laurent Jalabert, Mehmet C. Tarhan, Eric F. Lartigau, Fabrizio Cleri, Hiroyuki Fujita and Dominique Collard, "Real-time mechanical characterization of DNA degradation under therapeutic X-rays and its theoretical modeling", Nature Microsystems & Nanoengineering 2, 16062 (2016). DOI: 10.1038/micronano.2016.62 (see also Actualités scientifiques CNRS INSIS: Dégradation de l’ADN, première observation en temps réel). Supplementary file (PDF)Real-time mechanical characterization of DNA degradation under therapeutic X-rays and its theoretical modeling (PDF)
  37. img75) Pier Luca Palla and Stefano Giordano, "Transport properties of multigrained nanocomposites with imperfect interfaces", Journal of Applied Physics 120, 184301 (2016). DOI: 10.1063/1.4967316. Transport properties of multigrained nanocomposites with imperfect interfaces (PDF)
  38. img74) Claudio Melis, Stefano Giordano, Luciano Colombo and Giovanni Mana, "Density functional theory calculations of the stress of oxidised (1 1 0) silicon surfaces", Metrologia 53, 1339-1345 (2016). DOI: 10.1088/0026-1394/53/6/1339. Density functional theory calculations of the stress of oxidised (1 1 0) silicon surfaces (PDF)
  39. img73) Fabio Manca, Pier Luca Palla, Fabrizio Cleri, Stefano Giordano, "Characteristic lengths in natural bundle assemblies arising from fiber-matrix energy competition: A Floquet-based homogenization theory", European Journal of Mechanics - A/Solids 60, 145-165 (2016). DOI: 10.1016/j.euromechsol.2016.07.002. Characteristic lengths in natural bundle assemblies arising from fiber-matrix energy competition: A Floquet-based homogenization theory (PDF)
  40. img72) Théo Mathurin, Stefano Giordano, Yannick Dusch, Nicolas Tiercelin, Philippe Pernod, and Vladimir Preobrazhensky, "Mechanically driven domain wall movement in magnetoelastic nanomagnets", Eur. Phys. J. B 89, 169 (2016). DOI: 10.1140/epjb/e2016-70226-0. Mechanically driven domain wall movement in magnetoelastic nanomagnets (PDF)
  41. img71) Théo Mathurin, Stefano Giordano, Yannick Dusch, Nicolas Tiercelin, Philippe Pernod, and Vladimir Preobrazhensky, "Stress-mediated magnetoelectric control of ferromagnetic domain wall position in multiferroic heterostructures", Applied Physics Letters 108, 082401 (2016). DOI: 10.1063/1.4942388. Stress-mediated magnetoelectric control of ferromagnetic domain wall position in multiferroic heterostructures (PDF)
  42. img70) N. Tiercelin, Y. Dusch, S. Giordano, A. Klimov, V. Preobrazhensky, and P. Pernod, "Strain Mediated Magnetoelectric Memory", in Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing , eds. Supriyo Bandyopadhyay, Jayasimha Atulasimha (2016). ISBN: 978-1-118-86926-0. DOI: 10.1002/9781118869239.ch8. Strain Mediated Magnetoelectric Memory (PDF) Front Matter (PDF)
  43. img69) Fabio Manca, Pierre-Michel Déjardin, and Stefano Giordano, "Statistical mechanics of holonomic systems as a Brownian motion on smooth manifolds", Annalen der Physik (Berlin), 528, No. 5, 381-393 (2016). DOI: 10.1002/andp.201500221. Content (PDF)Statistical mechanics of holonomic systems as a Brownian motion on smooth manifolds (PDF)
  44. img68) Stefano Giordano, "Nonlinear effective behavior of a dispersion of randomly oriented coated ellipsoids with arbitrary temporal dispersion", International Journal of Engineering Science 98, 14 (2016). DOI: 10.1016/j.ijengsci.2015.07.009. Nonlinear effective behavior of a dispersion of randomly oriented coated ellipsoids with arbitrary temporal dispersion (PDF)
  45. img67) Giordano, S., HABILITATION A DIRIGER DES RECHERCHES EN SCIENCES PHYSIQUES, Effective physical properties of heterogeneous materials and structures (Propriétés physiques effectives des matériaux et structures hétérogènes)", UNIVERSITE DE LILLE 1, 1 October 2015, Lille, FR. DOI: 10.13140/RG.2.1.1943.1126 . Effective physical properties of heterogeneous materials and structures (PDF)
  46. img66) Perret, G., Lacornerie, T., Manca, F., Giordano, S., Kumemura, M., Lafitte, N., Jalabert, L., Lartigau, E., Fujii, T., Cleri, F., Fujita, H., Collard, D., "Real time mechanical characterization of dna in liquid during a radiotherapy treatment and its theoretical analysis", 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 21-25 June 2015, Anchorage, AK. DOI: 10.1109/TRANSDUCERS.2015.7180864. Real time mechanical characterization of dna in liquid during a radiotherapy treatment and its theoretical analysis (PDF)
  47. img65) Fabio Manca, Stefano Giordano, Pier Luca Palla and Fabrizio Cleri, "Stochastic mechanical degradation of multi-cracked fiber bundles with elastic and viscous interactions", The European Physical Journal E (EPJE) 38, 44 (2015). DOI: 10.1140/epje/i2015-15044-1. Stochastic mechanical degradation of multi-cracked fiber bundles with elastic and viscous interactions (PDF)
  48. img64) Pierre-Yves Guerder, Stefano Giordano, Olivier Bou Matar and Jérôme Olivier Vasseur, "Tuning the elastic nonlinearities in composite nanomaterials", Journal of Physics: Condensed Matter 27, 145304 (2015). DOI: 10.1088/0953-8984/27/14/145304. Tuning the elastic nonlinearities in composite nanomaterials (PDF)
  49. img63) Fabio Manca, Stefano Giordano, Pier Luca Palla, and Fabrizio Cleri, "Scaling Shift in Multicracked Fiber Bundles", PHYSICAL REVIEW LETTERS 113, 255501 (2014). DOI: 10.1103/PhysRevLett.113.255501. Scaling Shift in Multicracked Fiber Bundles (PDF)
  50. img62) S. Giordano, F. Manca, "Analysis of heterogeneous structures described by the two-temperature model", International Journal of Heat and Mass Transfer 78, 189-202 (2014). DOI: 10.1016/j.ijheatmasstransfer.2014.06.074. Analysis of heterogeneous structures described by the two-temperature model (PDF)
  51. img61) S. Giordano, M. Goueygou, N. Tiercelin, A. Talbi, P. Pernod, and V. Preobrazhensky, "Magneto-electro-elastic effective properties of multilayered artificial multiferroics with arbitrary lamination direction", International Journal of Engineering Science 78, 134-153 (2014). DOI: 10.1016/j.ijengsci.2014.02.011. Magneto-electro-elastic effective properties of multilayered artificial multiferroics with arbitrary lamination direction (PDF)
  52. img60) Fabio Manca, Stefano Giordano, Pier Luca Palla, and Fabrizio Cleri, "On the equivalence of thermodynamics ensembles for flexible polymer chains", Physica A: Statistical Mechanics and its Applications 395, 154-170 (2014). DOI: 10.1016/j.physa.2013.10.042. On the equivalence of thermodynamics ensembles for flexible polymer chains (PDF)
  53. img59) Stefano Giordano, "Explicit nonlinear homogenization for magneto-electro-elastic laminated materials", Mechanics Research Communications 55, 18-29 (2014). DOI: 10.1016/j.mechrescom.2013.10.008.Explicit nonlinear homogenization for magneto-electro-elastic laminated materials (PDF)
  54. img58) Stefano Giordano, "Analytical procedure for determining the linear and nonlinear effective properties of the elastic composite cylinder", International Journal of Solids and Structures 50, 4055-4069 (2013). DOI: 10.1016/j.ijsolstr.2013.08.017.Analytical procedure for determining the linear and nonlinear effective properties of the elastic composite cylinder (PDF) Supplemental Material (PDF)
  55. img57) Stefano Giordano, Yannick Dusch, Nicolas Tiercelin, Philippe Pernod and Vladimir Preobrazhensky, "Thermal effects in magnetoelectric memories with stress-mediated switching", Journal of Physics D: Applied Physics 46, 325002 (2013). DOI: 10.1088/0022-3727/46/32/325002.Thermal effects in magnetoelectric memories with stress-mediated switching (PDF)
  56. img56) Stefano Giordano, Yannick Dusch, Nicolas Tiercelin, Philippe Pernod and Vladimir Preobrazhensky, "Stochastic magnetization dynamics in single domain particles", Eur. Phys. J. B 86, 249 (2013). DOI: 10.1140/epjb/e2013-40128-x. Stochastic magnetization dynamics in single domain particles (PDF) Cover (PDF)
  57. img55) Fabio Pavanello and Stefano Giordano, "How imperfect interfaces affect the nonlinear transport properties in composite nanomaterials", Journal of Applied Physics 113, 154310 (2013). DOI: 10.1063/1.4801889. How imperfect interfaces affect the nonlinear transport properties in composite nanomaterials (PDF)
  58. img54) Yannick Dusch, Nicolas Tiercelin, Alexey Klimov, Stefano Giordano, Vladimir Preobrazhensky, and Philippe Pernod, "Stress-mediated magnetoelectric memory effect with uni-axial TbCo2/FeCo multilayer on 011-cut PMN-PT ferroelectric relaxor", Journal of Applied Physics 113, 17C719 (2013). DOI: 10.1063/1.4795440.Stress-mediated magnetoelectric memory effect with uni-axial TbCo2/FeCo multilayer on 011-cut PMN-PT ferroelectric relaxor (PDF)
  59. img53) Fabio Manca, Stefano Giordano, Pier Luca Palla, Fabrizio Cleri, and Luciano Colombo, "Two-state theory of single-molecule stretching experiments", Physical Review E 87, 032705 (2013). DOI: 10.1103/PhysRevE.87.032705. Two-state theory of single-molecule stretching experiments (PDF)
  60. img52) Fabio Manca, Stefano Giordano, Pier Luca Palla, Fabrizio Cleri, and Luciano Colombo, "Theory and Monte Carlo simulations for the stretching of flexible and semiflexible single polymer chains under external fields", Journal of Chemical Physics 137, 244907 (2012). DOI: 10.1063/1.4772656.Theory and Monte Carlo simulations for the stretching of flexible and semiflexible single polymer chains under external fields (PDF)
  61. img51) Fabio Pavanello, Fabio Manca, Pier Luca Palla, and Stefano Giordano, "Generalized interface models for transport phenomena: Unusual scale effects in composite nanomaterials", Journal of Applied Physics 112, 084306 (2012). DOI: 10.1063/1.4759017.Generalized interface models for transport phenomena: Unusual scale effects in composite nanomaterials (PDF)
  62. img50) Yannick Dusch, Vasyl Rudenko, Nicolas Tiercelin, Stefano Giordano, Vladimir Preobrazhensky, and Philippe Pernod, "Hysteretic magnetoresistance in stress controled magnetic memory device", Nanomaterials and nanostructures 2, 44 (2012). Hysteretic magnetoresistance in stress controled magnetic memory device (PDF)
  63. img49) Fabio Manca, Stefano Giordano, Pier Luca Palla, Fabrizio Cleri and Luciano Colombo, "Monte Carlo simulations of single polymer force-extension relations", Journal of Physics: Conference Series 383, 012016 (2012). DOI: 10.1088/1742-6596/383/1/012016.Monte Carlo simulations of single polymer force-extension relations (PDF)
  64. img48) Stefano Giordano, Yannick Dusch, Nicolas Tiercelin, Philippe Pernod and Vladimir Preobrazhensky, "Combined nanomechanical and nanomagnetic analysis of magnetoelectric memories", PHYSICAL REVIEW B 85, 155321 (2012). DOI: 10.1103/PhysRevB.85.155321.Combined nanomechanical and nanomagnetic analysis of magnetoelectric memories (PDF)
  65. img47) Fabio Manca, Stefano Giordano, Pier Luca Palla, Rinaldo Zucca, Fabrizio Cleri and Luciano Colombo, "Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles", THE JOURNAL OF CHEMICAL PHYSICS 136, 154906 (2012). DOI: 10.1063/1.4704607.Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles (PDF) Comment (PDF)Response (PDF)
  66. img46) Stefano Giordano and Pier Luca Palla, "Conduction degradation in anisotropic multi-cracked materials", The European Physics Journal B 85, 59 (2012). DOI: 10.1140/epjb/e2011-20814-5.Conduction degradation in anisotropic multi-cracked materials (PDF)
  67. img45) Stefano Giordano, Pier Luca Palla, Emiliano Cadelano and Michele Brun, "Elastic behaviour of inhomogeneities with size and shape different from their hosting cavities", Mechanics of Materials 44, 4 (2012). DOI: 10.1016/j.mechmat.2011.07.015. Elastic behaviour of inhomogeneities with size and shape different from their hosting cavities (PDF)
  68. img44) Nicolas Tiercelin, Yannick Dusch, Alexey Klimov, Stefano Giordano, Vladimir Preobrazhensky, and Philippe Pernod, "Room temperature magnetoelectric memory cell using stress-mediated magnetoelastic switching in nanostructured multilayers", APPLIED PHYSICS LETTERS 99, 192507 (2011). DOI: 10.1063/1.3660259.Room temperature magnetoelectric memory cell using stress-mediated magnetoelastic switching in nanostructured multilayers (PDF)
  69. img43) Luciano Colombo and Stefano Giordano, "Nonlinear elasticity in nanostructured materials", Report on Progress in Physics 74, 116501 (2011). DOI: 10.1088/0034-4885/74/11/116501. Nonlinear elasticity in nanostructured materials (PDF)
  70. img42) Emiliano Cadelano, Pier Luca Palla, Stefano Giordano and Luciano Colombo, "Elastic properties of hydrogenated graphene", Physical Review B 82, 235414, 2010. DOI: 10.1103/PhysRevB.82.235414.Elastic properties of hydrogenated graphene (PDF)
  71. img41) Stefano Giordano, Maria Ilenia Saba, and Luciano Colombo, "Elastic properties of multi-cracked composite materials", The European Physics Journal B 76, 261-269 (2010). DOI: 10.1140/epjb/e2010-00174-6.Elastic properties of multi-cracked composite materials (PDF)
  72. img40) Pierluca Palla, Stefano Giordano, and Luciano Colombo, "Lattice model describing scale effects in nonlinear elasticity of nanoinhomogeneities", Phys. Rev. B 81, 214113, 2010. DOI: 10.1103/PhysRevB.81.214113. Lattice model describing scale effects in nonlinear elasticity of nanoinhomogeneities (PDF)
  73. img39) Emiliano Cadelano, Stefano Giordano, and Luciano Colombo, "Interplay between bending and stretching in carbon nanoribbons", Phys. Rev. B 81, 144105, 2010. DOI: 10.1103/PhysRevB.81.144105.Interplay between bending and stretching in carbon nanoribbons (PDF)
  74. img38) Stefano Giordano, "Order and disorder in the microstructure of dielectrically nonlinear heterogeneous materials", Journal of electrostatics 68, 2010, 227-236. DOI: 10.1016/j.elstat.2010.01.004.Order and disorder in the microstructure of dielectrically nonlinear heterogeneous materials (PDF)
  75. img37) Pier Luca Palla, Stefano Giordano, and Luciano Colombo, "Interface elasticity in nanostructured silicon", Physical Review B, 80, 054105, 2009. DOI: 10.1103/PhysRevB.80.054105. Interface elasticity in nanostructured silicon (PDF)
  76. img 36) Emiliano Cadelano, Pier Luca Palla, Stefano Giordano, and Luciano Colombo, "Nonlinear Elasticity of Monolayer Graphene", Physical Review Letters, 102, 235502, 2009. DOI: 10.1103/PhysRevLett.102.235502. Nonlinear Elasticity of Monolayer Graphene (PDF)
  77. img35) Stefano Giordano, " Dielectric and Elastic Characterization of Nonlinear Heterogeneous Materials ", Materials 2009, 2, 1417-1479. DOI: 10.3390/ma2041417. Dielectric and Elastic Characterization of Nonlinear Heterogeneous Materials (PDF)
  78. img34) Stefano Giordano, Alessandro Mattoni, Luciano Colombo, "Brittle fracture: from elasticity theory to atomistic simulations", REVIEWS IN COMPUTATIONAL CHEMISTRY, VOL. 27, pag. 1-83, edited by Kenneth B. Lipkowitz, ISBN: 978-0-470-58714-0. DOI: 10.1002/9780470890905.ch1. Brittle fracture: from elasticity theory to atomistic simulations (PDF)
  79. img33) S. Giordano, P. Palla, "Recent Advances in the Characterization of Composite Dielectric Structures" in Dielectric Materials: Research, Technology and Applications edited by Ai Huang, Nova Science Publishers, Inc., NY, 2009. ISBN: 978-1-60692-266-8. Recent Advances in the Characterization of Composite Dielectric Structures (PDF)
  80. img 32) S. Giordano, P. L. Palla, L. Colombo, "Nonlinear elasticity of composite materials: Landau coefficients in dispersions of spherical and cylindrical inclusions", The European Physics Journal B 68, 89-101 (2009). DOI: 10.1140/epjb/e2009-00063-1. Nonlinear elasticity of composite materials: Landau coefficients in dispersions of spherical and cylindrical inclusions (PDF)
  81. img 31) Stefano Giordano and Fausto Camboni, "On some explicit results for the balanced generalized Polya urn", The Mathematical Scientist 33, 1-16 (2008), APPLIED PROBABILITY TRUST. On some explicit results for the balanced generalized Polya urn (PDF)
  82. img 30) S. Giordano, P. L. Palla, L. Colombo, "Effective permittivity of materials containing graded ellipsoidal inclusions", The European Physics Journal B 66, 29-35 (2008). DOI: 10.1140/epjb/e2008-00382-7. Effective permittivity of materials containing graded ellipsoidal inclusions (PDF)
  83. img 29) S. Giordano, L. Colombo, P. L. Palla, "Nonlinear elastic Landau coefficients in heterogeneous materials", EuroPhysics Letters 83 (2008) 66003. DOI: 10.1209/0295-5075/83/66003.Nonlinear elastic Landau coefficients in heterogeneous materials (PDF)
  84. img 28) S. Giordano, P. L. Palla, "Dielectric behavior of anisotropic inhomogeneities: interior and exterior points Eshelby tensors", Journal of Physics A: Mathematical and Theoretical 41 (2008) 415205 (24pp). DOI: 10.1088/1751-8113/41/41/415205. Dielectric behavior of anisotropic inhomogeneities: interior and exterior points Eshelby tensors (PDF)
  85. img 27) P. L. Palla, S. Giordano, L. Colombo, "Interfacial elastic properties of a-Si and c-Si", Physical Review B 78, 012105 (2008). DOI: 10.1103/PhysRevB.78.012105. Interfacial elastic properties of a-Si and c-Si (PDF)
  86. img 26) S. Giordano and L. Colombo, "Elastic properties of solids containing elliptic cracks", Physical Review B 77, 054106 (2008). DOI: 10.1103/PhysRevB.77.054106. Elastic properties of solids containing elliptic cracks (PDF)
  87. img 25) G.Benedek, Recensione del libro "Introduzione alla teoria della elasticità" di L. Colombo e S. Giordano, Springer-Verlag-Italia, Milano, 2007, pp. XII + 292, Il Nuovo Saggiatore, Bollettino della Società Italiana di Fisica, Nuova Serie Anno 23, N. 5-6, 2007. Electronic version @ www.springerlink.com.Introduzione alla teoria della elasticità (PDF)
  88. img 24) P. L. Palla, M. Ippolito, S. Giordano, A. Mattoni, L. Colombo, "Atomistic approach to fracture: Ideas, methods, and applications to brittle nanostructured materials", The Nanomechanics in Italy, pp. 75-107, Editor: Nicola Pugno, Research Signpost, Transworld Research Network, Kerala, India, 2007. ISBN: 978-81-308-0237-4. Atomistic approach to fracture: Ideas, methods, and applications to brittle nanostructured materials (PDF)Contents (PDF)
  89. img23) S. Giordano and L. Colombo, "Local elastic fields around cracks and their stress density of states", Physical Review B 76, 174120, 2007. DOI: 10.1103/PhysRevB.76.174120. Local elastic fields around cracks and their stress density of states (PDF)
  90. img22) Stefano Giordano, "Electrical behaviour of a single crack in a conductor and exponential laws for conductivity in micro cracked solids", International Journal of Applied Electromagnetic and Mechanics, 26 (2007), pp. 1-19. Electrical behaviour of a single crack in a conductor and exponential laws for conductivity in micro cracked solids (PDF)
  91. img21) Stefano Giordano, "Relation Between Microscopic and Macroscopic Mechanical Properties in Random Mixtures of Elastic Media", ASME, Engineering Materials and Technology, JULY 2007, Vol. 129 / 453. DOI: 10.1115/1.2400282. Relation Between Microscopic and Macroscopic Mechanical Properties in Random Mixtures of Elastic Media (PDF)
  92. img20) Stefano Giordano, Luciano Colombo, "Effects of the orientational distribution of cracks in isotropic solids", Engineering Fracture Mechanics 74 (2007), pp. 1983-2003. DOI: 10.1016/j.engfracmech.2006.10.006.Effects of the orientational distribution of cracks in isotropic solids (PDF)
  93. img19) Stefano Giordano, Luciano Colombo, "Effects of the orientational distribution of cracks in solids", Physical Review Letters 98, 055503 (2007). DOI: 10.1103/PhysRevLett.98.055503. Effects of the orientational distribution of cracks in solids (PDF)
  94. img18) Stefano Giordano, "Two-dimensional disordered lattice networks with substrate", Physica A: Statistical Mechanics and its Applications 375 (2007) 726-740. DOI: 10.1016/j.physa.2006.09.026.Two-dimensional disordered lattice networks with substrate (PDF)
  95. img17) Stefano Giordano, Walter Rocchia, "Predicting dielectric nonlinearity of anisotropic composite materials via tensorial analysis", Journal of Physics: condensed matter 18 (2006) 10585-10599. DOI: 10.1088/0953-8984/18/47/006. Predicting dielectric nonlinearity of anisotropic composite materials via tensorial analysis (PDF)
  96. img16) Andrea Amaroli, Francesca Trielli, Bruno Bianco, Stefano Giordano, Elsa Moggia and Maria Umberta Delmonte Corrado, "Effects of 50 Hz magnetic field on Dictyostelium discoideum (Protista)", Bioelectromagnetics 27 (2006), 528-534. DOI: 10.1002/bem.20240.Effects of 50 Hz magnetic field on Dictyostelium discoideum (Protista) (PDF)
  97. img15) Stefano Giordano, "Equivalent permittivity tensor in anisotropic random media", Journal of Electrostatics 64 (2006) 655-663. DOI: 10.1016/j.elstat.2005.11.003.Equivalent permittivity tensor in anisotropic random media(PDF)
  98. img14) Andrea Amaroli, Francesca Trielli, Bruno Bianco, Stefano Giordano, Elsa Moggia and Maria U. Delmonte Corrado, "Effects of time-variant extremely low-frequency (ELF) electromagnetic fields (EMF) on cholinesterase activity in Dictyostelium discoideum (Protista)", Chemico-Biological Interactions, Volumes 157-158, 15 December 2005, Pages 355-356. DOI: 10.1016/j.cbi.2005.10.047. Effects of time-variant extremely low-frequency (ELF) electromagnetic fields (EMF) on cholinesterase activity in Dictyostelium discoideum (Protista) (PDF)
  99. img13) Andrea Amaroli, Francesca Trielli, Bruno Bianco, Stefano Giordano, Elsa Moggia and Maria U. Delmonte Corrado "Effects of Time-Variant Extremely-Low-Frequency (ELF) Electromagnetic Fields (EMF) on Cholinesterase Activity in Dictyostelium discoideum", The Journal of Eukaryotic Microbiology, Vol. 52, Issue 2, Page 38S - March-April 2005. DOI: 10.1111/j.1550-7408.2005.05202003_6_1.x. Effects of Time-Variant Extremely-Low-Frequency (ELF) Electromagnetic Fields (EMF) on Cholinesterase Activity in Dictyostelium discoideum (PDF)
  100. img12) Stefano Giordano, Walter Rocchia, "Shape dependent effects of dielectrically nonlinear inclusions in heterogeneous media", Journal of Applied Physics 98, 104101 (2005) 1-10. DOI: 10.1063/1.2128689. Shape dependent effects of dielectrically nonlinear inclusions in heterogeneous media (PDF)
  101. img11) Stefano Giordano, "Disordered lattice networks: general theory and simulations", International Journal of Circuit Theory and Applications, 33 (2005) 519-540. DOI: 10.1002/cta.335. Disordered lattice networks: general theory and simulations (PDF)
  102. img10) S. Giordano, "Order and disorder in heterogeneous material microstructure: electric and elastic characterization of dispersions of pseudo oriented spheroids", International Journal of Engineering Science, 43 (2005) 1033-1058. DOI: 10.1016/j.ijengsci.2005.06.002. Order and disorder in heterogeneous material microstructure: electric and elastic characterization of dispersions of pseudo oriented spheroids (PDF)
  103. img9) S. Giordano, "Multipole analysis of a generic system of dielectric cylinders and application to fibrous materials", Journal of Electrostatics 63 (2005) 1-19. DOI: 10.1016/j.elstat.2004.06.007. Multipole analysis of a generic system of dielectric cylinders and application to fibrous materials (PDF)
  104. img8) S. Giordano, "Differential schemes for the elastic characterization of dispersions of randomly oriented ellipsoids", European Journal of Mechanics - A/Solids 22 (2003) 885-902. DOI: 10.1016/S0997-7538(03)00091-3. Differential schemes for the elastic characterization of dispersions of randomly oriented ellipsoids (PDF)
  105. img7) S. Giordano, "Effective medium theory for dispersions of dielectric ellipsoids", Journal of Electrostatics, Vol. 58/1-2, 2003, pp. 59-76. DOI: 10.1016/S0304-3886(02)00199-7. Effective medium theory for dispersions of dielectric ellipsoids (PDF)
  106. img6) B. Bianco, S. Giordano, "Electrical characterization of linear and non-linear random networks and mixtures", International Journal of Circuit Theory and Applications, Volume 31/2, 2003, pp.199-218. DOI: http://dx.doi.org/10.1002/cta.217. Electrical characterization of linear and non-linear random networks and mixtures (PDF)
  107. img5) S. Bruna, M. Liberti, S. Giordano, E. Moggia, B. Bianco, G. D'Inzeo, "A Zeeman-Stark/Markov model approach to study the EM-RF exposure of a potassium channel ", Microwave Symposium Digest, 2001 IEEE MTT-S International, On pages: 167 - 170 vol.1. Meeting Date: 20 mai 2001 - 25 mai 2001. Location: Phoenix, AZ , USA 2001. DOI: 10.1109/MWSYM.2001.966864. A Zeeman-Stark/Markov model approach to study the EM-RF exposure of a potassium channel(PDF)
  108. img4) B. Bianco, E. Moggia, S. Giordano, W. Rocchia, A. Chiabrera, "Friction and noise in quantum mechanics: a model for the interactions between a system and a thermal bath", Il Nuovo Cimento, Vol.116 B, N.2, Febbraio 2001. Friction and noise in quantum mechanics: a model for the interactions between a system and a thermal bath (PDF)
  109. img3) B. Bianco, A. Chiabrera, S. Giordano, "D.C.-E.L.F. characterization of random mixtures of piecewise non-linear media", Bioelectromagnetics, 21, pp. 145-149 (2000).DOI: 10.1002/(SICI)1521-186X(200002)21:2<145::AID-BEM10>3.0.CO;2-5. D.C.-E.L.F. characterization of random mixtures of piecewise non-linear media (PDF)
  110. img2) A. Chiabrera, B. Bianco, S. Giordano, S. Bruna, E. Moggia, J.J. Kaufman, "Ligand Binding under RF EM exposure", in B. J. Klauenberg and D. Miklavcic (eds.), Radio Frequency Radiation Dosimetry, pp. 429-447, Kluwer Academic Publishers (NETHERLANDS). Contents (PDF)Ligand Binding under RF EM exposure (PDF)
  111. img 1) A. Chiabrera, B. Bianco, S. Bruna, S. Giordano, "Bioelectromagnetics: the state of the science" Biology Forum 91 (1998), pp.233-246 (Tilgher). Bioelectromagnetics: the state of the science (PDF)
Tutored PhD thesis
  1. img7) Andrea Cannizzo, Modeling micro-instabilities in biophysics and materials science (December, 2023).

    Mechanical micro-instabilities play a very important role in the response of biological structures and in soft matter more generally. In addition, micro-instabilities are crucial for phenomena in adhesion, in fracture mechanics and in plasticity of solid materials. These observed similarities between biophysics and materials science are of great importance, not only from the point of view of cultural perspectives, but also to apply the same analytical techniques to these two very different themes. Indeed, the common denominator in all these examples is that certain units of the system under study have a bistable (or multi-stable) character. This means that such units can be found in two (or more) distinct physical states and can therefore undergo transitions between these states, characterized by specific static and dynamic properties. This thesis project deals with refined mathematical methodologies for the study of these transitions, in particular related to breaks or damage processes, in arbitrary systems with direct application to the following problems: cell adhesion and its consequences in physical oncology (role of mechanical signals in cancer), denaturation of DNA and other macromolecules (role of thermal effects in the breaking of chemical bonds), and the resistance of solids to stretching (role of temperature and microstructure). Modeling micro-instabilities in biophysics and materials science (PDF)
  2. img6) Manon Benedito, Statistical mechanics and thermodynamics of systems with conformational transitions: applications to biological macromolecules (December, 2020).

    The thermo-elastic behaviour of biological macromolecules, such as DNA and proteins, is addressed in a wide field of studies, with plenty of theoretical and practical applications. Mathematical modelling of the macromolecules' response to deformation and to thermal uctuations allows the validation of the statistical mechanics of small systems, through the comparison with experimental results obtained by force spectroscopy, thus providing information on the static and dynamic responses induced by appliedforces. These analyses are even more important for bistable macromolecules with conformational transitions, corresponding to folding/unfolding processes between two stable positions. In order to obtain analytically the force-deformation response of a chain composed of bistable units, it is necessary to calculate the partition functions, which are essential objects of the statistical mechanics. Thus, the bistable potential energy is decomposed into two parabolas, both corresponding to the folded and unfolded states and identied using the spin variables technique, largely used throughout the manuscript. The rst part of this thesis concerns the extensibility of the bonds between the bistable units of a chain. The second part allows us to consider the interactions between the bistable units of a chain, thanks to the Ising model. The third part deals with heterogeneity, an important parameter to determine the unfolding sequence in proteins unfolding. Finally, in the last part, the dynamics of deformation is described. Statistical mechanics and thermodynamics of systems with conformational transitions: applications to biological macromolecules (PDF)
  3. img5) Pierre Guiraud, Modelling and Evaluation of Carbon Based Foam Thermoacoustic Effect for Effective Sound Generation in Fluids (November, 2020).

    Electroacoustic transducers along with piezoelectric devices are the most widely used methods for acoustic sound generation in gas and liquids. A mechanical movement of a membrane induces fluid vibration thus creating an acoustic wave. The thermoacoustic process on the other hand uses fast paces temperature variations in a sample to excite the fluid (generally air). The rapidly changing temperature generate a compression expansion of the air and thus creates an acoustical wave. Such materials are called thermophones. They were discovered in the same time period as traditional electroacoustic transducers but their limited efficiency coupled with the technological limits of fabrication prevented scientific craze at the time. In 1999 a new thermophone was presented with a significant improvement compared to the samples used a century prior. This article coupled with the newly found ease of access to complex fabrication process of nanomaterials rekindle the interest in thermoacoustic for audio purposes. In this thesis a thorough literature review is presented and a novel multilayer model for thermoacoustic sound generation is derived. This model was solved for plane wave, cylindrical wave and spherical wave generation. Another model based on a two temperatures hypothesis for plane wave generation is also solved to represent more accurately the generation of thick porous thermophones. An extensive analysis of those models allowed for a detailed understanding of the thermoacoustic sound generation: its strengths, weaknesses and differences with traditional speakers. Lastly, experimental investigations of porous carbon foams in partnership with CINTRA Singapore are presented. Validation of the models and insights about the handling of such flexible and lightweighted but fragile samples are presented as well at their potential applications for scientific or commercial purposes. Modelling and Evaluation of Carbon Based Foam Thermoacoustic Effect for Effective Sound Generation in Fluids (PDF)
  4. img4) Théo Mathurin, Magnetoelectric manipulation of transverse domain walls in magnetoelastic nanostructures (November, 2017).

    The manipulation of magnetic domain walls that separate regions of uniform magnetization is associated with both fundamental and technological research interests. A large part of the literature on domain wall motion deals with the use of magnetic elds and electric currents. However, several concerns most notably energy dissipation motivates the search for alternatives. Among potential candidates, the mechanical stress-mediated magnetoelectric coupling in magnetoelastic/piezoelectric heterostructures seems promising. In this thesis, it is shown that the combination of a bias magnetic eld and uniform mechanical stress can induce unidirectional domain wall motion in nanostructures with uniaxial anisotropy. Static and dynamic aspects of this phenomenon are studied by means of ad hoc numerical procedures simulating the mechanical coupling of 011-cut PMN-PT generating the stress, and TbCo2/FeCo multilayers magnetoelastic nanostructures. The design of the cross section prole in nanostructures allows to tailor the response of the system, enabling for instance the control of domain wall position in conned geometries. The associated dynamics stands apart from known regimes because of the shape of the domain wall. The existence of steady-state regimes in nanostripes of constant width shows that velocities comparable to those of other techniques can be obtained, for a fraction of the energy required. Experimental investigations resulted in the development of a successful fabrication process on PMN-PT and the exploration of the magnetoelectric effect. Magnetoelectric manipulation of transverse domain walls in magnetoelastic nanostructures (PDF)
  5. img3) Fabio Manca, The elastic behavior of polymer chains: theory and simulations (May, 2013).

    This thesis provides a picture on the thermo-elastic behavior of polymer molecules with biological relevance. In particular, this essay deals with the thermo-elasticity of single polymer molecules subjected to uniform stretching (generated by an applied force) or non-uniform stretching (generated by an external field). Analytical expressions and molecular dynamics simulations are elaborated considering some generalizations of the freely-jointed chain (FJC) and the worm-like chain (WLC) models. The analytical theory, based on classical statistical mechanics, allows a rigorous mathematical treatment, while the study of complex systems is covered by means of Monte Carlo simulations. On the one hand, the uniform stretching of a single polymer, imposed by an external pulling force, is pursued for studying the statistical mechanics of small molecules. When the thermodynamic limit is not satisfied, different boundary conditions (either Helmholtz or Gibbs ensemble) yield different elastic behavior, showing the fascinating intrication native to the thermodynamics of small systems. This complexity is shown to be even more suggestive when investigating bistable molecules of which domains exhibit transitions between two stable states. On the other hand, the non-uniform stretching of a single molecule, imposed by an external field, is studied to analyze the average configurational properties of polymers and leads to another very intricating scenario concerning the behavior of the variances describing the fluctuations of the system. The elastic behavior of polymer chains: theory and simulations (PDF)
  6. img2) Emiliano Cadelano, Graphene under strain: A combined continuum-atomistic approach (November, 2010).

    By combining continuum elasticity theory and atomistic simulations, we provide a picture of the elastic behavior of graphene, which was addressed as a two-dimensional crystal membrane. Thus, the constitutive nonlinear stress-strain relations for graphene, as well as its hydrogenated conformers, have been derived in the framework of the two-dimensional elastic theory, and all the corresponding linear and nonlinear elastic moduli have been computed by atomistic simulations. Moreover, we discuss the effects of an applied stretching on graphene lattice to its electronic band structure, in particular regards the concept of strain-induced band gap engineering. Finally, we focus on the emergence of a stretching field induced on a graphene nanoribbon by bending, providing that such an in-plane strain field can be decomposed in a first contribution due to the actual bending of the sheet and a second one due to the edge effects induced by the finite size of the nanoribbon.Graphene under strain: A combined continuum-atomistic approach (PDF)
  7. img1) Pier Luca Palla, Combined continuum/atomistic modeling of elasticity in nanostructured materials (November, 2009).

    In this thesis, we provide a picture on the elastic behavior of nanostructured systems. In particular, we focus on the effective nonlinear elasticity of nanocomposites. We adopt both continuum theory and atomistic simulations point of view, merging the two approaches in a sequential multiscale modeling. Several new developments in the field of continuum elasticity theory are considered. These methods are then applied down to the nanoscale in order to analyze the onset of atomistic effects in nanocomposite systems. A universal scaling law is provided, governing the overall elastic behavior in the range below 10 nm. Furthermore, interface elastic phenomena in embedded nanostructures are described by means of an atomistically-informed continuum model and verified through large scale atomistic simulations containing up to 107 atoms. Moreover, a new constitutive force field scheme is developed with applications in the field of nonlinear elasticity of complex systems.Combined continuum/atomistic modeling of elasticity in nanostructured materials (PDF)
Introduzione alla Teoria della elasticità

Introduzione alla Teoria della elasticità Meccanica dei solidi continui in regime lineare elastico

Colombo Luciano, Giordano Stefano.
2007, ISBN: 978-88-470-0697-3

La meccanica dei solidi rappresenta un corpus di conoscenze di formidabile robustezza concettuale, di raffinata eleganza matematico-formale e di grandissima utilità applicativa. Come tale ha una valenza formativa molto forte in diversi campi delle scienze naturali (fisica della materia, scienza dei materiali), ingegneristiche (scienza delle costruzioni, ingegneria strutturale e meccanica) e matematiche (matematica applicata). La teoria della elasticità costituisce inoltre uno dei punti-cardine su cui si articola il moderno paradigma di ricerca detto "modellazione multi-scala dei materiali", secondo il quale le proprietà di un materiale sono descritte tramite la concorrenza di metodi teorici affatto diversi: mentre alla nanoscala opera la meccanica quantistica, alla micro- e meso-scala opera il continuo. La conoscenza del continuo elastico abilita lo Studente di Fisica, di Scienza dei Materiali, di Matematica o l'Allievo Ingegnere a confrontarsi con questo moderno e affascinate strumento di ricerca sui materiali. Questa opera introduce lo Studente alla teoria della elasticità attraverso la scelta di un numero selezionato di argomenti di paradigmatica importanza concettuale e tramite lo svolgimento di numerosi esercizi e problemi di approfondimento. Gli argomenti spaziano dalle proprietà formali dei tensori di sforzo e deformazione, alla teoria del continuo elastico lineare, alla termodinamica delle deformazioni, alla propagazione di onde elastiche, alla teoria della frattura fragile in regime lineare elastico. Gli ultimi due capitoli del libro presentano in modo didatticamente accessibile la sofisticata teoria di Eshelby, la cui conoscenza è molto importante sotto il profilo formativo. Tale teoria, infatti, ha un numero strabiliante di applicazioni pratiche e consente di unificare molti risultati del continuo elastico in un'unica struttura formale di validità generale. Electronic version @ www.springerlink.com
Electronic version @ www.springerlink.com

Collaborations

Prof. Luciano Colombo, University of Cagliari, Italy.
Dr. Michele Brun, University of Cagliari, Italy.
Dr. Walter Rocchia, Istituto Italiano di Tecnologia (IIT), Genova, Italy.
Dr. Pierre-Michel Déjardin, LAMPS, Université de Perpignan Via Domitia.

Contact info

Stefano Giordano

Stefano Giordano
Chargè de Recherche (CRCN) CNRS
Fax :(+33) 03 20 19 79 84
Adresse email: Stefano.Giordano@univ-lille.fr
WEB: www.giordanostefano.it
IEMN UMR 8520 IEMN
Equipe: AIMAN - FILM (LEMAC-LICS)

Adresse postale
Laboratoire Central de l'IEMN-UMR 8520 CNRS
Avenue Poincarè - BP 69
59652 Villeneuve d'Ascq Cedex
France

Lectures and notes
  1. img Meccanica analitica (Lecture notes in italian). Meccanica analitica (PDF)
  2. img Nota sullo sviluppo in frazione continua di un numero reale in (0,1): densità di probabilità dei coefficienti, teorema ergodico, costanti di Khintchine, media di Holder (Lecture notes in italian). Nota sullo sviluppo in frazione continua di un numero reale in (0,1) (PDF)
  3. imgNote su sistemi dinamici pilotati dal rumore: Comportamento di particolari sistemi lineari con rumore moltiplicativo, Equazione di Fokker-Planck, Processo di Ornstein-Uhlenbeck, Generalizzazione del processo di Ornstein-Uhlenbeck con rumori moltiplicativi, Sistemi con rumore moltiplicativo colorato (Lecture notes in italian). Note su sistemi dinamici pilotati dal rumore (PDF)
  4. imgDifferential geometry: first part. Multidimensional lines, surfaces or manifods, first and second quadratic form, Levi-Civita sybols, Gauss equations, Weingarten equations, Gauss-Minardi-Codazzi equations, Riemann symbols, theorema egregium, geodetics, motion of particles constrained on lines or surfaces, mean, gaussian and geodetic curvatures, Liouville formula, sphere and pseudosphere (Lecture notes in italian). Differential geometry 1 (PDF)
  5. imgDifferential geometry: second part. Parallel displacement, self-parallelism of geodetics, tensor calculus on manifold, notes on groups, permutations and determinants, measure on manifolds, absolute or covariant differential calculus, variations of the first and second form, variations of curvatures, stretching (in-plane) and bending (out-of-plane) of plates. (Lecture notes in italian). Differential geometry 2 (PDF)
  6. imgNote sulla caratterizzazione di mezzi anisotropi dielettrici ed elastici (multistrato e policristallo). Multistrato dielettrico, multistrato elastico, policristallo dielettrico e policristallo elastico. (Lecture notes in italian). Note sulla caratterizzazione di mezzi anisotropi dielettrici ed elastici (PDF)
  7. imgPolarizzazione elettrica e magnetica: dalle equazioni di Maxwell per il vuoto alle equazioni per la materia. Ideal dipoles and polarization fields, electric polarization, magnetic polarization, Maxwell equations in matter, electric polarization phenomena, magnetic polarization phenomena. (Lecture notes in italian). Polarizzazione elettrica e magnetica (PDF)
  8. imgFrom statistical mechanics to thermodynamics of a polymeric chain. Helmholtz ensamble, Gibbs ensamble, thermodynamic functions, relation between the partition functions, Legendre and Laplace transforms, thermodynamic limit, partition function with spherical symmetry, freely joint chain with extendable bindin s. (Lecture notes in english). From statistical mechanics to thermodynamics of a polymeric chain 2 (PDF) From statistical mechanics to thermodynamics of a polymeric chain 1 (PDF)
  9. imgLeggi cardinali per un sistema interagente con un potenziale ad N corpi arbitrario (Lecture notes in italian). Leggi cardinali per un sistema interagente con un potenziale ad N corpi arbitrario (PDF)
  10. imgLezione sui dispositivi a singolo elettrone: quantum dot, single-electron box, single-electron transistor (Lecture notes in italian). Lezione sui dispositivi a singolo elettrone (PDF)
  11. imgContinuum mechanics and nonlinear elasticity. Lagrangian versus Eulerian formalism. Strain. Stress. Continuity equation. Balance equations: Euler description. Balance equations: Lagrange description. Nonlinear constitutive equations. The small-strain approximation. Continuum mechanics and nonlinear elasticity (PDF)
  12. img Corso di Fisica dei Materiali e Dispositivi Avanzati (Lecture notes in italian). Anno Accademico 2009-2010. A partire dall'appello del 30.9.2010 la Commissione di Esame sara' presieduta dal Prof. Luciano Colombo. Rimangono inalterati programma e modalita' di esame. Onde (PDF) Elasticita` 2 (PDF) Elasticita` 1 (PDF) Esercizi ed approfondimenti (PDF) Richiami di matematica e meccanica razionale (PDF)
Link

Powered by Take a dream